EP2131941A1 - Layer for use in a hepa filter element - Google Patents

Layer for use in a hepa filter element

Info

Publication number
EP2131941A1
EP2131941A1 EP07866229A EP07866229A EP2131941A1 EP 2131941 A1 EP2131941 A1 EP 2131941A1 EP 07866229 A EP07866229 A EP 07866229A EP 07866229 A EP07866229 A EP 07866229A EP 2131941 A1 EP2131941 A1 EP 2131941A1
Authority
EP
European Patent Office
Prior art keywords
layer
polypropylene fibers
polypropylene
layer according
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07866229A
Other languages
German (de)
French (fr)
Inventor
Klaus Veeser
Armin Greiner
Harald Von Schischka
Jürgen Adolph
Toan-Hieu Giang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP2131941A1 publication Critical patent/EP2131941A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers

Definitions

  • the invention relates to a layer for use in a HEPA filter element.
  • HEPA filter elements that meet HEPA requirements are already known from the prior art.
  • HEPA filter elements may be designed as particulate filters that serve to filter over 99.9% of all particles larger than 0.1 to 0.3 ⁇ m from the air.
  • These particles may include viruses, respirable dusts, mite eggs and excrements, pollen, smoke particles, asbestos, bacteria, various toxic dusts and aerosols.
  • HEPA filter elements are used, inter alia, in the medical field, in particular in operating rooms, intensive care units and laboratories. Furthermore, uses in clean rooms and in nuclear technology are known.
  • HEPA filter element The European standard for the classification of a HEPA filter element is the DIN EN 1822 with the filter classes H10 to H14 (HEPA). It is known that particles with a size of 0.1 to 0.3 microns are the hardest to separate. The particle size of the most difficult-to-separate particles under certain conditions is classified as "most penetrating particle size", which is why HEPA filter elements are classified according to their effectiveness in terms of particle size by means of a test aerosol so-called DEHS (di-2-ethylhexyl sebacate).
  • DEHS di-2-ethylhexyl sebacate
  • filter elements Although known from the prior art filter elements often show good to very good filter efficiency, but are made of materials that can be hazardous to human health. For example, HEPA filter elements are known, which have considerable glass fibers. Glass fibers can leak out of the position from which the filter element is made and damage the human organism.
  • HEPA filter elements are not readily plissiable, since glass fibers are subjected to mechanical stress during pleating processes and break easily.
  • the pleated filter elements are less elastic and prone to breakage.
  • the fractures form holes or perforations, which adversely affect the filter efficiency.
  • Such a filter can no longer meet HEPA requirements because unwanted particles can pass through the resulting damaged areas.
  • the invention is therefore based on the object to provide a layer for use in a HEPA filter element, which is easily plissiable at high filter efficiency.
  • the above object is achieved by a layer having the features of claim 1.
  • the layer comprises a first polypropylene fiber-containing carrier layer for stabilization and a second polypropylene fibers containing Abscheidetik, wherein the polypropylene fibers of the Abborgetik are at least partially electrostatically charged and wherein the carrier layer and the Abscheidetik are designed as at least partially glass fiber-free nonwovens.
  • nonwoven fabrics of polypropylene fibers allows the formation of a very elastic and plissiertransporten layer with suitable porosity. Furthermore, it has been recognized that reducing or eliminating glass fibers increases the elasticity of the ply and avoids damage. Breakages due to excessive brittleness of the situation are avoided according to the invention. Finally, it has been recognized that nonwovens of polypropylene fibers can be thermally bonded to one another without any problems in such a way that pleating of the interconnected support layer and deposition layer is possible with virtually no displacement of the layers relative to each other. Consequently, the object mentioned above is achieved.
  • the backing layer could have a basis weight of 70 to 200 g / m 2 .
  • the choice of this basis weight allows sufficient stabilization of the layer to pleat it.
  • the choice of this basis weight allows the order of a very thin and highly porous Deposition layer, which itself has only a low rigidity and makes no contribution to the overall rigidity of the situation.
  • the polypropylene fibers of the carrier layer could be electrostatically charged. This specific embodiment allows the use of the carrier layer as a pre-separator or prefilter.
  • the deposition layer could have a basis weight of 10 to 80 g / m 2 . This range has surprisingly been found to be particularly suitable to meet HEPA requirements.
  • the porosity can be adjusted depending on the fineness of the fibers. The finer the fibers used, the lower the basis weight can be chosen to meet the requirements of each filter class.
  • the deposition layer comprises nanofibers made of polyamide, polyacrylonitrile or polycarbonate. Furthermore, it is conceivable that a layer of nanofibers of the mentioned materials is applied to the deposition layer. Nanofibers allow the deposition of very fine particles and can significantly increase the filtration efficiency of the layer described here.
  • the layer may have a third layer containing polypropylene fibers having a basis weight of 8 g / m 2 and includes the separating layer sandwiched together with the carrier layer.
  • This concrete embodiment is suitable for the production of the situation in a melt-blown process.
  • the third layer also provides a protective layer for the anti-abrasion and electrical discharge coating layer.
  • the third layer allows air to pass without significant resistance, making it particularly suitable as a substrate for depositing the deposition layer through a melt-blown process. They go through the melt-blown process coated polypropylene fibers of the deposition layer with the third layer a cohesive composite in which they stick to the fibers of the third layer.
  • the polypropylene fibers of the carrier layer could contain core-sheath fibers with a sheath of metallocene polypropylene and a core of pure polypropylene.
  • This specific embodiment allows melting of the shell, wherein the core is not affected in its polymer structure.
  • the individual core-sheath fibers can combine with one another and with the polypropylene fibers of the deposition layer.
  • the carrier layer is prefabricated with the Abscheidetik and the third layer is connected by ultrasonic welding.
  • the polypropylene fibers of the deposition layer could be formed as melt-blown fibers having an average diameter of 1 to 2 ⁇ m. This specific embodiment allows the creation of a nonwoven fabric with very small pores. Due to the fine porosity very fine particles can be deposited so that the layer meets HEPA requirements.
  • the polypropylene fibers of the third layer could be selectively thermally bonded together.
  • the polypropylene fibers of the third layer could be bonded to each other by a point seal method, whereby individual punctiform regions of the polypropylene fibers are melted and their polymer structure is changed so that they are brittle, but the fused areas of different polypropylene fibers are only fused together at points before, so that the third layer as a planar structure in its entirety is movable and deformable without breaking.
  • the carrier layer, the deposition layer and the third layer could be thermally bonded together by ultrasound-welded or laser-welded regions such that the layer is pleatable.
  • the ultrasonically welded or laser welded areas could be in the form of line patterns or dot patterns.
  • the welded regions connect all three layers to one another by melting the polypropylene fibers in the respective layers and melting them together to form a composite which penetrates the layers.
  • the layer could have a basis weight of 160 g / m 2 , a thickness of 0.92 mm and an air permeability of 315 dm 3 / m 2 s at a pressure difference of 200 Pa, the pressure difference between upstream and downstream side of the situation prevails.
  • a layer with this thickness and this weight per unit area shows the said air permeability at said pressure difference.
  • Such a location is particularly suitable for use in room air purifiers, since the room air purifier can work with a low electrical power consumption. In that regard, a gentle and cost-effective operation of a room air cleaner is possible.
  • the situation could cause a pressure drop from upstream side to downstream side of at most 100 Pa at a flow velocity of a gaseous medium to be filtered of 15 cm / s.
  • Such a situation is particularly suitable for use in devices that suck air from a first room to a second room.
  • the low pressure drop of Upstream to downstream allows gentle operation of the suction unit, as this must do little work to suck a filter to be filtered gaseous medium through the layer.
  • the pressure drop is less than 40 Pa at a flow velocity of 5 cm / s and less than 80 Pa at a flow velocity of 10 cm / s.
  • a layer which exhibits these properties is particularly suitable for use in electrically operated filter arrangements, in particular in room air cleaners.
  • the location could have a filter efficiency of at least 85% at one
  • a filter element could comprise a bellows, wherein the bellows is made of a pleated layer, and wherein the bellows is inserted in a filter door.
  • a filter element is suitable as a module for a room air cleaner, since the filter element can be used together with the filter door in an existing arrangement.
  • the filter element is designed as a HEPA filter element.
  • the filter door could have a perforated bottom, which is associated with an at least partially encircling frame which surrounds the bellows. This concrete embodiment of the bellows can be glued into the frame, which cracks and gaps in the frame area can be avoided.
  • the perforations in the bottom ensure that the medium to be filtered penetrates through the perforations and passes through the pleated position of the bellows. A flow past the medium to be filtered by splitting or scribing between the bellows and the frame is prevented by sticking the bellows.
  • 1 is a schematic view of a layer which has three layers
  • FIG. 2 is a sectional view of a bellows, which is made of a pleated layer according to FIG. 1,
  • FIG. 3 is a plan view of the bellows of FIG. 2, 4 is a plan view of the filter door, in which the bellows is inserted as shown in FIG. 3,
  • 5 is a diagram which shows the pressure drop between inflow side and outflow side of a layer as a function of the
  • Fig. 6 is a diagram showing the penetration of the particles to be deposited as a function of the flow velocity in a double logarithmic representation.
  • a layer for use in a filter element comprising a carrier layer 1 containing first polypropylene fibers for stabilization and a separator layer 2 containing a second polypropylene fibers.
  • the polypropylene fibers of the deposition layer 2 are at least partially electrostatically charged.
  • the carrier layer 1 can also be electrostatically charged and serve as a pre-separator or prefilter.
  • the carrier layer 1 and the deposition layer 2 are designed as glass fiber-free nonwovens.
  • the carrier layer 1 has a basis weight of 110 g / m 2 and is made of polypropylene fibers.
  • the polypropylene fibers of the carrier layer 1 are configured as core-sheath fibers with a sheath of metallocene polypropylene and a core of pure polypropylene.
  • the deposition layer has a basis weight of 36 g / m 2 and is made of polypropylene fibers.
  • the polypropylene fibers are configured as electret microfibers.
  • the polypropylene fibers of the deposition layer 2 were applied to the third layer 3 by a melt-blown process, which has a basis weight of 14 g / m 2 .
  • the third layer 3 is also made of polypropylene fibers and acts to protect a substrate on which the polypropylene fibers of the deposition layer 2 are applied during a melt-blown process.
  • the third layer 3 comprises polypropylene fibers which are selectively thermally bonded together by a "point seal" method
  • the third layer 3 and the backing layer 1 sandwich the deposition layer 2 therebetween.
  • the carrier layer 1, the deposition layer 2 and the third layer 3 exclusively contain polypropylene fibers and are completely free of glass fibers. Therefore, the situation described here is almost completely incinerable and easy to dispose of.
  • the situation described in the specific embodiment has a basis weight of 160 g / m 2 and a thickness of 0.92 mm.
  • the layer shows an air permeability of 315 dm 3 / m 2 s.
  • Fig. 5 shows the pressure drop from the upstream side to the downstream side of the layer as a function of the flow velocity. It can be clearly seen from FIG. 5 that, with an inflow velocity of 15 cm / sec, the pressure drop is at most 110 Pa. In that regard, the situation according to the invention shows excellent permeability to a medium to be filtered, whereby electric motors of suction units can be operated inexpensively and gently. In Fig. 5 a regression line is drawn, which was determined from the measurements. It can be seen from Fig. 5 clearly shows a linear dependence of the pressure drop from the flow velocity at least up to a flow velocity of 15 cm / s.
  • Fig. 6 shows the penetration of the hardest to be separated particles as a function of the flow velocity.
  • the table is taken at a flow velocity of 1, 3 cm / sec, a diameter of the hardest to be separated particles of 0.071 microns. These show a penetration of 1, 2%. That is, 98.8% of the most difficult to be separated at the flow velocity of 1, 3 cm / sec particles are deposited by the inventive layer. At a flow velocity of 5.3 cm / sec 89.5% of the hardest to be deposited particles are deposited.
  • the layer according to the invention shows filter properties which make it suitable for use in H EPA filter elements.
  • Fig. 2 shows a bellows 4, which is made of a layer of the type described here. The location is pleated and has 70 double folds.
  • Fig. 3 shows the bellows 4 in a plan view.
  • the bellows 4 are associated with strip-shaped elements 5, which are connected to the pleat backs.
  • the strip-shaped elements 5 space the fold backs and thus the folds. As a result, a gluing or connecting the wrinkles is prevented in particular when flowing through.
  • Fig. 4 shows a filter door 6, in which the bellows 4 is glued in Fig. 3.
  • the filter door 6 surrounds the bellows 4 with a frame 7, wherein between the frame 7 and the bellows 4 adhesive is introduced to prevent the formation of slots or gaps.
  • the filter door 6 has a bottom 8, here by a partial
  • the bottom 8 has perforations 9, through which the medium to be filtered can flow.
  • the filter door 6 further has locking lugs 10, which can be locked with a recording of a room air purifier. As a result, the filter door 6 can be used together with the bellows 4 as a module.
  • the layer described here or the filter element described here can serve as an air filter to filter microorganisms from contaminated air.
  • the position or the filter element shows a particularly favorable ratio of filter efficiency and pressure drop.
  • the situation described here and the filter element described here show no release of microfibers from the position to the ambient air.
  • the position and the filter element can be used in areas where allergy sufferers move.
  • hydrophobic fibers namely polypropylene fibers, prevents the growth of bacteria, fungi and similar pollutants on the surface of the sheet or filter element.
  • the situation is fully incinerable.
  • the layer is particularly suitable for use in air filter elements for room air purifiers or for air filter elements in hospitals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

A layer for use in a HEPA filter element solves the problem of disclosing a filter element which satisfies HEPA requirements. Said layer comprises a first support layer (1) for stabilization which contains polypropylene fibers, and a second deposition layer (2) which contains polypropylene fibers, wherein the polypropylene fibers of the deposition layer (2) are at least partially electrostatically charged, and wherein the support layer (1) and the deposition layer (2) are constructed as nonwoven material which is at least partially free of glass fiber. The layer according to the invention can be easily pleated while having excellent filter efficiency.

Description

Lage zur Verwendung in einem HEPA-Filterelement Location for use in a HEPA filter element
Beschreibungdescription
Technisches GebietTechnical area
Die Erfindung betrifft eine Lage zur Verwendung in einem HEPA-Filterelement.The invention relates to a layer for use in a HEPA filter element.
Stand der TechnikState of the art
Filterelemente, die HEPA-Anforderungen genügen, sind aus dem Stand der Technik bereits bekannt. HEPA-Filterelemente können als Schwebstofffilter ausgebildet sein, die dazu dienen, über 99,9% aller Partikel, welche größer als 0,1 bis 0,3 μm sind, aus der Luft zu filtern.Filter elements that meet HEPA requirements are already known from the prior art. HEPA filter elements may be designed as particulate filters that serve to filter over 99.9% of all particles larger than 0.1 to 0.3 μm from the air.
Diese Partikel können Viren, lungengängige Stäube, Milbeneier und - ausscheidungen, Pollen, Rauchpartikel, Asbest, Bakterien, diverse toxische Stäube und Aerosole umfassen.These particles may include viruses, respirable dusts, mite eggs and excrements, pollen, smoke particles, asbestos, bacteria, various toxic dusts and aerosols.
HEPA-Filterelemente werden unter anderem im medizinischen Bereich, insbesondere in Operationsräumen, Intensivstationen und Laboratorien verwendet. Des Weiteren sind Verwendungen in Reinräumen und in der Kerntechnik bekannt.HEPA filter elements are used, inter alia, in the medical field, in particular in operating rooms, intensive care units and laboratories. Furthermore, uses in clean rooms and in nuclear technology are known.
BESTATIGUNGSKOPIE Die europäische Norm für die Klassifizierung eines HEPA-Filterelements ist die DIN EN 1822 mit den Filterklassen H10 bis H14 (HEPA). Es ist bekannt, dass Partikel mit einer Größe von 0,1 bis 0,3 μm am schwersten abzuscheiden sind. Die Partikelgröße der bei bestimmten Bedingungen jeweils am schwersten abzuscheidenden Partikel wird mit der Bezeichnung MPPS („most penetrating particle size") klassifiziert. Daher werden HEPA-Filterelemente hinsichtlich ihrer Effektivität bezüglich dieser Partikelgröße mittels eines Prüfaerosols klassifiziert. Bei dem Prüfaerosol handelt es sich um das so genannte DEHS (Di-2-Ethylhexyl-Sebacat).BESTATIGUNGSKOPIE The European standard for the classification of a HEPA filter element is the DIN EN 1822 with the filter classes H10 to H14 (HEPA). It is known that particles with a size of 0.1 to 0.3 microns are the hardest to separate. The particle size of the most difficult-to-separate particles under certain conditions is classified as "most penetrating particle size", which is why HEPA filter elements are classified according to their effectiveness in terms of particle size by means of a test aerosol so-called DEHS (di-2-ethylhexyl sebacate).
Die aus dem Stand der Technik bekannten Filterelemente zeigen zwar häufig eine gute bis sehr gute Filtereffizienz, sind jedoch aus Materialien gefertigt, welche für den Menschen gesundheitsgefährdend sein können. Beispielsweise sind HEPA-Filterelemente bekannt, die in erheblichem Maße Glasfasern aufweisen. Glasfasern können aus der Lage, aus dem das Filterelement gefertigt ist, austreten und den menschlichen Organismus schädigen.Although known from the prior art filter elements often show good to very good filter efficiency, but are made of materials that can be hazardous to human health. For example, HEPA filter elements are known, which have considerable glass fibers. Glass fibers can leak out of the position from which the filter element is made and damage the human organism.
Des Weiteren sind die bekannten Lagen für HEPA-Filterelemente nicht problemlos plissierfähig, da Glasfasern bei Plissierprozessen mechanisch stark beansprucht werden und leicht brechen. Die plissierten Filterelemente sind wenig elastisch und neigen zu Bruchstellen. Die Bruchstellen bilden Löcher oder Perforierungen aus, welche die Filtereffizienz negativ beeinträchtigen. Ein solcher Filter kann keine HEPA-Anforderungen mehr erfüllen, da durch die entstandenen Schadstellen unerwünschte Partikel hindurch treten können.Furthermore, the known layers for HEPA filter elements are not readily plissiable, since glass fibers are subjected to mechanical stress during pleating processes and break easily. The pleated filter elements are less elastic and prone to breakage. The fractures form holes or perforations, which adversely affect the filter efficiency. Such a filter can no longer meet HEPA requirements because unwanted particles can pass through the resulting damaged areas.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt daher die Aufgabe zugrunde, eine Lage zur Verwendung in einem HEPA-Filterelement zu schaffen, welche bei hoher Filtereffizienz problemlos plissierfähig ist. Erfindungsgemäß wird die voranstehende Aufgabe durch eine Lage mit den Merkmalen des Patentanspruchs 1 gelöst. Danach umfasst die Lage eine erste Polypropylenfasern enthaltende Trägerschicht zur Stabilisierung und eine zweite Polypropylenfasern enthaltende Abscheideschicht, wobei die Polypropylenfasern der Abscheideschicht zumindest teilweise elektrostatisch geladen sind und wobei die Trägerschicht und die Abscheideschicht als zumindest bereichsweise glasfaserfreie Vliesstoffe ausgestaltet sind.The invention is therefore based on the object to provide a layer for use in a HEPA filter element, which is easily plissiable at high filter efficiency. According to the invention the above object is achieved by a layer having the features of claim 1. Thereafter, the layer comprises a first polypropylene fiber-containing carrier layer for stabilization and a second polypropylene fibers containing Abscheideschicht, wherein the polypropylene fibers of the Abscheideschicht are at least partially electrostatically charged and wherein the carrier layer and the Abscheideschicht are designed as at least partially glass fiber-free nonwovens.
Erfindungsgemäß ist erkannt worden, dass die Verwendung von Vliesstoffen aus Polypropylenfasern die Ausbildung einer sehr elastischen und plissierfähigen Lage mit geeigneter Porosität ermöglicht. Des Weiteren ist erkannt worden, dass die Reduktion von oder der Verzicht auf Glasfasern die Elastizität der Lage erhöht und Schadstellen vermeidet. Bruchstellen aufgrund zu hoher Brüchigkeit der Lage werden erfindungsgemäß vermieden. Schließlich ist erkannt worden, dass Vliesstoffe aus Polypropylenfasern problemlos derart thermisch miteinander verbunden werden können, dass eine Plissierung der miteinander verbundenen Trägerschicht und Abscheideschicht nahezu ohne Verschiebung der Schichten relativ zueinander möglich ist. Folglich ist die eingangs genannte Aufgabe gelöst.According to the invention it has been recognized that the use of nonwoven fabrics of polypropylene fibers allows the formation of a very elastic and plissierfähigen layer with suitable porosity. Furthermore, it has been recognized that reducing or eliminating glass fibers increases the elasticity of the ply and avoids damage. Breakages due to excessive brittleness of the situation are avoided according to the invention. Finally, it has been recognized that nonwovens of polypropylene fibers can be thermally bonded to one another without any problems in such a way that pleating of the interconnected support layer and deposition layer is possible with virtually no displacement of the layers relative to each other. Consequently, the object mentioned above is achieved.
Vor diesem Hintergrund ist konkret denkbar, dass weder die Trägerschicht noch die Abscheideschicht Glasfasern aufweisen, nämlich dass die Trägerschicht und die Abscheideschicht glasfaserfrei ausgebildet sind. Durch diese konkrete Ausgestaltung kann eine Lage erzeugt werden, welche keine den Menschen gefährdende Materialien enthält.Against this background, it is concretely conceivable that neither the support layer nor the deposition layer have glass fibers, namely that the support layer and the deposition layer are formed free of glass fibers. By this specific embodiment, a layer can be generated, which contains no human endangering materials.
Die Trägerschicht könnte ein Flächengewicht von 70 bis 200 g/m2 aufweisen. Die Wahl dieses Flächengewichts erlaubt eine hinreichende Stabilisierung der Lage, um diese zu plissieren. Des Weiteren ermöglicht die Wahl dieses Flächengewichts den Auftrag einer sehr dünnen und hochporösen Abscheideschicht, welche selbst eine nur geringe Steifigkeit aufweist und keinen Beitrag zur Gesamtsteifigkeit der Lage leistet.The backing layer could have a basis weight of 70 to 200 g / m 2 . The choice of this basis weight allows sufficient stabilization of the layer to pleat it. Furthermore, the choice of this basis weight allows the order of a very thin and highly porous Deposition layer, which itself has only a low rigidity and makes no contribution to the overall rigidity of the situation.
Die Polypropylenfasern der Trägerschicht könnten elektrostatisch aufgeladen sein. Diese konkrete Ausgestaltung erlaubt die Verwendung der Trägerschicht als Vorabscheider oder Vorfilter.The polypropylene fibers of the carrier layer could be electrostatically charged. This specific embodiment allows the use of the carrier layer as a pre-separator or prefilter.
Die Abscheideschicht könnte ein Flächengewicht von 10 bis 80 g/m2 aufweisen. Dieser Bereich hat sich überraschenderweise als besonders geeignet erwiesen, um HEPA-Anforderungen zu erfüllen. Dabei kann die Porosität in Abhängigkeit von der Feinheit der Fasern eingestellt werden. Je feiner die verwendeten Fasern sind, desto geringer kann das Flächengewicht gewählt werden, um die Anforderungen der jeweiligen Filterklasse zu erfüllen.The deposition layer could have a basis weight of 10 to 80 g / m 2 . This range has surprisingly been found to be particularly suitable to meet HEPA requirements. The porosity can be adjusted depending on the fineness of the fibers. The finer the fibers used, the lower the basis weight can be chosen to meet the requirements of each filter class.
Vor diesem Hintergrund ist denkbar, dass die Abscheideschicht Nanofasern aufweist, die aus Polyamid, Polyacrylnitril oder Polycarbonat gefertigt sind. Des Weiteren ist denkbar, dass auf die Abscheideschicht eine Schicht aus Nanofasern aus den genannten Materialien aufgebracht ist. Nanofasern erlauben die Abscheidung feinster Partikel und können die Filtereffizienz der hier beschriebenen Lage erheblich steigern.Against this background, it is conceivable that the deposition layer comprises nanofibers made of polyamide, polyacrylonitrile or polycarbonate. Furthermore, it is conceivable that a layer of nanofibers of the mentioned materials is applied to the deposition layer. Nanofibers allow the deposition of very fine particles and can significantly increase the filtration efficiency of the layer described here.
Die Lage könnte eine dritte Polypropylenfasern enthaltende Schicht aufweisen, die ein Flächengewicht von mindestens 8 g/m2 aufweist und zusammen mit der Trägerschicht die Abscheideschicht sandwichartig einschließt. Diese konkrete Ausgestaltung eignet sich zur Fertigung der Lage in einem Melt-Blown-Prozess. Die dritte Schicht stellt außerdem eine Schutzschicht für die Abscheideschicht gegen Abrieb und elektrische Entladung dar. Die dritte Schicht erlaubt den Hindurchtritt von Luft ohne erheblichen Widerstand, so dass sie als Unterlage beim Aufbringen der Abscheideschicht durch einen Melt-Blown-Prozess besonders geeignet ist. Dabei gehen die durch den Melt-Blown-Prozess aufgetragenen Polypropylenfasern der Abscheideschicht mit der dritten Schicht einen stoffschlüssigen Verbund ein, in dem sie mit den Fasern der dritten Schicht verkleben.The layer may have a third layer containing polypropylene fibers having a basis weight of 8 g / m 2 and includes the separating layer sandwiched together with the carrier layer. This concrete embodiment is suitable for the production of the situation in a melt-blown process. The third layer also provides a protective layer for the anti-abrasion and electrical discharge coating layer. The third layer allows air to pass without significant resistance, making it particularly suitable as a substrate for depositing the deposition layer through a melt-blown process. They go through the melt-blown process coated polypropylene fibers of the deposition layer with the third layer a cohesive composite in which they stick to the fibers of the third layer.
Vor diesem Hintergrund könnten die Polypropylenfasern der Trägerschicht Kern-Mantel-Fasern mit einem Mantel aus Metallocen-Polypropylen und einem Kern aus reinem Polypropylen enthalten. Diese konkrete Ausgestaltung erlaubt ein Aufschmelzen des Mantels, wobei der Kern in seiner Polymerstruktur nicht beeinträchtigt wird. Durch das Aufschmelzen des Mantels können die einzelnen Kern-Mantel-Fasern sowohl miteinander als auch mit den Polypropylenfasern der Abscheideschicht einen Verbund eingehen. Ganz konkret ist denkbar, dass die Trägerschicht vorgefertigt mit der Abscheideschicht und der dritten Schicht durch Ultraschallschweißen verbunden wird.Against this background, the polypropylene fibers of the carrier layer could contain core-sheath fibers with a sheath of metallocene polypropylene and a core of pure polypropylene. This specific embodiment allows melting of the shell, wherein the core is not affected in its polymer structure. As a result of the melting of the jacket, the individual core-sheath fibers can combine with one another and with the polypropylene fibers of the deposition layer. In concrete terms, it is conceivable that the carrier layer is prefabricated with the Abscheideschicht and the third layer is connected by ultrasonic welding.
Die Polypropylenfasern der Abscheideschicht könnten als Melt-Blown-Fasern mit einem mittleren Durchmesser von 1 bis 2 μm ausgebildet sein. Diese konkrete Ausgestaltung erlaubt die Schaffung eines Vliesstoffs mit sehr kleinen Poren. Aufgrund der feinen Porosität können sehr feine Partikel abgeschieden werden, so dass die Lage HEPA-Anforderungen genügt.The polypropylene fibers of the deposition layer could be formed as melt-blown fibers having an average diameter of 1 to 2 μm. This specific embodiment allows the creation of a nonwoven fabric with very small pores. Due to the fine porosity very fine particles can be deposited so that the layer meets HEPA requirements.
Die Polypropylenfasern der dritten Schicht könnten punktuell miteinander thermisch verbunden sein. Die Polypropylenfasern der dritten Schicht könnten konkret durch ein „Point Seal"-Verfahren miteinander verbunden sein. Dabei werden einzelne punktuelle Bereiche der Polypropylenfasern angeschmolzen und hinsichtlich ihrer Polymerstruktur derart verändert, dass diese brüchig sind. Die miteinander verschmolzenen, brüchigen Bereiche verschiedener Polypropylenfasern liegen jedoch nur punktuell vor, so dass die dritte Schicht als flächiges Gebilde in seiner Gesamtheit bewegbar und deformierbar ist, ohne zu zerbrechen. Die Trägerschicht, die Abscheideschicht und die dritte Schicht könnten durch ultraschallverschweißte oder laserverschweißte Bereiche derart miteinander thermisch verbunden sein, dass die Lage plissierbar ist. Die ultraschallverschweißten oder laserverschweißten Bereiche könnten in Form von Linienmustern oder Punktmustern vorgesehen sein. Hierdurch ist sichergestellt, dass zwischen den verschweißten Bereichen unverschweißte Bereiche vorliegen, die zerstörungsfrei verbiegbar oder faltbar sind. Die verschweißten Bereiche sind durch die thermische Beaufschlagung häufig brüchig. Vor diesem Hintergrund ist konkret denkbar, dass die verschweißten Bereiche alle drei Schichten dadurch miteinander verbinden, dass die Polypropylenfasern in den jeweiligen Schichten aufgeschmolzen und miteinander zu einem die Schichten durchgreifenden Verbund zusammengeschmolzen werden.The polypropylene fibers of the third layer could be selectively thermally bonded together. Concretely, the polypropylene fibers of the third layer could be bonded to each other by a point seal method, whereby individual punctiform regions of the polypropylene fibers are melted and their polymer structure is changed so that they are brittle, but the fused areas of different polypropylene fibers are only fused together at points before, so that the third layer as a planar structure in its entirety is movable and deformable without breaking. The carrier layer, the deposition layer and the third layer could be thermally bonded together by ultrasound-welded or laser-welded regions such that the layer is pleatable. The ultrasonically welded or laser welded areas could be in the form of line patterns or dot patterns. This ensures that there are unwelded areas between the welded areas which are non-destructively bendable or foldable. The welded areas are often brittle due to the thermal impact. Against this background, it is concretely conceivable that the welded regions connect all three layers to one another by melting the polypropylene fibers in the respective layers and melting them together to form a composite which penetrates the layers.
Die Lage könnte ein Flächengewicht von 160 g/m2, eine Dicke von 0,92 mm und eine Luftdurchlässigkeit von 315 dm3/m2s bei einer Druckdifferenz von 200 Pa aufweisen, wobei die Druckdifferenz zwischen Anströmseite und Abströmseite der Lage herrscht. Auf überraschende Weise hat sich gezeigt, dass eine Lage mit dieser Dicke und diesem Flächengewicht die genannte Luftdurchlässigkeit bei der genannten Druckdifferenz zeigt. Eine solche Lage ist besonders für den Einsatz in Raumluftreinigern geeignet, da der Raumluftreiniger mit einer geringen elektrischen Leistungsaufnahme arbeiten kann. Insoweit ist ein schonender und kostengünstiger Betrieb eines Raumluftreinigers ermöglicht.The layer could have a basis weight of 160 g / m 2 , a thickness of 0.92 mm and an air permeability of 315 dm 3 / m 2 s at a pressure difference of 200 Pa, the pressure difference between upstream and downstream side of the situation prevails. Surprisingly, it has been found that a layer with this thickness and this weight per unit area shows the said air permeability at said pressure difference. Such a location is particularly suitable for use in room air purifiers, since the room air purifier can work with a low electrical power consumption. In that regard, a gentle and cost-effective operation of a room air cleaner is possible.
Die Lage könnte einen Druckabfall von Anströmseite zu Abströmseite von höchstens 100 Pa bei einer Anströmgeschwindigkeit eines zu filternden gasförmigen Mediums von 15 cm/s bewirken. Eine solche Lage eignet sich in besonderer Weise für den Einsatz in Geräten, welche Luft von einem ersten Raum in einen zweiten Raum saugen. Der geringe Druckabfall von Anströmseite zu Abströmseite erlaubt einen schonenden Betrieb des Saugaggregats, da dieses wenig Arbeit verrichten muss, um ein zu filterndes gasförmiges Medium durch die Lage hindurch zu saugen. Vor diesem Hintergrund ist denkbar, dass der Druckabfall bei einer Anströmgeschwindigkeit von 5 cm/s geringer als 40 Pa und bei einer Anströmgeschwindigkeit von 10 cm/s geringer als 80 Pa ist. Eine Lage, welche diese Eigenschaften zeigt, eignet sich im besonderen Masse für den Einsatz in elektrisch betriebenen Filteranordnungen, insbesondere in Raumluftreinigern.The situation could cause a pressure drop from upstream side to downstream side of at most 100 Pa at a flow velocity of a gaseous medium to be filtered of 15 cm / s. Such a situation is particularly suitable for use in devices that suck air from a first room to a second room. The low pressure drop of Upstream to downstream allows gentle operation of the suction unit, as this must do little work to suck a filter to be filtered gaseous medium through the layer. Against this background, it is conceivable that the pressure drop is less than 40 Pa at a flow velocity of 5 cm / s and less than 80 Pa at a flow velocity of 10 cm / s. A layer which exhibits these properties is particularly suitable for use in electrically operated filter arrangements, in particular in room air cleaners.
Die Lage könnte eine Filtereffizienz von mindestens 85% bei einerThe location could have a filter efficiency of at least 85% at one
Anströmgeschwindigkeit eines gasförmigen Mediums von höchstens 8 cm/s aufweisen. Ganz konkret ist denkbar, dass als gasförmiges Medium das Prüfaerosol DEHS nach der europäischen Norm DIN EN 1822 verwendet wird. Wenn dieses Prüfaerosol mit 8 cm/s auf die Anströmseite der Lage trifft, werden mindestens 85% der am schwersten abzuscheidenden Partikel abgeschieden. Diese am schwersten abzuscheidenden Partikel weisen eine bestimmte Partikelgröße, nämlich die MPPS („most penetrating particle size"), auf. Eine Lage, welche diese Eigenschaften zeigt, eignet sich zur Verwendung in einem HEPA-Filterelement, da sie den Anforderungen an Filter der Filterklasse H 10 genügt.Flow velocity of a gaseous medium of at most 8 cm / s have. In concrete terms, it is conceivable that the test aerosol DEHS according to the European standard DIN EN 1822 is used as the gaseous medium. When this test aerosol hits the upstream side of the sheet at 8 cm / s, at least 85% of the hardest-to-be-separated particles are separated. These particles, which are the most difficult to separate, have a certain particle size, namely the MPPS ("most penetrating particle size") A layer which exhibits these properties is suitable for use in a HEPA filter element because it meets the requirements of filters of the filter class H 10 is enough.
Ein Filterelement könnte einen Faltenbalg umfassen, wobei der Faltenbalg aus einer plissierten Lage gefertigt ist, und wobei der Faltenbalg in einer Filtertür eingesetzt ist. Ein solches Filterelement eignet sich als Modul für einen Raumluftreiniger, da das Filterelement gemeinsam mit der Filtertür in eine bestehende Anordnung einsetzbar ist. Wenn der Faltenbalg aus einer hier beschriebenen Lage gefertigt ist, ist das Filterelement als HEPA-Filterelement ausgestaltet. Die Filtertür könnte einen perforierten Boden aufweisen, welchem ein zumindest teilweise umlaufender Rahmen zugeordnet ist, der den Faltenbalg umfängt. Durch diese konkrete Ausgestaltung kann der Faltenbalg in den Rahmen eingeklebt werden, wodurch Ritzen und Spalten im Rahmenbereich vermieden werden. Durch die Perforationen im Boden ist sichergestellt, dass das zu filternde Medium durch die Perforationen eindringt und durch die plissierte Lage des Faltenbalgs hindurch tritt. Ein Vorbeiströmen des zu filternden Mediums durch Spalten oder Ritzen zwischen dem Faltenbalg und dem Rahmen wird durch Einkleben des Faltenbalgs verhindert.A filter element could comprise a bellows, wherein the bellows is made of a pleated layer, and wherein the bellows is inserted in a filter door. Such a filter element is suitable as a module for a room air cleaner, since the filter element can be used together with the filter door in an existing arrangement. If the bellows is made of a layer described here, the filter element is designed as a HEPA filter element. The filter door could have a perforated bottom, which is associated with an at least partially encircling frame which surrounds the bellows. This concrete embodiment of the bellows can be glued into the frame, which cracks and gaps in the frame area can be avoided. The perforations in the bottom ensure that the medium to be filtered penetrates through the perforations and passes through the pleated position of the bellows. A flow past the medium to be filtered by splitting or scribing between the bellows and the frame is prevented by sticking the bellows.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung auf vorteilhafte Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Patentansprüche und andererseits auf die nachfolgende Erläuterung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung zu verweisen.There are now various possibilities for embodying and developing the teaching of the present invention in an advantageous manner. For this purpose, on the one hand to refer to the subordinate claims and on the other hand to the following explanation of a preferred embodiment of the invention with reference to the drawings.
In Verbindung mit der Erläuterung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert.In conjunction with the explanation of the preferred embodiment of the invention with reference to the drawing, generally preferred embodiments and developments of the teaching are explained.
Kurzbeschreibung der ZeichnungBrief description of the drawing
In der Zeichnung zeigenIn the drawing show
Fig. 1 in schematischer Ansicht eine Lage, welche drei Schichten aufweist,1 is a schematic view of a layer which has three layers,
Fig. 2 eine Schnittansicht eines Faltenbalgs, der aus einer plissierten Lage gemäß Fig. 1 gefertigt ist,2 is a sectional view of a bellows, which is made of a pleated layer according to FIG. 1,
Fig. 3 eine Draufsicht auf den Faltenbalg gemäß Fig. 2, Fig. 4 eine Draufsicht auf die Filtertür, in welche der Faltenbalg gemäß Fig. 3 eingesetzt ist,3 is a plan view of the bellows of FIG. 2, 4 is a plan view of the filter door, in which the bellows is inserted as shown in FIG. 3,
Fig. 5 ein Diagramm, welches den Druckabfall zwischen Anstömseite und Abströmseite einer Lage in Abhängigkeit von der5 is a diagram which shows the pressure drop between inflow side and outflow side of a layer as a function of the
Anströmgeschwindigkeit zeigt, undFlow velocity shows, and
Fig. 6 ein Diagramm, welches die Penetration der abzuscheidenden Partikel in Abhängigkeit von der Anströmgeschwindigkeit in doppelt logarithmischer Darstellung zeigt.Fig. 6 is a diagram showing the penetration of the particles to be deposited as a function of the flow velocity in a double logarithmic representation.
Ausführung der ErfindungEmbodiment of the invention
Fig. 1 zeigt eine Lage zur Verwendung in einem Filterelement umfassend eine erste Polypropylenfasern enthaltende Trägerschicht 1 zur Stabilisierung und eine zweite Polypropylenfasern enthaltende Abscheideschicht 2. Die Polypropylenfasern der Abscheideschicht 2 sind zumindest teilweise elektrostatisch geladen. Die Trägerschicht 1 kann ebenfalls elektrostatisch aufgeladen sein und als Vorabscheider oder Vorfilter dienen. Die Trägerschicht 1 und die Abscheideschicht 2 sind als glasfaserfreie Vliesstoffe ausgestaltet.1 shows a layer for use in a filter element comprising a carrier layer 1 containing first polypropylene fibers for stabilization and a separator layer 2 containing a second polypropylene fibers. The polypropylene fibers of the deposition layer 2 are at least partially electrostatically charged. The carrier layer 1 can also be electrostatically charged and serve as a pre-separator or prefilter. The carrier layer 1 and the deposition layer 2 are designed as glass fiber-free nonwovens.
Die Trägerschicht 1 weist ein Flächengewicht von 110 g/m2 auf und ist aus Polypropylenfasern gefertigt. Die Polypropylenfasern der Trägerschicht 1 sind als Kern-Mantel-Fasern mit einem Mantel aus Metallocen-Polypropylen und einem Kern aus reinem Polypropylen ausgestaltet.The carrier layer 1 has a basis weight of 110 g / m 2 and is made of polypropylene fibers. The polypropylene fibers of the carrier layer 1 are configured as core-sheath fibers with a sheath of metallocene polypropylene and a core of pure polypropylene.
Die Abscheideschicht weist ein Flächengewicht von 36 g/m2 auf und ist aus Polypropylenfasern gefertigt. Die Polypropylenfasern sind als Elektret- Mikrofasern ausgestaltet. Die Polypropylenfasern der Abscheideschicht 2 wurden durch einen Melt-Blown-Prozess auf die dritte Schicht 3 aufgetragen, welche ein Flächengewicht von 14 g/m2 aufweist. Die dritte Schicht 3 besteht ebenfalls aus Polypropylenfasern und fungiert als Schutz für eine Unterlage, auf welcher die Polypropylenfasern der Abscheideschicht 2 während eines Melt-Blown-Prozesses aufgebracht werden.The deposition layer has a basis weight of 36 g / m 2 and is made of polypropylene fibers. The polypropylene fibers are configured as electret microfibers. The polypropylene fibers of the deposition layer 2 were applied to the third layer 3 by a melt-blown process, which has a basis weight of 14 g / m 2 . The third layer 3 is also made of polypropylene fibers and acts to protect a substrate on which the polypropylene fibers of the deposition layer 2 are applied during a melt-blown process.
Die dritte Schicht 3 weist Polypropylenfasern auf, die durch ein „Point Seal"- Verfahren punktuell miteinander thermisch verbunden sind. Die dritte Schicht 3 und die Trägerschicht 1 schließen die Abscheideschicht 2 sandwichartig zwischen sich ein.The third layer 3 comprises polypropylene fibers which are selectively thermally bonded together by a "point seal" method The third layer 3 and the backing layer 1 sandwich the deposition layer 2 therebetween.
Im konkreten zuvor genannten konkreten Ausführungsbeispiel enthalten die Trägerschicht 1 , die Abscheideschicht 2 und die dritte Schicht 3 ausschließlich Polypropylenfasern und sind völlig glasfaserfrei. Daher ist die hier konkret beschriebene Lage nahezu vollständig veraschbar und leicht zu entsorgen.In the concrete embodiment mentioned above, the carrier layer 1, the deposition layer 2 and the third layer 3 exclusively contain polypropylene fibers and are completely free of glass fibers. Therefore, the situation described here is almost completely incinerable and easy to dispose of.
Die im konkreten Ausführungsbeispiel beschriebene Lage weist ein Flächengewicht von 160 g/m2 und eine Dicke von 0,92 mm auf. Bei einer Druckdifferenz von 200 Pa, die sich zwischen Anströmseite und Abströmseite der Lage einstellt, zeigt die Lage eine Luftdurchlässigkeit von 315 dm3/m2 s.The situation described in the specific embodiment has a basis weight of 160 g / m 2 and a thickness of 0.92 mm. At a pressure difference of 200 Pa, which is established between upstream side and downstream side of the layer, the layer shows an air permeability of 315 dm 3 / m 2 s.
In der nachfolgenden Tabelle sind Anströmgeschwindigkeiten, Druckabfälle, Effizienzen für die jeweilige MPPS, Penetrationen sowie die Partikelgrößen MPPS dargestellt. Diese Messergebnisse wurden durch Messungen gemäß DIN EN 1822 an der im konkreten Ausführungsbeispiel beschriebenen Lage ermittelt. The following table shows flow velocities, pressure drops, efficiencies for the respective MPPS, penetration and particle sizes MPPS. These measurement results were determined by measurements in accordance with DIN EN 1822 at the position described in the specific embodiment.
Tabelletable
Fig. 5 zeigt den Druckabfall von Anströmseite zur Abströmseite der Lage in Abhängigkeit von der Anströmgeschwindigkeit. Man erkennt aus Fig. 5 deutlich, dass bei einer Anströmgeschwindigkeit von 15 cm/sec der Druckabfall höchstens 110 Pa beträgt. Insoweit zeigt die erfindungsgemäße Lage eine hervorragende Durchlässigkeit für ein zu filterndes Medium, wodurch elektrische Motoren von Saugaggregaten kostengünstig und schonend betrieben werden können. In Fig. 5 ist eine Regressionsgerade eingezeichnet, welche aus den Messungen ermittelt wurde. Man erkennt aus Fig. 5 deutlich eine lineare Abhängigkeit des Druckabfalls von der Anströmgeschwindigkeit zumindest bis zu einer Anströmgeschwindigkeit von 15 cm/s.Fig. 5 shows the pressure drop from the upstream side to the downstream side of the layer as a function of the flow velocity. It can be clearly seen from FIG. 5 that, with an inflow velocity of 15 cm / sec, the pressure drop is at most 110 Pa. In that regard, the situation according to the invention shows excellent permeability to a medium to be filtered, whereby electric motors of suction units can be operated inexpensively and gently. In Fig. 5 a regression line is drawn, which was determined from the measurements. It can be seen from Fig. 5 clearly shows a linear dependence of the pressure drop from the flow velocity at least up to a flow velocity of 15 cm / s.
Fig. 6 zeigt die Penetration der am schwersten abzuscheidenden Partikel in Abhängigkeit von der Anströmgeschwindigkeit. Der Tabelle entnimmt man bei einer Anströmgeschwindigkeit von 1 ,3 cm/sec einen Durchmesser der am schwersten abzuscheidenden Partikel von 0,071 μm. Diese zeigen eine Penetration von 1 ,2%. Das heißt, 98,8% der bei der Anströmgeschwindigkeit von 1 ,3 cm/sec am schwersten abzuscheidenden Partikel werden durch die erfindungsgemäße Lage abgeschieden. Bei einer Anströmgeschwindigkeit von 5,3 cm/sec werden 89,5% der am schwersten abzuscheidenden Partikel abgeschieden. Insoweit zeigt die erfindungsgemäße Lage Filtereigenschaften, die sie für eine Verwendung in H EPA-Filterelementen eignen. Fig. 2 zeigt einen Faltenbalg 4, der aus einer Lage der hier beschriebenen Art gefertigt ist. Die Lage ist plissiert und weist 70 Doppelfalten auf.Fig. 6 shows the penetration of the hardest to be separated particles as a function of the flow velocity. The table is taken at a flow velocity of 1, 3 cm / sec, a diameter of the hardest to be separated particles of 0.071 microns. These show a penetration of 1, 2%. That is, 98.8% of the most difficult to be separated at the flow velocity of 1, 3 cm / sec particles are deposited by the inventive layer. At a flow velocity of 5.3 cm / sec 89.5% of the hardest to be deposited particles are deposited. In that regard, the layer according to the invention shows filter properties which make it suitable for use in H EPA filter elements. Fig. 2 shows a bellows 4, which is made of a layer of the type described here. The location is pleated and has 70 double folds.
Fig. 3 zeigt den Faltenbalg 4 in einer Draufsicht. Dem Faltenbalg 4 sind streifenförmige Elemente 5 zugeordnet, die mit den Faltenrücken verbunden sind. Die streifenförmigen Elemente 5 beabstanden die Faltenrücken und damit die Falten. Hierdurch wird ein Verkleben oder Zusammenhängen der Falten insbesondere beim Durchströmen verhindert.Fig. 3 shows the bellows 4 in a plan view. The bellows 4 are associated with strip-shaped elements 5, which are connected to the pleat backs. The strip-shaped elements 5 space the fold backs and thus the folds. As a result, a gluing or connecting the wrinkles is prevented in particular when flowing through.
Fig. 4 zeigt eine Filtertür 6, in welche der Faltenbalg 4 gemäß Fig. 3 eingeklebt ist. Die Filtertür 6 umfängt den Faltenbalg 4 mit einem Rahmen 7, wobei zwischen dem Rahmen 7 und dem Faltenbalg 4 Klebstoff eingebracht ist, um die Ausbildung von Schlitzen oder Spalten zu verhindern.Fig. 4 shows a filter door 6, in which the bellows 4 is glued in Fig. 3. The filter door 6 surrounds the bellows 4 with a frame 7, wherein between the frame 7 and the bellows 4 adhesive is introduced to prevent the formation of slots or gaps.
Die Filtertür 6 weist einen Boden 8 auf, der hier durch einen teilweisenThe filter door 6 has a bottom 8, here by a partial
Durchbruch des Faltenbalgs 4 freigelegt ist. Der Boden 8 weist Perforierungen 9 auf, durch die das zu filternde Medium einströmen kann. Die Filtertür 6 weist des Weiteren Rastnasen 10 auf, welche mit einer Aufnahme eines Raumluftreinigers verrastet werden können. Hierdurch ist die Filtertür 6 zusammen mit dem Faltenbalg 4 als Modul einsetzbar.Breakthrough of the bellows 4 is exposed. The bottom 8 has perforations 9, through which the medium to be filtered can flow. The filter door 6 further has locking lugs 10, which can be locked with a recording of a room air purifier. As a result, the filter door 6 can be used together with the bellows 4 as a module.
Die hier beschriebene Lage bzw. das hier beschriebene Filterelement kann als Luftfilter dienen, um Mikroorganismen aus kontaminierter Luft zu filtern. Hierbei zeigt die Lage bzw. das Filterelement ein besonders günstiges Verhältnis von Filtereffizienz und Druckabfall.The layer described here or the filter element described here can serve as an air filter to filter microorganisms from contaminated air. Here, the position or the filter element shows a particularly favorable ratio of filter efficiency and pressure drop.
Die hier beschriebene Lage und das hier beschriebene Filterelement zeigen keine Abgabe von Mikrofasern aus der Lage an die Umgebungsluft. Insofern können die Lage und das Filterelement in Bereichen eingesetzt werden, in denen sich Allergiker bewegen. Die Verwendung von hydrophoben Fasern, nämlich Polypropylenfasern, verhindert das Wachstum von Bakterien, Pilzen und ähnlichen Schadstoffen auf der Oberfläche der Lage bzw. des Filterelements. Des Weiteren ist die Lage voll veraschbar.The situation described here and the filter element described here show no release of microfibers from the position to the ambient air. In this respect, the position and the filter element can be used in areas where allergy sufferers move. The use of hydrophobic fibers, namely polypropylene fibers, prevents the growth of bacteria, fungi and similar pollutants on the surface of the sheet or filter element. Furthermore, the situation is fully incinerable.
Aufgrund der hier beschriebenen Eigenschaften eignet sich die Lage besonders für die Verwendung in Luftfilterelementen für Raumluftreiniger oder für Luftfilterelemente in Krankenhäusern.Due to the properties described here, the layer is particularly suitable for use in air filter elements for room air purifiers or for air filter elements in hospitals.
Hinsichtlich weiterer vorteilhafter Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Lehre wird einerseits auf den allgemeinen Teil der Beschreibung und andererseits auf die beigefügten Patentansprüche verwiesen.With regard to further advantageous embodiments and developments of the teaching of the invention reference is made on the one hand to the general part of the description and on the other hand to the appended claims.
Abschließend sei ausdrücklich hervorgehoben, dass das zuvor rein willkürlich gewählte Ausführungsbeispiel lediglich zur Erörterung der erfindungsgemäßen Lehre dient, diese jedoch nicht auf dieses Ausführungsbeispiel einschränkt. Finally, it should be emphasized that the previously purely arbitrarily chosen embodiment is only for the purpose of discussing the teaching of the invention, but this does not limit this embodiment.

Claims

Patentansprüche claims
1. Lage zur Verwendung in einem HEPA-Filterelement, umfassend eine erste Polypropylenfasern enthaltende Trägerschicht (1 ) zur Stabilisierung und eine zweite Polypropylenfasern enthaltende Abscheideschicht (2), wobei die Polypropylenfasern der Abscheideschicht (2) zumindest teilweise elektrostatisch geladen sind und wobei die Trägerschicht (1 ) und die Abscheideschicht (2) als zumindest bereichsweise glasfaserfreie Vliesstoffe ausgestaltet sind.A sheet for use in a HEPA filter element, comprising a first polypropylene support layer (1) for stabilization and a second polypropylene fiber-containing release layer (2), the polypropylene fibers of the deposition layer (2) being at least partially electrostatically charged, and wherein the support layer ( 1) and the deposition layer (2) are configured as at least partially glass fiber-free nonwovens.
2. Lage nach Anspruch 1 , dadurch gekennzeichnet, dass die Trägerschicht (1) ein Flächengewicht von 70 bis 200 g/m2 aufweist.2. Layer according to claim 1, characterized in that the carrier layer (1) has a basis weight of 70 to 200 g / m 2 .
3. Lage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Polypropylenfasern der Trägerschicht (1 ) elektrostatisch aufgeladen sind.3. Layer according to claim 1 or 2, characterized in that the polypropylene fibers of the carrier layer (1) are charged electrostatically.
4. Lage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Abscheideschicht (2) ein Flächengewicht von 10 bis 80 g/m2 aufweist.4. Layer according to one of claims 1 to 3, characterized in that the deposition layer (2) has a basis weight of 10 to 80 g / m 2 .
5. Lage nach einem der Ansprüche 1 bis 4, gekennzeichnet durch eine dritte Polypropylenfasem enthaltende Schicht (3), die ein Flächengewicht von mindestens 8 g/m2 aufweist und zusammen mit der Trägerschicht (1 ) die Abscheideschicht (2) sandwichartig einschließt.5. Layer according to one of claims 1 to 4, characterized by a third polypropylene fibers containing layer (3) which has a basis weight of at least 8 g / m 2 and, together with the carrier layer (1), the deposition layer (2) sandwiches.
6. Lage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Polypropylenfasem der Trägerschicht (1 ) Kern-Mantel-Fasern mit einem Mantel aus Metallocen-Polypropylen und einem Kern aus reinem Polypropylen enthalten.6. Layer according to one of claims 1 to 5, characterized in that the polypropylene fibers of the carrier layer (1) core-sheath fibers with a shell of metallocene polypropylene and a core of pure polypropylene.
7. Lage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Polypropylenfasern der Abscheideschicht (2) als Melt-Blown-Fasern mit einem mittleren Durchmesser von 1 bis 2 μm ausgebildet sind.7. Layer according to one of claims 1 to 6, characterized in that the polypropylene fibers of the Abscheideschicht (2) are formed as melt-blown fibers having an average diameter of 1 to 2 microns.
8. Lage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Polypropylenfasern der dritten Schicht (3) punktuell miteinander thermisch verbunden sind.8. Layer according to one of claims 1 to 7, characterized in that the polypropylene fibers of the third layer (3) are selectively thermally connected to each other.
9. Lage nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Trägerschicht (1 ), die Abscheideschicht (2) und die dritte Schicht (3) ausschließlich Polypropylenfasern enthalten.9. Layer according to one of claims 5 to 8, characterized in that the carrier layer (1), the Abscheideschicht (2) and the third layer (3) exclusively contain polypropylene fibers.
10. Lage nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Trägerschicht (1), die Abscheideschicht (2) und die dritte Schicht (3) durch ultraschallverschweißte oder laserverschweißte Bereiche derart miteinander thermisch verbunden sind, dass die Lage plissierbar ist.10. Layer according to one of claims 5 to 9, characterized in that the carrier layer (1), the Abscheideschicht (2) and the third layer (3) by ultrasonically welded or laser welded areas are thermally connected to each other such that the position is plissable.
11. Lage nach einem der Ansprüche 1 bis 10, gekennzeichnet durch ein Flächengewicht von 160 g/m2, eine Dicke von 0,92 mm und eine Luftdurchlässigkeit von 315 dm3/m2s bei einer Druckdifferenz von 200 Pa, die zwischen Anströmseite und Abströmseite der Lage herrscht.11. A layer according to any one of claims 1 to 10, characterized by a basis weight of 160 g / m 2 , a thickness of 0.92 mm and an air permeability of 315 dm 3 / m 2 s at a pressure difference of 200 Pa, the between upstream side and downstream side of the situation prevails.
12. Lage nach einem der Ansprüche 1 bis 11 , gekennzeichnet durch einen Druckabfall von Anströmseite zu Abströmseite von höchstens 100 Pa bei einer Anströmgeschwindigkeit eines zu filternden gasförmigen Mediums von 15 cm/s. 12. A layer according to any one of claims 1 to 11, characterized by a pressure drop from inflow side to downstream side of at most 100 Pa at a flow velocity of a gaseous medium to be filtered of 15 cm / s.
13. Lage nach einem der Ansprüche 1 bis 12, gekennzeichnet durch eine Filtereffizienz von mindestens 85 % bei einer Anströmgeschwindigkeit eines gasförmigen Mediums von höchstens 8 cm/s.13. The layer according to one of claims 1 to 12, characterized by a filter efficiency of at least 85% at a flow velocity of a gaseous medium of at most 8 cm / s.
14. Filterelement, umfassend einen Faltenbalg (4), wobei der Faltenbalg (4) aus einer plissierten Lage nach einem der voranstehenden Ansprüche gefertigt ist, und wobei der Faltenbalg (4) in einer Filtertür (6) eingesetzt ist.14. Filter element comprising a bellows (4), wherein the bellows (4) is made of a pleated layer according to one of the preceding claims, and wherein the bellows (4) in a filter door (6) is inserted.
15. Filterelement nach Anspruch 14, dadurch gekennzeichnet, dass die Filtertür (6) einen perforierten Boden (8) aufweist, welchem ein zumindest teilweise umlaufender Rahmen (7) zugeordnet ist, der den Faltenbalg (4) umfängt. 15. Filter element according to claim 14, characterized in that the filter door (6) has a perforated bottom (8), which is associated with an at least partially encircling frame (7) which surrounds the bellows (4).
EP07866229A 2007-03-07 2007-12-03 Layer for use in a hepa filter element Withdrawn EP2131941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007011365A DE102007011365B4 (en) 2007-03-07 2007-03-07 Position for use in a HEPA filter element and filter element
PCT/EP2007/010482 WO2008107006A1 (en) 2007-03-07 2007-12-03 Layer for use in a hepa filter element

Publications (1)

Publication Number Publication Date
EP2131941A1 true EP2131941A1 (en) 2009-12-16

Family

ID=39166894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07866229A Withdrawn EP2131941A1 (en) 2007-03-07 2007-12-03 Layer for use in a hepa filter element

Country Status (6)

Country Link
US (1) US8709139B2 (en)
EP (1) EP2131941A1 (en)
CN (1) CN101622047B (en)
AU (1) AU2007348647B2 (en)
DE (1) DE102007011365B4 (en)
WO (1) WO2008107006A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014236A1 (en) 2006-03-28 2007-10-04 Irema-Filter Gmbh Fleece material used as a pleated air filter in a motor vehicle comprises thinner fibers homogeneously incorporated into thicker fibers
CA2727740A1 (en) * 2007-06-15 2008-12-18 Carl Freudenberg Kg Toner dust filter
KR101308756B1 (en) 2008-10-31 2013-09-12 칼 프로이덴베르크 카게 Filter medium for particulate filtration
US8152887B2 (en) * 2008-12-15 2012-04-10 Mann + Hummel Gmbh Air/oil separator
US20110308386A1 (en) * 2010-06-16 2011-12-22 Jerome Claracq Efficiency-enhanced gas filter medium
MX349639B (en) 2010-08-23 2017-08-07 Fiberweb Holdings Ltd Nonwoven web and fibers with electret properties, manufacturing processes thereof and their use.
DE102010052155A1 (en) 2010-11-22 2012-05-24 Irema-Filter Gmbh Air filter medium with two mechanisms of action
DE102011003585A1 (en) 2011-02-03 2012-08-09 Mahle International Gmbh Urea filter material
CN103717287B (en) * 2011-05-27 2017-05-03 克拉克空气过滤产品有限公司 Collapsible and/or assembled filter housing and filter used therewith
US9687766B2 (en) 2011-05-27 2017-06-27 Clarcor Air Filtration Products, Inc. Collapsible and/or assembled filter housing and filter used therewith
US9034068B2 (en) 2012-06-05 2015-05-19 Clarcor Air Filtration Products, Inc. Box filter with orientation device
WO2013185874A2 (en) * 2012-06-14 2013-12-19 Irema-Filter Gmbh Filter medium consisting of synthetic polymer
US11090590B2 (en) 2012-11-13 2021-08-17 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
WO2014149750A1 (en) 2013-03-15 2014-09-25 Donaldson Company, Inc. Filter media and elements
DE102013008402A1 (en) 2013-05-16 2014-11-20 Irema-Filter Gmbh Nonwoven fabric and process for producing the same
US9474994B2 (en) 2013-06-17 2016-10-25 Donaldson Company, Inc. Filter media and elements
DE102013014919A1 (en) 2013-07-15 2015-01-15 Ewald Dörken Ag Bicomponent fiber for the production of spunbonded nonwovens
WO2015175869A1 (en) * 2014-05-15 2015-11-19 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
SG10201505357YA (en) * 2014-07-08 2016-02-26 Airazor Technologies Pte Ltd A filter device
TWM518119U (en) * 2015-08-06 2016-03-01 K J Filtration Technologies Ltd Self-supporting electrostatic filter material and its filter
JP6372507B2 (en) * 2016-03-11 2018-08-15 ダイキン工業株式会社 Air filter medium, air filter unit, and method of manufacturing air filter medium
US10335729B1 (en) 2016-09-30 2019-07-02 American Air Filter Company, Inc. Structural support for air filter
CN106731235B (en) * 2016-12-23 2019-06-14 林圣灼 A kind of air conditioning filter material and preparation method thereof
DE102018000357A1 (en) * 2017-01-18 2018-07-19 Mann+Hummel Gmbh Road vehicle with ambient air cleaning device, ambient air cleaning device and filter element
DE102017000792B4 (en) * 2017-01-30 2022-08-04 Mann+Hummel Gmbh Filter element, method for its manufacture and air filter
CN107596819B (en) * 2017-11-07 2023-09-12 无锡风正科技有限公司 Folding-free glue line type filter screen structure for HEPA filter and manufacturing method thereof
RU185112U1 (en) * 2018-06-22 2018-11-21 Леонид Александрович Белик Cone channel filter for ventilation systems
WO2023081282A1 (en) * 2021-11-03 2023-05-11 Liquidity Corporation Electrospun polymeric nanofiber filter material and devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063926A (en) * 1990-04-12 1991-11-12 Donaldson Company, Inc. Respirator cartridge with sealant dispersion member
US5240479A (en) * 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
US5441550A (en) * 1992-03-26 1995-08-15 The University Of Tennessee Research Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5955174A (en) * 1995-03-28 1999-09-21 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs
US5709735A (en) * 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5900305A (en) * 1997-01-24 1999-05-04 Chapman; Rick L. Laminated high efficiency filter
JP2002519170A (en) * 1998-06-29 2002-07-02 ポール・コーポレーション Folded filter and method of manufacturing the same
US6723669B1 (en) * 1999-12-17 2004-04-20 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
US6156086A (en) * 1999-03-22 2000-12-05 3M Innovative Properties Company Dual media vacuum filter bag
US6428610B1 (en) 2000-01-18 2002-08-06 The University Of Tennessee Research Corporation Hepa filter
CA2369349A1 (en) * 2000-01-19 2001-07-26 Mitsui Chemicals, Inc. Spunbonded non-woven fabric and laminate thereof
WO2001060496A1 (en) 2000-02-15 2001-08-23 Hollingsworth & Vose Company Melt blown composite hepa filter media and vacuum bag
DE10013315C2 (en) * 2000-03-17 2002-06-06 Freudenberg Carl Kg Pleated filter from a multi-layer filter medium
EP1236494B1 (en) * 2001-03-02 2003-10-15 Airflo Europe N.V. Composite filter and method of making the same
EP1385597A1 (en) 2001-05-02 2004-02-04 HOLLINGSWORTH & VOSE COMPANY Filter media with enhanced stiffness and increased dust holding capacity
US6872311B2 (en) * 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
US7320719B2 (en) * 2002-02-13 2008-01-22 3M Innovative Properties Company Filter device method of manufacturing the same and method of replacing a filter device
US20030203696A1 (en) * 2002-04-30 2003-10-30 Healey David Thomas High efficiency ashrae filter media
DE10221694B4 (en) * 2002-05-16 2018-07-12 Branofilter Gmbh Multi-layer filter construction, use of such a multi-layer filter assembly, dust filter bag, bag filter bag, pleated filter, surface exhaust filter and air filter for motor vehicles
DE60329922D1 (en) * 2002-09-17 2009-12-17 Du Pont EXTREMELY LIQUID, UNIQUE FABRIC
US7682686B2 (en) * 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
ES2265079T3 (en) * 2003-08-08 2007-02-01 REIFENHAUSER GMBH & CO. KG MASCHINENFABRIK NON-WOVEN MATERIAL OF SPINNING AND PROCEDURE FOR MANUFACTURING A NON-WOVEN MATERIAL OF SPINNING.
US20060000196A1 (en) * 2004-07-02 2006-01-05 Beier Scott B Fluid filter
US20060060085A1 (en) * 2004-09-22 2006-03-23 Ptak Thaddeus J Composite filter media
US20060240733A1 (en) * 2005-04-25 2006-10-26 Fina Technology, Inc. Fibers and fabrics prepared from blends of homopolymers and copolymers
US20070084786A1 (en) * 2005-10-14 2007-04-19 General Electric Company Filter, filter media, and methods for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008107006A1 *

Also Published As

Publication number Publication date
DE102007011365B4 (en) 2009-02-12
CN101622047B (en) 2013-01-23
CN101622047A (en) 2010-01-06
AU2007348647B2 (en) 2010-06-24
AU2007348647A1 (en) 2008-09-12
US20100101199A1 (en) 2010-04-29
WO2008107006A1 (en) 2008-09-12
DE102007011365A1 (en) 2008-09-11
US8709139B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
DE102007011365B4 (en) Position for use in a HEPA filter element and filter element
EP2340098B1 (en) Filter medium for particulate filtration
DE19920983C5 (en) Two-layer or multi-layer filter medium for air filtration and filter element made from it
DE112010001912B4 (en) Multilayer nanofiber filter and method of manufacture
EP1790406B1 (en) Filter element and method of making
EP1791617B1 (en) Method for the production of a filter layer, and filter layer especially for a dust filter bag of a vacuum cleaner
DE102012010307B4 (en) Multi-layer filter material for liquid filtration and a filter element made from it
EP0338479A1 (en) Dust filter bag, production and use
EP1134013A1 (en) Pleated filter consisting of multilayered filtermedium
DE4418033A1 (en) Filter element with fiber coating and process for its production
EP1498170A1 (en) Two-layers synthetic-filter element
WO2004069378A2 (en) Filter element and method for the production thereof
DE102015015777A1 (en) Filter medium and filter element with a filter medium
EP0910454B1 (en) Particle filter in the form of a pleated nonwoven layer
EP0564799A2 (en) Multilayer filter material
EP3749432A1 (en) Filter medium having a nonwoven layer and a melt-blown layer
DE9218021U1 (en) Multi-layer filter material
DE68916109T2 (en) Elastic filter material.
EP1123724B1 (en) Dust filter bag
EP3721965A1 (en) Filter medium with non-woven fabric as single-layer composite and method for producing such a filter medium
EP3630335B1 (en) Filter medium, method for producing same, and use of the filter medium in a filter element
DE102014011443B4 (en) Filter medium, filter element and replaceable filter for filtering particulate contaminants from a liquid
DE102020127821A1 (en) air filter
EP2172228A1 (en) Ozone-resistant filter element
EP3078407A1 (en) High efficiency filter medium with no binding agent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100222

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130319