EP2135059A2 - Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems - Google Patents

Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems

Info

Publication number
EP2135059A2
EP2135059A2 EP08734378A EP08734378A EP2135059A2 EP 2135059 A2 EP2135059 A2 EP 2135059A2 EP 08734378 A EP08734378 A EP 08734378A EP 08734378 A EP08734378 A EP 08734378A EP 2135059 A2 EP2135059 A2 EP 2135059A2
Authority
EP
European Patent Office
Prior art keywords
volume
light
measuring
wavelength
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08734378A
Other languages
German (de)
French (fr)
Inventor
Reinhard D. Beise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOCOMFORT DIAGNOSTICS VERWALTUNGS-GMBH
Original Assignee
Biocomfort Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocomfort Diagnostics GmbH filed Critical Biocomfort Diagnostics GmbH
Publication of EP2135059A2 publication Critical patent/EP2135059A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0691Modulated (not pulsed supply)

Definitions

  • Measuring device and method for optical concentration determination of blood sugar and / or lactate in biological systems Measuring device and method for optical concentration determination of blood sugar and / or lactate in biological systems
  • the invention relates to a measuring device for the optical concentration determination of blood sugar and / or lactate in biological systems with at least one IR (infrared) - radiation source that emits IR light on a volume to be examined, with at least one measuring detector, the from receiving volume outgoing light, and with at least one reference detector, which is supplied to the volume to be examined radiated IR light before entering the volume, wherein the radiation source, the reference detector and the measuring detector connected via a lock-in and between the IR radiation source and the measuring detector is an optical measuring path with a first Meßweg malfunctionizing and formed between the IR radiation source and the reference detector, an optical reference path with a second, deviating from the first Meßweg futurites Meßweg futurites.
  • IR infrared
  • the invention also relates to a method for the optical concentration determination of blood sugar and / or lactate in biological systems, in which IR light along an optical measuring path irradiated to a volume to be examined and from the light emanating from the volume of a value relevant to the concentration using a Reference measurement of the IR light irradiated to the volume to be examined and a lock-in method is determined via an optical reference path, the optical reference path having a measurement path characteristic which deviates from the measurement path characteristic of the optical measurement path.
  • a relevant value for the concentration on the one hand, for example, a value proportional to the concentration or inversely proportional to the concentration can be determined. This can in particular serve the output of an analytical measured value.
  • a digital output with a lower information content for example for displaying a normal, a critical and a critical concentration value, or merely a binary signal, for example when a critical concentration value is exceeded, can be referred to as "relevant value”.
  • the term "relevant value” denotes a value which serves as a function of the concentration for detecting the information content desired with the present concentration determination.
  • WO 2005/112740 A2 and EP 0 670 143 B1 disclose comparatively simply constructed measuring devices which may possibly be operated on by a medical layman and, in particular, require no further aids, such as measuring strips or measuring chemicals.
  • WO 2005/112740 A2 dispenses with a reference measurement, so that it is not generic for this reason alone.
  • DE 100 20 615 C2 discloses a more complex measuring setup, which in particular requires a reference sample, ie a measuring chemical, and thus ensures that the optical paths between light source and measuring detector on the one hand and light source and reference detector on the other hand each have identical Meßweg malfunctionizinga, so that in particular sample and reference sample can be reversed.
  • a reference sample ie a measuring chemical
  • the invention proposes, on the one hand, a measuring device for optically determining the concentration of blood sugar and / or lactate in biological systems with at least one IR radiation source, which radiates IR light to a volume to be examined, with at least one measuring detector, which the light to be examined receives, and with at least one reference detector, which is supplied to the volume to be examined radiated IR light before entering the volume before, wherein the radiation source, the reference detector and the measuring detector via a lock-in with each other connected and between the IR radiation source and the measuring detector, an optical measuring path having a first Meßweg futurites and between the IR radiation source and the reference detector, an optical reference path with a second, deviating from the first Meßweg seeminglyizing Meßweg civilizing are formed and wherein the measuring device distinguished thereby t that the IR radiation source emits IR light in at least two discrete wavelengths or in at least two discrete wavelength bands on the volume to be examined.
  • the photons of the light which is fed to a detector are not available for further measurement.
  • the term "light” refers to a beam of photons from which a portion is or may be branched off for a reference measurement, so it is quite clear that photons used for the reference measurement are the volumes to be examined Nevertheless, relevant statements can be made about the nature of the IR light radiated onto the volume to be examined, since these photons originate from one and the same radiation source.
  • the invention also proposes a method for the optical concentration determination of blood sugar and / or lactate in biological systems, in which IR light is irradiated along an optical measuring path to a volume to be examined and from the light emanating from the volume for the concentration of relevant value taking advantage of a taking place via an optical reference path reference measurement of the radiated to the volume to be examined IR light and a lock-in method is determined, wherein the optical reference path has a measurement path characteristic which deviates from the measurement path characteristic of the optical measurement path and which is characterized in that at least one component from a previously determined or known spectrum is selected at least one peak of interest and the value relevant for the concentration is determined by at least two within this peak, discrete wavelengths or wavelength bands are determined.
  • a structurally simple embodiment can be realized by a beam splitter, which is arranged between the volume to be examined and the radiation source.
  • the beam splitter is preferably aligned such that a part of the light emitted by the radiation source is directed to the reference detector. In this way structurally very simple a reference measurement can be made.
  • the beam splitter is aligned such that at least a portion of the outgoing of the volume of light is directed to the measuring detector.
  • a configuration can for example be selected such that the volume to be examined, such as a finger, an earlobe or an arm, is arranged between the beam splitter and the measuring detector. This applies in particular to the case that an absorption measurement of the ER light is made.
  • a reflection measurement and / or a measurement of otherwise emitted light which by the stimulating IR light is stimulated to be measured, especially when this outgoing from the volume of light reaches the beam splitter and is guided by this starting to the measuring detector.
  • the measurement detector may, for example, be oriented linearly with respect to the volume-radiated HI light, which is advantageous in particular for absorption measurements.
  • the measurement detector may be particularly advantageous if the measurement detector is oriented at an angle with respect to the radiated IR radiation to the volume.
  • a beam splitter is not mandatory for reference measurement.
  • the reference detector may be directed, for example, to scattered light of the IR radiation source. Regardless of which light source is used, the generation of scattered light can hardly be avoided in light generation, since the resulting light is already partly refracted or otherwise distracted slightly in the radiation source itself. This applies in particular to laser light sources.
  • laser light sources require two opposing mirrors, between which the laser state can form. One of the mirrors is chosen to be semi-permeable, so that the laser light can be coupled out for further use by means of this mirror.
  • other coupling-out mechanisms are also conceivable, but they in turn generate scattered light which can be used for the reference measurement.
  • an excitation signal which is directed to a sample is modulated, it being assumed that a response of the sample induced by the modulated excitation is modulated accordingly, so that in the detector all measurement signals which do not have a corresponding modulation are correspondingly eliminated and measuring signals which have the same modulation can be amplified accordingly.
  • a modulation come, depending on the specific embodiment, both an amplitude and a frequency modulation in question.
  • lock-in methods are unusual in spectroscopic investigations, since such a modulation in the Fourier transform leads to disturbances. Even with chemical concentration determinations, such lock-in methods can not naturally be used.
  • the reference detector is also connected to the IR radiation source via the lock-in, so that disturbance effects, such as, for example, noise, can also be detected here.
  • an amplitude modulation can be carried out for the lock-in method, which can be embodied in particular binary, that is to say "light on” and "light off".
  • the amplitude modulation can be chosen to be much less aggressive and, for example, to a small amplitude fluctuations, for example in a window of less than 50% of the maximum strength, preferably less than 35% or less than 25%.
  • the amplitude modulation can also be designed as a sine wave, and thus less aggressive than the square wave of a binary signal.
  • a wavelength modulation can be made, wherein the bandwidth of the wavelength modulation is preferably less than 20 nm, preferably less than 18 or less than 15 nm, which can be ensured in particular by the lock-in or by the wavelength modulation a meaningful peak of the spectrum of the component whose concentration is to be determined is not left.
  • supplementary measures may have to be provided in order to be able to determine absolute values from a lock-in absolute value generated via wavelength modulation, since in this case the first derivative of a spectrum is usually first measured.
  • it is precisely the first derivative of a spectrum, in particular at suitable wavelengths, that can be at least as meaningful in terms of concentration as the spectrum itself.
  • laser diodes can be used as radiation sources.
  • laser diodes are unsuitable for spectroscopic investigations, which are usually used to determine concentration, since they do not have the necessary bandwidth for spectroscopic investigations.
  • such laser diodes have the advantage of a relatively good luminous efficacy, so that with relatively little equipment expense excellent radiation performance, especially in the IR range, can be achieved.
  • laser diodes can readily provide light for reference measurements, as has been generally explained in more detail above with reference to laser light sources.
  • the laser diodes may be advantageous to provide two or more laser diodes, which may be particularly advantageous for time reasons, since a modulation of a laser diode, in particular over a bandwidth of more than 20 nm addition, is relatively time-consuming, because The laser diode takes some time to stabilize. In addition, the expenditure on equipment increases disproportionately with such a large bandwidth.
  • the relevant peaks which are easily accessible with IR measurements, generally have a width of well over 200 nm.
  • a demand profile is created that is relatively inexpensive
  • the present invention is particularly suitable for embodiments in which the wavelength bands or the emission frequency of the IR radiation source is between 1000 nm and 2000 nm and / or between 2000 nm and 3000 nm.
  • the wavelength bands or the emission frequency of the IR radiation source is between 1000 nm and 2000 nm and / or between 2000 nm and 3000 nm.
  • water the major constituent of most biological systems, has a relatively low interaction with light.
  • components that can be found in such an environment better accessible to a measurement. It is understood that in other environments, where appropriate, other wavelength ranges can be used to advantage.
  • these two measuring points are controlled discretely, which can be realized on the one hand, for example, by two laser diodes or on the other hand by a laser diode whose wavelength is changed according to leaps and discretely.
  • laser diodes can be stabilized relatively accurately to a few nanometers, this is relatively time-consuming, so that in particular two laser diodes are suitable for a discrete activation.
  • the accuracy of the selection of the measuring points is not necessarily limited to less than one nanometer. Rather, it may be sufficient if the measurement points lie within a wavelength bandwidth below 20 nm.
  • the frequency of the IR radiation source within the bandwidth of 20 nm in order to use this modulation for a lock-in method.
  • IR radiation sources it may be advantageous to continuously modulate the IR radiation sources in a range below 170 nm, preferably below 150 nm or below 120 nm, and from this modulation the shape of the selected peak determine from which of the value relevant for the concentration can be determined.
  • a wavelength-modulated or wavelength-modulated lock-in can be realized very well.
  • the use of multiple discrete wavelength bands, each of which is wavelength modulated, in an optical concentration determination of blood sugar and / or lactate in biological systems with at least one IR Radiation source, which radiates IR light to a volume to be examined, with at least one measuring detector, which receives light emitted from the volume to be examined, and with at least one reference detector, which the radiated to the volume to be examined IR light before entering the Volume is supplied, wherein the radiation source, the reference detector and the measuring detector connected via a lock-in, correspondingly advantageous.
  • IR light is irradiated to a volume to be examined and from the light emanating from the volume of a value relevant to the concentration using a reference measurement of the volume of irradiated IR light to be examined and a lock-in method are determined.
  • FIG. 1 shows a schematic structure of a first measuring arrangement
  • FIG. 2 shows a schematic structure of a second measuring arrangement
  • FIG. 3 shows a schematic structure of a third measuring arrangement
  • FIG. 4 shows a first possible process control
  • Figure 5 shows a second possible process control
  • FIG. 6 shows a third possible procedure.
  • the measuring arrangement according to FIG. 1 comprises a volume 1 in which the concentration of a component is to be determined.
  • IR light 2 is irradiated to the volume 1, which is generated by an IR laser diode 3, via an optical fiber 4 and a Kolima- torlinse 5 and a beam splitter 6 to the volume 1 is supplied.
  • the IR light 2 passes through the volume 1, the light 7 emanating from the volume 1 being bundled correspondingly into an optical fiber 9 via a collimator lens 8 and fed to a measuring detector 10.
  • a portion of the IR light from the IR laser diode 3 is fed via the beam splitter 6 as reference light 11 via a further collimator lens 12 and a further optical fiber 13 to a reference detector 14.
  • the light beam 2 and the detectors 10, 14 are metrologically connected to each other via a lock-in connection, not shown.
  • the arrangement of FIG. 3 utilizes scattered light or light 1 IA issuing through the rearward part of the IR laser diode 3 as the reference light.
  • this arrangement corresponds to the embodiment of Figure 1 and is designed for absorption measurement.
  • Figure 4 shows a section of a peak, which is selected from the known per se spectrum of the component whose concentration is to be determined.
  • the section comprises a wavelength range of approximately 200 nm.
  • a measurement is performed at two measurement points Pl and P2 whose wavelength separation is approximately 150 nm.
  • the measurement point Pl is selected to be within a range of the peak which is relatively independent of the concentration.
  • the measuring point P2 has been placed in a range which, on the other hand, is as significant as possible in terms of concentration, so that the difference between these two measuring points can be deduced from the concentration, the measuring point P1 serving as a reference, so that external influences, in particular the influences other components of the biological system can be excluded or minimized. Even with this measure, the measurement setup can be realized cumulatively or alternatively substantially simply.
  • the IR laser diode is relatively accurately tuned and preferably kept constant with fluctuations of less than 1 nm when the measuring points Pl and P2 are recorded
  • the laser diode in the method example according to Figure 5 with a bandwidth of approx. 15 nm modulated to produce a lock In-V experience implement.
  • the latter can be realized in the process control of Figure 4 via an amplitude modulation.
  • wavelength bandwidths B1 and B2 are used instead of measuring points.
  • the wavelength of the IR radiation source can also be modulated over a larger range, for example of approximately 150 nm, so that, in particular, the ranges B1 and B2, within which measurement results are recorded or used for concentration determination, are swept over can. Also from these measurements, which, however, will usually be very time consuming, relevant values can be determined via the concentration, whereby a lock-in can be realized by the appropriate modulation. However, it is also conceivable, despite a possible wavelength modulation with such a bandwidth to make an amplitude modulation and to use for the lock-in, while the modulation is used only for sweeping a corresponding wavelength band. In this context, it can be seen, in particular, that further wavelength bands, in particular also through the use of further IR radiation sources, can be tapped without further ado.
  • the measuring points or wavelengths P1 and P2 or wavelength bandwidths B1 and B2 are discretely spaced from one another. The same applies to the wavelength bandwidths Bl and B2, within which the measurement takes place in the embodiment according to FIG.
  • the characteristic of the path which the light passes from the IR laser diode 3 to the measuring detector 10 and which can be referred to as the optical measuring path 15 differs in all embodiments from the characteristic of the path which the light from the IR laser diode 3 to reference detector 14 passes through and which can be referred to as optical reference path 16, since the measuring path 15 with a medium, which is located in the volume 1, comes into contact, the optical reference path 16 are not affected becomes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to a measuring device for optically determining the concentration of blood sugar and/or lactate in biological systems, comprising at least one IR radiation source (3), that radiates IR light on a volume (1) that is to examined, and at least one measuring detector (10) that detects light coming from the volume (1) that is to be examined in order to determine the concentration of blood sugar and/or lactate, also by laymen in a simple manner and anywhere. According to the invention, the IR light radiated on the volume (1) that is to be examined is supplied, prior to entry into the volume (1), to a reference detector.

Description

Messeinrichtung und Verfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen Measuring device and method for optical concentration determination of blood sugar and / or lactate in biological systems
[01] Die Erfindung betrifft eine Messeinrichtung zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen mit wenigstens einer IR(lnfrarot)- Strahlenquelle, die IR-Licht auf ein zu untersuchendes Volumen strahlt, mit wenigstens einem Messdetektor, der von dem zu untersuchenden Volumen ausgehendes Licht aufnimmt, und mit wenigstens einem Referenzdetektor, welchem das auf das zu untersuchende Volumen gestrahlte IR-Licht vor Eintritt in das Volumen zugeführt wird, wobei die Strahlenquelle, der Referenzdetektor und der Messdetektor über einen Lock-In miteinander verbunden sowie zwischen der IR- Strahlenquelle und dem Messdetektor ein optischer Messweg mit einer ersten Messwegcharakteristik und zwischen der IR-Strahlenquelle und der Referenzdetektor ein optischer Referenzweg mit einer zweiten, von der ersten Messwegcharakteristik abweichenden Messwegcharakteristik ausgebildet sind. Auch betrifft die Erfindung ein Verfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen, bei welchem IR- Licht entlang eines optischen Messweges auf ein zu untersuchendes Volumen gestrahlt und aus dem von dem Volumen ausgehenden Licht ein zur Konzentration relevanter Wert unter Ausnutzung einer über einen optischen Referenzweg erfolgenden Referenzmessung des auf das zu untersuchende Volumen gestrahlten IR-Lichts sowie eines Lock-In-Verfahrens ermittelt wird, wobei der optische Referenzweg eine Messwegcharakteristik aufweist, die von der Messweg- Charakteristik des optischen Messweges abweicht.The invention relates to a measuring device for the optical concentration determination of blood sugar and / or lactate in biological systems with at least one IR (infrared) - radiation source that emits IR light on a volume to be examined, with at least one measuring detector, the from receiving volume outgoing light, and with at least one reference detector, which is supplied to the volume to be examined radiated IR light before entering the volume, wherein the radiation source, the reference detector and the measuring detector connected via a lock-in and between the IR radiation source and the measuring detector is an optical measuring path with a first Meßwegcharakteristik and formed between the IR radiation source and the reference detector, an optical reference path with a second, deviating from the first Meßwegcharakteristik Meßwegcharakteristik. The invention also relates to a method for the optical concentration determination of blood sugar and / or lactate in biological systems, in which IR light along an optical measuring path irradiated to a volume to be examined and from the light emanating from the volume of a value relevant to the concentration using a Reference measurement of the IR light irradiated to the volume to be examined and a lock-in method is determined via an optical reference path, the optical reference path having a measurement path characteristic which deviates from the measurement path characteristic of the optical measurement path.
[02] In vorliegendem Zusammenhang kann als relevanter Wert für die Konzentration einerseits beispielsweise ein zur Konzentration proportionaler oder zur Konzentration umgekehrt proportionaler Wert ermittelt werden. Dieses kann insbesondere der Ausgabe eines analytischen Messwertes dienen. Ebenso können jedoch, je nach Erfordernissen, eine digitale Ausgabe mit niedrigerem Informationsgehalt, beispielsweise zur Anzeige eines normalen, eines bedenklichen und eines kritischen Konzentrationswertes, beziehungsweise lediglich ein binäres Signal, beispielsweise bei Überschreiten eines kritischen Konzentrationswertes, als „relevanter Wert" ermittelt werden. Insofern bezeichnet in vorliegendem Zusammenhang der Begriff „relevanter Wert" einen Wert, der in Abhängigkeit von der Konzentration zum Erfassen des mit der vorliegenden Konzentrationsbestimmung gewünschten Informationsgehalts dient.In the present context, as a relevant value for the concentration, on the one hand, for example, a value proportional to the concentration or inversely proportional to the concentration can be determined. This can in particular serve the output of an analytical measured value. However, depending on the requirements, a digital output with a lower information content, for example for displaying a normal, a critical and a critical concentration value, or merely a binary signal, for example when a critical concentration value is exceeded, can be referred to as "relevant value". be determined. In this respect, in the present context the term "relevant value" denotes a value which serves as a function of the concentration for detecting the information content desired with the present concentration determination.
[03] Bis dato sind derartige Konzentrationsbestimmungen verhältnismäßig aufwendig. Sie benötigen entweder einen komplexen chemisch-analytischen Messaufbau oder aber es wird mit Hilfe einer Spektralanalyse auf die Konzentration zurückgerechnet. Hierbei versteht es sich, dass derartige Messmethoden schon wegen Ihres apparativen Aufwandes äußerst aufwendig sind und insbesondere nicht ohne weiteres von Laien Vorort durchgeführt werden können. Selbiges gilt für chemischen Messmethoden, die zudem einen hohen Verschleiß an Hilfsmitteln, wie beispielsweise Messstreifen oder Messchemikalien, bedingen.[03] To date, such concentration determinations are relatively expensive. They either require a complex chemical-analytical measurement setup or they are calculated back to concentration using spectral analysis. It is understood that such measuring methods are extremely expensive already because of their equipment cost and in particular can not be performed easily by laymen suburb. The same applies to chemical measuring methods, which also require a high level of wear on auxiliary equipment, such as measuring strips or measuring chemicals.
[04] So offenbaren die WO 2005/112740 A2 und die EP 0 670 143 Bl verhältnismäßig einfach aufgebaute Messeinrichtungen, die ggf. auf von einem medizinischen Laien bedient werden können und insbesondere keine weiteren Hilfsmittel, wie Messstreifen oder Messchemikalien, benötigen. Allerdings verzichtet die WO 2005/112740 A2 auf eine Referenzmessung, so dass sie schon aus diesem Grunde nicht gattungsgemäß ist.Thus, WO 2005/112740 A2 and EP 0 670 143 B1 disclose comparatively simply constructed measuring devices which may possibly be operated on by a medical layman and, in particular, require no further aids, such as measuring strips or measuring chemicals. However, WO 2005/112740 A2 dispenses with a reference measurement, so that it is not generic for this reason alone.
[05] Einen komplexeren Messaufbau hingegen offenbart die DE 100 20 615 C2 hingegen zeigt eine komplexere Messeinrichtung, die insbesondere eine Referenzprobe, also eine Mess- chemikalie, benötigt, und auf diese Weise sicherstellt, dass die optischen Wege zwischen Lichtquelle und Messdetektor einerseits und Lichtquelle und Referenzdetektor andererseits jeweils identische Messwegcharakteristika aufweisen, so dass insbesondere auch Probe und Referenzprobe vertauscht werden können. Für einfach durchzuführende Messungen eignet sich eine derartige, nicht gattungsgemäße Messeinrichtung nicht.On the other hand, DE 100 20 615 C2 discloses a more complex measuring setup, which in particular requires a reference sample, ie a measuring chemical, and thus ensures that the optical paths between light source and measuring detector on the one hand and light source and reference detector on the other hand each have identical Meßwegcharakteristika, so that in particular sample and reference sample can be reversed. For simple measurements such a non-generic measuring device is not suitable.
[06] Eine gattungsgemäße Anordnung offenbart die EP 0 670 143 Bl, bei welcher einer sowohl amplitudenmodulierte als auch wellenlängenmodulierte Strahlenquelle zur Anwendung kommt, wobei de Amplitudenmodulation zur Variation einer Eindringtiefe des Lichts in ein zu untersuchendes Medium und die Wellenlängenmodulation zur Bestimmung der ersten Ableitung des Spektrums bei einer ausgewählten Wellenlänge dient, wozu auch ein Lock-In genutzt wird. Letztlich muss jedoch von genau einer Wellenlänge auf die Konzentration geschlossen werden, was mit erheblichen Unsicherheiten verbunden ist. [07] Es ist Aufgabe vorliegender Erfindung diesbezüglich Abhilfe zu schaffen.A generic arrangement is disclosed in EP 0 670 143 B1, in which an amplitude-modulated as well as wavelength-modulated radiation source is used, de amplitude modulation for varying a penetration depth of the light into a medium to be examined and the wavelength modulation for determining the first derivative of the Spectrum at a selected wavelength is used, including a lock-in is used. Ultimately, however, one must deduce exactly one wavelength from the concentration, which is associated with considerable uncertainties. [07] It is an object of the present invention to remedy this situation.
[08] Als Lösung schlägt die Erfindung einerseits eine Messeinrichtung zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen mit wenigstens einer IR-Strahlenquelle, die IR-Licht auf ein zu untersuchendes Volumen strahlt, mit we- nigstens einem Messdetektor, der von dem zu untersuchenden Volumen ausgehendes Licht aufnimmt, und mit wenigstens einem Referenzdetektor, welchem das auf das zu untersuchende Volumen gestrahlte IR-Licht vor Eintritt in das Volumen zugeführt wird, vor, wobei die Strahlenquelle, der Referenzdetektor und der Messdetektor über einen Lock-In miteinander verbunden sowie zwischen der IR-Strahlenquelle und dem Messdetektor ein optischer Messweg mit einer ersten Messwegcharakteristik und zwischen der IR-Strahlenquelle und der Referenzdetektor ein optischer Referenzweg mit einer zweiten, von der ersten Messwegcharakteristik abweichenden Messwegcharakteristik ausgebildet sind und wobei sich die Messeinrichtung dadurch auszeichnet, dass die IR-Strahlenquelle IR-Licht in wenigstens zwei diskrete Wellenlängen bzw. in wenigstens zwei diskreten Wellenlängenbändern auf das zu untersuchendes Volumen strahlt.[08] As a solution, the invention proposes, on the one hand, a measuring device for optically determining the concentration of blood sugar and / or lactate in biological systems with at least one IR radiation source, which radiates IR light to a volume to be examined, with at least one measuring detector, which the light to be examined receives, and with at least one reference detector, which is supplied to the volume to be examined radiated IR light before entering the volume before, wherein the radiation source, the reference detector and the measuring detector via a lock-in with each other connected and between the IR radiation source and the measuring detector, an optical measuring path having a first Meßwegcharakteristik and between the IR radiation source and the reference detector, an optical reference path with a second, deviating from the first Meßwegcharakteristik Meßwegcharakteristik are formed and wherein the measuring device distinguished thereby t that the IR radiation source emits IR light in at least two discrete wavelengths or in at least two discrete wavelength bands on the volume to be examined.
[09] In diesem Zusammenhang sei herausgestellt, dass rein physikalisch die Photonen des Lichts, welches einem Detektor zugeführt wird, für weitere Messung nicht zur Verfügung stehen. In vorliegenden Zusammenhang bezeichnet der Begriff „Licht" dementsprechend ein Strahlen- bzw. Photonenbündel, aus welchem für eine Referenzmessung ein Teil abgezweigt wird bzw. werden kann. Insofern ist rein offensichtlich, dass Photonen, die für die Referenzmessung genutzt werden, dass zu untersuchende Volumen nicht erreichen. Gleichwohl können hierdurch relevante Aussagen über die Natur des auf das zu untersuchende Volumen gestrahlten IR-Lichts getroffen werden, da diese Photonen aus ein und derselben Strahlenquelle stammen.[09] It should be pointed out in this connection that purely physically, the photons of the light which is fed to a detector are not available for further measurement. As used herein, the term "light" refers to a beam of photons from which a portion is or may be branched off for a reference measurement, so it is quite clear that photons used for the reference measurement are the volumes to be examined Nevertheless, relevant statements can be made about the nature of the IR light radiated onto the volume to be examined, since these photons originate from one and the same radiation source.
[10] Auch schlägt die Erfindung andererseits ein Verfahren zur optischen Konzentrationsbe- Stimmung von Blutzucker und/oder Laktat in biologischen Systemen vor, bei welchem IR-Licht entlang eines optischen Messweges auf ein zu untersuchendes Volumen gestrahlt und aus dem von dem Volumen ausgehenden Licht ein zur Konzentration relevanter Wert unter Ausnutzung einer über einen optischen Referenzweg erfolgenden Referenzmessung des auf das zu untersuchende Volumen gestrahlten IR-Lichts sowie eines Lock-In- Verfahrens ermittelt wird, wobei der optische Referenzweg eine Messwegcharakteristik aufweist, die von der Messwegcharakteristik des optischen Messweges abweicht, und welches sich dadurch auszeichnet, dass wenigstens einer Komponente aus einem zuvor ermittelten oder bekannten Spektrum wenigstens ein interessierender Peak gewählt wird und der zur Konzentration relevante Wert anhand wenigs- tens zweier innerhalb dieses Peaks liegenden, diskreter Wellenlängen bzw. Wellenlängenbänder ermittelt wird.[10] On the other hand, the invention also proposes a method for the optical concentration determination of blood sugar and / or lactate in biological systems, in which IR light is irradiated along an optical measuring path to a volume to be examined and from the light emanating from the volume for the concentration of relevant value taking advantage of a taking place via an optical reference path reference measurement of the radiated to the volume to be examined IR light and a lock-in method is determined, wherein the optical reference path has a measurement path characteristic which deviates from the measurement path characteristic of the optical measurement path and which is characterized in that at least one component from a previously determined or known spectrum is selected at least one peak of interest and the value relevant for the concentration is determined by at least two within this peak, discrete wavelengths or wavelength bands are determined.
[11] Durch die Referenzmessung ist es möglich, Schwankungen des auf das zu untersuchende Volumen gestrahlten IR-Lichtes zu ermitteln und auf diese Weise die Wertermittlung entsprechend zu korrigieren. So ist es möglich, etwaige Temperatureinflüsse oder aber auch natür- liehe Schwankungen der Strahlenquelle zu minimieren und mithin die Genauigkeit des relevanten Wertes in Bezug auf die tatsächliche Konzentration zu erhöhen. Durch eine derartige Maßnahme lässt sich der apparative Aufbau, der zwar durch die Referenzmessung an sich vergrößert wird, dahingehend erheblich vereinfachen, dass an die Strahlenquelle niedrigere Anforderungen gestellt werden können, sodass diese wesentlich kleiner und handlicher gewählt werden kann. Insbesondere kann auf temperaturstabilisierende Maßnahmen beziehungsweise sonstige Maßnahmen, die zur Stabilisierung der Strahlenquelle notwendig erscheinen, verzichtet werden, was den apparativen Aufbau insgesamt erheblich verringern lässt.By reference measurement, it is possible to determine fluctuations in the radiated to the volume to be examined IR light and correct in this way the value determination accordingly. Thus, it is possible to minimize any temperature influences or even natural Liehe fluctuations of the radiation source and thus to increase the accuracy of the relevant value in relation to the actual concentration. By such a measure, the apparatus construction, which is indeed increased by the reference measurement per se, considerably simplify the effect that lower requirements can be made of the radiation source, so that it can be chosen much smaller and more manageable. In particular, it is possible to dispense with temperature-stabilizing measures or other measures which appear necessary for stabilizing the radiation source, which considerably reduces the apparatus design as a whole.
[12] Eine baulich einfache Ausgestaltung lässt sich durch einen Strahlteiler realisieren, der zwischen dem zu untersuchenden Volumen und der Strahlenquelle angeordnet ist. Hierbei ist der Strahlteiler vorzugsweise derart ausgerichtet, dass ein Teil des von der Strahlenquelle ausgehenden Lichts auf den Referenzdetektor gerichtet ist. Auf diese Weise kann baulich sehr einfach eine Referenzmessung vorgenommen werden.A structurally simple embodiment can be realized by a beam splitter, which is arranged between the volume to be examined and the radiation source. In this case, the beam splitter is preferably aligned such that a part of the light emitted by the radiation source is directed to the reference detector. In this way structurally very simple a reference measurement can be made.
[13] Ebenso kann es vorteilhaft sein, wenn der Strahlteiler derart ausgerichtet ist, dass zumindest ein Teil des von dem Volumen ausgehenden Lichtes auf den Messdetektor gerichtet ist. Eine derartige Ausgestaltung kann beispielsweise dahingehend gewählt werden, dass das zu untersuchende Volumen, wie beispielsweise ein Finger, ein Ohrläppchen oder ein Arm, zwischen Strahlenteiler und Messdetektor angeordnet ist. Dieses gilt insbesondere für den Fall, dass eine Absorptionsmessung des ER-Lichts vorgenommen wird. Andererseits kann auch eine Reflektionsmessung und/oder eine Messung von sonstwie emittierten Licht, welches durch das anregende IR-Licht stimuliert ist, gemessen werden, insbesondere wenn dieses von dem Volumen ausgehende Licht auf den Strahlteiler gelangt und von diesem ausgehend zu dem Messdetektor geleitet wird.It may also be advantageous if the beam splitter is aligned such that at least a portion of the outgoing of the volume of light is directed to the measuring detector. Such a configuration can for example be selected such that the volume to be examined, such as a finger, an earlobe or an arm, is arranged between the beam splitter and the measuring detector. This applies in particular to the case that an absorption measurement of the ER light is made. On the other hand, a reflection measurement and / or a measurement of otherwise emitted light, which by the stimulating IR light is stimulated to be measured, especially when this outgoing from the volume of light reaches the beam splitter and is guided by this starting to the measuring detector.
[14] Dementsprechend kann der Messdetektor beispielsweise linear bezüglich des auf das Volumen gestrahlten HI-Lichts ausgerichtet sein, was insbesondere für Absorptionsmessungen von Vorteil ist. Insbesondere für Reflektionsmessungen hingegen kann es insbesondere von Vorteil sein, wenn der Messdetektor in einem Winkel bezüglich des auf das Volumen gestrahlten IR-Lichtes ausgerichtet ist. Durch letztere Maßnahme kann insbesondere vermieden werden, dass das auf das Volumen gestrahlte ER-Licht unmittelbar durch das Volumen hindurchtritt und den Messdetektor unbeeinflusst erreicht.Accordingly, the measurement detector may, for example, be oriented linearly with respect to the volume-radiated HI light, which is advantageous in particular for absorption measurements. In particular, for reflection measurements, however, it may be particularly advantageous if the measurement detector is oriented at an angle with respect to the radiated IR radiation to the volume. By means of the latter measure, it can be avoided, in particular, that the ER light radiated onto the volume passes directly through the volume and reaches the measuring detector uninfluenced.
[15] Zur Referenzmessung ist ein Strahlteiler nicht zwingend notwendig. In einer alternativen Ausgestaltung kann der Referenzdetektor beispielsweise auf Streulicht der IR- Strahlenquelle gerichtet sein. Bei der Lichterzeugung lässt sich, unabhängig davon welche Lichtquelle zur Anwendung kommt, die Entstehung von Streulicht kaum vermeiden, da das entstehende Licht bereits in der Strahlenquelle selbst teilweise gebrochen oder sonst wie geringfügig abgelenkt wird. Dieses gilt insbesondere auch für Laserlichtquellen. Wegen der linearen Natur der Photonenausbreitung benötigen Laserlichtquellen darüber hinaus zwei einander gegenüberstehende Spiegel, zwischen denen sich der Laserzustand ausbilden kann. Einer der Spiegel wird in der Regel halb durchlässig gewählt, sodass durch diesen Spiegel das Laserlicht zur weiteren Verwendung ausgekoppelt werden kann. Denkbar sind jedoch auch andere Auskoppelmechanismen, die jedoch wiederum Streulicht generieren, welches für die Referenzmessung genutzt werden kann. Da jedoch in der Regel selbst ein undurchlässiger Spiegel einen geringen Lichtanteil durchläset bzw. gegebenenfalls leicht lichtdurchlässig ausgebildet werden kann, ist es auch bei einem Laser ohne weiteres möglich, Streulicht bzw. einen kleinen Lichtan- teil aus der dem Austrittsfester des Lasers gegenüberliegende Seite für Referenzmessungen zu nutzen. Die Verwendung derartigen Streu- beziehungsweise Fremdlichtes für die Referenzmessung hat den Vorteil, dass der Hauptstrahlenweg zwischen IR-Strahlenquelle und Volumen durch die Referenzmessung nicht behindert wird. Auf diese Weise können Verluste minimiert werden, was wiederum zu einer Vereinfachung der für die gewünschte Messgenauigkeit not- wendigen Apparatur führt. [16] Das erfϊndungsgemäße Lock-In- Verfahren sowie ein erfindungsgemäßer Lock-In sind an sich aus dem Stand der Technik hinlänglich bekannt, um statistische Schwankungen, welche Messergebnisse beeinflussen, eliminieren zu können. Hierbei wird ein Anregungssignal, welches auf eine Probe gerichtet ist, moduliert, wobei davon ausgegangen wird, dass eine durch die modulierte Anregung induzierte Reaktion der Probe dementsprechend, moduliert ist, sodass in dem Detektor alle Messsignale, die eine entsprechende Modulation nicht aufweisen, entsprechend eliminiert und Messsignale, welche dieselbe Modulation aufweisen entsprechend verstärkt werden können. Für eine derartige Modulation kommen, je nach konkreter Ausgestaltung, sowohl eine Amplituden- als auch eine Frequenzmodulation in Frage. Derartige Lock-In- Verfahren sind jedoch bei spektroskopischen Untersuchungen unüblich, da eine derartige Modulation in der Fouriertranformation zu Störungen führt. Auch bei chemischen Konzentrationsbestimmungen können derartige Lock-In- Verfahren naturgemäß nicht zur Anwendung kommen.[15] A beam splitter is not mandatory for reference measurement. In an alternative embodiment, the reference detector may be directed, for example, to scattered light of the IR radiation source. Regardless of which light source is used, the generation of scattered light can hardly be avoided in light generation, since the resulting light is already partly refracted or otherwise distracted slightly in the radiation source itself. This applies in particular to laser light sources. In addition, due to the linear nature of photon propagation, laser light sources require two opposing mirrors, between which the laser state can form. One of the mirrors is chosen to be semi-permeable, so that the laser light can be coupled out for further use by means of this mirror. However, other coupling-out mechanisms are also conceivable, but they in turn generate scattered light which can be used for the reference measurement. Since, however, even an impermeable mirror usually allows a small amount of light to pass through or, if appropriate, be made slightly translucent, it is also readily possible for a laser to produce stray light or a small fraction of light from the side opposite the exit solid of the laser for reference measurements to use. The use of such stray or extraneous light for the reference measurement has the advantage that the main ray path between the IR radiation source and the volume is not hindered by the reference measurement. In this way, losses can be minimized, which in turn leads to a simplification of the equipment required for the desired measurement accuracy. [16] The lock-in method according to the invention and a lock-in according to the invention are known per se from the prior art in order to be able to eliminate statistical fluctuations which influence measurement results. In this case, an excitation signal which is directed to a sample is modulated, it being assumed that a response of the sample induced by the modulated excitation is modulated accordingly, so that in the detector all measurement signals which do not have a corresponding modulation are correspondingly eliminated and measuring signals which have the same modulation can be amplified accordingly. For such a modulation come, depending on the specific embodiment, both an amplitude and a frequency modulation in question. However, such lock-in methods are unusual in spectroscopic investigations, since such a modulation in the Fourier transform leads to disturbances. Even with chemical concentration determinations, such lock-in methods can not naturally be used.
[17] Durch die Kombination einer optischen Konzentrationsbestimmung bzw. der Konzentrationsbestimmung über IR-Licht mit einem Lock-In- Verfahren können jedoch sehr detailliert Aussagen über das von dem zu untersuchenden Volumen ausgehende Licht getroffen werden, die bei einem verhältnismäßig geringen apparativen Aufwand trotz allem noch zu aussagekräftigen relevanten Werten führen.By combining an optical concentration determination or the concentration determination via IR light with a lock-in method, however, statements can be made in great detail about the light emanating from the volume to be examined, which despite a relatively small outlay on equipment still lead to meaningful relevant values.
[18] Vorzugsweise ist auch der Referenzdetektor über den Lock-In mit der IR-Strahlenquelle verbunden, sodass auch hier Störeffekte, wie beispielsweise ein Rauschen, erfasst werden kön- nen.[18] Preferably, the reference detector is also connected to the IR radiation source via the lock-in, so that disturbance effects, such as, for example, noise, can also be detected here.
[19] Wie bereits vorstehend angedeutet, kann für das Lock-In- Verfahren eine Amplitudenmodulation vorgenommen werden, die insbesondere binär, also „Licht ein" und „Licht aus", ausgebildet sein kann. Insbesondere bei einer elektronischen Ausgestaltung des Lock-In kann die Amplitudenmodulation jedoch wesentlich weniger aggressiv gewählt werden und sich bei- spielsweise auf geringe Amplitudenschwankungen, beispielsweise in einem Fenster von unter 50 % der Maximalstärke, vorzugsweise von unter 35 % beziehungsweise unter 25 %, bewegen. Insbesondere kann die Amplitudenmodulation auch als Sinuswelle, und somit weniger aggressiv als die Rechteckwelle eines binären Signals, ausgestaltet werden. [20] Andererseits kann auch eine Wellenlängenmodulation vorgenommen werden, wobei die Bandbreite der Wellenlängenmodulation vorzugsweise unter 20 nm, vorzugsweise unter 18 tun bzw. unter 15 nm liegt, wodurch insbesondere sicher gestellt werden kann, dass durch den Lock-In bzw. durch die Wellenlängenmodulation ein aussagekräftiger Peak des Spektrums der Komponente, dessen Konzentration bestimmt werden soll, nicht verlassen wird. Hierbei versteht es sich, dass gegebenenfalls ergänzende Maßnahmen vorgesehen sein müssen, um aus einem über eine Wellenlängenmodulation generierten Lock-In Absolutwerte ermitteln zu können, da hierbei in der Regel zunächst die erste Ableitung eines Spektrums gemessen wird. Andererseits kann gerade die erste Ableitung eines Spektrums insbesondere bei geeigneten WeI- lenlängen mindestens ebenso aussagekräftig hinsichtlich einer Konzentration sein, wie das Spektrum an sich.[19] As already indicated above, an amplitude modulation can be carried out for the lock-in method, which can be embodied in particular binary, that is to say "light on" and "light off". However, in particular in the case of an electronic embodiment of the lock-in, the amplitude modulation can be chosen to be much less aggressive and, for example, to a small amplitude fluctuations, for example in a window of less than 50% of the maximum strength, preferably less than 35% or less than 25%. In particular, the amplitude modulation can also be designed as a sine wave, and thus less aggressive than the square wave of a binary signal. [20] On the other hand, a wavelength modulation can be made, wherein the bandwidth of the wavelength modulation is preferably less than 20 nm, preferably less than 18 or less than 15 nm, which can be ensured in particular by the lock-in or by the wavelength modulation a meaningful peak of the spectrum of the component whose concentration is to be determined is not left. In this case, it goes without saying that supplementary measures may have to be provided in order to be able to determine absolute values from a lock-in absolute value generated via wavelength modulation, since in this case the first derivative of a spectrum is usually first measured. On the other hand, it is precisely the first derivative of a spectrum, in particular at suitable wavelengths, that can be at least as meaningful in terms of concentration as the spectrum itself.
[21] Vorliegend können insbesondere Laserdioden als Strahlenquellen zur Anwendung kommen. Auf dem ersten Blick erscheinen Laserdioden für spektroskopische Untersuchungen, mit denen überlicherweise Konzentrationsbestimmungen vorgenommen werden, ungeeignet, da sie über die notwendige Bandbreite für spektroskopische Untersuchungen nicht verfügen. Andererseits haben derartige Laserdioden den Vorteil einer verhältnismäßig guten Lichtausbeute, sodass mit verhältnismäßig wenig apparativem Aufwand hervorragende Strahlungsleistungen, insbesondere auch im IR-Bereich, erzielt werden können. Auch können Laserdioden ohne weiteres Licht für Referenzmessungen bereitstellen, wie bereits vorstehend anhand Laserlichtquel- len allgemein näher erläutert wurde.[21] In the present case, in particular laser diodes can be used as radiation sources. At first glance, laser diodes are unsuitable for spectroscopic investigations, which are usually used to determine concentration, since they do not have the necessary bandwidth for spectroscopic investigations. On the other hand, such laser diodes have the advantage of a relatively good luminous efficacy, so that with relatively little equipment expense excellent radiation performance, especially in the IR range, can be achieved. Also, laser diodes can readily provide light for reference measurements, as has been generally explained in more detail above with reference to laser light sources.
[22] Wegen der geringen Modulationsmöglichkeiten der Laserdioden kann es vorteilhaft sein, zwei oder mehr Laserdioden vorzusehen, was insbesondere auch aus Zeitgründen vorteilhaft sein kann, da eine Modulation einer Laserdiode, insbesondere über eine Bandbreite von über 20 nm hinaus, verhältnismäßig zeitaufwendig ist, weil die Laserdiode einige Zeit benötigt, um sich zu stabilisieren. Darüber hinaus steigt bei einer derartigen großen Bandbreite der apparative Aufwand überproportional.Because of the low modulation capabilities of the laser diodes, it may be advantageous to provide two or more laser diodes, which may be particularly advantageous for time reasons, since a modulation of a laser diode, in particular over a bandwidth of more than 20 nm addition, is relatively time-consuming, because The laser diode takes some time to stabilize. In addition, the expenditure on equipment increases disproportionately with such a large bandwidth.
[23] Wenn wenigstens ein zweiter Peak gewählt wird und eine der beiden Wellenlängen bzw. eines der beiden Wellenlängenbänder in diesem zweiten Peak liegt, kann gegebenenfalls die Messgenauigkeit erhöht werden. Ebenso können bei der Auswahl mehrerer Peaks auch mehrere Komponenten, insbesondere eines biologischen Systems, hinsichtlich ihrer Konzentration überprüft werden.[23] If at least one second peak is selected and one of the two wavelengths or one of the two wavelength bands lies in this second peak, the measurement accuracy can be increased if necessary. Similarly, when selecting multiple peaks, too several components, in particular a biological system, are checked for their concentration.
[24] Je nach konkreter Umsetzung ist es insbesondere vorteilhaft, wenn zur Messung an den verschiedenen Peaks verschiedene Laserdioden beziehungsweise verschiedene IR- Strahlenquellen zur Anwendung kommen.[24] Depending on the specific implementation, it is particularly advantageous if different laser diodes or different IR radiation sources are used for the measurement at the different peaks.
[25] Die relevanten und mit IR-Messungen gut zugänglichen Peaks haben in der Regel eine Breite von weit mehr als 200 nm. Dadurch, dass ein innerhalb eines jeweiligen Peaks liegenden Wellenlängenband genutzt wird, wird ein apparatives Anforderungsprofϊl geschaffen, das mit verhältnismäßig geringem Aufwand insbesondere auch von einer Laserdiode realisiert werden kann. So ist der Aufwand, die Wellenlänge einer Laserdiode, aber auch einer sonstigen IR- Strahlenquelle, in einem Wellenlängenband von unter 200 nm, vorzugsweise unter 170 nm, zu modulieren, ungleich geringer, als wenn mehrere Peaks erfasst - und mithin mehrere 100 nm als Bandbreite für die ER-Strahlenquelle bereitgestellt - werden müssten.[25] The relevant peaks, which are easily accessible with IR measurements, generally have a width of well over 200 nm. By using a wavelength band within a respective peak, a demand profile is created that is relatively inexpensive In particular, can also be realized by a laser diode. Thus, the effort to modulate the wavelength of a laser diode, but also another IR radiation source, in a wavelength band of less than 200 nm, preferably less than 170 nm, much lower than when several peaks detected - and therefore several 100 nm as bandwidth provided for the ER radiation source.
[26] Die vorliegende Erfindung eignet sich insbesondere für Ausgestaltungen, bei welchen die Wellenlängenbänder beziehungsweise die Emissionsfrequenz der IR-Strahlenquelle zwischen 1000 nm und 2000 nm und/oder zwischen 2000 nm und 3000 nm liegt. In diesen Wellenlängenbereichen weist Wasser, der Hauptbestandteil der meisten biologischen Systeme, eine verhältnismäßig geringe Wechselwirkung mit Licht auf. Hierdurch werden Bestandteile, die in einer derartigen Umgebung zu finden sind, besser einer Messung zugänglich. Es versteht sich, dass bei anderen Umgebungen gegebenenfalls auch andere Wellenlängegebiete vorteilhaft genutzt werden können.[26] The present invention is particularly suitable for embodiments in which the wavelength bands or the emission frequency of the IR radiation source is between 1000 nm and 2000 nm and / or between 2000 nm and 3000 nm. In these wavelength ranges, water, the major constituent of most biological systems, has a relatively low interaction with light. As a result, components that can be found in such an environment, better accessible to a measurement. It is understood that in other environments, where appropriate, other wavelength ranges can be used to advantage.
[27] In konkreter Umsetzung des hier beschriebenen Verfahrens kann es einerseits vorteilhaft sein, an dem gewählten Peak lediglich zwei Messpunkte aufzunehmen, von denen ein Messpunkt in einem konzentrationsunabhängigem Bereich des ausgewählten Peaks liegt, wäh- rend der andere in einem möglichst stark von der Konzentration abhängigen Bereich des Peaks liegt. Aus der Steigung zwischen diesen beiden Messpunkten kann dann eine Aussage über die absolute Konzentration der zu untersuchenden Komponente in dem Volumen getroffen werden, wobei der Messpunkt in dem konzentrationsunabhängigen Bereich dann als Referenz dient. Es versteht sich, dass die beiden Messpunkte bzw. die beiden entsprechenden Wellenlängenbänder nicht zwingend in demselben Peak zu finden sein müssen.In concrete implementation of the method described here, it may on the one hand be advantageous to record only two measuring points at the selected peak, of which one measuring point is in a concentration-independent region of the selected peak, while the other one is as strong as possible from the concentration dependent region of the peak. From the slope between these two measuring points, a statement can then be made about the absolute concentration of the component to be examined in the volume, the measuring point then serving as a reference in the concentration-independent region. It It is understood that the two measuring points or the two corresponding wavelength bands do not necessarily have to be found in the same peak.
[28] Hierbei werden diese beiden Messpunkte diskret angesteuert, was einerseits beispielsweise durch zwei Laserdioden oder andererseits durch eine Laserdiode, deren Wellenlänge entsprechend sprunghaft bzw. diskret geändert wird, realisiert werden kann. Zwar können Laserdioden verhältnismäßig genau auf wenige Nanometer stabilisiert werden, dieses ist jedoch verhältnismäßig zeitaufwendig, sodass sich für eine diskrete Ansteuerung insbesondere zwei Laserdioden eignen. Andererseits ist die Genauigkeit der Auswahl der Messpunkte nicht zwingend auf unter einem Nanometer beschränkt. Vielmehr kann es ausreichend sein, wenn die Messpunkte innerhalb einer Wellenlängenbandbreite unter 20 nm liegen. Hierbei ist es insbesondere auch möglich, die Frequenz der IR-Strahlenquelle innerhalb der Bandbreite von 20 nm zu modulieren, um diese Modulation für ein Lock-In- Verfahren zu nutzen. Andererseits kann es auch vorteilhaft sein, die IR-Strahlenquellen auf unter 8 nm vorzugsweise auf unter 6 nm bzw. unter 4 nm, zu stabilisieren und entsprechend genau einzustellen, um den Lock-In mit einer geringeren Modulation durchzuführen oder aber um einen amplitudenmodulierten Lock-In zu realisieren.In this case, these two measuring points are controlled discretely, which can be realized on the one hand, for example, by two laser diodes or on the other hand by a laser diode whose wavelength is changed according to leaps and discretely. Although laser diodes can be stabilized relatively accurately to a few nanometers, this is relatively time-consuming, so that in particular two laser diodes are suitable for a discrete activation. On the other hand, the accuracy of the selection of the measuring points is not necessarily limited to less than one nanometer. Rather, it may be sufficient if the measurement points lie within a wavelength bandwidth below 20 nm. In this case, it is also possible in particular to modulate the frequency of the IR radiation source within the bandwidth of 20 nm in order to use this modulation for a lock-in method. On the other hand, it may also be advantageous to stabilize the IR radiation sources to less than 8 nm, preferably to less than 6 nm or less than 4 nm, and to adjust them accordingly in order to carry out the lock-in with a lower modulation or else by an amplitude-modulated lock. To realize in.
[29] Je nach konkret verwendeter IR-Strahlenquelle kann es jedoch andererseits vorteilhaft sein, die IR-Strahlenquellen in einem Bereich unter 170 nm, vorzugsweise unter 150 nm bzw. unter 120 nm, kontinuierlich zu modulieren und aus dieser Modulation die Form des gewählten Peak zu bestimmen, aus welcher der für die Konzentration relevante Wert ermitteltet werden kann. Durch ein derartig großes Wellenlängenband ist insbesondere ein wellenlängenmodulierter beziehungsweise wellenlängenmodulierter Lock-In sehr gut realisierbar.On the other hand, depending on the specific IR radiation source used, it may be advantageous to continuously modulate the IR radiation sources in a range below 170 nm, preferably below 150 nm or below 120 nm, and from this modulation the shape of the selected peak determine from which of the value relevant for the concentration can be determined. By means of such a large wavelength band, in particular a wavelength-modulated or wavelength-modulated lock-in can be realized very well.
[30] Zwar sind die vorstehend einzeln erläuterten Lösungen an sich unabhängig von den übrigen Merkmalen der weiteren Lösungen vorteilhaft. In der Praxis hat sich jedoch herausge- stellt, dass insbesondere durch die Kombination von diskreter Wellenlängenmessungen, Referenzmessungen und Lock-In bei einem Verzicht auf eine Referenzprobe ein apparativer Aufbau geschaffen werden kann, der sehr klein realisierbar ist sowie eine ausreichende Messgenauigkeit gewährleistet und mithin auch Vorort Messungen, insbesondere auch durch Laien, ermöglicht. [31] Insbesondere der Verzicht auf die Messung eines komplexen Spektrums sondern die Beschränkung auf einen oder mehrere einzelne Peaks bei der Konzentrationsbestimmung ermöglicht eine Messung mit Laserdioden, die nur begrenzt in Ihrer Wellenlänge verändert werden müssen. Gegebenenfalls kann auf eine Wellenlängenänderung zur Gänze verzichtet wer- den, indem auf einem interessierenden Peak lediglich zwei Messpunkte bzw. enge Wellenlängenbandbreiten gewählt und diese über jeweils eine Laserdiode angeregt werden. Es versteht sich hierbei, dass durch eine Erhöhung der Anzahl an Laserdioden auch komplexere Messvorgänge ohne wesentlichen Zeitverlust durchgeführt werden können.[30] Although the above individually explained solutions are in themselves advantageous regardless of the other features of the other solutions. In practice, however, it has been found that, in particular through the combination of discrete wavelength measurements, reference measurements and lock-in in the absence of a reference sample, an apparatus construction can be created which is very small and ensures sufficient measurement accuracy and therefore also On-site measurements, especially by laymen, allows. [31] In particular, the omission of the measurement of a complex spectrum but the restriction to one or more individual peaks in the concentration determination allows a measurement with laser diodes, which only limited in their wavelength must be changed. Optionally, it is possible to dispense entirely with a change in wavelength by selecting only two measuring points or narrow wavelength bandwidths on a peak of interest, and exciting these by means of one respective laser diode. It goes without saying that by increasing the number of laser diodes, even more complex measuring operations can be carried out without significant loss of time.
[32] Unabhängig von der Asymmetrie der optischen Wege, also des optischen Messweges und des optischen Referenzweges, ist die Verwendung mehrerer diskreter Wellenlängenbänder, die jeweils wellenlängenmoduliert angeregt werden, bei einer optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen mit wenigstens einer IR- Strahlenquelle, die IR-Licht auf ein zu untersuchendes Volumen strahlt, mit wenigstens einem Messdetektor, der von dem zu untersuchenden Volumen ausgehendes Licht aufnimmt, und mit wenigstens einem Referenzdetektor, welchem das auf das zu untersuchende Volumen gestrahlte IR-Licht vor Eintritt in das Volumen zugeführt wird, wobei die Strahlenquelle, der Referenzdetektor und der Messdetektor über einen Lock-In miteinander verbunden, entsprechend vorteilhaft. Selbiges gilt für ein Messverfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen, bei welchem IR-Licht auf ein zu untersuchen- des Volumen gestrahlt und aus dem von dem Volumen ausgehenden Licht ein zur Konzentration relevanter Wert unter Ausnutzung einer Referenzmessung des auf das zu untersuchende Volumen gestrahlten IR-Lichts sowie eines Lock-In-Verfahrens ermittelt wird.Regardless of the asymmetry of the optical paths, ie the optical measuring path and the optical reference path, the use of multiple discrete wavelength bands, each of which is wavelength modulated, in an optical concentration determination of blood sugar and / or lactate in biological systems with at least one IR Radiation source, which radiates IR light to a volume to be examined, with at least one measuring detector, which receives light emitted from the volume to be examined, and with at least one reference detector, which the radiated to the volume to be examined IR light before entering the Volume is supplied, wherein the radiation source, the reference detector and the measuring detector connected via a lock-in, correspondingly advantageous. The same applies to a measuring method for the optical concentration determination of blood sugar and / or lactate in biological systems, in which IR light is irradiated to a volume to be examined and from the light emanating from the volume of a value relevant to the concentration using a reference measurement of the volume of irradiated IR light to be examined and a lock-in method are determined.
[33] In vorliegendem Zusammenhang bezeichnet der Begriff „Peak" eine signifikante Variation eines Spektrums, die sich insbesondere durch ein Maximum oder Minimum, also eine Ex- tremstelle, und zwei Fußpunkte auszeichnet. Hierbei müssen die Fußpunkte nicht auf identischem Niveau liegen, sind jedoch in der Regel von der Konzentration der Substanz, deren Spektrum untersucht wird, wesentlich weniger abhängig als die jeweiligen Extremstellen. Insbesondere ist es, wie bereits vorstehend im Detail erläutert, möglich, mehrere Peaks, ggf. auch lediglich die Extremstelle eines Peaks und den Fußpunkt eines anderen Peaks, für die erfϊn- dungsgemäßen Messungen heranzuziehen. [34] Weitere Vorteile, Ziele und Aufgaben vorliegender Erfindung werden anhand nachfolgender Beschreibung anliegender Zeichnung verdeutlicht, in welcher beispielhaft erfindungsgemäße Messeinrichtungen und Verfahrensführungen dargestellt sind. In der Zeichnung zeigen: Figur 1 einen schematischen Aufbau einer ersten Messanordnung; Figur 2 einen schematischen Aufbau einer zweiten Messanordnung;[33] In the present context, the term "peak" refers to a significant variation of a spectrum, which is characterized in particular by a maximum or minimum, ie an extremum, and two foot points, where the foot points do not have to be at identical levels, however As a rule, the concentration of the substance whose spectrum is being examined is much less dependent than the respective extreme points, In particular, as already explained in detail above, it is possible to have several peaks, possibly also only the extreme point of a peak and the base point of one peak other peaks, for the erfϊnstungsgemäßen measurements. Further advantages, objects and objects of the present invention will become apparent from the following description of the appended drawing, in which exemplary measuring devices according to the invention and process guides are shown. In the drawing: FIG. 1 shows a schematic structure of a first measuring arrangement; FIG. 2 shows a schematic structure of a second measuring arrangement;
Figur 3 einen schematischen Aufbau einer dritten Messanordnung;FIG. 3 shows a schematic structure of a third measuring arrangement;
Figur 4 eine erste mögliche Verfahrensführung;FIG. 4 shows a first possible process control;
Figur 5 eine zweite mögliche Verfahrensführung; undFigure 5 shows a second possible process control; and
Figur 6 eine dritte mögliche Verfahrensführung.FIG. 6 shows a third possible procedure.
[35] Die Messanordnung nach Figur 1 umfasst ein Volumen 1, in welchem die Konzentration einer Komponente bestimmt werden soll. Hierzu wird IR-Licht 2 auf das Volumen 1 gestrahlt, welches von einer IR-Laserdiode 3 erzeugt, über eine Lichtleitfaser 4 und eine Kolima- torlinse 5 sowie einen Strahlteiler 6 dem Volumen 1 zugeführt wird. Das IR-Licht 2 durchstrahlt das Volumen 1, wobei das von dem Volumen 1 ausgehende Licht 7 über eine Kolimator- linse 8 entsprechend in eine Lichtleitfaser 9 gebündelt und einem Messdetektor 10 zugeführt wird.[35] The measuring arrangement according to FIG. 1 comprises a volume 1 in which the concentration of a component is to be determined. For this purpose, IR light 2 is irradiated to the volume 1, which is generated by an IR laser diode 3, via an optical fiber 4 and a Kolima- torlinse 5 and a beam splitter 6 to the volume 1 is supplied. The IR light 2 passes through the volume 1, the light 7 emanating from the volume 1 being bundled correspondingly into an optical fiber 9 via a collimator lens 8 and fed to a measuring detector 10.
[36] Ein Teil des IR-Lichts von der IR-Laserdiode 3 wird über den Strahlteiler 6 als Referenzlicht 11 über eine weitere Kolimatorlinse 12 und eine weitere Lichtleitfaser 13 einem Referenzdetektor 14 zugeführt. Der Lichtstrahl 2 sowie die Detektoren 10, 14 sind über eine nicht dargestellte Lock-In- Verbindung miteinander messtechnisch verbunden.[36] A portion of the IR light from the IR laser diode 3 is fed via the beam splitter 6 as reference light 11 via a further collimator lens 12 and a further optical fiber 13 to a reference detector 14. The light beam 2 and the detectors 10, 14 are metrologically connected to each other via a lock-in connection, not shown.
[37] Bei der Anordnung nach Figur 2, die im Wesentlichen dem Messaufbau nach Figur 1 entspricht, sodass identisch wirksame Baugruppen auch identisch beziffert sind, werden etwas abweichende Baugruppen mit dem Buchstaben A gekennzeichnet sind, findet statt einer Absorptionsmessung eine Reflektionsmessung statt. Das von dem Volumen 1 ausgehende Licht 7A wird an dem Strahlteiler 6A, der mithin sowohl für das auf das Volumen 1 gestrahlte IR- Licht 2 als auch für das von dem Volumen 1 ausgehende Licht 7A wirksam ist, auf die Kolimatorlinse 8 gelenkt und in an sich bereits vorstehend beschriebener Weise dem Messdetektor 10 zugeführt. Mit dieser Anordnung kann auch sonstiges Licht, welches durch das IR-Licht 2 induziert ist, ohne weiters erfasst werden. Insofern ist diese Anordnung nicht auf Reflektionsmes- sungen beschränkt. Es versteht sich hierbei, dass die Detektionsanordnung aus Kolimatorlinse 8, Lichtleitfaser 9 und Detektor 10 an anderer Stelle vorgesehen sein kann, um Licht, welches von dem Volumen 1 ausgeht, zu detektieren.[37] In the case of the arrangement according to FIG. 2, which substantially corresponds to the measuring structure according to FIG. 1, so that identically effective assemblies are also numbered identically, slightly different assemblies are marked with the letter A, instead of an absorption measurement a reflection measurement takes place. The light 7A emanating from the volume 1 is directed to the collimator lens 8 at the beam splitter 6A, which is therefore effective both for the IR light 2 radiated to the volume 1 and for the light 7A emanating from the volume 1 already described above manner the measuring detector 10 supplied. With this arrangement, also other light, which is induced by the IR light 2, can be detected without further. In this respect, this arrangement is not based on reflection limited. It is understood that the detection arrangement of the collimator lens 8, optical fiber 9 and detector 10 can be provided elsewhere to detect light emanating from the volume 1.
[38] In Abweichung von der Anordnung nach Figur 1 nutzt die Anordnung von Figur 3 Streulicht beziehungsweise durch den rückwärtigen Teil der IR-Laserdiode 3 austretendes Licht 1 IA als Referenzlicht. Im Übrigen entspricht diese Anordnung der Ausgestaltung nach Figur 1 und ist für eine Absorptionsmessung ausgelegt.In a departure from the arrangement according to FIG. 1, the arrangement of FIG. 3 utilizes scattered light or light 1 IA issuing through the rearward part of the IR laser diode 3 as the reference light. Incidentally, this arrangement corresponds to the embodiment of Figure 1 and is designed for absorption measurement.
[39] Figur 4 zeigt einen Ausschnitt eines Peaks, der aus dem an sich bekannten Spektrum der Komponente, dessen Konzentration bestimmt werden soll, gewählt ist. Der Ausschnitt um- fasst einen Wellenlängenbereich von ungefähr 200 nm. Entsprechend der vorstehenden Erläuterung wird an zwei Messpunkten Pl und P2, deren Wellenlängenabstand ungefähr 150 nm beträgt, eine Messung durchgeführt. Hierbei ist der Messpunkt Pl derart gewählt, dass er in einem Bereich des Peaks liegt, der von der Konzentration verhältnismäßig unabhängig ist. Der Messpunkt P2 ist in einen Bereich gelegt worden, der hingegen bezüglich der Konzentration mög- liehst signifikant ist, sodass aus der Differenz zwischen diesen beiden Messpunkten auf die Konzentration geschlossen werden kann, wobei der Messpunkt Pl als Referenz dient, sodass Fremdeinflüsse, insbesondere die Einflüsse anderer Komponenten des biologischen Systems, ausgeschlossen oder minimiert werden können. Auch durch diese Maßnahme lässt sich der Messaufbau kumulativ bzw. alternativ wesentlich einfach realisieren.[39] Figure 4 shows a section of a peak, which is selected from the known per se spectrum of the component whose concentration is to be determined. The section comprises a wavelength range of approximately 200 nm. As described above, a measurement is performed at two measurement points Pl and P2 whose wavelength separation is approximately 150 nm. Here, the measurement point Pl is selected to be within a range of the peak which is relatively independent of the concentration. The measuring point P2 has been placed in a range which, on the other hand, is as significant as possible in terms of concentration, so that the difference between these two measuring points can be deduced from the concentration, the measuring point P1 serving as a reference, so that external influences, in particular the influences other components of the biological system can be excluded or minimized. Even with this measure, the measurement setup can be realized cumulatively or alternatively substantially simply.
[40] Wie unmittelbar ersichtlich, kann eine derartige Messung mit den oben dargestellten Messanordnungen durchgeführt werden, indem die IR-Laserdiode 3 jeweils auf die entsprechenden Wellenlängen abgestimmt wird. Andererseits ist es für jeden Fachmann unmittelbar nachvollziehbar, dass statt einer IR-Laserdiode 3 bzw. statt einer IR-Strahlenquelle auch zwei IR-Strahlenquellen, die auf die entsprechenden Wellenlängen abgestimmt sind, zur Anwendung kommen können.[40] As can be readily appreciated, such a measurement can be performed with the measurement arrangements outlined above by tuning the IR laser diode 3 to the respective wavelengths, respectively. On the other hand, it is immediately apparent to any person skilled in the art that, instead of an IR laser diode 3 or instead of an IR radiation source, two IR radiation sources which are tuned to the corresponding wavelengths can also be used.
[41] Während bei diesem Ausführungsbeispiel die IR-Laserdiode verhältnismäßig genau abgestimmt und vorzugsweise mit Schwankungen von unter 1 nm konstant gehalten wird, wenn die Messpunkte Pl beziehungsweise P2 aufgenommen werden, wird die Laserdiode bei dem Verfahrensbeispiel gemäß Figur 5 mit einer Bandbreite von ca. 15 nm moduliert, um ein Lock- In-V erfahren umzusetzen. Letzteres kann bei der Verfahrensführung nach Figur 4 über eine Amplitudenmodulation realisiert werden. Insofern sind bei dem Verfahrensbeispiel nach Figur 5 Wellenlängenbandbreiten Bl und B2 anstelle von Messpunkten genutzt.[41] While in this embodiment, the IR laser diode is relatively accurately tuned and preferably kept constant with fluctuations of less than 1 nm when the measuring points Pl and P2 are recorded, the laser diode in the method example according to Figure 5 with a bandwidth of approx. 15 nm modulated to produce a lock In-V experience implement. The latter can be realized in the process control of Figure 4 via an amplitude modulation. In this respect, in the method example according to FIG. 5, wavelength bandwidths B1 and B2 are used instead of measuring points.
[42] Andererseits kann die Wellenlänge der IR-Strahlenquelle auch über einen größeren Bereich, beispielsweise von ungefähr 150 nm, moduliert werden, sodass insbesondere auch die Bereiche Bl und B2, innerhalb derer dann Messergebnis aufgenommen bzw. für di Konzentrationsbestimmung genutzt werden, überstrichen werden können. Auch aus diesen Messungen, die jedoch in der Regel sehr zeitaufwendig sein werden, können relevante Werte über die Konzentration bestimmt werden, wobei durch die geeignete Modulation auch ein Lock-In realisiert werden kann. Es ist jedoch auch denkbar, trotz einer möglichen Wellenlängenmodulation mit einer derartigen Bandbreite eine Amplitudenmodulation vorzunehmen und für den Lock-In zu nutzen, während die Modulation lediglich zum Überstreichen eines entsprechenden Wellenlängenbandes genutzt wird. In diesem Zusammenhang ist insbesondere ersichtlich, dass weitere Wellenlängenbänder, insbesondere auch durch die Verwendung weiterer IR-Strahlenquellen, ohne weiteres erschlossen werden können.[42] On the other hand, the wavelength of the IR radiation source can also be modulated over a larger range, for example of approximately 150 nm, so that, in particular, the ranges B1 and B2, within which measurement results are recorded or used for concentration determination, are swept over can. Also from these measurements, which, however, will usually be very time consuming, relevant values can be determined via the concentration, whereby a lock-in can be realized by the appropriate modulation. However, it is also conceivable, despite a possible wavelength modulation with such a bandwidth to make an amplitude modulation and to use for the lock-in, while the modulation is used only for sweeping a corresponding wavelength band. In this context, it can be seen, in particular, that further wavelength bands, in particular also through the use of further IR radiation sources, can be tapped without further ado.
[43] Wie unmittelbar ersichtlich, sind bei den Verfahrensbeispielen nach Figuren 4 und 5 die Messpunkte oder Wellenlängen Pl und P2 bzw. Wellenlängenbandbreiten Bl und B2 diskret voneinander beabstandet. Selbiges gilt für die Wellenlängenbandbreiten Bl und B2, innerhalb derer die Messung bei dem Ausführungsbeispiel nach Figur 6 erfolgt.[43] As can be seen immediately, in the method examples according to FIGS. 4 and 5, the measuring points or wavelengths P1 and P2 or wavelength bandwidths B1 and B2 are discretely spaced from one another. The same applies to the wavelength bandwidths Bl and B2, within which the measurement takes place in the embodiment according to FIG.
[44] Wie unmittelbar ersichtlich, weicht die Charakteristik des Weges, welchen das Licht von der IR-Laserdiode 3 zum Messdetektor 10 durchläuft und welcher als optischer Messweg 15 bezeichnet werden kann, bei allen Ausfuhrungsbeispielen von der Charakteristik des Weges, welchen das Licht von der IR-Laserdiode 3 zum Referenzdetektor 14 durchläuft und welcher als optischer Referenzweg 16 bezeichnet werden kann, ab, da der Messweg 15 mit einem Me- dium, welches in dem Volumen 1 befindlich ist, in Kontakt kommt, werden der optische Referenzweg 16 hiervon nicht berührt wird. Bezugszeichenliste :[44] As can be seen immediately, the characteristic of the path which the light passes from the IR laser diode 3 to the measuring detector 10 and which can be referred to as the optical measuring path 15 differs in all embodiments from the characteristic of the path which the light from the IR laser diode 3 to reference detector 14 passes through and which can be referred to as optical reference path 16, since the measuring path 15 with a medium, which is located in the volume 1, comes into contact, the optical reference path 16 are not affected becomes. List of reference numbers:
1 Messvolumen 8 Kolimatorlinse1 measuring volume 8 collimator lens
2 IR-Licht 9 Lichtleitfaser2 IR light 9 optical fiber
3 IR-Laserdiode 10 Messdetektor3 IR laser diode 10 measuring detector
4 Lichtleitfaser 11 Referenzlicht4 optical fiber 11 reference light
5 Kolimatorlinse I IA durch den rückwärtigen Teil der IR5 Kolimatorlinse I IA through the rear part of the IR
6 Strahlteiler Laserdiode 3 austretendes Licht6 beam splitter laser diode 3 emitted light
6A Strahlteiler 12 Kolimatorlinse6A beam splitter 12 collimator lens
7 vom Messvolumen ausgehendes 13 Lichtleitfaser7 out of the measuring volume outgoing 13 optical fiber
Licht 14 ReferenzdetektorLight 14 reference detector
7A vom Messvolumen ausgehendes 15 optischer Messweg7A 15 optical measuring path starting from the measuring volume
Licht 16 optischer Referenzweg Light 16 optical reference path

Claims

Patentansprüche: Patent claims:
1. Messeinrichtung zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen mit wenigstens einer IR-Strahlenquelle, die IR-Licht auf ein zu untersuchendes Volumen strahlt, mit wenigstens einem Messdetektor, der von dem zu untersuchenden Volumen ausgehendes Licht aufnimmt, und mit wenigstens einem Referenzdetektor, welchem das auf das zu untersuchende Volumen gestrahlte IR-Licht vor Eintritt in das Volumen zugeführt wird, wobei die Strahlenquelle, der Referenzdetektor und der Messdetektor über einen Lock-In miteinander verbunden sowie zwischen der IR-Strahlenquelle und dem Messdetektor ein optischer Messweg mit einer ersten Messwegcharakteristik und zwischen der IR-Strahlenquelle und der Referenzdetektor ein optischer Referenzweg mit einer zweiten, von der ersten Messwegcharakteristik abweichenden Messwegcharakteristik ausgebildet sind, dadurch gekennzeichnet, dass die IR-Strahlenquelle IR-Licht in wenigstens zwei diskrete Wellenlängen bzw. in wenigstens zwei diskreten Wellenlängenbändern auf das zu untersuchendes Volumen strahlt.1. Measuring device for the optical concentration determination of blood sugar and / or lactate in biological systems with at least one IR radiation source that radiates IR light onto a volume to be examined, with at least one measuring detector that records light emanating from the volume to be examined, and with at least one reference detector, to which the IR light radiated onto the volume to be examined is supplied before entering the volume, the radiation source, the reference detector and the measurement detector being connected to one another via a lock-in and an optical one between the IR radiation source and the measurement detector Measuring path with a first measuring path characteristic and between the IR radiation source and the reference detector an optical reference path with a second measuring path characteristic deviating from the first measuring path characteristic are formed, characterized in that the IR radiation source IR light in at least two discrete wavelengths or in at least two discrete wavelength bands onto the volume to be examined.
2. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem zu untersuchenden Volumen und der Strahlenquelle ein Strahlteiler derart angeordnet ist, dass ein Teil des von der Strahlenquelle ausgehenden Lichts auf den Referenzdetektor gerichtet ist und dass zumindest ein Teil des von dem Volumen ausgehenden Lichts auf den Messdetektor gerichtet ist.2. Measuring device according to claim 1, characterized in that a beam splitter is arranged between the volume to be examined and the radiation source in such a way that part of the light emanating from the radiation source is directed towards the reference detector and that at least part of the light emanating from the volume is directed at the measuring detector.
3. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Referenzdetektor auf Streulicht der IR-Strahlenquelle gerichtet ist.3. Measuring device according to claim 1, characterized in that the reference detector is directed towards scattered light from the IR radiation source.
4. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Messdetektor linear bezüglich des auf das Volumen gestrahlten IR-Lichts ausgerichtet ist. 4. Measuring device according to one of claims 1 to 3, characterized in that the measuring detector is aligned linearly with respect to the IR light radiated onto the volume.
5. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Messdetektor in einem Winkel bezüglich des auf das Volumen gestrahlten IR-Lichts ausgerichtet ist.5. Measuring device according to one of claims 1 to 3, characterized in that the measuring detector is aligned at an angle with respect to the IR light radiated onto the volume.
6. Messeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strahlenquelle eine Laserdiode ist.6. Measuring device according to one of the preceding claims, characterized in that the radiation source is a laser diode.
7. Messeinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Laserdiode eine Emissionsfrequenz zwischen 1.000 nm und 2.000 nm und/oder zwischen 2.000 nm und 3.000 nm aufweist.7. Measuring device according to claim 6, characterized in that the laser diode has an emission frequency between 1,000 nm and 2,000 nm and / or between 2,000 nm and 3,000 nm.
8. Messeinrichtung nach Anspruch 6 oder 7, gekennzeichnet durch Mittel zur Modulati- on der Laserdiode über eine Bandbreite von unter 170 nm, vorzugsweise von unter 20 nm.8. Measuring device according to claim 6 or 7, characterized by means for modulating the laser diode over a bandwidth of less than 170 nm, preferably less than 20 nm.
9. Messeinrichtung nach Anspruch 8, gekennzeichnet durch zwei Laserdioden.9. Measuring device according to claim 8, characterized by two laser diodes.
10. Messeinrichtung nach einem der vorstehenden Ansprüche, gekennzeichnet durch Mittel zur Modulation der Wellenlänge der IR-Strahlenquelle wenigstens innerhalb eines diskreten Wellenlängenbandes.10. Measuring device according to one of the preceding claims, characterized by means for modulating the wavelength of the IR radiation source at least within a discrete wavelength band.
11. Messeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Modulationsmittel mit dem Lock-In wirkverbunden sind.11. Measuring device according to claim 10, characterized in that the modulation means are operatively connected to the lock-in.
12. Verfahren zur optischen Konzentrationsbestimmung von Blutzucker und/oder Laktat in biologischen Systemen, bei welchem IR-Licht entlang eines optischen Messweges auf ein zu untersuchendes Volumen gestrahlt und aus dem von dem Volumen ausgehenden Licht ein zur Konzentration relevanter Wert unter Ausnutzung einer über einen optischen Referenzweg erfolgenden Referenzmessung des auf das zu untersuchende Volumen gestrahlten IR-Lichts sowie eines Lock-In- Verfahrens ermittelt wird, wobei der optische Referenzweg eine Messwegcharakteristik aufweist, die von der Messwegcharakteristik des optischen Messweges abweicht, dadurch gekennzeichnet, dass von wenigstens einer Komponente aus einem zuvor ermittelten oder bekannten Spektrum wenigstens ein interessierender Peak gewählt wird und der zur Konzent- ration relevante Wert anhand wenigstens zweier innerhalb dieses Peaks liegenden, diskreter Wellenlängen bzw. Wellenlängenbänder ermittelt wird.12. Method for the optical concentration determination of blood sugar and/or lactate in biological systems, in which IR light is irradiated along an optical measuring path onto a volume to be examined and a value relevant to the concentration is derived from the light emanating from the volume using an optical Reference measurement of the IR light radiated onto the volume to be examined as well as a lock-in method is determined, the optical reference path having a measurement path characteristic that deviates from the measurement path characteristic of the optical measurement path, characterized in that at least one component consists of a At least one peak of interest is selected from the previously determined or known spectrum and which contributes to the concentration ration relevant value is determined based on at least two discrete wavelengths or wavelength bands located within this peak.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass wenigstens ein zweiter Peak gewählt wird und eine der beiden Wellenlängen bzw. eines der beiden Wellen- längenbänder in diesem zweiten Peak liegt.13. The method according to claim 12, characterized in that at least one second peak is selected and one of the two wavelengths or one of the two wavelength bands lies in this second peak.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der relevante Wert aus der Absorption des das Volumen durchstrahlenden IR-Lichts ermittelt wird.14. The method according to claim 12 or 13, characterized in that the relevant value is determined from the absorption of the IR light radiating through the volume.
15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass der relevante Wert aus der Reflexion des auf das Volumen gestrahlten IR-Lichts und/oder aus der durch das auf das Volumen gestrahlte IR-Licht stimulierten Lichtemission des15. The method according to any one of claims 12 to 14, characterized in that the relevant value is derived from the reflection of the IR light radiated onto the volume and/or from the light emission stimulated by the IR light radiated onto the volume
Volumens ermittelt wird.Volume is determined.
16. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass für das Lock-Pn-Verfahren eine Amplitudenmodulation vorgenommen wird.16. The method according to one of claims 12 to 15, characterized in that an amplitude modulation is carried out for the lock-Pn method.
17. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass für das Lock-In- Verfahren eine Wellenlängenmodulation vorgenommen wird.17. The method according to any one of claims 12 to 15, characterized in that wavelength modulation is carried out for the lock-in method.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Wellenlängenmodulation eine Bandbreite unter 20 nm, vorzugsweise unter 18 nm bzw. unter 15 nm, aufweist.18. The method according to claim 17, characterized in that the wavelength modulation has a bandwidth of less than 20 nm, preferably less than 18 nm or less than 15 nm.
19. Verfahren nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass die Wellenlängenbänder jeweils zwischen 1.000 nm und 2.000 nm und/oder zwischen19. The method according to any one of claims 12 to 18, characterized in that the wavelength bands are each between 1,000 nm and 2,000 nm and / or between
2.000 nm und 3.000 nm liegt.2,000 nm and 3,000 nm.
20. Verfahren nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass die Breite des Wellenlängenbandes in einem Bereich unter 170 nm, vorzugsweise unter 150 nm bzw. 120 nm, liegt. 20. The method according to any one of claims 12 to 19, characterized in that the width of the wavelength band is in a range below 170 nm, preferably below 150 nm or 120 nm.
21. Verfahren nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass das Wellenlängenband durch eine im Wesentlichen kontinuierliche Modulation der Wellenlänge durchlaufen wird.21. The method according to any one of claims 12 to 20, characterized in that the wavelength band is traversed by a substantially continuous modulation of the wavelength.
22. Verfahren nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass inner- halb des Wellenlängenbands wenigstens zwei diskret beabstandete Wellenlängenbandbreiten angesteuert werden22. Method according to one of claims 12 to 20, characterized in that at least two discretely spaced wavelength bandwidths are controlled within the wavelength band
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass wenigstens eine Wellenlängenbandbreite unter 20 nm liegt.23. The method according to claim 22, characterized in that at least one wavelength bandwidth is below 20 nm.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass wenigstens eine Wellen- längenbandbreite unter 8 nm, vorzugsweise unter 6 nm bzw. unter 4 nm, liegt. 24. The method according to claim 23, characterized in that at least one wavelength bandwidth is below 8 nm, preferably below 6 nm or below 4 nm.
EP08734378A 2007-03-16 2008-03-16 Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems Withdrawn EP2135059A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007013274 2007-03-16
DE102007032849A DE102007032849A1 (en) 2007-03-16 2007-07-12 Measuring device and method for optical concentration determination of blood sugar and / or lactate in biological systems
PCT/DE2008/000438 WO2008113328A2 (en) 2007-03-16 2008-03-16 Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems

Publications (1)

Publication Number Publication Date
EP2135059A2 true EP2135059A2 (en) 2009-12-23

Family

ID=39688356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08734378A Withdrawn EP2135059A2 (en) 2007-03-16 2008-03-16 Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems

Country Status (4)

Country Link
US (1) US20100041969A1 (en)
EP (1) EP2135059A2 (en)
DE (2) DE102007032849A1 (en)
WO (1) WO2008113328A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229373B2 (en) * 2014-03-17 2022-01-25 Analog Devices, Inc. Low frequency noise improvement in plethysmography measurement systems
KR102680468B1 (en) 2016-11-07 2024-07-03 삼성전자주식회사 Spectrometer and operation method of spectrometer
US12059239B2 (en) 2018-05-08 2024-08-13 Know Labs, Inc. Electromagnetic shielding in non-invasive analyte sensors
KR20200141095A (en) * 2018-05-08 2020-12-17 노우 랩스, 인크. Health-related diagnostic technique using radio/microwave frequency band spectroscopy
US11903689B2 (en) 2019-12-20 2024-02-20 Know Labs, Inc. Non-invasive analyte sensor device
EP3779408A1 (en) * 2019-08-15 2021-02-17 optek-Danulat GmbH Measuring device and method for detecting material concentration
US11031970B1 (en) * 2019-12-20 2021-06-08 Know Labs, Inc. Non-invasive analyte sensor and system with decoupled and inefficient transmit and receive antennas
TW202143659A (en) * 2019-12-20 2021-11-16 美商知道實驗室股份有限公司 Non-invasive analyte sensor and system with decoupled transmit and receive antennas
US11234619B2 (en) 2019-12-20 2022-02-01 Know Labs, Inc. Non-invasive detection of an analyte using decoupled transmit and receive antennas
US11058317B1 (en) 2019-12-20 2021-07-13 Know Labs, Inc. Non-invasive detection of an analyte using decoupled and inefficient transmit and receive antennas
US11063373B1 (en) 2019-12-20 2021-07-13 Know Labs, Inc. Non-invasive analyte sensor and system with decoupled transmit and receive antennas
US11058331B1 (en) 2020-02-06 2021-07-13 Know Labs, Inc. Analyte sensor and system with multiple detector elements that can transmit or receive
US11193923B2 (en) 2020-02-06 2021-12-07 Know Labs, Inc. Detection of an analyte using multiple elements that can transmit or receive
US11330997B2 (en) 2020-02-06 2022-05-17 Know Labs, Inc. Detection of an analyte using different combinations of detector elements that can transmit or receive
US12023151B2 (en) 2020-02-20 2024-07-02 Know Labs, Inc. Non-invasive analyte sensing and notification system with decoupled transmit and receive antennas
US11832926B2 (en) 2020-02-20 2023-12-05 Know Labs, Inc. Non-invasive detection of an analyte and notification of results
US12089927B2 (en) 2020-02-20 2024-09-17 Know Labs, Inc. Non-invasive analyte sensing and notification system with decoupled and inefficient transmit and receive antennas
US12092589B1 (en) 2020-04-03 2024-09-17 Know Labs, Inc. In vitro analyte sensor using one or more detector arrays that operate in radio/microwave frequency bands
US12019034B2 (en) 2020-09-09 2024-06-25 Know Labs, Inc. In vitro sensing methods for analyzing in vitro flowing fluids
US11689274B2 (en) 2020-09-09 2023-06-27 Know Labs, Inc. Systems for determining variability in a state of a medium
US11389091B2 (en) 2020-09-09 2022-07-19 Know Labs, Inc. Methods for automated response to detection of an analyte using a non-invasive analyte sensor
US12007338B2 (en) 2020-09-09 2024-06-11 Know Labs Inc. In vitro sensor for analyzing in vitro flowing fluids
US11764488B2 (en) 2020-09-09 2023-09-19 Know Labs, Inc. Methods for determining variability of a state of a medium
US11510597B2 (en) 2020-09-09 2022-11-29 Know Labs, Inc. Non-invasive analyte sensor and automated response system
US11033208B1 (en) 2021-02-05 2021-06-15 Know Labs, Inc. Fixed operation time frequency sweeps for an analyte sensor
US11284819B1 (en) 2021-03-15 2022-03-29 Know Labs, Inc. Analyte database established using analyte data from non-invasive analyte sensors
US11284820B1 (en) 2021-03-15 2022-03-29 Know Labs, Inc. Analyte database established using analyte data from a non-invasive analyte sensor
US11234618B1 (en) 2021-03-15 2022-02-01 Know Labs, Inc. Analyte database established using analyte data from non-invasive analyte sensors
USD991063S1 (en) 2021-12-10 2023-07-04 Know Labs, Inc. Wearable non-invasive analyte sensor
US20230355140A1 (en) 2022-05-05 2023-11-09 Know Labs, Inc. High performance glucose sensor
US11802843B1 (en) 2022-07-15 2023-10-31 Know Labs, Inc. Systems and methods for analyte sensing with reduced signal inaccuracy
US12033451B2 (en) 2022-08-15 2024-07-09 Know Labs, Inc. Systems and methods for analyte-based access controls
US11696698B1 (en) 2022-10-03 2023-07-11 Know Labs, Inc. Analyte sensors with position adjustable transmit and/or receive components
US11903701B1 (en) 2023-03-22 2024-02-20 Know Labs, Inc. Enhanced SPO2 measuring device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2934190A1 (en) * 1979-08-23 1981-03-19 Müller, Gerhard, Prof. Dr.-Ing., 7080 Aalen METHOD AND DEVICE FOR MOLECULAR SPECTROSCOPY, ESPECIALLY FOR DETERMINING METABOLISM PRODUCTS
DE3510052A1 (en) * 1985-03-20 1986-09-25 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD AND PROCESS PHOTOMETER FOR CONTINUOUS MEASUREMENT OF CONCENTRATIONS
US4883963A (en) * 1986-04-28 1989-11-28 Bran+Luebbe Gmbh Optical analysis method and apparatus having programmable rapid random wavelength access
US4808824A (en) * 1987-09-17 1989-02-28 Sinnar Abbas M Compositional state detection system and method
US5209231A (en) * 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
DE4446723C2 (en) * 1994-06-29 1997-03-13 Hermann Prof Dr Harde Device and method for measuring the concentration of a gas
DE4446390C1 (en) * 1994-12-23 1996-07-04 Siemens Ag Analyte concn. measuring method, e.g. for medical blood diagnosis
DE19525415C2 (en) * 1995-07-12 1997-11-27 Optikzentrum Nrw Gmbh Oz Method and device for determining the water vapor concentration or the dew point
US6166807A (en) * 1995-11-16 2000-12-26 Matsushita Electric Industrial Co., Ltd. Method of urinalysis, urinalysis apparatus, method of measuring angle of rotation and polarimeter
US6246893B1 (en) * 1997-06-12 2001-06-12 Tecmed Incorporated Method and device for glucose concentration measurement with special attention to blood glucose determinations
DE19826294C1 (en) * 1998-06-12 2000-02-10 Glukomeditech Ag Polarimetric method for determining the (main) vibration plane of polarized light at about 0.1 m DEG and miniaturizable device for its implementation
DE19911265C2 (en) * 1999-03-13 2001-12-13 Glukomeditech Ag Device for measuring the glucose concentration of protein-containing aqueous solutions, in particular in interstitial tissue fluids, preferably in implantable micro-opto-electronic form
US6370407B1 (en) * 1999-07-27 2002-04-09 Tecmed, Incorporated System for improving the sensitivity and stability of optical polarimetric measurements
DE10020615C2 (en) * 2000-04-27 2002-02-28 Glukomeditech Ag Process for the long-term stable and reproducible spectrometric measurement of the concentrations of the components of aqueous solutions and device for carrying out this process
DE10030927C1 (en) * 2000-06-24 2002-05-23 Glukomeditech Ag Refractometric method for long-term stable precise measurement of the concentrations of dissolved substances as well as a miniaturizable device for its implementation
US7003337B2 (en) * 2002-04-26 2006-02-21 Vivascan Corporation Non-invasive substance concentration measurement using and optical bridge
EP2336747B1 (en) * 2004-05-06 2017-08-30 Nippon Telegraph And Telephone Corporation Component concentration measuring device
GB0416732D0 (en) * 2004-07-27 2004-09-01 Precisense As A method and apparatus for measuring the phase shift induced in a light signal by a sample
US8498681B2 (en) * 2004-10-05 2013-07-30 Tomophase Corporation Cross-sectional mapping of spectral absorbance features
US20110184260A1 (en) * 2005-02-09 2011-07-28 Robinson M Ries Methods and Apparatuses for Noninvasive Determinations of Analytes
JP2008538612A (en) * 2005-04-22 2008-10-30 ザ ジェネラル ホスピタル コーポレイション Configuration, system, and method capable of providing spectral domain polarization sensitive optical coherence tomography
US7729734B2 (en) * 2006-03-07 2010-06-01 Andreas Mandelis Non-invasive biothermophotonic sensor for blood glucose monitoring
US20120059232A1 (en) * 2008-12-24 2012-03-08 Glusense, Ltd. Implantable optical glucose sensing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008113328A2 *

Also Published As

Publication number Publication date
DE102007032849A1 (en) 2008-09-18
DE112008000683A5 (en) 2009-12-31
WO2008113328A2 (en) 2008-09-25
WO2008113328A3 (en) 2008-12-11
US20100041969A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2008113328A2 (en) Measuring device and method for optically determining the concentration of blood sugar and/or lactate in biological systems
DE10163972B4 (en) Method and device for determining a light transport parameter and an analyte in a biological matrix
EP0534166B1 (en) Procedure and apparatus for the quantitative determination of optic active substances
DE69431326T2 (en) Method and device for measuring internal properties of a scattering medium
EP0876596B1 (en) Process and device for determining an analyte contained in a scattering matrix
DE69635790T2 (en) Apparatus and method for measuring a scattering medium
DE19615366A1 (en) Method and device for the detection of physical, chemical, biological or biochemical reactions and interactions
WO1994010901A1 (en) Process and device for glucose determination in a biological matrix
DE19511869A1 (en) Process and arrangement for response analysis of semiconductor materials with optical excitation
EP2529199B1 (en) Measuring system and measuring method for determining blood glucose
EP0030610A1 (en) Method and device for quantitative determination of optically active substances
EP0438465B1 (en) Process and device for quantitative detection of optically active substances
EP2520924A1 (en) Method and measurement assembly for improving signal resolution in gas absorption spectroscopy
DE112017008083B4 (en) FAR INFRARED LIGHT SOURCE AND FAR INFRARED SPECTROMETER
DE102014226827A1 (en) Method, apparatus and sensor for determining an absorption behavior of a medium
DE102010062268A1 (en) Absorption measuring device
DE3938142C2 (en)
DE2927156A1 (en) DEVICE FOR MEASURING THE OXYGEN CONCENTRATION
EP2502054B1 (en) Method and device for inspecting a bodily fluid
EP1929279B1 (en) Apparatus and method for determining the refractive index of a fluid
AT410033B (en) METHOD AND MEASURING DEVICE FOR DETERMINING AT LEAST ONE LUMINESCENCE, FLOURENCE OR ABSORPTION PARAMETER OF A SAMPLE
WO2015000987A1 (en) Method for determining the concentration of a substance in a deformable container
DE3706458A1 (en) Device for investigating chemical substances and their clouding by impurities with the aid of light
DE60126600T2 (en) METHOD OF ANALYSIS FOR SUBSTANCE MIXTURES
DE69318632T2 (en) Device for measuring particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100118

19U Interruption of proceedings before grant

Effective date: 20100201

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20100901

R17C First examination report despatched (corrected)

Effective date: 20100901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BIOCOMFORT DIAGNOSTICS VERWALTUNGS-GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110312