EP2132893B1 - Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation - Google Patents

Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation Download PDF

Info

Publication number
EP2132893B1
EP2132893B1 EP20080741299 EP08741299A EP2132893B1 EP 2132893 B1 EP2132893 B1 EP 2132893B1 EP 20080741299 EP20080741299 EP 20080741299 EP 08741299 A EP08741299 A EP 08741299A EP 2132893 B1 EP2132893 B1 EP 2132893B1
Authority
EP
European Patent Office
Prior art keywords
signal
module
detection
antenna
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20080741299
Other languages
German (de)
English (en)
Other versions
EP2132893A1 (fr
EP2132893A4 (fr
Inventor
Peng Chen
Young-Hak Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Samsung Telecom R&D Center
Samsung Electronics Co Ltd
Original Assignee
Beijing Samsung Telecom R&D Center
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Samsung Telecom R&D Center, Samsung Electronics Co Ltd filed Critical Beijing Samsung Telecom R&D Center
Publication of EP2132893A1 publication Critical patent/EP2132893A1/fr
Publication of EP2132893A4 publication Critical patent/EP2132893A4/fr
Application granted granted Critical
Publication of EP2132893B1 publication Critical patent/EP2132893B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0238Channel estimation using blind estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • This invention relates to transmission of information in a multiple-antenna communication system, especially relates to a technology of transmission and detection for a multiple-antenna signal.
  • the existing BLAST detection algorithm may be divided to linear detection (including Zero-Forcing detection (ZF), Minimum Mean Square Error Detection (MMSE)%) and nonlinear detection (including Zero-Forcing and signal Interference Cancellation detection (ZF-SIC), Minimum mean Square Error and signal Interference Cancellation detection (MMSE-SIC)).
  • ZF Zero-Forcing detection
  • MMSE Minimum Mean Square Error Detection
  • ZF-SIC Zero-Forcing and signal Interference Cancellation detection
  • MMSE-SIC Minimum mean Square Error and signal Interference Cancellation detection
  • the linear detection method is easy to be realized relatively, while with poor performance.
  • the nonlinear detection method may improve the performance of the system.
  • the significantly increased complexity caused by iterative interference cancellation is the main difficulty for the nonlinear detection to be put into practice.
  • H Hs + n
  • s an M -dimensional transmission signal vector
  • r a N -dimensional receipt signal vector
  • n a N -dimensional independent white Gaussian noise
  • M and N are the numbers of system transmitting and receiving antennas.
  • ⁇ ZF and ⁇ MMSE are M -dimensional vectors of detected signals under different algorithms respectively.
  • the nonlinear detection technology may improve the system performance effectively at the price of increase of operation complexity.
  • the basic principle of this algorithm is to remove the interference coming from the detected parts in the process of detecting the current signals, so as to reduce the impact that interference has on data with smaller signal-to-noise ratio. This principle is similar to the decision feedback equalization.
  • k 1 , k 2 , ⁇ , k M form a sequence of transmitting antennas in the detection process.
  • Process 2 is performed and the impact of the detected signals has been removed from the received signals.
  • the new pseudo inverse matrix is determined and the new decision sequence is also determined.
  • the BLAST linear detection method is easy to be realized relatively, while with poor performance. Compared with the linear detection method, the nonlinear detection method can improve the performance of the system. However the significantly increased complexity caused by the iterative interference cancellation is the main difficulty for the nonlinear detection to be put into practice.
  • V-BLAST receivers for downlink MC-CDMA systems 2003 IEEE 58TH VEHICULAR TECHNOLOGY CONFERENCE.
  • VTC 2003-FALL (IEEE CAT. NO.03CH37484), vol., 2, (2003-01-01), page 866 , discloses a downlink MIMO MC-CDMA system for very high data rate transmission and a linear MMSE V-BLAST detector per subcarrier for said system, wherein the linear MMSE detector has better performance than the ZF detector and iterative V-BLAST detectors with ZF/MMSE.
  • US 2007/077969 A1 discloses maximum likelihood detection of signals in a MIMO receiver, wherein a system transformation is obtained by selecting a weighting matrix that, when linearly transforming a channel utilized for wireless communication, results in a particular transformed triangular matrix.
  • EP 1 542 388 A1 discloses apparatus and methods for transmission and reception in MIMO and MISO channel based wireless systems, wherein a data sequence is transmitted from a first antenna; then interleaved; at least a part of the interleaved sequence is transmitted from a second antenna spaced apart from the first antenna, the part of the interleaved sequence being transmitted simultaneously with a part of the data sequence transmitted from the first antenna.
  • This invention provides a BLAST system using enhancement signal detection. Complexity of this system is close to a BLAST system using a traditional linear detector and the performance of system according to present invention is better than the BLAST system using sequential interference cancellation nonlinear detector.
  • a multiple-antenna space multiplexing system using enhancement signal detection comprising:
  • this invention Compared with the ZF and the ZF SIC detection method, the BER performance of this system in this invention are improved significantly. Compared with the above detection methods, in this invention, this invention has more advantages in considering the system performance, improvement and realization complexity.
  • Signal transmission module for transmitting the modulated signals.
  • the signal waiting to be transmitted is s , assuming that quasi-static fading channel H remains the same between adjacent time block T 1 and T 2 .
  • Re(s) indicates a real part of the complex signal
  • Im(s) indicates an imaginary part of the complex signal.
  • r T 1 Hs T 1 + n T 1
  • r T 2 Hs T 2 + n T 2 .
  • H 1 Re H Im H
  • H 2 - Im H Re H
  • r T 1 ⁇ Re r T 1 Im r T 1
  • r T 2 ⁇ Re r T 2 Im r T 2 .
  • Re s ⁇ 0.5 ⁇ H 1 + H 2 + ⁇ r T 1 ⁇ r T 2 ⁇
  • Im s ⁇ 0.5 ⁇ H 1 + H 2 + ⁇ r T 1 ⁇ r T 1 ⁇ .
  • Re( s ⁇ ) is a real part of the detected signal
  • Im( s ⁇ ) is an imaginary part of the detected signal.
  • Signal reconstruction module for reconstructing the signal detection results, then obtaining the detected signal s ⁇ .
  • the reconstruction principle: s ⁇ Re( s ⁇ ) + j Im( s ⁇ ).
  • Demodulation and decoding module for demodulating and decoding the detected signal, then outputting bit information.
  • Expression (8) may be proved from expression (9) and (10).
  • This embodiment uses a multiple antenna BLAST communication system consisting of four transmit four receive antennas.
  • the channel is a quasi-static flat Rayleigh fading channel. Assuming channel remains the same between the continuous time block T 1 and T 2 .
  • the system according to this invention and the BLAST system using ZF detection and ZF SIC detector are all carried out for performance simulation.
  • the system according to this invention uses 16QAM modulation, while ZF and ZF SIC algorithm transmitting end use QPSK modulation.
  • 1/3 Turbo code is used for coding and decoding in all algorithms.

Claims (6)

  1. Système de multiplexage d'espace d'antennes multiples utilisant une détection de signal d'amélioration, comprenant :
    un module de réception de signal (201) pour recevoir des signaux codés et modulés par un émetteur par l'intermédiaire d'une antenne ;
    un module de transformation de forme de signal (202) pour transformer une forme d'une matrice de canal H et du vecteur de signal reçu r, dans lequel un principe de transformation de forme de la matrice de canal H et du vecteur de signal reçu r est :
    H 1 = Re H Im H ,
    Figure imgb0045
    H 2 = - Im H Re H ,
    Figure imgb0046
    r T 1 ʹ = Re r T 1 Im r T 1 ,
    Figure imgb0047
    r T 2 ʹ = Re r T 2 Im r T 2 ,
    Figure imgb0048
    où Re(H), Re(r T 1 ) et Re(r T 2 ) indiquent une partie réelle du signal complexe, Im(H), Im(r T 1 ) et Im(r T 2 ) indiquent une partie imaginaire du signal complexe ;
    un module de détection de signal (203) pour détecter les signaux reçus ;
    un module de reconstruction de signal (204) pour reconstruire les résultats de détection dans le module de détection de signal, et obtenir un signal détecté ;
    un module de décodage de démodulation (205) pour démoduler et décoder la sortie du module de reconstruction de signal et délivrer des informations de bits.
  2. Système selon la revendication 1, dans lequel un principe pour le module de détection de signal détectant le signal reçu est :
    Re s ˜ = 0.5 × H 1 + H 2 + r T 1 ʹ r T 2 ʹ ,
    Figure imgb0049
    Im s ˜ = 0.5 × H 1 + H 2 + r T 2 ʹ r T 1 ʹ
    Figure imgb0050
    Re() Re( ) est une partie réelle du signal détecté, Im() est une partie imaginaire du signal détecté.
  3. Système selon la revendication 1, dans lequel un principe pour le module de reconstruction de signal reconstruisant les résultats de détection de signal est : Im s ˜ = 0.5 × H 1 + H 2 + r T 2 ʹ r T 1 ʹ .
    Figure imgb0051
  4. Système selon la revendication 1, dans lequel l'antenne est une antenne à entrées multiples et sorties multiples (MIMO).
  5. Système de multiplexage d'espace d'antennes multiples prenant en charge une détection de signal d'amélioration comprenant :
    un module de modulation de code (101) pour coder et moduler des informations de bits ; et
    un module de transmission de signal (102) pour transmettre les signaux modulés,
    dans lequel le module de transmission de signal transmet des signaux selon les principes suivants :
    un signal en attente de transmission est s, en supposant que le canal d'évanouissement quasi-statique H reste le même entre des blocs de temps adjacents T 1 et T 2 ;
    dans le bloc de temps T 1, le signal de transmission est s T 1 = Re(s) + j Im(s) ;
    dans le bloc de temps T 2, le signal de transmission est s T 2 Im(s)+ j Re(s), où Re(s) indique une partie réelle du signal complexe, Im(s) indique une partie imaginaire du signal complexe.
  6. Procédé effectué dans un système de multiplexage d'espace d'antennes multiples selon l'une des revendications 1 à 5.
EP20080741299 2007-04-12 2008-04-11 Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation Not-in-force EP2132893B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100958913A CN101286775A (zh) 2007-04-12 2007-04-12 采用增强信号检测的多天线空间复用系统
PCT/KR2008/002054 WO2008127035A1 (fr) 2007-04-12 2008-04-11 Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation

Publications (3)

Publication Number Publication Date
EP2132893A1 EP2132893A1 (fr) 2009-12-16
EP2132893A4 EP2132893A4 (fr) 2014-04-30
EP2132893B1 true EP2132893B1 (fr) 2015-05-20

Family

ID=39864087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080741299 Not-in-force EP2132893B1 (fr) 2007-04-12 2008-04-11 Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation

Country Status (6)

Country Link
US (1) US8199863B2 (fr)
EP (1) EP2132893B1 (fr)
JP (1) JP5037634B2 (fr)
KR (1) KR101413929B1 (fr)
CN (1) CN101286775A (fr)
WO (1) WO2008127035A1 (fr)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724636B2 (en) * 2008-03-31 2014-05-13 Qualcomm Incorporated Methods of reliably sending control signal
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9596109B2 (en) 2010-05-20 2017-03-14 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9071476B2 (en) 2010-05-20 2015-06-30 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
US9077386B1 (en) 2010-05-20 2015-07-07 Kandou Labs, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9479369B1 (en) 2010-05-20 2016-10-25 Kandou Labs, S.A. Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US9401828B2 (en) 2010-05-20 2016-07-26 Kandou Labs, S.A. Methods and systems for low-power and pin-efficient communications with superposition signaling codes
US9246713B2 (en) 2010-05-20 2016-01-26 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US8593305B1 (en) 2011-07-05 2013-11-26 Kandou Labs, S.A. Efficient processing and detection of balanced codes
US9300503B1 (en) 2010-05-20 2016-03-29 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9106238B1 (en) 2010-12-30 2015-08-11 Kandou Labs, S.A. Sorting decoder
US9362962B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for energy-efficient communications interface
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9450744B2 (en) 2010-05-20 2016-09-20 Kandou Lab, S.A. Control loop management and vector signaling code communications links
US9564994B2 (en) 2010-05-20 2017-02-07 Kandou Labs, S.A. Fault tolerant chip-to-chip communication with advanced voltage
US9667379B2 (en) 2010-06-04 2017-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Error control coding for orthogonal differential vector signaling
US9275720B2 (en) 2010-12-30 2016-03-01 Kandou Labs, S.A. Differential vector storage for dynamic random access memory
US9268683B1 (en) 2012-05-14 2016-02-23 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
EP2926260B1 (fr) 2013-01-17 2019-04-03 Kandou Labs S.A. Procédés et systèmes de communication entre puces avec réduction de parasite de commutation simultané
CN105122758B (zh) 2013-02-11 2018-07-10 康杜实验室公司 高带宽芯片间通信接口方法和系统
EP2979388B1 (fr) 2013-04-16 2020-02-12 Kandou Labs, S.A. Procédés et systèmes destinés à une interface de communication à large bande passante
CN105393512B (zh) 2013-06-25 2019-06-28 康杜实验室公司 具有低接收器复杂度的向量信令
US9106465B2 (en) 2013-11-22 2015-08-11 Kandou Labs, S.A. Multiwire linear equalizer for vector signaling code receiver
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US9369312B1 (en) 2014-02-02 2016-06-14 Kandou Labs, S.A. Low EMI signaling for parallel conductor interfaces
US9100232B1 (en) 2014-02-02 2015-08-04 Kandou Labs, S.A. Method for code evaluation using ISI ratio
WO2015131203A1 (fr) 2014-02-28 2015-09-03 Kandou Lab, S.A. Codes de signalisation de vecteur à horloge incorporée
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9148087B1 (en) 2014-05-16 2015-09-29 Kandou Labs, S.A. Symmetric is linear equalization circuit with increased gain
US9112550B1 (en) 2014-06-25 2015-08-18 Kandou Labs, SA Multilevel driver for high speed chip-to-chip communications
WO2016007863A2 (fr) 2014-07-10 2016-01-14 Kandou Labs, S.A. Codes de signalisation de vecteur avec caractéristiques signal-bruit augmentées
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
US9444654B2 (en) 2014-07-21 2016-09-13 Kandou Labs, S.A. Multidrop data transfer
EP3175592B1 (fr) 2014-08-01 2021-12-29 Kandou Labs S.A. Codes de signalisation vectorielle différentielle orthogonaux à horloge intégrée
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
KR102517583B1 (ko) 2015-06-26 2023-04-03 칸도우 랩스 에스에이 고속 통신 시스템
US9557760B1 (en) 2015-10-28 2017-01-31 Kandou Labs, S.A. Enhanced phase interpolation circuit
US9577815B1 (en) 2015-10-29 2017-02-21 Kandou Labs, S.A. Clock data alignment system for vector signaling code communications link
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10003315B2 (en) 2016-01-25 2018-06-19 Kandou Labs S.A. Voltage sampler driver with enhanced high-frequency gain
CN115051705A (zh) 2016-04-22 2022-09-13 康杜实验室公司 高性能锁相环
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
WO2017189931A1 (fr) 2016-04-28 2017-11-02 Kandou Labs, S.A. Codes de signalisation vectorielle pour groupes de fils à routage dense
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
CN109417521B (zh) 2016-04-28 2022-03-18 康杜实验室公司 低功率多电平驱动器
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10411922B2 (en) 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10372665B2 (en) 2016-10-24 2019-08-06 Kandou Labs, S.A. Multiphase data receiver with distributed DFE
EP4216444A1 (fr) 2017-04-14 2023-07-26 Kandou Labs, S.A. Correction d'erreurs sans voie de retour en pipeline d'un canal de code de signalisation de vecteur
CN115333530A (zh) 2017-05-22 2022-11-11 康杜实验室公司 多模式数据驱动型时钟恢复方法和装置
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10686583B2 (en) 2017-07-04 2020-06-16 Kandou Labs, S.A. Method for measuring and correcting multi-wire skew
US10693587B2 (en) 2017-07-10 2020-06-23 Kandou Labs, S.A. Multi-wire permuted forward error correction
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface
KR102452390B1 (ko) 2017-12-28 2022-10-06 칸도우 랩스 에스에이 동기식으로 스위칭된 다중 입력 복조 비교기
US10554380B2 (en) 2018-01-26 2020-02-04 Kandou Labs, S.A. Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
US11831472B1 (en) 2022-08-30 2023-11-28 Kandou Labs SA Pre-scaler for orthogonal differential vector signalling

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058105A (en) * 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6996195B2 (en) * 1999-12-22 2006-02-07 Nokia Mobile Phones Ltd. Channel estimation in a communication system
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
KR100446753B1 (ko) * 2002-12-26 2004-09-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치
KR100580840B1 (ko) * 2003-10-09 2006-05-16 한국전자통신연구원 다중 입력 다중 출력 시스템의 데이터 통신 방법
GB2408898B (en) * 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
KR100580843B1 (ko) * 2003-12-22 2006-05-16 한국전자통신연구원 V―blast에서 채널전달함수행렬 처리장치 및 그의처리방법
US7542743B2 (en) * 2005-09-30 2009-06-02 Broadcom Corporation Maximum likelihood detection for MIMO receivers
JP4680036B2 (ja) * 2005-11-09 2011-05-11 独立行政法人情報通信研究機構 受信装置および受信方法
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten

Also Published As

Publication number Publication date
US20100104047A1 (en) 2010-04-29
KR20090128378A (ko) 2009-12-15
KR101413929B1 (ko) 2014-07-01
EP2132893A1 (fr) 2009-12-16
CN101286775A (zh) 2008-10-15
EP2132893A4 (fr) 2014-04-30
WO2008127035A1 (fr) 2008-10-23
US8199863B2 (en) 2012-06-12
JP2010521919A (ja) 2010-06-24
JP5037634B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
EP2132893B1 (fr) Système de multiplexage spatial à antennes multiples utilisant la détection de signal d'augmentation
CN1943133B (zh) 利用多输入多输出方案的移动通信系统中编码/解码时空块代码的装置与方法
US8995584B1 (en) Multi-stream demodulation scheme using multiple detectors
US7725091B2 (en) Method and device for transmitting a signal in a multi-antenna system, signal, and method for estimating the corresponding transmission channels
KR20100107915A (ko) 중계 방식의 무선통신 시스템에서 양방향 중계를 위한 장치및 방법
US8842755B2 (en) Process for decoding ALAMOUTI block code in an OFDM system, and receiver for the same
US8811215B2 (en) Apparatus and method for detecting signal in spatial multiplexing system
CN111917443A (zh) 多输入多输出系统信号发送和接收方法
CN101292445B (zh) 使用联合处理来执行码片级均衡的方法和设备
CN101355377B (zh) 一种多输入多输出v-balst系统信号检测方法
CN102710567A (zh) Mimo无线通信接收机干扰消除技术中的部分判决方法
US20220140866A1 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
US20060182207A1 (en) Hybrid STBC receiver
EP1768295B1 (fr) Système et procédé d'émission/réception d'un signal dans un système de communication mobile à entrées et à sorties multiples
EP1931075B1 (fr) Procédé de décodage d'un signal reçu multidimensionnel
Liu Error performance of MIMO systems in frequency selective Rayleigh fading channels
CN1327730C (zh) 无线通信设备和方法
CN101958852B (zh) 一种mimo系统中mld接收机的cinr估计方法及装置
JP2009518924A (ja) シンボ拡散で空間多重を行うシステム、装置及び方法
KR20230152294A (ko) 다중 안테나 신호를 위한 송신 및 검출 기술
CN102291165B (zh) 多输入多输出系统中的迫零检测方法
Omri et al. Modified Alamouti decoding for highly selective channels for LTE systems
TWI404362B (zh) Method and apparatus for spatial decoding of multi - antenna orthogonal frequency multipath system
Zhang et al. Rotation Invariant Coding and Decoding for Multicarrier V-BLAST System
Li et al. MIMO Transceiver Scheme Based on Singular Linear Transform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/04 20060101ALI20091113BHEP

Ipc: H04J 99/00 20090101AFI20091113BHEP

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAMSUNG ELECTRONICS CO., LTD.

Owner name: BEIJING SAMSUNG TELECOM R & D CENTER

A4 Supplementary search report drawn up and despatched

Effective date: 20140327

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 1/06 20060101ALI20140321BHEP

Ipc: H04B 7/04 20060101ALI20140321BHEP

Ipc: H04J 99/00 20090101AFI20140321BHEP

Ipc: H04B 7/06 20060101ALI20140321BHEP

Ipc: H04L 25/03 20060101ALI20140321BHEP

Ipc: H04L 25/02 20060101ALI20140321BHEP

Ipc: H04L 5/00 20060101ALI20140321BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 728213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008038226

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 728213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150520

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150820

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150820

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008038226

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

26N No opposition filed

Effective date: 20160223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150520

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200323

Year of fee payment: 13

Ref country code: GB

Payment date: 20200325

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200414

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008038226

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210411

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411