EP2141251A1 - Shape memory alloys based on iron, manganese and silicon - Google Patents
Shape memory alloys based on iron, manganese and silicon Download PDFInfo
- Publication number
- EP2141251A1 EP2141251A1 EP09162774A EP09162774A EP2141251A1 EP 2141251 A1 EP2141251 A1 EP 2141251A1 EP 09162774 A EP09162774 A EP 09162774A EP 09162774 A EP09162774 A EP 09162774A EP 2141251 A1 EP2141251 A1 EP 2141251A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shape memory
- memory alloy
- mass fraction
- vanadium
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 title claims abstract description 101
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 239000010703 silicon Substances 0.000 title claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 7
- 239000011572 manganese Substances 0.000 title claims description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims description 7
- 229910052748 manganese Inorganic materials 0.000 title claims description 7
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002244 precipitate Substances 0.000 claims abstract description 24
- 230000032683 aging Effects 0.000 claims abstract description 21
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000007704 transition Effects 0.000 claims abstract description 18
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011651 chromium Substances 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 5
- 229910000914 Mn alloy Inorganic materials 0.000 claims abstract description 5
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 5
- 229910000676 Si alloy Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 238000004873 anchoring Methods 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 239000004568 cement Substances 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- 229910000734 martensite Inorganic materials 0.000 description 21
- 239000002245 particle Substances 0.000 description 12
- 101100113004 Schizosaccharomyces pombe (strain 972 / ATCC 24843) fta1 gene Proteins 0.000 description 11
- 230000003446 memory effect Effects 0.000 description 11
- 101100220283 Schizosaccharomyces pombe (strain 972 / ATCC 24843) fta2 gene Proteins 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000000930 thermomechanical effect Effects 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 101100166816 Schizosaccharomyces pombe (strain 972 / ATCC 24843) fta3 gene Proteins 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 101000617738 Homo sapiens Survival motor neuron protein Proteins 0.000 description 3
- 102100021947 Survival motor neuron protein Human genes 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 241001295925 Gegenes Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- 208000032225 Proximal spinal muscular atrophy type 1 Diseases 0.000 description 1
- 208000033522 Proximal spinal muscular atrophy type 2 Diseases 0.000 description 1
- 229910008458 Si—Cr Inorganic materials 0.000 description 1
- 208000026481 Werdnig-Hoffmann disease Diseases 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 201000006913 intermediate spinal muscular atrophy Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 208000032471 type 1 spinal muscular atrophy Diseases 0.000 description 1
- 208000032521 type II spinal muscular atrophy Diseases 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/01—Shape memory effect
Definitions
- the present invention describes a shape memory alloy comprising a base alloy of manganese, silicon, chromium and nickel and a residual mass fraction of iron.
- titanium-based and nickel-based shape memory alloys have mostly been used technologically and commercially.
- the titanium and nickel-based shape memory alloys have interesting properties in terms of transition temperatures and shape memory effect, but costs of the order of a hundred dollars per kilogram limit retransmission of the fields of application.
- shape memory alloys The memory capability of shape memory alloys is the result of typical diffusionless phase transformations in a known temperature or voltage range.
- Iron-based shape memory alloys exhibit a phase transition to the martensite phase when the shape memory alloy is deformed and mechanically stressed by the austenite phase. This phase transition is reversible.
- the phase transition from the martensite phase to the austenite phase can be achieved by heating the shape memory alloy.
- thermo-mechanical training has a favorable effect on the thickness and the width of the martensite plates, which form the martensite phase and determine the shape memory effect.
- the shape memory alloys of the time did not succeed in industrial application.
- a further object of the shape memory alloys according to the invention is to provide shape memory alloys whose austenite start temperature and austenite finish temperature are significantly below the corresponding temperatures of known iron and manganese based shape memory alloys according to the prior art.
- a further object is to provide shape memory alloys which each have austenite transition temperature ranges A S -A F , which are significantly below the previous iron-based shape memory alloys, whereby application areas can be expanded or newly developed, for example in civil engineering.
- Shape memory alloys have austenite phases and martensite phases of identical chemical composition but different crystal structures, the occurrence of which depends on the instantaneous temperature of the shape memory alloy. While deformation of the shape memory alloy takes place at low temperatures, in particular room temperature and below, shape recovery can take place by heating the shape memory alloy to high temperatures.
- An approximately ideal hysteresis curve of the proportion of the martensite phase and the austenite phase as a function of the temperature is in FIG. 1 shown.
- the austenite phase or austenite has a cubic-face-centered lattice structure which occurs at high temperatures and is therefore also called the high-temperature phase. From an austenite start temperature A S up to an austenite finish temperature A F , the proportion of austenite increases.
- the austenite phase has a low hardness and some elements such as nickel (Ni), cobalt (Co) and manganese (Mn) are known which promote the formation of austenite, so-called austenite formers.
- the range between A S -A F is called austenite transition temperature range in this application and this is below the hitherto known on iron-based shape memory alloys for the shape memory alloys according to the invention. Also, the width of the austenite transition temperature range A S -A F is significantly narrower than known from shape memory alloys of the prior art.
- the martensite phase or martensite designated here by the symbol ⁇ , generally forms a hexagonal close-packed spherical packing, occurs at low temperatures and forms a metastable low-temperature phase.
- the martensite is from one Martensite start temperature M S up to a martensite final temperature M F.
- the austenite start temperature and the martensite start temperature are generally and here also referred to as transition temperatures and represent a decisive and characteristic of many applications physical property.
- the present iron-based shape memory alloys according to the invention have, in addition to the elements of a base alloy consisting of (mass fractions in percent by weight): 17% to 20% manganese 4% to 6% silicon 8% to 10% chrome 4% to 7% nickel and a high mass fraction of iron, an additional percentage by weight of particles consisting of: 0.2% to 1.0% Carbon and / or nitrogen 0.2% to 1.0% vanadium on.
- the shape memory alloy consists of 50% by weight and more of iron.
- Vanadium nitride and / or vanadium carbide nanoparticles cause the shape memory alloys according to the invention have desired satisfactory shape memory properties without the need for thermo-mechanical training.
- the size of the nanoparticles occurring is in the range of nanometers (10 -9 m) and these precipitates, a precipitate or a precipitate-forming nanoparticles are finely distributed in the shape memory alloy.
- the shape memory alloys according to the invention each comprising a base alloy consisting of manganese, silicon, chromium and nickel and a mass fraction of iron.
- the example sma1 in addition to the base alloy on a mass fraction of vanadium carbide while the example sma2 a mass fraction of vanadium carbide and vanadium nitride particles and the shape memory alloy according to Example sma3 in addition to the base alloy has a mass fraction of vanadium nitride.
- FIG. 2 shows measured different shape returns in percent depending on the applied heat aging temperature during each two hours of heat aging of the above-mentioned exemplary alloys sma1, sma2 and sma3.
- Heat aging temperatures in the range of 650 ° C to 900 ° C were used, with the amount of vanadium carbide and / or vanadium nitride particles being used in a heat aging between 750 ° C and 850 ° C are excreted lead to particularly advantageous results.
- shape memory alloys with shape-feedback quotients result more than 50%.
- the admixture of carbon precipitates vanadium carbide particles, resulting in a mold recycle ratio of over 70%.
- the shape recovery stresses achievable with the shape memory alloys according to the invention are in FIG. 4 plotted on the ordinate against the temperature on the abscissa.
- FIG. 4 plotted on the ordinate against the temperature on the abscissa.
- Square shaped measured values Shape feedback voltages of a sample of a prior art Fe-15Mn-9Si-9Cr-5Cr-5Ni-1.5Nb-0.6C prior art niobium carbide shape memory alloy for comparison. From the typical hysteresis-like curve, it can be seen that the austenite finish temperature A F of the sample of the invention is below the sample According to the prior art.
- the measured values show that the width of the austenite transition temperature range A S -A F of the new shape memory alloy according to the invention is significantly narrower than in the prior art.
- the electrical resistance of the shape memory alloys was determined as a function of the temperature in measurement series.
- the resulting hysteresis curves are in FIG. 5 shown.
- a martensite final temperature M F of about -120 ° C (about 150 K) and a martensite start temperature M S of about -50 ° C (about 220 K) can be read.
- the austenite start temperature A S is about + 70 ° C (about 340 K) and the austenite finish temperature A F is about + 110 ° C (about 380 K).
- a combined process of solution treatment and aging which is also called aging, is performed on a solid shape memory alloy comprising the above-mentioned elements in the above-mentioned concentration.
- the heat treatment solution heat treatment and heat aging are carried out in a preferred embodiment of the inventive method in one and the same heat treatment furnace.
- the heat aging is carried out directly after the solution annealing.
- the individual solid constituents of the shape memory alloy according to the invention are fused prior to solution heat treatment and heat aging to form a solid shape memory alloy according to the prior art.
- Solution heat treatment dissolves precipitated vanadium carbide and / or vanadium nitride particles homogeneously in a matrix of the solid shape memory alloy.
- aging of the shape memory alloy after solution annealing at at least approximately 850 ° C. leads to advantageous results.
- vanadium carbide and / or vanadium nitride particles are precipitated and form finely divided precipitates in the structure of the shape memory alloy.
- the vanadium carbide precipitates and / or vanadium nitride precipitates resulting from the treatment described above result in a change in the physical properties of the shape memory alloy, thereby optimizing shape memory properties while maintaining chemical composition.
- the described shape memory alloy according to the invention and mixing ratios varied within the abovementioned limits are used in civil engineering, in machine and vehicle construction, in the aerospace industry, and in implants and instruments in medical technology.
- the cost-effective production of the iron-based novel shape memory alloys expands the fields of application, for example, to concrete structures in construction.
- the Material costs for the novel shape memory alloys are in the range of known stainless steels.
- the shape memory alloys according to the invention have narrow austenite transition temperature ranges A S -A F of about 40 ° C width. Due to the achievable shape memory properties, the shape memory alloys according to the invention can be used in concrete structures in civil engineering.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Die vorliegende Erfindung beschreibt eine Formgedächtnislegierung, umfassend eine Basislegierung aus Mangan, Silizum, Chrom und Nickel und einem Restmassenanteil Eisen.The present invention describes a shape memory alloy comprising a base alloy of manganese, silicon, chromium and nickel and a residual mass fraction of iron.
In der Vergangenheit wurden meist auf Titan und Nickel basierende Formgedächtnislegierungen technologisch und kommerziell eingesetzt. Die auf Titan und Nickel basierenden Formgedächtnislegierungen haben betreffend Übergangstemperaturen und Formgedächtniseffekt interessante Eigenschaften, wobei aber Kosten in der Grössenordnung von hundert US-Dollar pro Kilogramm eine Weiterverbreitung der Anwendungsgebiete begrenzen.In the past, titanium-based and nickel-based shape memory alloys have mostly been used technologically and commercially. The titanium and nickel-based shape memory alloys have interesting properties in terms of transition temperatures and shape memory effect, but costs of the order of a hundred dollars per kilogram limit retransmission of the fields of application.
Heute sind ausserdem auf Eisen, Mangan und Silizium basierende Formgedächtnislegierungen mit zufriedenstellenden Formgedächtniseffekten interessant und werden in der Industrie zunehmend eingesetzt.Today, iron, manganese and silicon based shape memory alloys with satisfactory shape memory effects are also of interest and are increasingly used in industry.
Die Erinnerungsfähigkeit von Formgedächtnislegierungen ist die Folge der typischen diffusionslosen Phasenumwandlungen in einem bekannten Temperatur- oder Spannungsbereich.The memory capability of shape memory alloys is the result of typical diffusionless phase transformations in a known temperature or voltage range.
Auf Eisen basierende Formgedächtnislegierung zeigen einen Phasenübergang zur Martensitphase, wenn die Formgedächtnislegierung von der Austenitphase deformiert wird und mechanisch belastet wird. Dieser Phasenübergang ist reversibel. Der Phasenübergang von der Martensitphase in die Austenitphase kann durch Erwärmung der Formgedächtnislegierung erreicht werden.Iron-based shape memory alloys exhibit a phase transition to the martensite phase when the shape memory alloy is deformed and mechanically stressed by the austenite phase. This phase transition is reversible. The phase transition from the martensite phase to the austenite phase can be achieved by heating the shape memory alloy.
Mit den bekannten Zusammensetzungen von Formgedächtnislegierung konnten nur beinahe zufriedenstellende Formgedächtniseffekte erreicht werden, wenn ein sogenanntes "thermomechanisches Training" nach der Herstellung der Formgedächtnislegierung durchgeführt wurde. Das thermomechanische Training wirkt günstig auf die Dicke und die Breite der Martensitplatten, welche die Martensitphase bilden und den Formgedächtniseffekt bestimmen. Da aber eine Mehrzahl von Zyklen von Deformationen des Gefüges der Martensitphase bei Raumtemperatur und die Wiederumwandlung in die Austenitphase nötig sind, welche Zeit und Energie kosten, haben sich die damaligen Formgedächtnislegierungen nicht in der industriellen Anwendung durchsetzen können.With the known shape memory alloy compositions, only almost satisfactory shape memory effects could be achieved when so-called "thermo-mechanical training" was performed after the shape memory alloy was fabricated. The thermo-mechanical training has a favorable effect on the thickness and the width of the martensite plates, which form the martensite phase and determine the shape memory effect. However, since a plurality of cycles of deformation of the microstructure of the martensite phase at room temperature and the reversion to the austenite phase are required, which cost time and energy, the shape memory alloys of the time did not succeed in industrial application.
In der
Bekannte auf Eisen basierende Formgedächtnislegierungen weisen Austenitstarttemperaturen AS von bestenfalls 80°C bis 90°C und Austentitfinaltemperaturen AF von mindestens 160°C bis 170°C auf. Daraus resultiert ein etwa 80°C breiter Austenitübergangstemperaturbereich AS-AF.
Known iron-based shape memory alloys have austenite start temperatures A s of at best 80 ° C to 90 ° C and finishing temperatures A F of at least 160 ° C to 170 ° C. This results in an approximately 80 ° C wide austenite transition temperature range A S -A F.
Die vorliegende Erfindung hat sich zur Aufgabe gestellt auf Eisen basierende Formgedächtnislegierungen mit einem ausreichend hohen Formgedächtniseffekt zu schaffen, welche aufgrund ihrer Phasenübergangseigenschaften Einsatz in bislang nicht erreichbaren Temperaturbereichen finden, wobei auf ein thermomechanisches Training im Anschluss an die Herstellung zur Erleichterung und Kostenreduzierung des Herstellungsverfahrens verzichtet werden kann.It is an object of the present invention to provide iron-based shape memory alloys with a sufficiently high shape memory effect which, due to their phase transition properties, find use in hitherto unreachable temperature ranges, omitting thermo-mechanical training following manufacture to facilitate and reduce the cost of the manufacturing process can.
Eine weitere Aufgabe der erfindungsgemässen Formgedächtnislegierungen ist es, Formgedächtnislegierungen zu schaffen dessen Austenitstarttemperatur und Austenitfinaltemperatur deutlich unter den entsprechenden Temperaturen von bekannten auf Eisen und Mangan basierenden Formgedächtnislegierungen gemäss dem Stand der Technik liegen.A further object of the shape memory alloys according to the invention is to provide shape memory alloys whose austenite start temperature and austenite finish temperature are significantly below the corresponding temperatures of known iron and manganese based shape memory alloys according to the prior art.
Ausserdem ist eine weitere Aufgabe Formgedächtnislegierungen zu schaffen, welche jeweils Austenitübergangstemperaturbereiche AS-AF aufweisen, die deutlich unterhalb der bisherigen auf Eisen basierenden Formgedächtnislegierungen liegen, wodurch Einsatzgebiete beispielsweise im Bauingenieurwesen erweitert oder neu erschlossen werden können.In addition, a further object is to provide shape memory alloys which each have austenite transition temperature ranges A S -A F , which are significantly below the previous iron-based shape memory alloys, whereby application areas can be expanded or newly developed, for example in civil engineering.
Neben der Schaffung einer Formgedächtnislegierung mit den oben erwähnten Eigenschaften werden in weiteren unabhängigen Ansprüchen Verwendungen und ein Herstellungsverfahren beansprucht, mit welchem diese neuartige Formgedächtnislegierung kostengünstig und einfach herstellbar sind.In addition to the creation of a shape memory alloy having the above-mentioned properties, claims and a manufacturing method are claimed in further independent claims, with which these novel shape memory alloy are inexpensive and easy to produce.
Einige Ausführungsbeispiel von erfindungsgemässen Formgedächtnislegierungen werden nachstehend im Zusammenhang mit den anliegenden Figuren beschrieben.
Figur 1- zeigt schematisch eine Temperaturkurve in Form einer Hysteresekurve, wobei der Anteil der Martensitphase ξ auf der Ordinate und die Temperatur auf der Abzisse dargestellt ist.
Figur 2- zeigt Formrückführungsquotienten für drei erfindungsgemässe Formgedächtnislegierungen (sma1, sma2 und sma3), welche bei unterschiedlichen Wärmealterungstemperaturen gealtert wurden.
Figur 3- zeigt Formrückführungsquotienten für Proben der Formgedächtnislegierungen gemäss
, wobei die Verformung der Proben bei unterschiedlichen Temperaturen unterhalb von Raumtemperatur stattfanden.Figur 2
- Figur 4
- zeigt Messergebnisse von Formrückführspannungen, welche gegen die Temperatur aufgetragen sind, wobei eine Formgedächtnislegierung gemäss Stand der Technik mit der erfindungsgemässen Formgedächtnislegierung sma3 vergleichbar dargestellt sind.
- Figur 5
- zeigt Messkurven des elektrischen Widerstands gegen die absolute Temperatur für die Beispiellegierungen sma1, sma2 und sma3.
- FIG. 1
- schematically shows a temperature curve in the form of a hysteresis curve, wherein the proportion of the martensite phase ξ is shown on the ordinate and the temperature on the abscissa.
- FIG. 2
- Figure 3 shows shape recycle quotients for three shape memory alloys of the invention (sma1, sma2, and sma3) aged at different heat aging temperatures.
- FIG. 3
- shows shape recovery quotients for samples of shape memory alloys according to
FIG. 2 wherein the deformation of the samples took place at different temperatures below room temperature.
- FIG. 4
- shows measurement results of Formrückführspannungen which are plotted against the temperature, wherein a shape memory alloy according to the prior art with the novel shape memory alloy sma3 are shown comparable.
- FIG. 5
- shows measured curves of the electrical resistance against the absolute temperature for the sample alloys sma1, sma2 and sma3.
Formgedächtnislegierungen weisen Austenitphasen und Martensitphasen mit identischer chemischer Zusammensetzung, aber unterschiedlichen Kristallstrukturen auf, deren Auftreten von der augenblicklichen Temperatur der Formgedächtnislegierung abhängen. Während eine Deformation der Formgedächtnislegierung bei tiefen Temperaturen, insbesondere Raumtemperatur und darunter stattfindet, kann eine Formrückkehr durch das Aufheizen der Formgedächtnislegierung auf Hochtemperaturen stattfinden. Eine etwa ideale Hystereskurve des Anteils der Martensitphase und der Austenitphase in Abhängigkeit von der Temperatur ist in
Die Austenitphase oder der Austenit, meist mit dem Formelzeichen γ bezeichnet, besitzt eine kubisch-flächenzentrierte Gitterstruktur, welche bei hohen Temperaturen auftritt und deswegen auch Hochtemperaturphase genannt wird. Ab einer Austenitstarttemperatur AS bis zu einer Austenitfinaltemperatur AF erhöht sich der Anteil des Austenit. Die Austenitphase weist eine geringe Härte auf und es sind einige Elemente wie Nickel (Ni), Kobalt (Co) und Mangan (Mn) bekannt, welche die Bildung von Austenit unterstützen, sogenannte Austenitbildner. Der Bereich zwischen AS-AF wird in dieser Anmeldung Austenitübergangstemperaturbereich genannt und dieser liegt für die erfindungsgemässen Formgedächtnislegierungen unterhalb der bisher bekannten auf Eisen basierenden Formgedächtnislegierungen. Auch die Breite des Austenitübergangstemperaturbereiches AS-AF ist deutlich schmaler, als von Formgedächtnislegierungen des Stands der Technik bekannt.The austenite phase or austenite, usually denoted by the symbol γ, has a cubic-face-centered lattice structure which occurs at high temperatures and is therefore also called the high-temperature phase. From an austenite start temperature A S up to an austenite finish temperature A F , the proportion of austenite increases. The austenite phase has a low hardness and some elements such as nickel (Ni), cobalt (Co) and manganese (Mn) are known which promote the formation of austenite, so-called austenite formers. The range between A S -A F is called austenite transition temperature range in this application and this is below the hitherto known on iron-based shape memory alloys for the shape memory alloys according to the invention. Also, the width of the austenite transition temperature range A S -A F is significantly narrower than known from shape memory alloys of the prior art.
Die Martensitphase oder der Martensit, hier mit dem Formelzeichen ε bezeichnet, bildet im allgemeinen eine hexagonal dichteste Kugelpackung, tritt bei tiefen Temperaturen auf und bildet eine metastabile Tieftemperaturphase. Der Martensit liegt ab einer Martensitstarttemperatur MS bis zu einer Martensitfinaltemperatur MF vor.The martensite phase or martensite, designated here by the symbol ε, generally forms a hexagonal close-packed spherical packing, occurs at low temperatures and forms a metastable low-temperature phase. The martensite is from one Martensite start temperature M S up to a martensite final temperature M F.
Die Austenitstarttemperatur und die Martensitstarttemperatur werden im Allgemeinen und hier auch als Übergangstemperaturen bezeichnet und stellen eine für viele Anwendungsgebiete entscheidende und kennzeichnende physikalische Eigenschaft dar.The austenite start temperature and the martensite start temperature are generally and here also referred to as transition temperatures and represent a decisive and characteristic of many applications physical property.
Die vorliegenden erfindungsgemässen auf Eisen basierenden Formgedächtnislegierungen weisen neben den Elementen einer Basislegierung bestehend aus (Massenanteile in Gewichtsprozent):
einen zusätzliche Partikelanteil in Gewichtsprozent bestehend aus:
Üblicherweise besteht die Formgedächtnislegierung zu 50 Gewichtsprozent und mehr aus Eisen.The present iron-based shape memory alloys according to the invention have, in addition to the elements of a base alloy consisting of (mass fractions in percent by weight):
an additional percentage by weight of particles consisting of:
Usually, the shape memory alloy consists of 50% by weight and more of iron.
Der Zusatz von Vanadium, Stickstoff und/oder Kohlenstoff bildet ein Präzipitat oder einen Niederschlag aus Vanadiumnitrid und/oder Vanadiumcarbid, wobei stabile Ausscheidungen aus Vanadiumnitrid und/oder Vanadiumcarbid, welche in Partikeln und Nanopartikeln nach der Herstellung in der Formgedächtnislegierung verteilt verbleiben. Vanadiumnitrid und/oder Vanadiumcarbid Nanopartikel führen dazu, dass die erfindungsgemässen Formgedächtnislegierungen gewünschte zufriedenstellende Formgedächtniseigenschaften aufweisen, ohne dass ein thermomechanisches Training durchgeführt werden muss. Die Grösse der auftretenden Nanopartikel liegt im Bereich von Nanometern (10-9 m) und diese die Ausscheidungen, ein Präzipiat oder einen Niederschlag bildenden Nanopartikel liegen fein verteilt in der Formgedächtnislegierung vor.The addition of vanadium, nitrogen and / or carbon forms a precipitate or precipitate of vanadium nitride and / or vanadium carbide, leaving stable precipitates of vanadium nitride and / or vanadium carbide, which remain dispersed in particles and nanoparticles after manufacture in the shape memory alloy. Vanadium nitride and / or vanadium carbide nanoparticles cause the shape memory alloys according to the invention have desired satisfactory shape memory properties without the need for thermo-mechanical training. The size of the nanoparticles occurring is in the range of nanometers (10 -9 m) and these precipitates, a precipitate or a precipitate-forming nanoparticles are finely distributed in the shape memory alloy.
Messungen an den erfindungsgemässen Formgedächtnislegierungen haben gezeigt, dass die, wie in
Im Folgenden werden beispielhaft drei bevorzugte Ausführungsformen der erfindungsgemässe Formgedächtnislegierungen, umfassend jeweils eine Basislegierung bestehend aus Mangan, Silizium, Chrom und Nickel und einem Massenanteil Eisen, beschrieben. Dabei weist das Beispiel sma1 neben der Basislegierung einen Massenanteil Vanadiumcarbid auf, während das Beispiel sma2 einen Massenanteil Vanadiumcarbid und Vanadiumnitrid Partikel und die Formgedächtnislegierung gemäss Beispiel sma3 neben der Basislegierung einen Massenanteil Vanadiumnitrid aufweist.Below, by way of example, three preferred embodiments of the shape memory alloys according to the invention, each comprising a base alloy consisting of manganese, silicon, chromium and nickel and a mass fraction of iron, are described. In this case, the example sma1 in addition to the base alloy on a mass fraction of vanadium carbide, while the example sma2 a mass fraction of vanadium carbide and vanadium nitride particles and the shape memory alloy according to Example sma3 in addition to the base alloy has a mass fraction of vanadium nitride.
Versuchsreihen haben gezeigt, dass der Formrückführungsquotient der verschiedenen Formgedächtnislegierungen sma1, sma2 und sma3 gesteigert und ein beinahe perfekter Formgedächtniseffekt erreichbar wird, wenn die Deformation der Proben um 4% bei Temperaturen deutlich unterhalb der Raumtemperatur stattfinden. Es konnte ein vorteilhafter Temperaturbereich von kleiner gleich -25°C (≤ 248K) in Versuchsreihen ausgewertet werden, in welchem ein gesteigerter Formgedächtniseffekt erreicht wird. Wie in
Die mit den erfindungsgemässen Formgedächtnislegierungen erreichbaren Formrückführungsspannungen (Shape recovery stress) sind in
Experimentell wurden für die Beispiellegierung sma1 eine Martensitfinaltemperatur von -120°C, eine Martensitstarttemperatur von -50°C, eine Austenitstarttemperatur von 70°C und eine Austenitfinaltemperatur von 110°C gemessen. Daraus ergibt sich ein Austenitübergangstemperaturbereich AS-AF von etwa 40°C, was in etwa halb so breit ist, wie der von auf Eisen basierenden Formgedächtnislegierungen des Stands der Technik.Experimentally, a martensite final temperature of -120 ° C, a martensite start temperature of -50 ° C, an austenite start temperature of 70 ° C, and an austenite finish temperature of 110 ° C were measured for the example alloy sma1. This results in an austenite transition temperature range A S -A F of about 40 ° C, which is about half the width of that of prior art iron-based shape memory alloys.
Die erreichbaren Formrückführungsspannungen der erfindungsgemässen Formgedächtnislegierungen sind deutlich höher, als die entsprechenden Vergleichwerte von bekannten Formgedächtnislegierungen gemäss Stand der Technik.The achievable shape return stresses of the shape memory alloys according to the invention are significantly higher than the corresponding comparative values of known shape memory alloys according to the prior art.
Um die Übergangstemperaturen der Beispiellegierungen sma1, sma2 und sma3 experimentell zu bestimmen, wurde der elektrische Widerstand der Formgedächtnislegierungen in Abhängigkeit von der Temperatur in Messreihen bestimmt. Die resultierenden Hysteresekurven sind in
Auf die Herstellung der auf Eisen und Mangan basierenden Formgedächtnislegierung durch die Schmelze der Basismetalle in einem Wärmebehandlungsofen wird hier nicht näher eingegangen, da dies dem Fachmann bekannt ist, bzw. aus dem Stand der Technik entnehmbar ist.The preparation of the iron and manganese-based shape memory alloy by the melt of the base metals in a heat treatment furnace will not be discussed here, since this is known to the person skilled in the art or can be taken from the prior art.
Zur Herstellung der erfindungsgemässen Formgedächtnislegierungen wird ein kombiniertes Verfahren aus einem Lösungsglühen (solution treatment) und einer Wärmealterung (aging), welche auch Altern genannt wird, auf eine feste Formgedächtnislegierung, umfassend oben erwähnte Elemente in oben erwähnter Konzentration durchgeführt. Die Wärmebehandlungen Lösungsglühen und Wärmealterung werden in einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens in ein und demselben Wärmebehandlungsofen durchgeführt. Dabei wird die Wärmealterung direkt im Anschluss an das Lösungsglühen durchgeführt. Die einzelnen festen Bestandteile der erfindungsgemässen Formgedächtnislegierung werden vor dem Lösungsglühen und der Wärmealterung zu einer festen Formgedächtnislegierung gemäss Stand der Technik verschmolzen.For the production of the shape memory alloys of the present invention, a combined process of solution treatment and aging, which is also called aging, is performed on a solid shape memory alloy comprising the above-mentioned elements in the above-mentioned concentration. The heat treatment solution heat treatment and heat aging are carried out in a preferred embodiment of the inventive method in one and the same heat treatment furnace. The heat aging is carried out directly after the solution annealing. The individual solid constituents of the shape memory alloy according to the invention are fused prior to solution heat treatment and heat aging to form a solid shape memory alloy according to the prior art.
Durch das Lösungsglühen werden präzipitierte Vanadiumcarbid und/oder Vanadiumnitrid Partikel homogen in einer Matrix der festen Formgedächtnislegierung verteilt gelöst.Solution heat treatment dissolves precipitated vanadium carbide and / or vanadium nitride particles homogeneously in a matrix of the solid shape memory alloy.
Versuche haben gezeigt, dass ein optimaler Herstellungsvorgang ein Lösungsglühen bei 1050°C bis 1150°C über einen Zeitraum von fünf bis zehn Stunden und ein direkt anschliessendes Altern bei 750°C bis 900°C für einen Zeitraum von ein bis zwei Stunden, zu Formgedächtnislegierungen mit ausreichend guter Formrückführung und damit gutem Formgedächtniseffekt führen.Experiments have shown that an optimal manufacturing process involves solution annealing at 1050 ° C to 1150 ° C over a period of five to ten hours and directly subsequent aging at 750 ° C to 900 ° C for a period of one to two hours, too Shape memory alloys with sufficiently good shape feedback and thus good shape memory effect lead.
Insbesondere führt ein Altern der Formgedächtnislegierung nach dem Lösungsglühen bei mindestens annähernd 850°C zu vorteilhaften Ergebnissen.In particular, aging of the shape memory alloy after solution annealing at at least approximately 850 ° C. leads to advantageous results.
Durch das Altern werden, je nach Wahl der zugeführten Legierungselemente des Partikelanteils, Vanadiumcarbid und/oder Vanadiumnitrid Partikel ausgeschieden und bilden fein verteilte Ausscheidungen im Gefüge der Formgedächtnislegierung.By aging, depending on the choice of the supplied alloying elements of the particle fraction, vanadium carbide and / or vanadium nitride particles are precipitated and form finely divided precipitates in the structure of the shape memory alloy.
Die durch die oben beschriebene Behandlung ausfallenden Vanadiumcarbidausscheidungen und/oder Vanadiumnitridausscheidungen führen zu einer Änderung der physikalischen Eigenschaften der Formgedächtnislegierung, wodurch bei gleichbleibender chemischer Zusammensetzung die Formgedächtniseigenschaften optimiert werden.The vanadium carbide precipitates and / or vanadium nitride precipitates resulting from the treatment described above result in a change in the physical properties of the shape memory alloy, thereby optimizing shape memory properties while maintaining chemical composition.
Es ist zu erwähnen, dass keine Vordeformation zwischen dem Lösungsglühen und der Wärmealterung notwendig ist und kein anschliessendes aufwendiges Training, umfassend eine Vielzahl von thermomechanischen Behandlungszyklen durchzuführen ist.It should be noted that no pre-deformation between the solution annealing and the heat aging is necessary and no subsequent elaborate training comprising a plurality of thermomechanical treatment cycles is to be carried out.
Die beschriebene erfindungsgemässe Formgedächtnislegierung und in den oben genannten Grenzen variierte Mischungsverhältnisse finden Einsatz im Bauingenieurwesen, im Maschinen- und Fahrzeugbau, in der Luft- und Raumfahrtindustrie, sowie in Implantaten und Instrumenten der Medizintechnik.The described shape memory alloy according to the invention and mixing ratios varied within the abovementioned limits are used in civil engineering, in machine and vehicle construction, in the aerospace industry, and in implants and instruments in medical technology.
Die kostengünstige Herstellung der auf Eisen basierenden erfindungsgemässen Formgedächtnislegierungen erweitert die Einsatzgebiete beispielsweise auf Betonstrukturen im Bauwesen. Die Materialkosten für die erfindungsgemässen Formgedächtnislegierungen liegen im Bereich von bekannten rostfreien Edelstählen.The cost-effective production of the iron-based novel shape memory alloys expands the fields of application, for example, to concrete structures in construction. The Material costs for the novel shape memory alloys are in the range of known stainless steels.
Neben erreichbaren tiefen Austenitstarttemperaturen AS von etwa 70°C weisen die erfindungsgemässen Formgedächtnislegierungen schmale Austenitübergangstemperaturbereiche AS-AF von etwa 40°C Breite auf. Aufgrund der erreichbaren Formgedächtniseigenschaften sind die erfindungsgemässen Formgedächtnislegierungen in Betonstrukturen im Bauingenieurwesen einsetzbar.In addition to achievable low austenite start temperatures A S of about 70 ° C, the shape memory alloys according to the invention have narrow austenite transition temperature ranges A S -A F of about 40 ° C width. Due to the achievable shape memory properties, the shape memory alloys according to the invention can be used in concrete structures in civil engineering.
Aufgrund der im Vergleich zum Stand der Technik niedrigeren Austenitstarttemperatur und der Austenitfinaltemperatur, werden vor allem im Bauingenieurwesen neue Anwendungen wie z.B. vorgespannte Umschnürung von Stützen, innerlich vorgespannte zementgebundene Werkstücke oder die Schaffung verbesserter Verankerungselemente beispielsweise Dübel aus den neuartigen Formgedächtnislegierungen möglich. Aufgrund der gemäss dem Stand der Technik nötigen stärkeren Erwärmungen der bekannten Formgedächtnislegierungen, ist der Einsatz bisher schwierig bis teilweise unmöglich gewesen.Because of the lower austenite start temperature and the austenite finish temperature compared to the prior art, new applications such as prestressed necking of supports, internally prestressed cement bonded workpieces or the provision of improved anchoring elements, for example dowels made of the novel shape memory alloys, become possible. Due to the required according to the prior art stronger heating of the known shape memory alloys, the use has been difficult to partially impossible.
- εε
- Martensitphasemartensite
- AF A F
- AustenitfinaltemperaturAustenitfinaltemperatur
- AS A S
- Austenitstarttemperaturaustenite
- AS-AF A S -A F
- AustenitübergangstemperaturbereichesAustenitübergangstemperaturbereiches
- MF M F
- MartensitfinaltemperaturMartensitfinaltemperatur
- MS M s
- Martensitstarttemperaturmartensite
- sma1SMA1
- Basislegierung + VanadiumcarbidBase alloy + vanadium carbide
- sma2SMA2
- Basislegierung + Vanadiumcarbid und VanadiumnitridBase alloy + vanadium carbide and vanadium nitride
- sma3SMA3
- Basislegierung + VanadiumnitridBase alloy + vanadium nitride
Claims (14)
eine Basislegierung aus Mangan, Silizum, Chrom und Nickel und einem Restmassenanteil Eisen,
dadurch gekennzeichnet, dass
die Formgedächtnislegierung zusätzlich zur Basislegierung
in Form von ausgefällten Vanadiumcarbidausscheidungen und/oder Vanadiumnitridausscheidungen beinhaltet.
a base alloy of manganese, silicon, chromium and nickel and a residual mass of iron,
characterized in that
the shape memory alloy in addition to the base alloy
in the form of precipitated vanadium carbide precipitates and / or vanadium nitride precipitates.
und
and
eine Basislegierung aus Mangan, Silizum, Chrom, Nickel und einem Massenanteil Eisen umfasst,
einen Massenanteil Vanadium
und
einen Massenanteil von Kohlenstoff und/oder Stickstoff umfasst und
einen Austenitübergangstemperaturbereich AS-AF mit einer Breite kleiner als 80°C, insbesondere mindestens annähernd gleich 40°C aufweist.Use of a shape memory alloy in civil engineering, in particular for lashing up supports, for use in internally prestressed cement-bonded workpieces or for providing improved anchoring elements, characterized in that the shape memory alloy
comprises a base alloy of manganese, silicon, chromium, nickel and a mass fraction of iron,
a mass fraction of vanadium
and
comprises a mass fraction of carbon and / or nitrogen and
an austenite transition temperature range A S -A F having a width less than 80 ° C, in particular at least approximately equal to 40 ° C.
Bauingenieurwesen nach Anspruch 6, dadurch gekennzeichnet, dass eine Deformation der Formgedächtnislegierung vor der Formrückführung bei Temperaturen kleiner als -45°C stattfindet, wodurch Formrückführungsquotienten grösser als 90% erreichbar sind.Use of a shape memory alloy in
Civil engineering according to claim 6, characterized in that a deformation of the shape memory alloy before the mold recirculation takes place at temperatures less than -45 ° C, whereby Formrückführungsquotienten greater than 90% can be achieved.
Anspruch 1, dadurch gekennzeichnet, dass
in einem Wärmebehandlungsofen eine Basislegierung aus Mangan, Silizium, Chrom, Nickel und einem Massenanteil Eisen eingeschmolzen wird, wonach
eine anschliessende Zugabe eines Massenanteils Vanadium erfolg, woraufhin
eine gezielte Zugabe eines Massenanteils Kohlenstoff erfolgt und diese feste Formgedächtnislegierung durch
ein Lösungsglühen in einem Temperaturbereich von etwa 1050°C bis 1150°C in einem Zeitraum von fünf bis zehn Stunden behandelt wird, woran, direkt an das Lösungsglühen eine Wärmealterung für etwa ein bis zwei Stunden in einem Temperaturbereich von 650°C bis 900°C angeschlossen wird, wodurch Ausscheidungen aus Vanadiumcarbid in der Formgedächtnislegierung entsteht.A method for producing a shape memory alloy according to
Claim 1, characterized in that
in a heat treatment furnace, a base alloy of manganese, silicon, chromium, nickel and a mass fraction of iron is melted, after which
a subsequent addition of a mass fraction of vanadium success, whereupon
a targeted addition of a mass fraction of carbon takes place and this solid shape memory alloy
solution annealing is treated in a temperature range of about 1050 ° C to 1150 ° C in a period of five to ten hours, followed by heat aging directly to the solution annealing for about one to two hours in a temperature range of 650 ° C to 900 ° C is connected, whereby precipitates of vanadium carbide formed in the shape memory alloy.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH9682008 | 2008-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2141251A1 true EP2141251A1 (en) | 2010-01-06 |
EP2141251B1 EP2141251B1 (en) | 2016-12-28 |
Family
ID=41165491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09162774.5A Active EP2141251B1 (en) | 2008-06-25 | 2009-06-16 | Shape memory alloys based on iron, manganese and silicon |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2141251B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026299A1 (en) * | 2012-08-14 | 2014-02-20 | S&P Clever Reinforcement Company Ag | Anchoring system for a support in construction, and method for using same |
DE102013101378A1 (en) * | 2013-02-12 | 2014-08-28 | Thyssenkrupp Steel Europe Ag | Component and method for producing a component |
WO2014146733A1 (en) | 2013-03-22 | 2014-09-25 | Thyssenkrupp Steel Europe Ag | Iron-based shape memory alloy |
CN105378129A (en) * | 2013-04-08 | 2016-03-02 | Re-Fer股份公司 | Method for producing prestressed concrete structures by means of profiles made of shape memory alloys and structure produced according to said method |
WO2019175065A1 (en) | 2018-03-15 | 2019-09-19 | Re-Fer Ag | Method for creating a prestress on a component made of steel, metal or an alloy by means of an sma plate, and component prestressed in such a manner |
DE102018119296A1 (en) * | 2018-08-08 | 2020-02-13 | Thyssenkrupp Ag | Inline stretching of shape memory alloys, especially flat steel |
EP3511435A4 (en) * | 2016-09-06 | 2020-05-27 | Tohoku University | Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME |
CN111235491A (en) * | 2019-12-27 | 2020-06-05 | 西北工业大学 | High-strength high-plasticity shape memory steel and preparation method thereof |
WO2020234341A1 (en) | 2019-05-23 | 2020-11-26 | Soletanche Freyssinet | Method for reinforcing a structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018219463A1 (en) | 2017-06-01 | 2018-12-06 | Thyssenkrupp Steel Europe Ag | Fe-mn-si shape-memory alloy |
DE102018129640A1 (en) | 2018-11-23 | 2020-05-28 | Thyssenkrupp Ag | Method for prestressing a building with a tensioning device and use of such a tensioning device for fastening to a building |
WO2020108754A1 (en) | 2018-11-29 | 2020-06-04 | Thyssenkrupp Steel Europe Ag | Flat product consisting of an iron-based shape memory material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009256C1 (en) * | 1992-06-01 | 1994-03-15 | Евгений Захарович Винтайкин | Iron based shape-metal alloy |
WO1997003215A1 (en) * | 1995-07-11 | 1997-01-30 | Kari Martti Ullakko | Iron-based shape memory and vibration damping alloys containing nitrogen |
EP1123983A1 (en) | 2000-02-09 | 2001-08-16 | Japan as represented by Director General of | Shape memory alloy |
JP2004115864A (en) * | 2002-09-26 | 2004-04-15 | Hiroshi Kubo | Iron-based shape memory alloy |
CN1563466A (en) * | 2004-04-13 | 2005-01-12 | 刘文西 | Iron based shape memory alloy containing vanadium carbide and application of shape memory packer |
-
2009
- 2009-06-16 EP EP09162774.5A patent/EP2141251B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009256C1 (en) * | 1992-06-01 | 1994-03-15 | Евгений Захарович Винтайкин | Iron based shape-metal alloy |
WO1997003215A1 (en) * | 1995-07-11 | 1997-01-30 | Kari Martti Ullakko | Iron-based shape memory and vibration damping alloys containing nitrogen |
EP1123983A1 (en) | 2000-02-09 | 2001-08-16 | Japan as represented by Director General of | Shape memory alloy |
JP2004115864A (en) * | 2002-09-26 | 2004-04-15 | Hiroshi Kubo | Iron-based shape memory alloy |
CN1563466A (en) * | 2004-04-13 | 2005-01-12 | 刘文西 | Iron based shape memory alloy containing vanadium carbide and application of shape memory packer |
Non-Patent Citations (5)
Title |
---|
H. KUBO ET AL: "Characterization of Fe-Mn-Si-Cr shape memory alloys containing VN precipitates", MATERIALS SCIENCE AND ENGINEERING A, vol. 378, no. 1-2, 25 July 2004 (2004-07-25), pages 343 - 348, XP002551335 * |
JIAN L ET AL: "SHAPE MEMORY EFFECT AND RELATED PHENOMENA IN A MICROALLOYED FE-MN-SI ALLOY", MATERIALS CHARACTERIZATION, ELSEVIER, NEW YORK, NY, US, vol. 32, no. 3, 1 January 1994 (1994-01-01), pages 215 - 227, XP000989417, ISSN: 1044-5803 * |
K.MOSER ET AL: "Feasibility of concrete prestressed by shape memory alloy short fibers", MATERIALS AND STRUCTURES, vol. 38, no. 279, 1 June 2005 (2005-06-01), pages 593 - 600, XP002551336 * |
VON KUBO ET AL.: "Characterization of Fe-Mn-Si-Cr shape memory alloys containing VN precipitates", MATERIAL SCIENCE AND ENGINEERING, vol. A378, 2004, pages 343 - 348 |
WPI WORLD PATENT INFORMATION DERWENT, vol. 1994, no. 35, 19 October 1994 (1994-10-19), XP002168654 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014026299A1 (en) * | 2012-08-14 | 2014-02-20 | S&P Clever Reinforcement Company Ag | Anchoring system for a support in construction, and method for using same |
DE102013101378A1 (en) * | 2013-02-12 | 2014-08-28 | Thyssenkrupp Steel Europe Ag | Component and method for producing a component |
WO2014146733A1 (en) | 2013-03-22 | 2014-09-25 | Thyssenkrupp Steel Europe Ag | Iron-based shape memory alloy |
CN105378129A (en) * | 2013-04-08 | 2016-03-02 | Re-Fer股份公司 | Method for producing prestressed concrete structures by means of profiles made of shape memory alloys and structure produced according to said method |
EP3511435A4 (en) * | 2016-09-06 | 2020-05-27 | Tohoku University | Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME |
US10920305B2 (en) | 2016-09-06 | 2021-02-16 | Tohoku University | Fe-based shape memory alloy material and method of producing the same |
WO2019175065A1 (en) | 2018-03-15 | 2019-09-19 | Re-Fer Ag | Method for creating a prestress on a component made of steel, metal or an alloy by means of an sma plate, and component prestressed in such a manner |
WO2020030358A1 (en) | 2018-08-08 | 2020-02-13 | Thyssenkrupp Steel Europe Ag | Inline prestretching of shape memory alloys, in particular flat steel |
DE102018119296A1 (en) * | 2018-08-08 | 2020-02-13 | Thyssenkrupp Ag | Inline stretching of shape memory alloys, especially flat steel |
WO2020234341A1 (en) | 2019-05-23 | 2020-11-26 | Soletanche Freyssinet | Method for reinforcing a structure |
FR3096382A1 (en) | 2019-05-23 | 2020-11-27 | Soletanche Freyssinet | Method of strengthening a structure. |
CN111235491A (en) * | 2019-12-27 | 2020-06-05 | 西北工业大学 | High-strength high-plasticity shape memory steel and preparation method thereof |
CN111235491B (en) * | 2019-12-27 | 2022-05-10 | 西北工业大学 | High-strength high-plasticity shape memory steel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2141251B1 (en) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2141251B1 (en) | Shape memory alloys based on iron, manganese and silicon | |
DE69918350T2 (en) | Process for producing a dispersion-hardened ferritic-martensitic alloy | |
DE69916435T2 (en) | METHOD FOR IMPROVING THE DUCTILITY OF NITINOL | |
DE69601538T3 (en) | HIGH-STRENGTH STAINLESS STEEL MARTENSITIC STEEL WITH HIGH CORROSION RESISTANCE AND OBJECTS MADE THEREOF | |
DE2516749C3 (en) | Process for the production of metal bodies with repeatedly reversible shape change capability | |
EP0062365B1 (en) | Process for the manufacture of components from a titanium-base alloy, the component obtained this way, and its use | |
DE60019141T2 (en) | A method of making precipitation hardened martensitic stainless steel products using the method | |
DE3921626C2 (en) | High strength component with low fatigue crack propagation speed | |
DE60302108T2 (en) | Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method | |
EP3594368A1 (en) | Medium manganese steel intermediate product with reduced carbon content and method for providing such a steel intermediate product | |
DE112013000503T5 (en) | New classes of non-stainless steels with high strength and high ductility | |
DE69425977T2 (en) | DEPRODUCTION HARDENED IRON ALLOY WITH QUASIC CRYSTAL EXHAUST | |
WO2020187368A1 (en) | Nickel alloy having good resistance to corrosion and high tensile strength, and method for producing semi-finished products | |
DE2606632C2 (en) | Use of carbon steel as a superplastic agent and process for its heat treatment | |
EP0123054B1 (en) | Stainless chromium steel and process for the manufacture thereof | |
DE1458470B2 (en) | Use of a heat-treated, ductile, high-strength steel alloy with a martensitic or bainitic structure for the production of components for aerospace engineering | |
DE102017011893A1 (en) | Particle-reinforced high-temperature material | |
WO1999015708A1 (en) | Aluminium based alloy and method for subjecting it to heat treatment | |
DE2642567A1 (en) | METAL OXYDE VARISTOR WITH IMPROVED ELECTRICAL PROPERTIES | |
DE69318274T2 (en) | Martensitic stainless steel alloy for surgical needles | |
DE1290727B (en) | Process for the production of high strength niobium alloys | |
DE4101220C2 (en) | Process for the production of a semi-finished product or workpiece | |
DE102018119296A1 (en) | Inline stretching of shape memory alloys, especially flat steel | |
DE69705701T2 (en) | ROLLED WIRE USEFUL FOR REINFORCING PRODUCTS MADE OF PLASTIC MATERIALS OR RUBBER | |
DE3346089A1 (en) | METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20100701 |
|
17Q | First examination report despatched |
Effective date: 20160219 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160608 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 857351 Country of ref document: AT Kind code of ref document: T Effective date: 20170115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013513 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: EMPA |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: BERGAMINI, ANDREA Inventor name: KLOTZ, ULRICH Inventor name: ZHIZHONG, DONG |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170328 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170428 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170328 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013513 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
26N | No opposition filed |
Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170616 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170616 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090616 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20190610 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190524 Year of fee payment: 11 Ref country code: FR Payment date: 20190604 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200602 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200616 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200616 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009013513 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240515 Year of fee payment: 16 |