EP2134105B1 - Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal - Google Patents

Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal Download PDF

Info

Publication number
EP2134105B1
EP2134105B1 EP08010723.8A EP08010723A EP2134105B1 EP 2134105 B1 EP2134105 B1 EP 2134105B1 EP 08010723 A EP08010723 A EP 08010723A EP 2134105 B1 EP2134105 B1 EP 2134105B1
Authority
EP
European Patent Office
Prior art keywords
signal
audio
frequencies
room
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08010723.8A
Other languages
English (en)
French (fr)
Other versions
EP2134105A1 (de
Inventor
Tadeo Spraggon-Hernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to EP08010723.8A priority Critical patent/EP2134105B1/de
Publication of EP2134105A1 publication Critical patent/EP2134105A1/de
Application granted granted Critical
Publication of EP2134105B1 publication Critical patent/EP2134105B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/307Frequency adjustment, e.g. tone control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/07Synergistic effects of band splitting and sub-band processing

Definitions

  • the present invention is directed to an audio processing device configured to receive an audio input signal from an audio source, and comprising an equalizing circuit configured to execute frequency characteristic correction processing for a received audio signal and an output circuit coupled to an output of the equalizing circuit and configured to supply an audio output signal to a speaker for audio output from the speaker. Further, the invention is directed to a method of performing frequency characteristic correction processing for an audio input signal.
  • an electrical signal from an audio source having audio information content (hereinafter referred to as an "audio signal") is provided to one or multiple speakers which transform the received audio signal into sound.
  • an audio system installed in a room environment, the sound is reflected by reflecting objects such as a wall of the room, wherein sound is reflected back into the room and interferes with sound directly emitted from the speakers at the position of the listener, which may cause coloration of the sound heard by the listener.
  • an audio system may use an equalizing circuit configured to execute frequency characteristic correction processing for a received audio signal.
  • Such equalizing circuit is typically used for filtering and/or correcting an overall frequency response of the audio signal having specific signal frequencies in order to exert influence on the sound spectrum at the position of the listener, for example, to compensate for reflection effects as mentioned above.
  • room parameters of a room environment which influence sound reflection are not known prior to installation of the audio system since such room parameters vary depending on a particular environment in which the audio system may be installed. Varying room parameters may be, for example, a result of varying distances of opposed walls of different room environments in which the audio system may be installed, or different absorbing/reflecting objects present in the room. In this respect, it is known in the art to measure such frequency response between speaker and listener position in the particular audio system installation and to set a respective filter parameter of the equalizing circuit accordingly.
  • An output circuit is coupled to an output of the equalizing circuit and supplies an audio output signal having a correspondingly corrected frequency characteristic to the speakers for audio output from the speakers.
  • Room modes can be identified by peaks and dips in the frequency response of the acoustic transfer function between speaker and listening position, typically only at low frequencies (e.g., below 150 Hz) where their density is not too high over space.
  • Room modes are caused by the formation of standing waves inside a room or cavity, like in a vehicle or car cabin. Standing waves will appear in cases where the wavelength of the sound wave is on the order of the room dimension (half wavelength relationship) and also reflections, e.g. at room walls, are present.
  • FIG. 1 An example of a particular room mode for a given cubic room or cavity is shown in Fig. 1 .
  • the room R comprises a distance D between the opposed walls W which is a multiple of ⁇ /2 of the wavelength ⁇ of the room mode RM.
  • a room mode may significantly cause sound coloration at the listener's position since room modes may cause amplifying or attenuation effects for signal components at the particular room mode frequency.
  • Fig. 2 shows an exemplary room mode measurement over time, taken from "Comparison of Modal Equalizer Design Methods", Poju Antsalo1, et. al., AES Convention 2003 March 22-25, page 5 .
  • Fig. 2 shows that all room modes decay over time within a particular so-called decay time, which is in the present example approximately 500ms. It is also possible to see that several modes are present and they decay also differently in the room, thus each having a different decay time. The highest peaks determine the dominating modes in the room.
  • onset time of a room mode which indicates the time for forming the corresponding room mode upon emitting a particular sound signal which forms the corresponding room mode.
  • Such onset time of a room mode is typically in the order of the above mentioned decay time for that room mode.
  • the above mentioned equalizing circuit may be used, for example, to filter or correct signal components of the audio signal having frequencies where room modes occur in order to compensate for the amplifying effect of the corresponding room mode at the listener's position.
  • signal components of the audio signal may be filtered and/or corrected so as to gain a flattened or "equalized" signal response over the frequency band without peaks or dips.
  • frequency characteristic correction processing or equalizing processing herein referred to as equalizing compensation or EQ compensation in the following
  • equalizing compensation or EQ compensation may negatively affect the sound at low frequencies as a matter of steady state EQ compensation of room modes. Sound like short drum or short bass sounds are affected by the EQ compensation in the same manner as longer lasting low frequency sound, such as long (e.g. lasting 800 ms or longer) and deep sound produced by a pipe organ, which excites and creates a corresponding room mode. Therefore, conventional EQ compensation is a compromise between the optimization for steady state (long lasting sound) and the dynamic case (short lasting sound).
  • a compensation system may include an aggregate of parametrically tuned filters wherein, generally, some of these filters are resonant and tuned to suppress counter-productive sound reproduction that would occur from motion breakup, standing waves and other resonant behaviour.
  • an audio processing device is provided which comprises a dynamic parameter selector which is connected to a detector through which, for example, dynamic changes can be identified.
  • the detector provides dynamic information about input data wherein the applicable content of the data may be determined and applicable dynamic parameter changes may be made by the dynamic parameter selector.
  • JP 2000-261900 A an acoustic device using a steady state sound field correction method is provided.
  • microphones are installed at optional positions in a room, multiple speakers measure acoustic characteristics at the positions, analyze the measured values and are installed at prescribed positions in the room.
  • a system control circuit controls audio signals supplied to the speakers on the basis of the analyzed value, and controls a standing wave at an optional listening position so as to correct the frequency characteristic thereby making the frequency characteristic flat at the listening position through changing the frequency characteristic in the room.
  • the sound pressure level at the measured position can closely be made constant thereby reducing a sound pressure difference within a listening plane.
  • the invention is directed to an audio processing device according to the features of claim 1. Further, the invention is directed to a method of performing frequency characteristic correction processing for an audio input signal according to the features of claim 10. Embodiments and advantageous features of the invention are mentioned in the dependent claims.
  • examples of an audio processing device comprise an input terminal configured to receive an audio input signal from an audio source, an equalizing circuit having an input and an output, wherein the input is coupled to the input terminal and the equalizing circuit is configured to execute frequency characteristic correction processing for a signal received at the input, and an output circuit coupled to the output of the equalizing circuit and configured to supply an audio output signal to a speaker for audio output from the speaker.
  • a signal analyzing circuit is coupled to receive the audio input signal and is configured to analyze a frequency characteristic of the audio input signal for detecting the presence of a signal power of the audio input signal at at least one frequency of a room mode.
  • the signal analyzing circuit is further coupled to a control terminal of the equalizing circuit for dynamically adapting the frequency characteristic correction processing at the at least one frequency of a room mode over time when the presence of the signal power of the audio input signal at the at least one frequency of a room mode is detected.
  • examples of the invention include a method of performing frequency characteristic correction processing for an audio input signal, comprising the steps of analyzing a frequency characteristic of an audio input signal for detecting a presence of a signal power of the audio input signal at at least one frequency of a room mode, performing, in an equalizing process, frequency characteristic correction processing for the audio input signal, dynamically activating and deactivating the frequency characteristic correction processing at the at least one frequency of a room mode over time if the presence of the signal power of the audio input signal at the at least one frequency of a room mode has been detected, and supplying from the frequency characteristic correction processing an audio output signal to a speaker for audio output from the speaker.
  • the equalizing processing may be dynamically adapted depending on the type of sound. Sound like short drum or short bass sound may not be affected or may be less affected by the EQ compensation, whereas longer lasting low frequency sound is subjected to EQ compensation to reduce the negative effects of room modes.
  • the invention accounts for the effects that short lasting low frequency sound, in contrast to long lasting low frequency sound, will not excite or create room modes so that, in this case, the corresponding signal components of the audio signal having these frequencies will not be subjected to EQ compensation which, if applied, may distort the sound in the absence of a corresponding room mode.
  • the signal analyzing circuit stores a predetermined onset time for at least one frequency of a room mode. If the signal analyzing circuit detects the presence of the signal power of the audio input signal at the at least one frequency of a room mode, the signal analyzing circuit determines a duration of the detection of the presence of the signal power and compares the duration with the stored onset time of the corresponding room mode. If the duration is equal to or greater than a predetermined time threshold, the signal analyzing circuit controls the equalizing circuit for activating the frequency characteristic correction processing for the at least one frequency of a room mode.
  • the signal analyzing circuit further determines a signal power of the audio input signal at the at least one frequency of a room mode compares the determined signal power with a signal power threshold value, wherein if the determined signal power is equal to or greater than the signal power threshold value, the signal analyzing circuit controls the equalizing circuit for activating the frequency characteristic correction processing at the at least one frequency of a room mode. In this way, it is accounted for the effect that sound which exceeds a particular signal power will more likely excite a room mode than sound which is lower than the signal power threshold.
  • the signal analyzing circuit stores a predetermined decay time for at least one frequency of a room mode.
  • the signal analyzing circuit further determines a signal power of the audio input signal at the at least one frequency of a room mode and compares the determined signal power with a signal power threshold value. If the signal analyzing circuit has previously controlled the equalizing circuit for activating the frequency characteristic correction processing at the at least one frequency of a room mode, the signal analyzing circuit determines whether the determined signal power is lower than the signal power threshold value.
  • the signal analyzing circuit controls the equalizing circuit for deactivating the frequency characteristic correction processing for the at least one frequency of a room mode after the decay time has elapsed counted from the point of time of when the signal analyzing circuit has determined that the determined signal power is lower than the signal power threshold value.
  • the signal analyzing circuit stores a table containing multiple frequencies of respective room modes, wherein the table associates a respective predetermined onset time and a respective predetermined decay time of the room modes with a corresponding one of the multiple frequencies.
  • the audio processing device may further include a buffer circuit coupled between the input terminal and the equalizing circuit for successively storing a number of samples of the audio input signal, wherein the signal analyzing circuit is coupled to the buffer circuit for analyzing a frequency characteristic of the audio input signal.
  • the buffer circuit has a length which is capable to store samples of the audio input signal during a period of time which is in the order of a room mode onset or decay time.
  • the audio processing device of the invention also includes a low pass filter coupled between the input terminal and the equalizing circuit and having an output providing an output signal to the equalizing circuit containing only lower frequencies of the audio input signal.
  • a high pass filter may be coupled between the input terminal and the output circuit and in parallel to the series connection of the low pass filter and equalizing circuit, wherein the output circuit comprises a summation circuit for adding a signal provided from the high pass filter and a signal provided from the equalizing circuit for supplying the audio output signal to the speaker.
  • the audio processing device may be installed in an interior vehicle environment, such as inside a car cabin.
  • the signal analyzing circuit stores a table containing multiple frequencies of room modes determined by measurement in the vehicle environment. In this way, an audio system may be adapted to the particular circumstances of a car environment.
  • At least one calibration signal may be transmitted into a room environment, such as the car cabin, the calibration signal containing a predetermined frequency spectrum.
  • a signal response particularly a frequency response of the acoustic transfer function between speaker and listening position, is measured for determining frequencies of room modes.
  • a table is stored containing the determined frequencies of room modes which are used, in an operating stage, for the activating and deactivating of the frequency characteristic correction processing.
  • Fig. 3 shows a basic block diagram of an audio processing device according to the invention.
  • the audio processing device 1 comprises an input terminal 2 configured to receive an audio input signal 20 from an audio source which is not shown in Fig. 1 .
  • a buffer circuit 4 is coupled to the input terminal 2 for successively storing a predetermined number of samples of the audio input signal 20.
  • the buffer circuit 4 has a length which is capable to store samples of the audio input signal 20 during a period of time which is in the order of a room mode onset or decay time.
  • a low pass filter 5 is coupled between the buffer circuit 4 and an equalizing circuit 7, wherein the output of the low pass filter 5 is providing an output signal to the equalizing circuit 7 containing only lower frequencies of the audio input signal, for example below a cut frequency Fc of 200 Hz.
  • a high pass filter 6 is coupled in parallel to the series connection of the low pass filter 5 and the equalizing circuit 7.
  • the audio processing device further comprises an output circuit coupled to the output of the equalizing circuit 7 which is configured to supply an audio output signal 30 to a speaker (not shown) for audio output from the speaker.
  • the output circuit comprises a summation circuit 8 for adding a signal provided from the high pass filter 6 and a signal provided from the equalizing circuit 7 for supplying the audio output signal 30 to the speaker.
  • a static equalizing circuit 9 may be connected downstream to the summation circuit 8 for static EQ compensation of the audio signal. The static equalizing circuit 9 does not compensate the audio signal at the frequencies of room modes, which EQ compensation is handled by the equalizing circuit 7.
  • the input of the equalizing circuit 7 is coupled to the input terminal 2 via the buffer circuit 4 and the low pass filter 5.
  • the equalizing circuit 7 is configured to execute, for specific frequencies of room modes, frequency characteristic correction processing (referred to in this example as EQ compensation) for a signal received at the input.
  • a signal analyzing circuit which includes a dynamic analysis portion 11 and a control portion 12, is coupled to the input terminal 2 through the buffer circuit 4 and the low pass filter 5 to receive the audio input signal 20 via the buffer circuit 4 and the low pass filter 5.
  • the signal analyzing circuit 11, 12 is configured to analyze a frequency characteristic, at least at signal components of lower frequencies, of the audio input signal 20 for detecting the presence of a signal power of the audio input signal 20 at or near one or more frequencies of a room mode.
  • detecting the presence of a signal power of the audio input signal at or near one or more frequencies of a room mode means detecting of a particular signal power within a narrow frequency band around one or more room mode frequencies, such as F1, F2, as explained below.
  • the signal analyzing circuit, particularly its control portion 12 is coupled to a control terminal of the equalizing circuit 7 for dynamically adapting the EQ compensation for specific frequencies of room modes over time, as described in more detail in the following.
  • a calibration signal may be transmitted into the particular room environment, such as the car cabin.
  • the calibration signal contains a predetermined frequency spectrum and a signal response or frequency response of the acoustic transfer function between speaker and listening position is measured for determining frequencies of room modes.
  • the car cabin or any other room
  • This kind of information will be used as a priori knowledge for the functioning of the EQ compensation according to the principles of the invention.
  • a table of frequencies and associated decay times for each room mode will be determined. This is done by a separate measurement as outlined above. Similar measurements (so-called “Waterfall” measurements as discussed above and shown with reference to Fig. 2 ) should be done for determining the respective onset time of the room modes. Again, a table with frequencies and associated onset times will be determined. An example of such a table is shown in Fig. 4A depicting a table 21 in which the frequencies F1 to F3 and the corresponding onset times of exemplary principal room modes are stored. Another example of a table is shown in Fig. 4B depicting a table 22 in which the respective decay times of the exemplary principal room modes at the frequencies F1 to F3 are stored.
  • the onset and decay time can vary for each room mode frequency. Decay time and onset time can also be the same, i.e. the room "behaves" in a symmetric way.
  • two tables may be used, one for decay time and one for onset time.
  • Fig. 3 the function of the audio processing device as shown in Fig. 3 will be explained with particular reference to Fig. 5 , showing an exemplary time diagram for two particular audio input signal frequencies and the associated activating and deactivating of the frequency characteristic correction processing over time for these audio input signals.
  • the buffer circuit 4 functioning as input buffer, implements a signal analysis buffer of a certain length.
  • the length of this buffer should be in the order of the decay or onset time of the room mode having the lowest frequency.
  • the low pass filter 5 is designed as quadrature mirror filter (QMF) with a high pass filter (HPF).
  • the cut frequency may be at 200 Hz, as room modes as a result of reflection at room walls or the like are typically present at lower frequencies.
  • the high pass filter 6 is designed as QMF with a low pass filter (LPF).
  • the cut frequency may also be at 200 Hz.
  • the summation circuit 8 adds the signal coming from the output of the HPF 6 and the signal coming from the output of the equalizing circuit 7.
  • the static equalizing circuit 9 implements the car audio equalization derived from static measurements (tuning) without considering room mode compensation. In the tuning process every frequency where a room mode is present is analyzed. Any negative cut necessary to achieve a desired target curve will be shifted to the equalizing circuit 7.
  • the equalizing circuit 7 (“EQ Cuts per Frequency Room Mode") comprises a series of cut filters at the room modes present in the car cabin (F1, F2, F3, etc., see Fig. 4 ) implemented as second order section IIR filters.
  • the EQ control portion 12 of the signal analyzing circuit controls the equalizing circuit 7. The controlling will be activated by the output of the dynamic analysis portion 11 of the signal analyzing circuit. If the dynamic analysis portion is requesting action, the equalizing circuit 7 will filter the low frequency signal from the LPF 5 applying frequency cuts, i.e. compensating room modes.
  • peaks of the signal components having a specific frequency of or near a room mode are cut in order to equalize, in connection with the static equalizing circuit 9, the frequency characteristic of the audio signal to a substantially flat curve over the frequency band (flat signal response or frequency response of the acoustic transfer function between speaker and listening position). If action is not required the equalizing circuit 7 will be gradually switched into a bypass filter (room modes are not compensated).
  • the dynamic analysis portion 11 controls the time for activation and deactivation of the equalizing circuit 7. It performs frequency analysis over time to determine activation and deactivation of the equalizing circuit 7 via the EQ control portion 12.
  • the analysis of the frequency characteristic of the audio input signal 20 is functioning as follows:
  • the initial state of the equalizing circuit 7 will be an "all pass" on all frequencies (0 db for all frequencies).
  • This filter will contain gain variable cutting filters (notch profile) at each room mode frequency, e.g. as listed in previously mentioned tables 21 and 22 of Fig. 4 .
  • power or energy band detection will be performed by means of a narrow band filter at the frequencies where room modes appear (around F1, F2, F3, etc.). This means that a gain threshold will be compared to the current spectral energy or power on that band.
  • signal power or energy is estimated from several blocks in time from buffer 4 (previously FFT transformed) by means of averaging within a narrow frequency band around F1, F2.
  • the detection is positive (a room mode frequency was detected in the audio signal).
  • the energy band detection is repeated periodically (in small blocks of samples) wherein the duration of the detection of the presence of the signal power to be determined is the time in samples or milliseconds that the input signal provides a positive power detection for or near a room mode frequency.
  • a different timer (e.g. counter) will be assigned for each individual room mode frequency, for example a timer1 for F1, timer2 for F2, timer3 for F3 and so on.
  • Each timer will be started at a respective point of time (e.g. Ton (F1) for compensating a signal at frequency F1, Ton (F2) for compensating a signal at frequency F2) depending on the positive detection of its corresponding room mode frequency.
  • the respective timer will be deactivated at a respective point of time (e.g. Toff (F1) for deactivating compensating at frequency F1, Toff (F2) for deactivating compensating at frequency F2) depending on the non-detection (low energy or not present) of its corresponding room mode frequency.
  • Each timer is activated after energy band detection is positive, i.e. the energy or power of the audio input signal for or at the respective room mode frequency (i.e., within the narrow frequency band around the respective room mode frequency) is greater than the threshold (i.e., a corresponding room mode frequency was detected in the audio signal).
  • the respective timer continues counting only if the energy is over the gain threshold over time. If the positive detection lasts longer than the time threshold for F1, F2, etc., the EQ control portion 12 will be activated. At this time the corresponding timer will be reset to zero. This indicates that currently the signal will excite a room mode, therefore steady state cuts or EQ compensation for F1, F2 (designated as "Cut EQ" in Fig. 5 ) should be applied.
  • the EQ control portion may implement a "fade in” and “fade out” for the activation and deactivation of the cut filters of the equalizing circuit 7 correspondingly. Time and profile for this fade in and fade out are parameters of the EQ control portion 12. Fading will be implemented for changing the gain cut of the notch filters of the equalizing circuit 7. This gain control of the equalizing circuit's 7 parametric EQs will be performed in order to ensure a soft transition between the states "cutting EQ mode" and "bypass setting" during transition from deactivation to activation and vice versa.
  • the EQ control portion 12 will keep the equalizing circuit 7 to be a bypass filter.
  • F1 40Hz
  • the parameters of the EQ control portion 12 it could be that during a fade in (activation) or fade out (deactivation) phase an opposite transition happens. For example, time for activation was achieved, fade in is in process and a transition to deactivation is detected. These special cases are shown in Fig. 5 .
  • FIGs 6 and 7 examples of audio signals are shown which represent a drum music signal.
  • a drum sound as shown is characteristical for having short lasting low frequency signals having relative high energy which may excite room modes if they last longer than the corresponding onset time.
  • such drum audio signals are not subjected to EQ compensation, since the typical drum "sound elements" as shown in Fig. 6 are shorter than typical onset and decay times of the corresponding room modes.
  • the duration time of the drum "sound element" (short hit on the drum) is in the order of 0.04 ms.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Stereophonic System (AREA)

Claims (12)

  1. Audioverarbeitungsvorrichtung, aufweisend:
    - einen Eingangsanschluss (2), der dafür konfiguriert ist, ein Audioeingangssignal von einer Audioquelle zu empfangen,
    - eine Entzerrerschaltung (7) mit einem Eingang, einem Ausgang und einem Steueranschluss, wobei der Eingang mit dem Eingangsanschluss (2) gekoppelt ist und die Entzerrerschaltung (7) dafür konfiguriert ist, Frequenzkennlinienkorrekturverarbeitung für ein am Eingang empfangenes Signal auszuführen,
    - eine Ausgangsschaltung (8, 9, 3), die mit dem Ausgang der Entzerrerschaltung (7) gekoppelt ist und dafür konfiguriert ist, einem Lautsprecher ein Audioausgangssignal zur Audioausgabe von dem Lautsprecher zuzuführen,
    - eine Signalanalysierungsschaltung (11, 12), die gekoppelt ist, um das Audioeingangssignal zu empfangen, und dafür konfiguriert ist, eine Frequenzkennlinie des Audioeingangssignals zu analysieren, um die Anwesenheit einer Signalleistung des Audioeingangssignals bei mindestens einer Frequenz (F1, F2) einer Raummode zu detektieren,
    - wobei die Signalanalysierungsschaltung (11, 12) eine Tabelle (21, 22) speichert, die mehrere Frequenzen (F1, F2, F3) entsprechender Raummoden enthält, wobei die Tabelle eine entsprechende vorbestimmte Einsatzzeit und eine entsprechende vorbestimmte Abfallzeit der Raummoden einer entsprechenden der mehreren Frequenzen zuordnet,
    - wobei die Signalanalysierungsschaltung (11, 12) mit dem Steueranschluss der Entzerrerschaltung (7) gekoppelt ist zum dynamischen Anpassen der Frequenzkennlinienkorrekturverarbeitung der Entzerrerschaltung (7) bei einer oder mehreren Frequenzen (F1, F2) der mehreren Frequenzen (F1, F2, F3) der entsprechenden Raummoden im Laufe der Zeit, wenn die Anwesenheit der Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode detektiert wird,
    - wobei die Frequenzkennlinienkorrekturverarbeitung für die eine oder mehreren Frequenzen einer Raummode aktiviert wird, wenn das Detektieren der Anwesenheit der Signalleistung länger dauert als ein Zeitschwellenwert für die entsprechende Frequenz einer Raummode.
  2. Audioverarbeitungsvorrichtung nach Anspruch 1, wobei
    - die Signalanalysierungsschaltung, wenn die Signalanalysierungsschaltung (11, 12) die Anwesenheit der Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode detektiert, eine Dauer des Detektierens der Anwesenheit der Signalleistung bestimmt und die Dauer mit der gespeicherten Einsatzzeit der entsprechenden Frequenz vergleicht,
    - wobei die Signalanalysierungsschaltung (11, 12), wenn die Dauer gleich oder länger als ein vorbestimmter Zeitschwellenwert ist, die Entzerrerschaltung (7) zum Aktivieren der Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F2, F1) einer Raummode steuert.
  3. Audioverarbeitungsvorrichtung nach Anspruch 1 oder 2, wobei
    - die Signalanalysierungsschaltung (11, 12) ferner eine Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode bestimmt und die bestimmte Signalleistung mit einem Signalleistungsschwellenwert vergleicht,
    - wobei die Signalanalysierungsschaltung (11, 12), wenn die bestimmte Signalleistung gleich oder größer als der Signalleistungsschwellenwert ist, die Entzerrerschaltung (7) zum Aktivieren der Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode steuert.
  4. Audioverarbeitungsvorrichtung nach Anspruch 2 oder drei, wobei
    - die Signalanalysierungsschaltung (11, 12) ferner eine Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode bestimmt und die bestimmte Signalleistung mit einem Signalleistungsschwellenwert vergleicht,
    - die Signalanalysierungsschaltung, wenn die Signalanalysierungsschaltung (11, 12) zuvor die Entzerrerschaltung (7) zum Aktivieren der Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode gesteuert hat, bestimmt, ob die bestimmte Signalleistung niedriger ist als der Signalleistungsschwellenwert, und
    - die Signalanalysierungsschaltung (11, 12), wenn die bestimmte Signalleistung niedriger ist als der Signalleistungsschwellenwert, die Entzerrerschaltung (7) zum Deaktivieren der Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode nach Ablauf der entsprechenden Abfallzeit, die von dem Zeitpunkt an gezählt wird, zu dem die Signalanalysierungsschaltung bestimmt hat, dass die bestimmte Signalleistung niedriger ist als der Signalleistungsschwellenwert, steuert.
  5. Audioverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 4, ferner aufweisend eine zwischen den Eingangsanschluss (2) und die Entzerrerschaltung (7) gekoppelte Pufferschaltung (4) zum sukzessiven Speichern einer Anzahl von Abtastungen des Audioeingangssignals, wobei die Signalanalysierungsschaltung (11, 12) mit der Pufferschaltung (4) zum Analysieren einer Frequenzkennlinie des Audioeingangssignals gekoppelt ist.
  6. Audioverarbeitungsvorrichtung nach Anspruch 5, wobei die Pufferschaltung (4) eine Länge hat, die dazu in der Lage ist, Abtastungen des Audioeingangssignals während einer Zeitdauer zu speichern, die im Größenbereich einer Raummode-Abfallzeit oder -Einsatzzeit ist.
  7. Audioverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 6, ferner aufweisend ein Tiefpassfilter (5), das zwischen den Eingangsanschluss (2) und die Entzerrerschaltung (7) gekoppelt ist und einen Ausgang hat, welcher der Entzerrerschaltung ein Ausgangssignal liefert, das nur niedrigere Frequenzen des Audioeingangssignals enthält.
  8. Audioverarbeitungsvorrichtung nach Anspruch 7, ferner aufweisend
    - ein Hochpassfilter (6), das zwischen den Eingangsanschluss (2) und die Ausgangsschaltung (8, 9, 3) und parallel zu der Reihenschaltung des Tiefpassfilters (5) und der Entzerrerschaltung (7) gekoppelt ist,
    - wobei die Ausgangsschaltung (8, 9, 3) eine Summierungsschaltung (8) zum Addieren eines von dem Hochpassfilter (6) gelieferten Signals und eines von der Entzerrerschaltung (7) gelieferten Signals zum Zuführen des Audioausgangssignals zu dem Lautsprecher aufweist.
  9. Audioverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 8, wobei die Audioverarbeitungsvorrichtung (1) in einer Fahrzeuginnenumgebung implementiert ist und die in der Tabelle (21, 22) enthaltenen mehreren Frequenzen (F1, F2, F3) der Raummoden durch Messung in der Fahrzeugumgebung bestimmt wurden.
  10. Verfahren zum Ausführen von Frequenzkennlinienkorrekturverarbeitung für ein Audioeingangssignal, aufweisend
    - in einer Anfangsstufe zum Implementieren des Verfahrens, Senden mindestens eines Kalibrierungssignals in eine Raumumgebung, das ein vorbestimmtes Frequenzspektrum enthält, und Messen einer Signalantwort zum Bestimmen von Frequenzen (F1, F2) von Raummoden,
    - Speichern einer Tabelle (21, 22), die die bestimmten Frequenzen (F1, F2) von Raummoden enthält, wobei die Tabelle eine entsprechende vorbestimmte Einsatzzeit und eine entsprechende vorbestimmte Abfallzeit der Raummoden einer entsprechenden der mehreren Frequenzen zuordnet,
    - Analysieren einer Frequenzkennlinie eines Audioeingangssignals (20) zum Detektieren der Anwesenheit einer Signalleistung des Audioeingangssignals bei einer oder mehrerer Frequenzen (F1, F2) der bestimmten Frequenzen (F1, F2) von Raummoden,
    - Ausführen von Frequenzkennlinienkorrekturverarbeitung für das Audioeingangssignal (20) in einem Entzerrungsprozess, dynamisches Aktivieren und Deaktivieren der Frequenzkennlinienkorrekturverarbeitung bei der mindestens einen Frequenz einer Raummode im Laufe der Zeit, wenn die Anwesenheit der Signalleistung des Audioeingangssignals bei der mindestens einen Frequenz (F1, F2) einer Raummode detektiert wurde,
    - wobei die bestimmten Frequenzen (F1, F2) von Raummoden in einer Betriebsphase zum Aktivieren und Deaktivieren der Frequenzkennlinienkorrekturverarbeitung verwendet werden,
    - wobei die Frequenzkennlinienkorrekturverarbeitung für die eine oder mehreren Frequenzen einer Raummode aktiviert wird, wenn das Detektieren der Anwesenheit der Signalleistung länger dauert als ein Zeitschwellenwert für die entsprechende Frequenz einer Raummode,
    - Zuführen eines Audioausgangssignals von der Frequenzkennlinienkorrekturverarbeitung zu einem Lautsprecher zur Audioausgabe von dem Lautsprecher.
  11. Verfahren nach Anspruch 10, das ferner folgende Schritte beinhaltet:
    - wenn die Anwesenheit der Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode detektiert wurde, Bestimmen einer Dauer der Detektion der Anwesenheit der Signalleistung und Vergleichen der Dauer mit einer Einsatzzeit der entsprechenden Raummode,
    - wenn die Dauer gleich oder größer als ein vorbestimmter Zeitschwellenwert ist, Aktivieren der Frequenzkennlinienkorrekturverarbeitung bei der entsprechenden Frequenz (F1, F2) der Raummode.
  12. Verfahren nach Anspruch 11, das ferner folgende Schritte beinhaltet:
    - Bestimmen einer Signalleistung des Audioeingangssignals bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode und Vergleichen der bestimmten Signalleistung mit einem Signalleistungsschwellenwert,
    - wenn die Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode zuvor aktiviert wurde, Bestimmen, ob die bestimmte Signalleistung niedriger ist als der Signalleistungsschwellenwert,
    - und wenn die bestimmte Signalleitung niedriger ist als der Signalleistungsschwellenwert, Deaktivieren der Frequenzkennlinienkorrekturverarbeitung bei der einen oder den mehreren Frequenzen (F1, F2) einer Raummode nach einer Abfallzeit des entsprechenden Raummode, die von dem Zeitpunkt an gezählt wird, zu dem bestimmt wurde, dass die Signalleistung niedriger ist als der Signalleistungsschwellenwert.
EP08010723.8A 2008-06-12 2008-06-12 Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal Expired - Fee Related EP2134105B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08010723.8A EP2134105B1 (de) 2008-06-12 2008-06-12 Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08010723.8A EP2134105B1 (de) 2008-06-12 2008-06-12 Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal

Publications (2)

Publication Number Publication Date
EP2134105A1 EP2134105A1 (de) 2009-12-16
EP2134105B1 true EP2134105B1 (de) 2015-08-26

Family

ID=40001447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010723.8A Expired - Fee Related EP2134105B1 (de) 2008-06-12 2008-06-12 Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal

Country Status (1)

Country Link
EP (1) EP2134105B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199915B2 (ja) * 2009-02-18 2013-05-15 キヤノン株式会社 音場補正方法及び音場補正装置
US9779755B1 (en) * 2016-08-25 2017-10-03 Google Inc. Techniques for decreasing echo and transmission periods for audio communication sessions
CH719150A1 (de) * 2021-11-17 2023-05-31 Rocket Science Ag Verfahren zum Eliminieren von Raummoden und digitaler Signalprozessor sowie Lautsprecher dafür.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236076A2 (de) * 1986-03-03 1987-09-09 Ray Milton Dolby Schaltungen zum Ändern des Dynamikbereichs von Audiosignalen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261900A (ja) 1999-03-09 2000-09-22 Sony Corp 音場補正方法および音響装置。
US20040002781A1 (en) 2002-06-28 2004-01-01 Johnson Keith O. Methods and apparatuses for adjusting sonic balace in audio reproduction systems
EP1961263A1 (de) * 2005-12-16 2008-08-27 TC Electronic A/S Verfahren zum durchführen von messungen mittels eines audiosystems mit passiven lautsprechern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236076A2 (de) * 1986-03-03 1987-09-09 Ray Milton Dolby Schaltungen zum Ändern des Dynamikbereichs von Audiosignalen

Also Published As

Publication number Publication date
EP2134105A1 (de) 2009-12-16

Similar Documents

Publication Publication Date Title
US8116481B2 (en) Audio enhancement system
CA2380396C (en) Hearing aid with adaptive matching of microphones
CA2417803C (en) A hearing aid with an adaptive filter for suppression of acoustic feedback
AU2019222847B2 (en) Audio adaptation to room
EP2226794B1 (de) Hintergrundgeräuschschätzung
EP2096883B1 (de) Raumklangausgabeanordnung und Raumklangausgabeverfahren
KR20190019833A (ko) 룸-의존적 적응형 음색 보정
US20050244012A1 (en) Measuring apparatus and method, and recording medium
CA2581810A1 (en) Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
EP2002429A1 (de) Berechnung und anpassung der wahrgenommenen lautstärke und/oder der wahrgenommenen spektrumsbalance eines audiosignals
EP1868414B1 (de) Verfahren und System eine Audio-Verbindung zu prüfen
US20200107121A1 (en) Self-Equalizing Loudspeaker System
US20160241984A1 (en) Method and apparatus for generating drive signals for loudspeakers
JP2001224098A5 (de)
EP2134105B1 (de) Tonverarbeitungsvorrichtung und Verfahren zur Verarbeitung von Frequenzeigenschaftskorrekturen für ein Toneingangssignal
US10349198B2 (en) Active room compensation in loudspeaker system
US11950082B2 (en) Method and apparatus for audio processing
US20050053246A1 (en) Automatic sound field correction apparatus and computer program therefor
JP2000316199A (ja) ハウリング防止装置
US20240098427A1 (en) Determining an acoustic characteristic of a hearing instrument
US20230096292A1 (en) Method for improving sound quality of sound reproductions or sound recordings in a room
EP3794840B1 (de) Lautsprecherauslenkungsschutz
Genereux Adaptive filters for loudspeakers and rooms
CN115668986A (zh) 用于房间校正和均衡的多维自适应传声器-扬声器阵列集的系统、设备和方法
KR20210030860A (ko) 입력 신호 역상관

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20130607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008039741

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008039741

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008039741

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170621

Year of fee payment: 10

Ref country code: DE

Payment date: 20170621

Year of fee payment: 10

Ref country code: GB

Payment date: 20170620

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008039741

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612