EP2138393B1 - Modular floating system and a method of its manufacture - Google Patents

Modular floating system and a method of its manufacture Download PDF

Info

Publication number
EP2138393B1
EP2138393B1 EP09460031.9A EP09460031A EP2138393B1 EP 2138393 B1 EP2138393 B1 EP 2138393B1 EP 09460031 A EP09460031 A EP 09460031A EP 2138393 B1 EP2138393 B1 EP 2138393B1
Authority
EP
European Patent Office
Prior art keywords
antijamming
bottom part
containers
side wall
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09460031.9A
Other languages
German (de)
French (fr)
Other versions
EP2138393A1 (en
Inventor
Waldemar Paksys
Tadeusz Niezgoda
Michaela Pakszys
Wieslaw Krason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wojskowa Akademia Techniczna Im
Original Assignee
Wojskowa Akademia Techniczna Im
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wojskowa Akademia Techniczna Im filed Critical Wojskowa Akademia Techniczna Im
Priority to PL09460031T priority Critical patent/PL2138393T3/en
Publication of EP2138393A1 publication Critical patent/EP2138393A1/en
Application granted granted Critical
Publication of EP2138393B1 publication Critical patent/EP2138393B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • B63B35/38Rigidly-interconnected pontoons

Definitions

  • the invention refers to a modular floating system used in various applications, and to a method of its manufacture.
  • the invention refers to the modular floating system that may be stacked on limited surfaces and transported to the destination on limited number of vehicles.
  • the invention refers also to the appliances where the modular floating system may be used, like e.g. floating or submersible platforms, docks, bridges, wharfs, piers, and the like.
  • the modular floating systems according to the invention may also be used, when equipped with a propulsion unit, to make the boats, pontoons, rafts, ferries and other floating appliances used in transportation.
  • Floating structures have had been developed by military engineers for long time.
  • civil engineering pays attention to floating structures as their usefulness on flooded areas or in the regions destroyed by other natural disasters or wars has been proved extensively.
  • Particular interest is payed to modular floating systems because they enable the engineers to adjust the floating structure to specific demands (expected load, topography, changes in the water level, etc.) and to design unique, optimized structure.
  • pontoons In known floating systems the deck is arranged on pontoons, which in older systems have been singular or folded multiple, usually triple units. The latter are deployed in situ into floating units of bigger dimensions. Whether singular or folded, individual units are big and because of their dimensions of several meters and considerable weight they are difficult to be handled on-shore so they have to be connected into single structure on the water.
  • the pontoons are hermetic containers made from steel, so they are big and heavy. Both transportation and storage of these systems are expensive and troublesome, and require big trucks, good roads network accessible even during natural disaster or war, and sufficient number of trained stuff. To fulfill all those conditions in emergency may be difficult. Besides, the steel containers require costly maintenance and large areas for storage.
  • hermetic containers of big dimensions still have been making difficulties and generating excessive costs in transportation, handling, and storage both in situ and in the storage area.
  • the examples of floating systems consisting of plastic hermetic containers were presented in the patent documents GB 2170760 A , FR 2699495 A1 and FR 2699496 A1 .
  • An alternative to hermetic containers are the modules filled with a foam, like in the patent document US 6230644 B1 . Naturally foam-filled modules are as unhandy in storage and transportation as the other systems mentioned above.
  • Relatively flat elements i.e. with moderately sloped walls (the slope value lesser than about 3), are resistant to jamming.
  • the slope is understood here to be the ratio of the wall height to the wall horizontal projection. In other words, the slope equals to the tangent of an angle between the wall and the horizontal plane.
  • moderately sloped walls decrease the volume of air closed inside the container thus decreasing the displacement of the floating structure and in consequence significantly limiting allowable load.
  • the container elements with almost vertical walls i.e. with the slope close to maximum which is the ratio of the wall height to the wall thickness, maximize the volume of air closed inside the container. Note that behind this slope maximal value the container elements can not be stacked one inside another. Unfortunately these "vertical" containers are very susceptible for jamming. This undesirable effect can prevent the civil and military engineers, designers, manufacturers and crisis management services from considering the floating systems based on the containers with almost vertical walls.
  • a US patent US3897741 discloses a modular floating system provided with antijamming means in form of a flange at a side wall.
  • the flange is integral with the side wall of the container, which makes the process of the container manufacture much more complicated, requiring a complex mould, e.g. a two-part mould and costly.
  • a modular floating system comprises the sets of complementary elements designed so as to be coupled tightly into a form of void containers with solid walls.
  • the air closed hermetically inside the containers makes them floatable irrespective of waves, rains, etc.
  • the containers are equipped with the connecting means for construction of floating structures like platforms, wharfs, piers or bridges.
  • These connecting means may provide whole structure with some resiliency that may be required to react to changing levels and movements of water caused e.g. by waves, tides, floods.
  • another type of connecting means may provide rigid connections stiffening whole structure which may be preferred for the structures installed on-shore or off-shore on the floor of the sea, lake, river or channel. In the latter case the containers shall be filled with water, sand, stones, concrete, iron ore and the like.
  • the modular floating system may also be used, if equipped with a propulsion unit, to make the boats, pontoons, rafts, ferries and other floating appliances used in transportation. It shall be noted, that large sections of whole floating structure can be transported to the destination on the water surface in the form of the rafts.
  • the main feature of the invention is in that particular elements constituing the containers are provided with the antijamming means preventing dismantled identical elements from jamming during storage in stack.
  • These antijamming means may be constituted by any details of shape of the container elements that separate adjacent surfaces of walls of stacked elements.
  • the role of the antijamming means is twofold. Firstly, it is to prevent from direct contact between faying surfaces of the containers, resulting in adhesion of contacting surfaces, particularly when these are wet, e.g. after being dismantled and stacked on the field. Secondly, it is to provide the passages necessary for the air flow during taking off the element from the stack.
  • antijamming means is a set of ribs made preferably on the inner side of the wall, however external ribs may be advantageous in some applications.
  • the antijamming means may also play a role of the means stiffening the element of the container.
  • the separation between the surfaces of stacked elements of the containers preferably shall be comprised in range from about 5 mm to about 30 mm or more in case of very big elements stacked.
  • the body of said container is formed from two complementary elements, namely the bottom part and the upper cover, where the bottom part may have a shape of two similar truncated pyramids or truncated cones with an intermediate part of the side walls that connects both shapes.
  • This intermediate part of the side walls has a character of the antijamming means, because it prevents the bottom part of one container to fall too deeply into the bottom part of another container when stacked. In other words this intermediate part of the side walls of one container supports another container (precisely: its bottom part) in the pile.
  • the upper base of the minor truncated pyramid or truncated cone is lesser in size than the lower base of the bigger truncated pyramid or truncated cone.
  • the upper cover of the container fits the upper base of the bigger truncated pyramid or truncated cone and it is provided with the means securing water and air tightness of the coupling.
  • These tighting means are for example a groove on the bottom side of the upper cover, optionally provided with a gasket, e.g. a rubber gasket, and an edge of the bottom part, this groove fitting tightly with specified tolerances the upper edge of the bottom part.
  • Full tightness is reached when both parts of the container, i.e. the bottom part and the upper cover, are fastened together circumferentially, e.g. with screw-and-nuts inserted into the holes in the connecting flanges.
  • the number of holes equals at least the number of corners in polygonal elements, and it is no less than three in case of circular shapes. In the latter case the holes shall be distributed in vertices of a regular polygon.
  • the slope of the itermediate, antijamming joining part of the side wall of the bottom part is flatter than the slope of adjacent lower and upper side walls of truncated pyramids or truncated cones, thus forming a sloped step between lower and upper segments of the container side walls.
  • this slope may equal to zero, making this joining part of the side wall horizontal.
  • a horizontal step in the container side wall may additionally help manoeuvring the element (support for the lifting sling, spreader beam, etc.).
  • the antijamming joining part of the side wall of the bottom part may be provided with at least one antijamming protrusion facing the interior or the exterior of the bottom part.
  • the external side of the upper container wall is supported by such protrusion thereby being separated from the internal side of the lower container wall by the thickness of the protrusion.
  • the antijamming protrusion facing the interior or the exterior of the bottom part shall have a shape of half-round moulding.
  • the antijamming protrusion facing the interior or the exterior of the bottom part is an indentation in the joining part of the side wall of the bottom part.
  • Mechanically such indentation is not as resistant as the mouldings described hereinbefore, thus this sollution is particularly recommended for smaller containers, preferably with dimensions of up to about 2 m, however bigger elements may be endowed with the indentations as well if their walls have sufficient thickness.
  • the advantage of this solution is lower cost of manufacture of containers with indentations in the side walls.
  • Each container may be additionally complemented with separate strengthening flange fitting the intermediate, joining part of the side wall of the bottom part.
  • This strengthening flange is provided with the bolt holes, preferably tapped to receive the screws, and spaced identically as the bolt holes in the upper cover.
  • the upper cover and the strengthening flange are joined by bolts or screw-and-nuts, or other screw fasteners such as simple screws passing through respective bolt holes. In the latter case the holes in the strengthening flange are threaded. To ensure appropriate stiffness of the structure the holes of the container are separated from those of the strengthening flange by the spacing sleeves.
  • the neighbouring containers are joined with the hinged connectors, preferably folding along two perpendicular axis, and provided with the bolt holes spaced according to the spacing between the bolt holes of neighbouring containers. According to the users needs this spacing may equal to the spacing of conterminous containers, thereby limiting elasticity of the structure. Bigger spacings provide the structure with some elasticity and facilitate the task of constructing the structure, which might be advantageous in straitened circumstances in the field.
  • each container comprises two cups with the shape of truncated pyramid or truncated cone provided with the antijamming cylindrical collar.
  • the cups When stacked in pile, the cups are supported by cylindrical collars of lower cups. To complete a container other parts may be necessary.
  • the container may consist of two cups, namely the bottom cup and the upper cup.
  • the bottom cup is provided with the antijamming upper cylindrical threaded collar and the complementary upper cup is provided with complementary antijamming lower cylindrical threaded collar.
  • the threaded collars provide tight coupling of the bottom cup with the upper cup.
  • the collar with internal thread female
  • the bottom cup is provided with the connecting flanges provided with the bolt holes and spaced circumferentially below the cylindrical threaded collar on different levels offset relatively by the thicknesses of said connecting flanges.
  • the connecting flanges of neighbouring bottom cups in complete containers are joined by bolts or screw-and-nuts, or screw fasteners passing through respective bolt holes.
  • the container body is formed by connecting two identical cups through a ring-shaped coupling element fitting the antijamming cylindrical collars either on larger bases of the cups or on smaller bases of the cups.
  • both kinds of couplings may be applied alternately, making the structure compact.
  • the ring-shaped coupling element is threaded with a thread complementary to the threads on the antijamming cylindrical collars of both cups.
  • the threads provide tight coupling of the cups with the coupling element which additionally may be fit out with a gasket, preferably a rubber gasket.
  • the extended floating structures are made from one or more layers of the containers. None of the container elements presented above, i.e. neither the cup nor the ring-shaped coupling element is provided with any joining means. Therefore the adjacent containers are coupled by the flat connectors with polygonal or circular orifices fitting the dimensions of the side wall outer cross-section preferably in the middle of the cup.
  • the flat connectors connect the containers within single layer as well as the containers belonging to adjacent layers.
  • the structures can be made from two or more layers, depending from desired displacement and anticipated load.
  • the modular floating systems as specified above are preferably made from plastic, e.g. polyethylene, reinforced polyethylene, or other polymeric materials suitable for production of mechanically resistant and waterproof large objects.
  • the walls and other elements of the container may be reinforced with fibrous material, like the fiberglass mat, fibrous web, etc.
  • the containers elements can be made from metal as well.
  • Plastic elements constituing the containers are made in the process of casting, preferably pressure casting, or light-section casting, or heavy-section casting, or shell casting, or centrifugal casting, or compound casting, or injection moulding, preferably runnerless injection moulding.
  • the modular floating systems comprise the sets of complementary elements which when coupled form void containers with solid walls which are suitable for construction of floating structures.
  • the elements constituing the containers are provided with the antijamming means preventing dismantled identical elements from jamming during storage in pile.
  • the body of said container is formed from two complementary elements, namely the bottom part (1) and the upper cover (3), where the bottom part (1) has a shape of two reversed similar truncated pyramids arranged vertically, with principally rectangular horizontal cross-sections.
  • the upper principally rectangular base of the minor truncated pyramid is lesser in size than the lower principally rectangular base of the bigger truncated pyramid and these two principally rectangular bases are joined by an antijamming intermediate joining part of the side wall of the bottom part (1).
  • the upper cover (3) is principally rectangular as well, and it fits the upper base of the bigger truncated pyramid and it is provided with means securing water and air tightness of coupling.
  • the upper cover preferably strengthened and lined on the top, may play a role of a deck for small and moderate loads.
  • the slope of said antijamming intermediate joining part of the side wall of the bottom part (1) is flatter than the slope of neighbouring side walls of truncated pyramids.
  • the slope equals to zero and this case is illustrated on Fig. 3 and Fig. 4 .
  • the breadth of horizontal section in the antijamming intermediate joining part of the side wall advantageously is no less than 1% of the container length, preferably no less than 2% of the container length, and at least equals about 5 cm.
  • the antijamming intermediate joining part of the side wall of the bottom part (1) is provided with at least one antijamming protrusion (not shown on the drawing) facing the interior or the exterior of the bottom part (1).
  • this at least one antijamming protrusion has a shape of half-round moulding.
  • said at least one antijamming protrusion facing the interior or the exterior of the bottom part (1) is an indentation in the joining part of the side wall of the bottom part (1).
  • the container is provided with separate strengthening flange (2) fitting the joining part of the side wall of the bottom part (1).
  • the strengthening flange (2) is provided with the bolt holes, preferably the tapped holes, spaced identically as the bolt holes (7) in the upper cover (3).
  • the upper cover (3) and the strengthening flange (2) are joined by bolts or screw-and-nuts (4), or screw fasteners passing through respective bolt holes. Both elements are separated by the spacing sleeves (6).
  • An extended floating structure is developed by joining neighbouring containers with the hinged connectors (5), preferably folding along two perpendicular axis, and provided with the bolt holes spaced according to the spacing between the bolt holes (7) of neighbouring containers.
  • the container comprises two cups (8, 9, 12) with the shape of truncated cone provided with the antijamming cylindrical collar.
  • the bottom cup (8) is provided with the antijamming upper cylindrical threaded collar and the complementary upper cup (9) is provided with complementary antijamming lower cylindrical threaded collar. Both threaded collars provide tight coupling of the bottom cup (8) with the upper cup (9).
  • the bottom cup (8) is fit out with the connecting flanges provided with the bolt holes (11) and spaced circumferentially below the cylindrical threaded collar on different levels.
  • the connecting flanges are offset vertically by their thickness.
  • the connecting flanges of neighbouring bottom cups (8) in complete containers are joined by bolts or screw-and-nuts (10), or screw fasteners passing through respective bolt holes (11).
  • the body of the container is formed by connecting two identical cups (12) with a ring-shaped coupling element (13) fitting the antijamming cylindrical collars either on larger bases of the cups (12) or on smaller bases of the cups (12).
  • the ring-shaped coupling element (13) is threaded with a thread complementary to the thread on the antijamming cylindrical collar of the cup (12). The threads provide tight coupling of the cups (12) with the coupling element (13).
  • the neighbouring containers are coupled by separate flat connectors (14) with circular orifices fitting the dimensions of the side wall outer cross-section, preferably in the middle of the cup (12).
  • the elements constituing the containers are made from plastic in the process of injection moulding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Description

  • The invention refers to a modular floating system used in various applications, and to a method of its manufacture. In particular the invention refers to the modular floating system that may be stacked on limited surfaces and transported to the destination on limited number of vehicles. The invention refers also to the appliances where the modular floating system may be used, like e.g. floating or submersible platforms, docks, bridges, wharfs, piers, and the like. The modular floating systems according to the invention may also be used, when equipped with a propulsion unit, to make the boats, pontoons, rafts, ferries and other floating appliances used in transportation.
  • Floating structures have had been developed by military engineers for long time. Nowadays also civil engineering pays attention to floating structures as their usefulness on flooded areas or in the regions destroyed by other natural disasters or wars has been proved extensively. Particular interest is payed to modular floating systems because they enable the engineers to adjust the floating structure to specific demands (expected load, topography, changes in the water level, etc.) and to design unique, optimized structure.
  • In known floating systems the deck is arranged on pontoons, which in older systems have been singular or folded multiple, usually triple units. The latter are deployed in situ into floating units of bigger dimensions. Whether singular or folded, individual units are big and because of their dimensions of several meters and considerable weight they are difficult to be handled on-shore so they have to be connected into single structure on the water. The pontoons are hermetic containers made from steel, so they are big and heavy. Both transportation and storage of these systems are expensive and troublesome, and require big trucks, good roads network accessible even during natural disaster or war, and sufficient number of trained stuff. To fulfill all those conditions in emergency may be difficult. Besides, the steel containers require costly maintenance and large areas for storage. The costs generated both in usage and stacking of those floating systems may be not acceptable for civil organisations, like local communities. The examples of solutions, also modular, that belong to this older type of floating systems are described in the patent documents PL 158579 B2 , PL 297453 B2 , OE 312039 and utility models PL 63281 Y1 and PL 54505 Y1 .
  • Development of plastics technology made it possible to replace steel with weather resistant and lighter plastic. However, hermetic containers of big dimensions still have been making difficulties and generating excessive costs in transportation, handling, and storage both in situ and in the storage area. The examples of floating systems consisting of plastic hermetic containers were presented in the patent documents GB 2170760 A , FR 2699495 A1 and FR 2699496 A1 . An alternative to hermetic containers are the modules filled with a foam, like in the patent document US 6230644 B1 . Naturally foam-filled modules are as unhandy in storage and transportation as the other systems mentioned above.
  • The next revolutionary step in the floating systems was to exchange the pontoons with universal containers that can be freely arranged and to "dehermetize" the containers so that they can be combined from separate elements in situ. When unused, the elements of the containers may be stacked in pile in the storage area, which requires a fraction of the area needed before. They are also much more handy in transportation, because several dismantled containers can be loaded on one truck. The examples of these floating systems were disclosed in the patent documents EP 1733964 A1 , FR 2198450 A5 , or US 3897741 A .
  • Present-day methods of manufacture of plastic objects of big dimensions are so sophisticated that the shape control and repeatability of parameters in fabrication of the containers elements stays no more for a technological barrier. The manufacturer is able to supply practically identical elements. In some cases this high quality is a source of unexpected problems in storage. The container elements fit so well that separation of the elements stored in pile may require very big forces to be applied and the element on top of the pile may have to be intentionally deformed to be separated from the lower one, which may cause its damage. In worse case the container assembled from damaged elements may loose water tightness and sink, which is very dangerous during exploitation of the floating structure. The problem of jamming of the container elements may arise unexpectedly, e.g. after rain falling on the pile stored at open air or after stacking in pile wet elements, with some quantity of water inside, which obviously happens after dismantling of temporary floating structure. Jamming of the containers elements may considerably delay development of the floating structure, which is particularly dangerous in emergency conditions.
  • Relatively flat elements, i.e. with moderately sloped walls (the slope value lesser than about 3), are resistant to jamming. The slope is understood here to be the ratio of the wall height to the wall horizontal projection. In other words, the slope equals to the tangent of an angle between the wall and the horizontal plane. However, moderately sloped walls decrease the volume of air closed inside the container thus decreasing the displacement of the floating structure and in consequence significantly limiting allowable load. On the other hand the container elements with almost vertical walls, i.e. with the slope close to maximum which is the ratio of the wall height to the wall thickness, maximize the volume of air closed inside the container. Note that behind this slope maximal value the container elements can not be stacked one inside another. Unfortunately these "vertical" containers are very susceptible for jamming. This undesirable effect can prevent the civil and military engineers, designers, manufacturers and crisis management services from considering the floating systems based on the containers with almost vertical walls.
  • The problem of jamming of stacked big objects has not been addressed in a satisfactorily efficient manner so far. A US patent US3897741 discloses a modular floating system provided with antijamming means in form of a flange at a side wall. The flange is integral with the side wall of the container, which makes the process of the container manufacture much more complicated, requiring a complex mould, e.g. a two-part mould and costly.
  • A modular floating system according to the invention comprises the sets of complementary elements designed so as to be coupled tightly into a form of void containers with solid walls. The air closed hermetically inside the containers makes them floatable irrespective of waves, rains, etc. The containers are equipped with the connecting means for construction of floating structures like platforms, wharfs, piers or bridges. These connecting means may provide whole structure with some resiliency that may be required to react to changing levels and movements of water caused e.g. by waves, tides, floods. If desired, another type of connecting means may provide rigid connections stiffening whole structure which may be preferred for the structures installed on-shore or off-shore on the floor of the sea, lake, river or channel. In the latter case the containers shall be filled with water, sand, stones, concrete, iron ore and the like.
  • The modular floating system may also be used, if equipped with a propulsion unit, to make the boats, pontoons, rafts, ferries and other floating appliances used in transportation. It shall be noted, that large sections of whole floating structure can be transported to the destination on the water surface in the form of the rafts.
  • The main feature of the invention is in that particular elements constituing the containers are provided with the antijamming means preventing dismantled identical elements from jamming during storage in stack. These antijamming means may be constituted by any details of shape of the container elements that separate adjacent surfaces of walls of stacked elements. The role of the antijamming means is twofold. Firstly, it is to prevent from direct contact between faying surfaces of the containers, resulting in adhesion of contacting surfaces, particularly when these are wet, e.g. after being dismantled and stacked on the field. Secondly, it is to provide the passages necessary for the air flow during taking off the element from the stack.
  • An example of the antijamming means is a set of ribs made preferably on the inner side of the wall, however external ribs may be advantageous in some applications. The antijamming means, like the ribs, may also play a role of the means stiffening the element of the container. The separation between the surfaces of stacked elements of the containers preferably shall be comprised in range from about 5 mm to about 30 mm or more in case of very big elements stacked.
  • In first embodiment of the invention the body of said container is formed from two complementary elements, namely the bottom part and the upper cover, where the bottom part may have a shape of two similar truncated pyramids or truncated cones with an intermediate part of the side walls that connects both shapes. This intermediate part of the side walls has a character of the antijamming means, because it prevents the bottom part of one container to fall too deeply into the bottom part of another container when stacked. In other words this intermediate part of the side walls of one container supports another container (precisely: its bottom part) in the pile. The upper base of the minor truncated pyramid or truncated cone is lesser in size than the lower base of the bigger truncated pyramid or truncated cone. These two bases are joined by mentioned antijamming, intermediate joining part of the side wall of the container bottom part.
  • The upper cover of the container fits the upper base of the bigger truncated pyramid or truncated cone and it is provided with the means securing water and air tightness of the coupling. These tighting means are for example a groove on the bottom side of the upper cover, optionally provided with a gasket, e.g. a rubber gasket, and an edge of the bottom part, this groove fitting tightly with specified tolerances the upper edge of the bottom part. Full tightness is reached when both parts of the container, i.e. the bottom part and the upper cover, are fastened together circumferentially, e.g. with screw-and-nuts inserted into the holes in the connecting flanges. The number of holes equals at least the number of corners in polygonal elements, and it is no less than three in case of circular shapes. In the latter case the holes shall be distributed in vertices of a regular polygon.
  • In particular the slope of the itermediate, antijamming joining part of the side wall of the bottom part is flatter than the slope of adjacent lower and upper side walls of truncated pyramids or truncated cones, thus forming a sloped step between lower and upper segments of the container side walls. In a very particular case this slope may equal to zero, making this joining part of the side wall horizontal. It shall be noted that a horizontal step in the container side wall may additionally help manoeuvring the element (support for the lifting sling, spreader beam, etc.).
  • Alternatively the antijamming joining part of the side wall of the bottom part may be provided with at least one antijamming protrusion facing the interior or the exterior of the bottom part. When stacked, the external side of the upper container wall is supported by such protrusion thereby being separated from the internal side of the lower container wall by the thickness of the protrusion.
  • In strongly advised solution the antijamming protrusion facing the interior or the exterior of the bottom part shall have a shape of half-round moulding.
  • In case of relatively light containers the antijamming protrusion facing the interior or the exterior of the bottom part is an indentation in the joining part of the side wall of the bottom part. Mechanically such indentation is not as resistant as the mouldings described hereinbefore, thus this sollution is particularly recommended for smaller containers, preferably with dimensions of up to about 2 m, however bigger elements may be endowed with the indentations as well if their walls have sufficient thickness. The advantage of this solution is lower cost of manufacture of containers with indentations in the side walls.
  • Each container may be additionally complemented with separate strengthening flange fitting the intermediate, joining part of the side wall of the bottom part. This strengthening flange is provided with the bolt holes, preferably tapped to receive the screws, and spaced identically as the bolt holes in the upper cover. The upper cover and the strengthening flange are joined by bolts or screw-and-nuts, or other screw fasteners such as simple screws passing through respective bolt holes. In the latter case the holes in the strengthening flange are threaded. To ensure appropriate stiffness of the structure the holes of the container are separated from those of the strengthening flange by the spacing sleeves.
  • To develop extended floating structure the neighbouring containers are joined with the hinged connectors, preferably folding along two perpendicular axis, and provided with the bolt holes spaced according to the spacing between the bolt holes of neighbouring containers. According to the users needs this spacing may equal to the spacing of conterminous containers, thereby limiting elasticity of the structure. Bigger spacings provide the structure with some elasticity and facilitate the task of constructing the structure, which might be advantageous in straitened circumstances in the field.
  • In another embodiment of the modular floating system each container comprises two cups with the shape of truncated pyramid or truncated cone provided with the antijamming cylindrical collar. When stacked in pile, the cups are supported by cylindrical collars of lower cups. To complete a container other parts may be necessary.
  • In particular the container may consist of two cups, namely the bottom cup and the upper cup. The bottom cup is provided with the antijamming upper cylindrical threaded collar and the complementary upper cup is provided with complementary antijamming lower cylindrical threaded collar. The threaded collars provide tight coupling of the bottom cup with the upper cup. The collar with internal thread (female) may optionally be endowed with a gasket, preferably a rubber gasket, ensuring tight coupling.
  • To enable joining the containers into extended floating structure the bottom cup is provided with the connecting flanges provided with the bolt holes and spaced circumferentially below the cylindrical threaded collar on different levels offset relatively by the thicknesses of said connecting flanges. The connecting flanges of neighbouring bottom cups in complete containers are joined by bolts or screw-and-nuts, or screw fasteners passing through respective bolt holes.
  • In another particular solution the container body is formed by connecting two identical cups through a ring-shaped coupling element fitting the antijamming cylindrical collars either on larger bases of the cups or on smaller bases of the cups. In extended floating structures both kinds of couplings may be applied alternately, making the structure compact.
  • In a particular embodiment the ring-shaped coupling element is threaded with a thread complementary to the threads on the antijamming cylindrical collars of both cups. The threads provide tight coupling of the cups with the coupling element which additionally may be fit out with a gasket, preferably a rubber gasket.
  • The extended floating structures are made from one or more layers of the containers. None of the container elements presented above, i.e. neither the cup nor the ring-shaped coupling element is provided with any joining means. Therefore the adjacent containers are coupled by the flat connectors with polygonal or circular orifices fitting the dimensions of the side wall outer cross-section preferably in the middle of the cup. The flat connectors connect the containers within single layer as well as the containers belonging to adjacent layers. The structures can be made from two or more layers, depending from desired displacement and anticipated load.
  • The modular floating systems as specified above are preferably made from plastic, e.g. polyethylene, reinforced polyethylene, or other polymeric materials suitable for production of mechanically resistant and waterproof large objects. The walls and other elements of the container may be reinforced with fibrous material, like the fiberglass mat, fibrous web, etc. However the containers elements can be made from metal as well. Plastic elements constituing the containers are made in the process of casting, preferably pressure casting, or light-section casting, or heavy-section casting, or shell casting, or centrifugal casting, or compound casting, or injection moulding, preferably runnerless injection moulding.
  • Preferred embodiments of the modular floating system according to the invention are schematically shown on the drawing, where:
    • Fig. 1 shows the elements of the first embodiment of the container in exploded view and assembled container in perspective view,
    • Fig. 2 illustrates coupling of the containers from Fig. 1 in perspective view,
    • Fig. 3 and Fig. 4 show the containers and the couplings from Fig. 2 in front, end and top views, with the slope of antijamming part of the side wall equal to zero,
    • Fig. 5 presents the elements of next embodiment of the container in exploded view and assembled container in perspective view,
    • Fig. 6 and Fig. 7 show the details from Fig. 5 in side and top views,
    • Fig. 8 shows the elements of another embodiment of the container in exploded view,
    • Fig. 9 shows the containers from Fig. 8 assembled and joined in the form of a floating structure in front and top views,
    • Fig. 10 presents perspective view of the floating structure and shows preferable compact arrangement of containers,
    • Fig. 11 shows the arangement from Fig. 10 with flat connectors connecting the containers and a modular deck covering the modular floating structure,
    • Fig. 12 presents top and front views on the arrangement from Fig. 11,
    • Fig. 13 shows top and perspective views of the flat connector,
    • Fig. 14 to 19 show perspective views of the embodiments presented on Fig. 1 to 13, with a modular deck covering modular floating structure illustrated on Fig. 19.
  • In all presented examples of embodiments the modular floating systems comprise the sets of complementary elements which when coupled form void containers with solid walls which are suitable for construction of floating structures. The elements constituing the containers are provided with the antijamming means preventing dismantled identical elements from jamming during storage in pile.
  • In one embodiment the body of said container is formed from two complementary elements, namely the bottom part (1) and the upper cover (3), where the bottom part (1) has a shape of two reversed similar truncated pyramids arranged vertically, with principally rectangular horizontal cross-sections. The upper principally rectangular base of the minor truncated pyramid is lesser in size than the lower principally rectangular base of the bigger truncated pyramid and these two principally rectangular bases are joined by an antijamming intermediate joining part of the side wall of the bottom part (1). The upper cover (3) is principally rectangular as well, and it fits the upper base of the bigger truncated pyramid and it is provided with means securing water and air tightness of coupling. The upper cover, preferably strengthened and lined on the top, may play a role of a deck for small and moderate loads.
  • In one version the slope of said antijamming intermediate joining part of the side wall of the bottom part (1) is flatter than the slope of neighbouring side walls of truncated pyramids. In particular the slope equals to zero and this case is illustrated on Fig. 3 and Fig. 4. The breadth of horizontal section in the antijamming intermediate joining part of the side wall advantageously is no less than 1% of the container length, preferably no less than 2% of the container length, and at least equals about 5 cm. These minimal values enable the operators to safely lift on and handle the container elements.
  • In another version the antijamming intermediate joining part of the side wall of the bottom part (1) is provided with at least one antijamming protrusion (not shown on the drawing) facing the interior or the exterior of the bottom part (1). Advantageously this at least one antijamming protrusion has a shape of half-round moulding.
  • Also preferably said at least one antijamming protrusion facing the interior or the exterior of the bottom part (1) is an indentation in the joining part of the side wall of the bottom part (1).
  • The container is provided with separate strengthening flange (2) fitting the joining part of the side wall of the bottom part (1). The strengthening flange (2) is provided with the bolt holes, preferably the tapped holes, spaced identically as the bolt holes (7) in the upper cover (3). The upper cover (3) and the strengthening flange (2) are joined by bolts or screw-and-nuts (4), or screw fasteners passing through respective bolt holes. Both elements are separated by the spacing sleeves (6).
  • An extended floating structure is developed by joining neighbouring containers with the hinged connectors (5), preferably folding along two perpendicular axis, and provided with the bolt holes spaced according to the spacing between the bolt holes (7) of neighbouring containers.
  • In another embodiment the container comprises two cups (8, 9, 12) with the shape of truncated cone provided with the antijamming cylindrical collar.
  • In one version of this embodiment the bottom cup (8) is provided with the antijamming upper cylindrical threaded collar and the complementary upper cup (9) is provided with complementary antijamming lower cylindrical threaded collar. Both threaded collars provide tight coupling of the bottom cup (8) with the upper cup (9).
  • The bottom cup (8) is fit out with the connecting flanges provided with the bolt holes (11) and spaced circumferentially below the cylindrical threaded collar on different levels. The connecting flanges are offset vertically by their thickness. The connecting flanges of neighbouring bottom cups (8) in complete containers are joined by bolts or screw-and-nuts (10), or screw fasteners passing through respective bolt holes (11).
  • In another version of this embodiment the body of the container is formed by connecting two identical cups (12) with a ring-shaped coupling element (13) fitting the antijamming cylindrical collars either on larger bases of the cups (12) or on smaller bases of the cups (12). Preferably the ring-shaped coupling element (13) is threaded with a thread complementary to the thread on the antijamming cylindrical collar of the cup (12). The threads provide tight coupling of the cups (12) with the coupling element (13).
  • Since in this version of the embodiment the cups (12) are not fit out with any connecting elements, the neighbouring containers are coupled by separate flat connectors (14) with circular orifices fitting the dimensions of the side wall outer cross-section, preferably in the middle of the cup (12).
  • In preferred method of manufacture of the modular floating system the elements constituing the containers are made from plastic in the process of injection moulding.

Claims (14)

  1. A modular floating system comprising sets of complementary elements which when coupled form void containers with solid walls and suitable for construction of floating structures, wherein the elements constituting the containers are provided with antijamming means preventing dismantled identical elements from jamming during storage in stack, wherein said containers comprise:
    - a bottom part (1),
    - an upper cover (3) which fits the bottom part and is provided with means securing water-tight and air-tight coupling,
    - and a strengthening flange (2) across the side wall of the bottom part (1),
    characterized in that
    - said strengthening flange (2) is separate from the bottom part (1), fits the side wall of the bottom part (1) and is provided with bolt holes, preferably tapped holes, spaced identically as bolt holes (7) in an upper cover (3), the upper cover (3) and the strengthening flange (2) being joined by bolts or screw-and-nuts (4), or screw fasteners passing through respective bolt holes separated by the spacing sleeves (6).
  2. The system according to claim 1 characterised in that the bottom part (1) has a shape of two similar truncated pyramids or truncated cones where the upper base of the minor truncated pyramid or truncated cone is lesser in size than the lower base of the bigger truncated pyramid or truncated cone and these two bases are joined by an antijamming joining part of the side wall of the bottom part (1), and where the upper cover (3) fits the upper base of the bigger truncated pyramid or truncated cone.
  3. The system according to claim 2 characterised in that the slope of said antijamming joining part of the side wall of the bottom part (1) is flatter than the slope of neighbouring side walls of truncated pyramids or truncated cones.
  4. The system according to claim 2 characterised in that said antijamming joining part of the side wall of the bottom part (1) is provided with at least one antijamming protrusion facing the interior or the exterior of the bottom part (1).
  5. The system according to claim 4 characterised in that said at least one antijamming protrusion facing the interior or the exterior of the bottom part (1) has a shape of half-round moulding.
  6. The system according to claim 4 characterised in that said at least one antijamming protrusion facing the interior or the exterior of the bottom part (1) is an indentation in the joining part of the side wall of the bottom part (1).
  7. The system according to claims from 2 to 7 characterised in that neighbouring containers are joined with hinged connectors (5), preferably folding along two perpendicular axis, and provided with the bolt holes spaced according to the spacing between the bolt holes (7) of neighbouring containers.
  8. The system according to claim 1 characterised in that said container comprises two cups (8, 9, 12) with the shape of truncated pyramid or truncated cone provided with the antijamming cylindrical collar.
  9. The system according to claim 8 characterised in that the bottom cup (8) is provided with the antijamming upper cylindrical threaded collar and the complementary upper cup (9) is provided with complementary antijamming lower cylindrical threaded collar, said threaded collars providing tight coupling of the bottom cup (8) with the upper cup (9).
  10. The system according to claim 9 characterised in that the bottom cup (8) is provided with the connecting flanges provided with the bolt holes (11) and spaced circumferentially below the cylindrical threaded collar on different levels offset relatively by the thicknesses of said connecting flanges, the connecting flanges of neighbouring bottom cups (8) in complete containers being joined by bolts or screw-and-nuts (10), or screw fasteners passing through respective bolt holes (11).
  11. The system according to claim 8 characterised in that the body of said container is formed by connecting two identical cups (12) with a ring-shaped coupling element (13) fitting the antijamming cylindrical collars either on larger bases of the cups (12) or on smaller bases of the cups (12).
  12. The system according to claim 11 characterised in that the ring-shaped coupling element (13) is threaded with a thread complementary to the thread on the antijamming cylindrical collar of the cup (12), said threads providing tight coupling of the cups (12) with the coupling element (13).
  13. The system according to claims 11 or 12 characterised in that the neighbouring containers are coupled by the flat connectors (14) with polygonal or circular orifices fitting the dimensions of the side wall outer cross-section in the middle of the cup (12).
  14. A method of manufacture of the modular floating system according to any of claims 1-13 characterised in that the elements constituing the containers are made from plastic in the process of casting, preferably pressure casting, or light-section casting, or heavy-section casting, or shell casting, or centrifugal casting, or compound casting, or injection moulding, preferably runnerless injection moulding.
EP09460031.9A 2008-06-23 2009-06-22 Modular floating system and a method of its manufacture Not-in-force EP2138393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09460031T PL2138393T3 (en) 2008-06-23 2009-06-22 Modular floating system and a method of its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL385496A PL215842B1 (en) 2008-06-23 2008-06-23 Modular floating passage systems

Publications (2)

Publication Number Publication Date
EP2138393A1 EP2138393A1 (en) 2009-12-30
EP2138393B1 true EP2138393B1 (en) 2015-09-02

Family

ID=41129124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09460031.9A Not-in-force EP2138393B1 (en) 2008-06-23 2009-06-22 Modular floating system and a method of its manufacture

Country Status (2)

Country Link
EP (1) EP2138393B1 (en)
PL (2) PL215842B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126620B1 (en) 2009-02-10 2012-03-26 부산대학교 산학협력단 A fabricated floater supported by an air pocket
US8790039B2 (en) 2010-05-19 2014-07-29 Cubisystem Sarl Modular floating structures with anti pollution barrier
RU2497737C2 (en) * 2011-07-26 2013-11-10 Евгений Владимирович Левин Container for liquid, set of these containers
ITUB20153078A1 (en) * 2015-08-12 2017-02-12 Nrg Energia S R L FLOATING ELEMENT FOR REALIZING FLOATING STRUCTURES FOR THE SUPPORT OF PHOTOVOLTAIC PANELS AND METHOD FOR PRODUCING THE FLOATING ELEMENT
RU182194U1 (en) * 2018-02-26 2018-08-07 Федеральное государственное бюджетное научное учреждение "Государственный научно-производственный центр рыбного хозяйства" Pontoon module

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879735A (en) * 1955-04-25 1959-03-31 Pointer Robert William Marine float
GB1242765A (en) * 1969-04-25 1971-08-11 Dbp Dredge & Marine Ltd Improvements in and relating to pontoons
FR2198450A5 (en) 1972-09-05 1974-03-29 Haulotte George
IT981306B (en) 1973-03-12 1974-10-10 Martini A FLOATING DOCK OBTAINED STARTING FROM PAIRS OF HERMETICALLY CLOSED CONTAINERS AND RELATED SERVICE WALKWAY
CA1233704A (en) 1985-02-08 1988-03-08 Ferdinand M. Svirklys Flotation system
AU628589B2 (en) * 1989-06-16 1992-09-17 Industrial Pipe Systems Pty Limited A pontoon
PL158579B2 (en) 1989-08-29 1992-09-30 Segmented, ballastiess vessel, in particular floating stage or quay
FR2664558B1 (en) * 1990-07-10 1995-06-02 Fact Anal Scp FLOATING PLATFORM OF VARIABLE DIMENSIONS WITH WILL AND SIMPLE AND LOW COST MANUFACTURE.
PL54505Y1 (en) 1992-10-20 1996-09-30 Inst Technicznych Wyrobow Wlok Pontoon
FR2699496B1 (en) 1992-12-23 1995-02-17 Philippe Veyrieres Modular floating blocks for floating pontoons.
FR2699495B1 (en) 1992-12-23 1995-02-17 Philippe Veyrieres Modular floating blocks for floating structures.
PL297453A1 (en) 1993-02-23 1994-09-05 Kazimierz Kowalski Built-up pontoons
DE4319609C1 (en) 1993-06-14 1995-05-24 Boehringer Ingelheim Kg Solid medicine dispenser
US5529013A (en) * 1995-07-11 1996-06-25 Eva, Iii; W. Allan Floating drive-on dry dock assembly
US6145463A (en) * 1998-02-27 2000-11-14 Playstar, Inc. Float apparatus for a floating dock
US6230644B1 (en) 2000-01-27 2001-05-15 Eastern Flotation Systems, Inc. Dock and buoyant module adapted to be connected to a pile
PL63281Y1 (en) 2003-11-26 2007-07-31 Andrzej Cudny Repeatable floating platform
KR100697094B1 (en) * 2005-01-14 2007-03-21 한성호 Assemblable dock system with enhanced durability and its methods of manufacture
DE102005017741A1 (en) * 2005-04-12 2006-10-19 Ptm Packaging Tools Machinery Pte.Ltd. Double-walled paper cup
ITMI20051147A1 (en) 2005-06-17 2006-12-18 Jollytech S A S "FLOATING MODULE"
EP1785265A1 (en) * 2005-11-14 2007-05-16 SEDA S.p.A. Device for producing a stacking projection on a container wall and container with same

Also Published As

Publication number Publication date
PL2138393T3 (en) 2015-12-31
EP2138393A1 (en) 2009-12-30
PL385496A1 (en) 2008-12-22
PL215842B1 (en) 2014-02-28

Similar Documents

Publication Publication Date Title
EP2138393B1 (en) Modular floating system and a method of its manufacture
EP2188454B1 (en) Water-retaining element, system and method for forming a temporary water-retaining structure
CA2314819C (en) Septic waste treatment system
US20160265209A1 (en) Percolation block element, percolation block, and transport unit
US8070005B1 (en) Corrugated septic tank with strengthening features
US8528494B2 (en) Modular rough water docking system
KR100947584B1 (en) Extension structure of Barge and its method
KR102166067B1 (en) Polyethylene floating pier for having strength reinforced buoyancy pipe
US6195944B1 (en) Liner
KR101806855B1 (en) Modular revetment structureand construction method
KR102166383B1 (en) Floating Pier connected by Pile Guide
US20140007803A1 (en) Modular rough water docking system
EP1733964B1 (en) Float module
KR101595227B1 (en) Waterproof system for caisson using air tube
KR101312920B1 (en) Pontoon shaped stiffener, pontoon assembly and method for manufacturing pontoon assembly
KR101806851B1 (en) Temporary levee structure using guideframe and the construction method therefor
EP0787861A1 (en) A liner
WO2007105955A1 (en) A floating pontoon body to be tied together with at least another pontoon body
KR101220021B1 (en) Method for fabricating caisson using floating yard
KR200310145Y1 (en) a block for lighter's wharf or quay wall.
US20230257084A1 (en) Floating construct
KR102445095B1 (en) Offshore floating parking lot using concrete pontoons with adjustable buoyancy
KR102316148B1 (en) Tetrapod assembly
US11897585B1 (en) Anchoring floating structures to an underwater floor
KR102674923B1 (en) A barge with reinforced flooring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

18D Application deemed to be withdrawn

Effective date: 20100701

17P Request for examination filed

Effective date: 20101018

D18D Application deemed to be withdrawn (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOJSKOWA AKADEMIA TECHNICZNA IM. JAROSLAWA DABROWS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAKSZYS, MICHAELA

Inventor name: KRASON, WIESLAW

Inventor name: PAKSYS, WALDEMAR

Inventor name: NIEZGODA, TADEUSZ

17Q First examination report despatched

Effective date: 20130108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150416

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 746370

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009033311

Country of ref document: DE

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 746370

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009033311

Country of ref document: DE

Representative=s name: HERNANDEZ, YORCK, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009033311

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160407

Year of fee payment: 8

26N No opposition filed

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160406

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009033311

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090622

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622