EP2128448B1 - Drive turbo machine for a machine line, machine line with and drive for drive turbo machine - Google Patents

Drive turbo machine for a machine line, machine line with and drive for drive turbo machine Download PDF

Info

Publication number
EP2128448B1
EP2128448B1 EP09006649.9A EP09006649A EP2128448B1 EP 2128448 B1 EP2128448 B1 EP 2128448B1 EP 09006649 A EP09006649 A EP 09006649A EP 2128448 B1 EP2128448 B1 EP 2128448B1
Authority
EP
European Patent Office
Prior art keywords
pinion
turbo machine
machine
compressor
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09006649.9A
Other languages
German (de)
French (fr)
Other versions
EP2128448A2 (en
EP2128448A3 (en
Inventor
Ole Hansen
Arindam Khan
Klaus-Dieter Mohr
Gerd-Ulrich Dr. Woelk
Hans-Otto Jeske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Publication of EP2128448A2 publication Critical patent/EP2128448A2/en
Publication of EP2128448A3 publication Critical patent/EP2128448A3/en
Application granted granted Critical
Publication of EP2128448B1 publication Critical patent/EP2128448B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power

Definitions

  • the present invention relates to a geared turbo machine, in particular a radial geared turbo machine, with an integrated load gear for a machine train, an integrated load gear for such a geared turbo machine, and a machine train with such a geared turbo machine and a further compressor, in particular a main compressor.
  • a machine train generally has a drive unit, for example a steam turbine, a gas turbine or an expander, in particular an expansion or residual gas turbine, and one or more compressors driven by this drive unit, for example for compressing air or other gases.
  • a drive unit for example a steam turbine, a gas turbine or an expander, in particular an expansion or residual gas turbine, and one or more compressors driven by this drive unit, for example for compressing air or other gases.
  • machine trains are known in which a double-driving steam turbine drives a booster compressor with several compressor stages on one side and a main compressor on the opposite side of the steam turbine, which draws in a medium, compresses it and feeds the booster compressor with a partial mass flow thereof, which for example, compressed to one to three pressure levels.
  • the speeds of the steam turbine, main and booster compressor must be coordinated with each other. While the speeds of the steam turbine and the compressor stages of the booster compressor should be relatively high for thermodynamic reasons, they are lower for the main compressor - due to its large diameter and the associated high centrifugal forces - and so far limit the speed of the steam turbine in particular, with regard to its Efficiency and their size is disadvantageous.
  • the booster compressor as a gear compressor, such as that from the EP 1 691 081 A2 , which is a gear compressor with an integrated gear according to the preamble of claim 1, or the DE 42 41 141 A1 is known to operate its compressor stages at higher speeds than the main compressor. Even in one of the DE 2413 674 C2 known three-stage gear compressor, the drive speed is quickly translated to higher speeds in the compressor stages.
  • the publication GB-A-2321502 discloses a turbocharger for a diesel engine, particularly an engine rated at 10 MW or more with a single turbine in a housing that drives a number of compressor impellers of compressors through a system, the impellers not being driven on the same shaft as the turbine but on separate waves.
  • DE-GM 7122098 it is also known in principle to reduce the speed of a steam turbine by means of a separate spur gear in front of the main compressor, which, however, due to the separate gear, not only the manufacturing and assembly costs, but also the axial length of the machine train and thus Transportation and building costs increased.
  • Known machine trains have further disadvantages.
  • the object of the present invention is to reduce at least one of the aforementioned disadvantages and to improve a machine train.
  • a speed-reducing load gear which is arranged between the drive unit and a compressor, into a gearbox of a geared turbo machine and thus to separate it from the compressor at the same time.
  • a geared turbo machine for a machine train comprises a drive pinion, which is non-rotatably connected to a drive shaft, one with the Drive pinion meshing large wheel and one or more, preferably at least two, in particular three or four turbomachine rotors.
  • These turbomachine rotors of the geared turbomachine each comprise a turbomachine shaft, one or more, preferably two, impellers non-rotatably connected to the turbomachine shaft and a turbomachine pinion rotatably connected to the turbomachine shaft, the turbomachine pinions of one or more turbomachine rotors being in engagement with the large wheel.
  • An impeller of a turbomachine rotor can be designed as a compressor or expander impeller.
  • two or more compressor impellers of the same turbomachine rotor and / or compressor impellers of different turbomachine rotors, preferably designed as radial compressors can form compressor stages of the geared turbo machine, which acts as a geared compressor.
  • two expander impellers of the same turbomachine rotor and / or expander impellers of different turbomachine rotors, preferably designed as radial expanders can form expander stages of the geared turbomachine, which act as gear expander.
  • both versions can also be combined, for example in that at least one turbomachine rotor equipped with one or more compressor impellers forms one or more compressor stages and at least one other turbomachine rotor equipped with one or more expander impellers forms one or more expander stages of the same geared turbomachine, and / or in that one or more turbomachine rotors are equipped with at least one compressor and at least one expander impeller and thus form both a compressor and an expander stage.
  • both pure single or multi-stage gear compressors with one or more compressor shafts equipped with at least one compressor impeller, pure single or multi-stage gear expanders with one or more expander shafts equipped with at least one expander impeller, as well as combined gear compressor / expander (“gear compander”) are generalizing referred to as a geared turbo machine, its rotors equipped with compressor and / or expander impellers as a turbo machine rotor.
  • the geared turbo machine now additionally has an output pinion of a speed-reducing load gear, which is connected in a rotationally fixed manner to an output shaft for driving a compressor drive shaft, which can be coupled to this output shaft, of a further compressor, in particular a main compressor of the machine train, which is separate from the geared turbo machine and is designed, in particular, as a single-shaft compressor can, preferably as an axial compressor, radial compressor, designed for example with a horizontal and / or vertical parting line or as an isothermal compressor, or as a combined axial-radial compressor.
  • a geared turbo machine thus combines for the first time a multi-shaft gearbox of a geared turbo machine and a load gear for a compressor separate therefrom.
  • An integrated gearbox, a geared turbo machine with such an integrated gearbox or a machine train according to this first aspect of the present invention has a number of advantages: by means of the speed-reducing gearbox, a drive unit, for example a steam turbine, a gas turbine or an expander, in particular a relaxation device - or residual gas turbine, which drives the drive shaft, a further compressor, in particular a main compressor, and the turbomachine rotors of the geared turbomachine are each operated in speed ranges that are favorable for them.
  • a drive unit for example a steam turbine, a gas turbine or an expander, in particular a relaxation device - or residual gas turbine, which drives the drive shaft
  • a further compressor in particular a main compressor
  • the turbomachine rotors of the geared turbomachine are each operated in speed ranges that are favorable for them.
  • the speed-reducing load gear can reduce a speed of the drive pinion with a gear ratio to a speed of the output pinion which is in the range from 1.25 to 1.45, preferably in the range from 1.3 to 1.4 and in particular in the range between 1.32 to 1.38.
  • a gear ratio is defined in the customary manner as the quotient of the drive to output speed, here here from the drive pinion speed divided by the output pinion speed, so that a reversal of the direction of rotation is also described by a positive gear ratio.
  • a turbomachine pinion can correspondingly have a transmission ratio with the drive pinion, which is in the range from 0.28 to 0.54, preferably in the range from 0.30 to 0.52 and in particular in the range between 0.32 to 0.50, the transmission ratio resulting from the amount of the quotient of the drive pinion speed divided by the turbo-machine pinion speed.
  • a steam turbine can be operated at a nominal speed in a range from 4000 to 7000 revolutions per minute (rpm), the turbo machine rotors of a booster compressor designed as a geared turbo machine at a nominal speed in a range from 10000 to 17000 rpm, and a main compressor designed as a single-shaft compressor at a nominal speed in a range from 2000 to 6000 rpm.
  • rpm revolutions per minute
  • booster compressor designed as a geared turbo machine at a nominal speed in a range from 10000 to 17000 rpm
  • main compressor designed as a single-shaft compressor at a nominal speed in a range from 2000 to 6000 rpm.
  • the drive and output pinions form a load gear, via which a large part of the power supplied by the drive unit, which can be in the range of 40 to 80 MW for steam turbines, for example, can be transmitted to the further compressor, which for example has a power in the range between 30 to 50 MW is applied.
  • a large part of the power supplied by the drive unit which can be in the range of 40 to 80 MW for steam turbines, for example, can be transmitted to the further compressor, which for example has a power in the range between 30 to 50 MW is applied.
  • Preferably at least half, particularly preferably at least 60% of the power is transferred from the drive shaft to the output shaft.
  • the large wheel distributes the remaining differential power accordingly to the turbomachine rotors in mesh with it.
  • the toothing widths of the turbomachine pinion and the large wheel can therefore advantageously be made smaller and are preferably at most 0.91 times the toothing width of the drive pinion.
  • Another significant advantage is that a separate gearbox is no longer required to reduce the speed of the drive unit to the speed of the additional compressor, which saves manufacturing and assembly work as well as installation space.
  • the further compressor is preferably accommodated in a housing which is separate from a housing of the geared turbomachine. In this way, a vibration-like decoupling between the geared turbo machine and the further compressor can be achieved particularly advantageously.
  • the further compressor is preferably spaced axially from the geared turbomachine, which is particularly advantageous if the further compressor is large as the main compressor.
  • the load gear is not accommodated in the housing of the further or main compressor, which can be advantageous in terms of vibration.
  • the geared turbomachine can have one or more expander stages, in that one or more turbomachine rotors are each equipped with at least one, two or more expander impellers.
  • a waste medium from the process implemented in the machine train and / or the process medium previously compressed in the main compressor, preferably a partial mass flow thereof can be relaxed and its enthalpy can be used to drive the further compressor and / or compressor stages of the geared turbomachine.
  • the geared turbo machine which then acts as a booster compressor of the machine train, can have one or more compressor stages, in that one or more turbomachine rotors are each equipped with at least one, two or more compressor impellers.
  • the medium compressed in the further compressor preferably a partial mass flow from the main compressor, can be further compressed in order to act as a coolant, for example after recooling and expansion.
  • other media that do not flow through the further compressor can also be compressed in the compressor stages of the geared turbine machine.
  • the geared turbo machine can thus equally act as a work machine and / or an engine, the turbo machine shafts exerting a torque on an impeller or being acted upon by a torque from the impeller.
  • an electric machine supporting the drive unit and / or drivable by the drive unit in particular a motor, a generator or a motor / generator, can be provided, the electric machine input shaft of which engages with the drive pinion, the large wheel, the output pinion or a turbomachine pinion stands or is coupled or non-rotatably connected to the drive shaft, the output shaft, the while of the large wheel or a turbine rotor.
  • additional Drive torque is introduced into the geared turbo machine by an electric motor or the mechanical power available there is converted into electrical power in a generator and stored, for example, made available to the machine train or fed into a power grid.
  • the cross-sections through which the flow passes, and thus the housing, impeller or blading diameters of the geared turbomachine can be made smaller due to the higher pressures and in particular when only a partial mass flow flows through from the main compressor than with the other compressor.
  • a smallest cross-section of the further compressor through which flow therefore has at least 1.05 times, preferably at least 1.1 times and in particular at least 1.2 times the smallest cross-section of the geared turbomachine through which there is flow.
  • a non-rotatable connection for example between the drive pinion and drive shaft, turbomachine pinion and turbomachine shaft or output pinion and output shaft, is a detachable connection, which can comprise, for example, a spline shaft and / or screws, as well as a non-detachable connection, in particular a welded connection or an integral design , understood for example as a one-piece original and / or shaped part.
  • a clutch between the output shaft and the separate compressor drive shaft that can be coupled with it can be realized, for example, via a flange connection, a clutch for compensating for axial and / or angular misalignment, and / or a switchable or self-switching clutch, for example an overload clutch.
  • both output shafts and compressor drive shafts that are connected to one another in a releasable and non-releasable manner are referred to as couplable.
  • a coupling between the output shaft and the compressor drive shaft can advantageously dampen torsional vibrations, axial shocks or the like.
  • an engagement comprises, on the one hand, a direct engagement, ie a meshing of toothings, for example single or double helical toothings, of the two elements which are in engagement with one another.
  • a direct engagement ie a meshing of toothings, for example single or double helical toothings, of the two elements which are in engagement with one another.
  • this also includes an indirect intervention with the interposition of one or more gear stages, in particular Includes spur gear and / or planetary gear stages, such as from the DE 42 41 141 A1 is known, the disclosure of which is expressly included in this description in this regard.
  • a geared turbo machine according to the first aspect of the present invention has two or more turbo machine rotors, all turbo machine pinions can be meshed with the large wheel, which enables a more even loading of the large wheel and a narrower built geared turbo machine.
  • one or more turbomachine pinions can also be in engagement with the output pinion. This increases the distance between these turbomachine rotors and those driven by the large wheel, which advantageously increases the design freedom of the individual turbomachine rotors or the compressor and / or expander stages formed by them.
  • an axis of rotation of the drive pinion, an axis of rotation of the large wheel and an axis of rotation of the output pinion are arranged in a common, preferably substantially horizontal, plane. This advantageously reduces the overall height of the geared turbo machine perpendicular to this plane.
  • the axis of rotation of a turbomachine pinion meshing with the large wheel and / or the axis of rotation of a turbomachine pinion meshing with the output pinion can also be arranged in this plane and thus further reduce the overall height. If further turbomachine pinions are in engagement with the large wheel, their axes of rotation are preferably arranged in a further common plane which is parallel to the plane in which the axis of rotation of the large wheel lies.
  • a geared turbo machine preferably has a multi-part housing which accommodates the drive pinion, the large wheel, the output pinion and the turbomachine pinion.
  • the axes of rotation lie in one or two mutually parallel, preferably horizontal planes, it is preferred that this housing is divided in this plane or these planes. This simplifies assembly and maintenance.
  • the output pinion and the large wheel are preferably arranged in the same transverse plane of the drive pinion.
  • This builds the geared turbo machine advantageous axially particularly short.
  • the large wheel and the output pinion can also be arranged in axially offset planes, the large wheel or the drive pinion then advantageously being designed in two stages and two different pitch circle diameters for engagement with drive and turbo-machine pinions (for a two-stage large wheel) or for engagement with the large wheel and output pinion (for two-stage drive pinion).
  • Such an arrangement can be made narrower, particularly in the plane of the axes of rotation of the drive pinion and large wheel.
  • the drive pinion, the large wheel, the turbomachine pinions and the output pinion are preferably axially mounted in a housing of the geared turbine machine, which for this purpose has, for example, two to six axial bearings.
  • the rest of the drive pinion, the large wheel, the turbomachine pinions and the driven pinion can then be supported axially on these elements, in particular upper pressure combs, axially supported in the housing of the geared turbomachine, as is known from the DE 42 41 141 A1 are known, the disclosure of which is expressly included in this description in this regard.
  • the axial thrust of the impellers or the drive unit can be absorbed with less structural effort.
  • the further compressor can be arranged particularly advantageously on the side of the geared turbo machine opposite the drive unit.
  • the drive unit which is thus free on the side opposite the geared turbomachine, as a steam turbine with an axial outflow.
  • a condenser connected downstream of the steam turbine can also be arranged essentially on the same horizontal plane, which significantly reduces the overall height of such a machine train.
  • a steam turbine with axial outflow is provided as the drive unit.
  • the above-explained first and second aspects of the present invention according to claims 1, 10 and 12 and 18 respectively solve the aforementioned Task to improve a machine train. Both aspects are particularly advantageously combined with one another, but this is not mandatory.
  • Fig. 1 , 3rd show the essential elements of a machine train according to a first embodiment of the present invention, in which the first and second aspects of the present invention are realized together.
  • Fig. 1 4 denotes a main compressor designed as an axially suction single-shaft compressor, which draws air in the manner indicated by an arrow and compresses it to, for example, 7 bar.
  • a partial mass flow of this compressed air is then fed in a manner not shown to a first turbomachine rotor 3.10 of a booster compressor, which is designed as a geared turbomachine 2 explained in more detail below.
  • the first turbomachine rotor 3.10 comprises two compressor impellers 3.12, 3.13 (indicated by triangles) Figure 3B ), which sit on a common turbomachine shaft and rotate in spiral housings (not shown) in order to further compress the air supplied by the main compressor, and thus form two compressor stages of the booster compressor 2. From these, the air then becomes a second turbomachine rotor 3.20 of the booster compressor in a manner not shown in any more detail 2 supplied, the two compressor impellers 3.22, 3.23 (also indicated as triangles ( Figure 3B ) have a smaller diameter and rotate faster than the impellers of the first turbomachine rotor 3.10 in order to further compress the air and thus form two further compressor stages of the booster compressor 2.
  • the air which is further compressed therein is then fed to a third turbomachine rotor 3.30 of the booster compressor 2, the two compressor impellers 3.32, 3.33 ( Figure 3B ) have a further smaller diameter and rotate faster than the impellers of the second turbomachine rotor 3.20 in order to finally compress the air to a desired final pressure of 75 bar and thus form two further compressor stages of the six-stage booster compressor 2.
  • three turbo machine rotors 3.10, 3.20 and 3.30 of the booster compressor 2 are structurally analogous.
  • the turbo machine pinion 3.11 of the first, slowest rotating turbo machine rotor 3.10 has the largest diameter
  • more, for example four or five turbomachine rotors, each with one, two or more impellers, are also possible.
  • the large wheel 2.2 is in turn driven by a drive pinion 2.1 of smaller diameter, which is rotatably fixed in a manner not shown with a drive shaft of a steam turbine 1 ( Fig. 1 ) or another drive unit, for example a gas turbine or an expander, is connected so that the turbine speed is rapidly translated to the turbomachine shafts of the three turbomachine rotors with different transmission ratios.
  • a drive pinion 2.1 of smaller diameter which is rotatably fixed in a manner not shown with a drive shaft of a steam turbine 1 ( Fig. 1 ) or another drive unit, for example a gas turbine or an expander, is connected so that the turbine speed is rapidly translated to the turbomachine shafts of the three turbomachine rotors with different transmission ratios.
  • the axis of rotation of an output pinion 2.3 is arranged, which is connected to the drive pinion 2.1 on the large wheel 2.2 opposite side is engaged.
  • Drive pinion 2.1, large gear 2.2 and output pinion 2.3 are in the same transverse plane (plane of the Figure 3A ) arranged so that the same toothing of the drive pinion 2.1 meshes with both the large gear 2.2 and the output pinion 2.3.
  • Figure 3B schematically indicated, due to the different torque flows, the tooth width of the turbo machine pinion 3.11, 3.21, 3.31 is smaller than that of the input and output pinion 2.1, 2.3.
  • the diameter of the driven pinion 2.3 is larger than the diameter of the driving pinion 2.1, so that the speed of the steam turbine 1, which drives the driving pinion 2.1 seated on its drive shaft, onto the driven shaft with the driven pinion 2.3 is slowed down.
  • the output shaft with the output pinion 2.3 is by a in Fig. 1 indicated coupling with a compressor drive shaft 4.1 of the main compressor 4 designed as a single-shaft compressor ( Fig. 1 ) connected, so that the turbine drives it with a reduction in the slow. Input and output pinions 2.1, 2.3 thus form a speed-reducing load gear, via which the majority of the turbine power is transferred to the main compressor 4.
  • steam turbine 1, booster compressor 2 and main compressor 4 can be operated simultaneously in optimal speed ranges.
  • the speed of the steam turbine 1 can be higher with a lower main compressor speed, which improves the efficiency of the steam turbine 1 and allows the use of smaller, faster rotating steam turbines.
  • Input and output pinions 2.1, 2.3, the large gear 2.2 and the engaging turbo machine pinions 3.11, 3.21 and 3.31 are accommodated in a common housing (not shown).
  • This three-part housing is in the Figure 3A Dash-dotted plane, in which the axes of rotation of the input and output pinions 2.1, 2.3, large gear 2.2 and turbo machine pinion 3.11 lie, horizontally divided, so that they can be easily mounted in a first, lower housing part on which a second, middle housing part is put on.
  • the axes of rotation of the turbomachine pinions 3.21, 3.31 of the second and third turbomachine rotors 3.20 and 3.30 lie in one Figure 3A dash-dot indicated further horizontal plane, which is parallel to the plane in which the axes of rotation of the input and output pinions 2.1, 2.3, large wheel 2.2 and turbo machine pinion 3.11 lie.
  • the housing is also divided horizontally in this plane, so that the turbomachine pinions 3.21, 3.31 can be mounted in the middle housing part in a simple manner after the middle housing part has been put in place. on which a third, upper housing part is placed.
  • turbo machine pinions 3.21, 3.31 in the further horizontal plane vertically above the plane of the input, output pinion and large wheel axis of rotation advantageously means that no installation space is required below the large wheel 2.2 for the arrangement of turbo machine rotors.
  • the main compressor 4 has a housing which is separate from the booster compressor 2 and is connected to it only via the compressor drive shaft 4.1.
  • the two housings of the main compressor and the booster compressor which for example rest on a concrete or metal foundation (not shown), can thus be largely decoupled in terms of vibration technology.
  • the steam turbine 1 drives the booster compressor 2 and the main compressor 4 arranged on the opposite side with only one drive shaft.
  • a steam turbine with only one end of the shaft advantageously has other natural frequencies or critical speeds - in particular, the area between neighboring natural frequencies or critical speeds, from which a sufficient distance should be kept during operation, to avoid resonance problems avoid, advantageously enlarged and thus the permissible operating range can be expanded.
  • the arrangement of the booster compressor 2 and the main compressor 4 on the same side of the steam turbine 1 enables an in Fig. 1 axial outflow indicated by an arrow from the steam turbine 1 to the opposite side of the main compressor 4 and the booster compressor 2 (to the left in Fig. 1 ) according to the second aspect of the present invention. This advantageously improves the efficiency of the steam turbine 1.
  • the axial exhaust steam from the steam turbine 1 flows into one of these condensers (not shown).
  • the capacitor of a machine train according to the second aspect of the present invention due to the axial outflow of the steam turbine 1, are arranged essentially on the same horizontal plane as this.
  • This advantageously enables a one-storey structure of the machine train, which leads to considerable cost savings due to the more compact foundation and the lower construction and thus building height.
  • FIG. 2 , 4th show in Fig. 1 , 3rd corresponding illustration, the essential elements of a machine train according to a second embodiment of the present invention, which essentially coincides with the first embodiment and in which the first and second aspects of the present invention are also realized together.
  • Elements that correspond to the first embodiment are identified by identical reference numerals, so that in this respect reference is made to the above explanations of the essentially identical first embodiment and only the differences between the first and second embodiments are discussed below.
  • the main compressor 4 sucks radially in the second embodiment.
  • the booster compressor 2 of the second embodiment differs from the booster compressor 2 of the first embodiment in the arrangement of the second and third turbomachine rotors 3.20, 3.30. While the axes of rotation of their turbomachine pinions 3.21, 3.31, as in Figure 3A shown, lie in a common further horizontal plane, which is parallel to the plane of the axes of rotation of the input, output pinion and large wheel, are inferior in the second embodiment Fig.
  • turbomachine pinions 3.11, 3.21 of the first and second turbomachine rotors 3.10, 3.20 mesh with the large wheel 2.2
  • the interposition of large wheel 2.2 or output pinion 2.3 can maintain the direction of rotation of the drive shaft in the turbomachine shafts, but can be reversed in the output shaft. If it is advantageous, the direction of rotation can of course also be oriented differently by interposing further gear stages between the input and output pinion, large wheel and / or turbo machine pinion.
  • the turbomachine pinion it is possible to design the turbomachine pinion as ring gears of a planetary gear which drives the turbomachine shaft, as is shown in FIG DE 42 41 141 A1 is described, the disclosure of which is expressly included in the present description.
  • FIG. 5 shows In Figure 3B , 4B Corresponding representation of the essential elements of a gear arrangement of a geared turbo machine with an integrated gear according to a third embodiment of the present invention, which essentially corresponds to the first and second embodiments and in which the first and second aspects of the present invention are also realized jointly.
  • Elements corresponding to the first and second versions are identified by identical reference numerals, so that reference is made to the above explanations regarding the essentially identical first and second versions and only the differences between the first, second and third versions are discussed below.
  • the first turbomachine rotor 3.10 is replaced by an electric machine input shaft 5.1, which is connected to an electric machine 5, for example an electric motor or generator, via a clutch.
  • the electric machine input shaft 5.1 has an electric machine pinion 2.4, which engages with the large wheel 2.2 instead of the turbo machine pinion 3.11.
  • a higher speed of the drive pinion 2.1 can be reduced to a lower speed of the electrical machine pinion, which is - depending on a mains frequency - for example 3000 or 3600 rpm.
  • the electric machine 5 is designed as a generator or motor / generator, mechanical power of the steam turbine 1, which is not required to drive the main compressor 4 and the compressor stages of the geared turbine machine 2, can be converted into electrical energy and fed into a power supply network, for example.
  • the electric machine 5 is designed as a motor or motor / generator, conversely, additional torque for driving the main compressor 4 and the compressor stages of the geared turbo machine 2 can be fed into the geared turbo machine 2.
  • one impeller of the third turbomachine rotor 3.30 is designed as an expander impeller 3.34, the other as in the first and second embodiment as a compressor impeller 3.33, which is In Fig. 5 is indicated by triangles in the same direction.
  • the geared turbo machine 2 thus has five compressor stages and one expander stage and at the same time acts as a working machine and as an engine (compander).
  • a medium for example a residual gas arising in the process, can be relaxed in the expander stage of the expander impeller 3.34 and thus additional torque for driving the main compressor 4 and the compressor stages of the geared turbine engine 2 in the geared turbo machine 2 are fed.
  • Fig. 6 shows in Fig. 5 Corresponding representation of the essential elements of a gear arrangement of a geared turbomachine with an integrated gear according to a fourth embodiment of the present invention, which essentially corresponds to the third embodiment and in which the first and second aspects of the present invention are also realized jointly.
  • Matching elements are identified with identical reference numerals, so that in this respect reference is made to the above explanations for the essentially identical third embodiment and only the differences between the third and fourth embodiments are discussed below.
  • the turbomachine pinions 3.21, 3.31 of the second and third turbomachine rotors 3.20, 3.30 both mesh with the large wheel 2.2 and their axes of rotation are arranged in a common horizontal plane, in which a dividing or separating joint of the housing of the geared turbomachine 2 is also arranged
  • the turbomachine pinion 3.21 of the turbomachine rotor 3.20 meshes with the large gear 2.2
  • the turbomachine pinion 3.31 of the turbomachine rotor 3.30 which carries a compressor impeller 3.33 and an expander impeller 3.34, is in engagement with the output pinion 2.3, as is also the case in the second version (cf. Figure 4B ) the case is.
  • Fig. 7 shows In Flg. 6 corresponding representation, the essential elements of a gear arrangement of a geared turbomachine with an integrated gear according to a fifth embodiment of the present invention, which essentially corresponds to the fourth embodiment and in which the first and second aspects of the present invention are also realized jointly.
  • Elements that correspond to the fourth embodiment are identified by identical reference numerals, so that in this respect reference is made to the above explanations of the fourth embodiment, which is essentially identical in construction, and only the differences between the fourth and fifth embodiments are discussed below.
  • a further turbomachine rotor 3.10 is provided with two compressor impellers 3.12, 3.13, the turbomachine pinion 3.11 of which engages with the electric machine pinion 2.4 on the side opposite the large wheel 2.2.
  • the geared turbo machine 2 thus has four compressor stages and two expander stages and also acts as a compander. While a partial mass flow of the air compressed in the main compressor 4 is further compressed in the compressor stages, a medium, for example a residual gas arising in the process, can be relaxed in the expander stages and thus additional torque for driving the main compressor 4 and the compressor stages of the geared turbo machine 2 into the geared turbo machine 2 be fed.
  • some or all of the compressor impellers of the geared turbomachine 2 can compress medium, preferably a partial mass flow thereof, that has flowed through the main compressor, or another medium, for example another process gas.
  • the geared turbo machine 2 can also compress different media with its different compressor impellers.
  • the steam turbine, main compressor and the turbomachine rotors of the geared turbomachine can each be operated in optimal speed ranges, which can be coordinated with one another by appropriate selection of the ratios in the gearbox of the geared turbomachine 2 and the load gear 2.1, 2.3.
  • the steam turbine can rotate faster due to the coupling with the slower rotating main compressor 4 via the speed-reducing load transmission, so that its efficiency improves and smaller steam turbine sizes can be used.
  • the integration of the load gear in the geared turbo machine 2 advantageously means that no separate load gear is required, which leads to a more compact machine train and less manufacturing and assembly work. Because of the main compressor housing, which is separate from this, it is partially vibration-related Decoupling of main compressor and geared turbo machine possible.
  • turbomachines in particular a gas turbine or an expander such as a relaxation or residual gas turbine, can equally be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Gear Transmission (AREA)
  • Supercharger (AREA)

Description

Die vorliegende Erfindung betrifft eine Getriebeturbomaschine, insbesondere Radialgetriebeturbomaschine, mit Integriertem Lastgetriebe für einen Maschinenstrang, ein integriertes Lastgetriebe für eine solche Getriebeturbomaschine, sowie einen Maschinenstrang mit einer solchen Getriebeturbomaschine und einem weiteren Kompressor, insbesondere einem Hauptkompressor.The present invention relates to a geared turbo machine, in particular a radial geared turbo machine, with an integrated load gear for a machine train, an integrated load gear for such a geared turbo machine, and a machine train with such a geared turbo machine and a further compressor, in particular a main compressor.

Ein Maschinenstrang weist allgemein ein Antriebsaggregat, beispielsweise eine Dampfturbine, eine Gasturbine oder einen Expander, insbesondere eine Entspannungs- bzw. Restgasturbine, und einen oder mehrere von diesem Antriebsaggregat angetriebene Kompressoren beispielsweise zur Verdichtung von Luft oder anderen Gasen auf.A machine train generally has a drive unit, for example a steam turbine, a gas turbine or an expander, in particular an expansion or residual gas turbine, and one or more compressors driven by this drive unit, for example for compressing air or other gases.

Aus betriebsinterner Praxis sind Insbesondere Maschinenstränge bekannt, bei denen eine doppeltantreibende Dampfturbine auf einer Seite einen Boosterkompressor mit mehreren Kompressorstufen und auf einer gegenüberliegenden Seite der Dampfturbine einen Hauptkompressor antreibt, der ein Medium ansaugt, verdichtet und den Boosterkompressor mit einem Teilmassenstrom hiervon beschickt, den dieser, beispielsweise auf ein bis drei Druckstufen, weiter verdichtet.From internal company practice, in particular, machine trains are known in which a double-driving steam turbine drives a booster compressor with several compressor stages on one side and a main compressor on the opposite side of the steam turbine, which draws in a medium, compresses it and feeds the booster compressor with a partial mass flow thereof, which for example, compressed to one to three pressure levels.

Hierbei müssen die Drehzahlen von Dampfturbine, Haupt- und Boosterkompressor aufeinander abgestimmt werden. Während aus thermodynamischen Gründen die Drehzahlen der Dampfturbine und der Kompressorstufen des Boosterkompressors relativ hoch sein sollen, liegen sie für den Hauptkompressor - bedingt durch dessen große Durchmesser und die damit verbundenen hohen Fliehkräfte - jedoch niedriger und begrenzen bisher Insbesondere die Drehzahl der Dampfturbine, was hinsichtlich ihres Wirkungsgrades und ihrer Baugröße nachteilig ist.The speeds of the steam turbine, main and booster compressor must be coordinated with each other. While the speeds of the steam turbine and the compressor stages of the booster compressor should be relatively high for thermodynamic reasons, they are lower for the main compressor - due to its large diameter and the associated high centrifugal forces - and so far limit the speed of the steam turbine in particular, with regard to its Efficiency and their size is disadvantageous.

Daher ist es nach betriebsinterner Praxis bekannt, den Boosterkompressor als Getriebekompressor auszubilden, wie er beispielsweise aus der EP 1 691 081 A2 , die einen Getriebekompressor mit einem integrierten Getriebe nach dem Oberbegriff des Anspruchs 1 offenbart, oder der DE 42 41 141 A1 bekannt ist, um seine Kompressorstufen bei höheren Drehzahlen zu betreiben als den Hauptkompressor. Auch in einem aus der DE 2413 674 C2 bekannten dreistufigen Getriebekompressor wird die Antriebsdrehzahl auf höhere Drehzahlen in den Kompressorstufen ins Schnelle übersetzt.Therefore, it is known according to in-house practice to design the booster compressor as a gear compressor, such as that from the EP 1 691 081 A2 , which is a gear compressor with an integrated gear according to the preamble of claim 1, or the DE 42 41 141 A1 is known to operate its compressor stages at higher speeds than the main compressor. Even in one of the DE 2413 674 C2 known three-stage gear compressor, the drive speed is quickly translated to higher speeds in the compressor stages.

Die Druckschrift GB-A-2321502 offenbart einen Turbolader für einen Dieselmotor, insbesondere einen Motor mit einer Nennleistung von 10 MW oder mehr mit einer einzigen Turbine in einem Gehäuse, das eine Anzahl von Verdichterlaufrädern von Verdichtern durch ein System antreibt, wobei die Laufräder nicht auf derselben Welle wie die Turbine angetrieben werden, sondern auf getrennten Wellen. Beispielsweise aus dem DE-GM 7122098 ist es grundsätzlich auch bekannt, die Drehzahl einer Dampfturbine durch ein separates Stirnradgetriebe vor dem Hauptkompressor zu reduzieren, was jedoch aufgrund des separaten Getriebes nicht nur den Herstellungs- und Montageaufwand, sondern auch die axiale Baulänge des Maschinenstranges und damit Transport- und Gebäudekosten vergrößert. Bekannte Maschinenstränge weisen noch weitere Nachteile auf. So erfordert die bisherige Anordnung von Hauptkompressor und Boosterkompressor beidseits der Dampfturbine beispielsweise eine radiale Abströmung aus der Dampfturbine. Dies verschlechtert den Wirkungsgrad. Ist der Dampfturbine ein Kondensator nachgeschaltet, muss dieser mit dem radial abströmenden Dampf beschickte Kondensator in einer Horizontalebene über oder unter der Dampfturbine angeordnet werden, was die Bauhöhe des gesamten Maschinenstranges und damit Insbesondere die Kosten für ein diesen aufnehmendes Fundament bzw. Gebäude erheblich vergrößert.The publication GB-A-2321502 discloses a turbocharger for a diesel engine, particularly an engine rated at 10 MW or more with a single turbine in a housing that drives a number of compressor impellers of compressors through a system, the impellers not being driven on the same shaft as the turbine but on separate waves. For example, from DE-GM 7122098 it is also known in principle to reduce the speed of a steam turbine by means of a separate spur gear in front of the main compressor, which, however, due to the separate gear, not only the manufacturing and assembly costs, but also the axial length of the machine train and thus Transportation and building costs increased. Known machine trains have further disadvantages. For example, the previous arrangement of the main compressor and booster compressor on both sides of the steam turbine requires a radial outflow from the steam turbine. This worsens the efficiency. If a condenser is connected downstream of the steam turbine, this condenser, which is fed with the radially outflowing steam, must be arranged in a horizontal plane above or below the steam turbine, which considerably increases the overall height of the entire machine train and thus, in particular, the cost of a foundation or building that accommodates it.

Aufgabe der vorliegenden Erfindung ist es, wenigstens einen der vorgenannten Nachteile zu reduzieren und einen Maschinenstrang zu verbessern.The object of the present invention is to reduce at least one of the aforementioned disadvantages and to improve a machine train.

Diese Aufgabe wird durch ein integriertes Getriebe mit den Merkmalen des Anspruchs 1, eine Getriebeturbomaschine nach Anspruch 10 bzw. einen Maschinenstrang mit den Merkmalen des Anspruchs 12 oder 18 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.This object is achieved by an integrated gear with the features of claim 1, a geared turbo machine according to claim 10 or a machine train with the features of claim 12 or 18. Advantageous further developments are the subject of the dependent claims.

Nach einem ersten Aspekt der vorliegenden Erfindung wird vorgeschlagen, ein drehzahluntersetzendes Lastgetriebe, welches zwischen Antriebsaggregat und einem Kompressor angeordnet ist, in ein Getriebe einer Getriebeturbomaschine zu integrieren und so zugleich von dem Kompressor zu separieren.According to a first aspect of the present invention, it is proposed to integrate a speed-reducing load gear, which is arranged between the drive unit and a compressor, into a gearbox of a geared turbo machine and thus to separate it from the compressor at the same time.

Hierzu umfasst eine Getriebeturbomaschine für einen Maschinenstrang ein Antriebsritzel, welches drehfest mit einer Antriebswelle verbunden ist, ein mit dem Antriebsritzel in Eingriff stehendes Großrad und eine oder mehrere, bevorzugt wenigstens zwei, insbesondere drei oder vier Turbomaschinenrotoren. Diese Turbomaschinenrotoren der Getriebeturbomaschine umfassen je eine Turbomaschinenwelle, ein oder mehrere, bevorzugt zwei mit der Turbomaschinenwelle drehfest verbundene Laufräder und ein mit der Turbomaschinenwelle drehfest verbundenes Turbomaschinenritzel, wobei die Turbomaschinenritzel eines oder mehrerer Turbomaschinenrotoren mit dem Großrad In Eingriff stehen.For this purpose, a geared turbo machine for a machine train comprises a drive pinion, which is non-rotatably connected to a drive shaft, one with the Drive pinion meshing large wheel and one or more, preferably at least two, in particular three or four turbomachine rotors. These turbomachine rotors of the geared turbomachine each comprise a turbomachine shaft, one or more, preferably two, impellers non-rotatably connected to the turbomachine shaft and a turbomachine pinion rotatably connected to the turbomachine shaft, the turbomachine pinions of one or more turbomachine rotors being in engagement with the large wheel.

Ein Laufrad eines Turbomaschinenrotors kann dabei als Kompressor- oder Expanderlaufrad ausgebildet sein. Insbesondere können zwei oder mehrere Kompressorlaufräder desselben Turbomaschinenrotors und/oder Kompressorlaufräder verschiedener Turbomaschinenrotoren, vorzugsweise als Radialkompressoren ausgebildete, Kompressorstufen der Getriebeturbomaschine bilden, die als Getriebekompressor wirkt. Alternativ können zwei Expanderlaufräder desselben Turbomaschinenrotors und/oder Expanderlaufräder verschiedener Turbomaschinenrotoren, vorzugsweise als Radialexpander ausgebildete, Expanderstufen der Getriebeturbomaschine bilden, die als Getriebeexpander wirkt. Beide Ausführungen können auch kombiniert sein, Indem beispielsweise wenigstens ein mit einem oder mehreren Kompressorlaufrädern bestückter Turbomaschinenrotor eine oder mehrere Kompressorstufen bildet und wenigstens ein mit einem oder mehreren Expanderlaufrädern bestückter anderer Turbomaschinenrotor eine oder mehrere Expanderstufen derselben Getriebeturbomaschine bildet, und/oder indem ein oder mehrere Turbomaschinenrotoren mit je wenigstens einem Kompressor- und je wenigstens einem Expanderlaufrad bestückt sind und somit sowohl eine Kompressor- als auch eine Expanderstufe bilden. Daher werden vorliegend sowohl reine ein- oder mehrstufige Getriebekompressoren mit einer oder mehreren mit wenigstens einem Kompressorlaufrad bestückten Kompressorwellen, reine ein- oder mehrstufige Getriebeexpander mit einer oder mehreren mit wenigstens einem Expanderlaufrad bestückten Expanderwellen, als auch kombinierte Getriebekompressor/expander ("Getriebekompander") verallgemeinernd als Getriebeturbomaschine, ihre mit Kompressor- und/oder Expanderlaufrädern bestückten Rotoren als Turbomaschinenrotor bezeichnet.An impeller of a turbomachine rotor can be designed as a compressor or expander impeller. In particular, two or more compressor impellers of the same turbomachine rotor and / or compressor impellers of different turbomachine rotors, preferably designed as radial compressors, can form compressor stages of the geared turbo machine, which acts as a geared compressor. Alternatively, two expander impellers of the same turbomachine rotor and / or expander impellers of different turbomachine rotors, preferably designed as radial expanders, can form expander stages of the geared turbomachine, which act as gear expander. Both versions can also be combined, for example in that at least one turbomachine rotor equipped with one or more compressor impellers forms one or more compressor stages and at least one other turbomachine rotor equipped with one or more expander impellers forms one or more expander stages of the same geared turbomachine, and / or in that one or more turbomachine rotors are equipped with at least one compressor and at least one expander impeller and thus form both a compressor and an expander stage. Therefore, in the present case, both pure single or multi-stage gear compressors with one or more compressor shafts equipped with at least one compressor impeller, pure single or multi-stage gear expanders with one or more expander shafts equipped with at least one expander impeller, as well as combined gear compressor / expander ("gear compander") are generalizing referred to as a geared turbo machine, its rotors equipped with compressor and / or expander impellers as a turbo machine rotor.

Erfindungsgemäß weist die Getriebeturbomaschine nun zusätzlich ein Abtriebsritzel eines drehzahluntersetzenden Lastgetriebes auf, das drehfest mit einer Abtriebswelle zum Antreiben eines mit dieser Abtriebswelle kuppelbaren Kompressorantriebswelle eines weiteren, von der Getriebeturbomaschine getrennten Kompressors, insbesondere eines Hauptkompressors des Maschinenstranges, verbunden ist, der insbesondere als Einwellenkompressor ausgebildet sein kann, vorzugsweise als Axialkompressor, Radialkompressor, ausgeführt beispielsweise mit horizontaler und/oder vertikaler Teilfuge oder als Isothermkompressor, oder als kombinierter Axial-Radialkompressor.According to the invention, the geared turbo machine now additionally has an output pinion of a speed-reducing load gear, which is connected in a rotationally fixed manner to an output shaft for driving a compressor drive shaft, which can be coupled to this output shaft, of a further compressor, in particular a main compressor of the machine train, which is separate from the geared turbo machine and is designed, in particular, as a single-shaft compressor can, preferably as an axial compressor, radial compressor, designed for example with a horizontal and / or vertical parting line or as an isothermal compressor, or as a combined axial-radial compressor.

Dieses Abtriebsritzel steht wie das Großrad, bevorzugt auf einer diesem gegenüberliegenden Seite des Antriebsritzels, mit dem Antriebsritzel in Eingriff. Eine erfindungsgemäße Getriebeturbomaschine kombiniert somit erstmals ein Mehrwellengetriebe einer Getriebeturbomaschine und ein Lastgetriebe für einen hiervon getrennten Kompressor.This output pinion is in engagement with the drive pinion like the large wheel, preferably on a side of the drive pinion opposite this. A geared turbo machine according to the invention thus combines for the first time a multi-shaft gearbox of a geared turbo machine and a load gear for a compressor separate therefrom.

Ein integriertes Getriebe, eine Getriebeturbomaschine mit einem solchen integrierten Getriebe bzw. ein Maschinenstrang nach diesem ersten Aspekt der vorliegenden Erfindung weist eine Reihe von Vorteilen auf: durch das drehzahluntersetzende Lastgetriebe können ein Antriebsaggregat, beispielsweise eine Dampfturbine, eine Gasturbine oder ein Expander, insbesondere eine Entspannungs- bzw. Restgasturbine, welches die Antriebswelle antreibt, ein weiterer Kompressor, insbesondere ein Hauptkompressor, und die Turbomaschinenrotoren der Getriebeturbomaschine jeweils in für sie günstigen Drehzahlbereichen betrieben werden.An integrated gearbox, a geared turbo machine with such an integrated gearbox or a machine train according to this first aspect of the present invention has a number of advantages: by means of the speed-reducing gearbox, a drive unit, for example a steam turbine, a gas turbine or an expander, in particular a relaxation device - or residual gas turbine, which drives the drive shaft, a further compressor, in particular a main compressor, and the turbomachine rotors of the geared turbomachine are each operated in speed ranges that are favorable for them.

Beispielsweise kann das drehzahluntersetzenden Lastgetriebe eine Drehzahl des Antriebsritzels mit einem Übersetzungsverhältnis auf eine Drehzahl des Abtriebsritzels reduzieren, welches im Bereich von 1,25 bis 1,45, vorzugsweise im Bereich von 1,3 bis 1,4 und insbesondere im Bereich zwischen 1,32 bis 1,38 liegt. Ein Übersetzungsverhältnis ist vorliegend in fachüblicher Weise als betragsmäßiger Quotient von Antriebs- zu Abtriebsdrehzahl, hier also von Antriebsritzeldrehzahl dividiert durch Abtriebsritzeldrehzahl, definiert, so dass auch eine Drehrichtungsumkehr durch ein positives Übersetzungsverhältnis beschrieben wird. Ein Turbomaschinenritzel kann entsprechend mit dem Antriebsritzel ein Übersetzungsverhältnis aufweisen, welches im Bereich von 0,28 bis 0,54, vorzugsweise im Bereich von 0,30 bis 0,52 und insbesondere im Bereich zwischen 0,32 bis 0,50 liegt, wobei das Übersetzungsverhältnis sich aus dem Betrag des Quotienten von Antriebsritzeldrehzahl dividiert durch Turbomaschinenritzeldrehzahl ergibt.For example, the speed-reducing load gear can reduce a speed of the drive pinion with a gear ratio to a speed of the output pinion which is in the range from 1.25 to 1.45, preferably in the range from 1.3 to 1.4 and in particular in the range between 1.32 to 1.38. In the present case, a gear ratio is defined in the customary manner as the quotient of the drive to output speed, here here from the drive pinion speed divided by the output pinion speed, so that a reversal of the direction of rotation is also described by a positive gear ratio. A turbomachine pinion can correspondingly have a transmission ratio with the drive pinion, which is in the range from 0.28 to 0.54, preferably in the range from 0.30 to 0.52 and in particular in the range between 0.32 to 0.50, the transmission ratio resulting from the amount of the quotient of the drive pinion speed divided by the turbo-machine pinion speed.

Dadurch kann in einer Ausführung beispielsweise eine Dampfturbine bei einer Nenndrehzahl in einem Bereich von 4000 bis 7000 Umdrehungen pro Minute (U/min) betrieben werden, die Turbomaschinenrotoren eines als Getriebeturbomaschine ausgebildeten Boosterkompressors bei einer Nenndrehzahl in einem Bereich von 10000 bis 17000 U/min, und ein als Einwellenkompressor ausgebildeter Hauptkompressor bei einer Nenndrehzahl in einem Bereich von 2000 bis 6000 U/min. Dies erhöht den Wirkungsgrad der Dampfturbine, die zudem vorteilhaft kleiner bauen kann.As a result, in one embodiment, for example, a steam turbine can be operated at a nominal speed in a range from 4000 to 7000 revolutions per minute (rpm), the turbo machine rotors of a booster compressor designed as a geared turbo machine at a nominal speed in a range from 10000 to 17000 rpm, and a main compressor designed as a single-shaft compressor at a nominal speed in a range from 2000 to 6000 rpm. This increases the efficiency of the steam turbine, which can also advantageously build smaller.

Antriebs- und Abtriebsritzel bilden dabei ein Lastgetriebe, über das ein Großteil der von dem Antriebsaggregat zugeführten Leistung, die bei Dampfturbinen beispielsweise im Bereich von 40 bis 80 MW liegen kann, auf den weiteren Kompressor übertragen werden kann, der beispielsweise mit einer Leistung im Bereich zwischen 30 bis 50 MW beaufschlagt wird. Bevorzugt wird wenigstens die Hälfte, besonders bevorzugt wenigstens 60% der Leistung von der Antriebswelle auf die Abtriebswelle übertragen. Das Großrad verteilt die verbleibende Differenzleistung entsprechend auf die mit ihm in Eingriff stehenden Turbomaschinenrotoren. Vorteilhaft können daher die Verzahnungsbreiten der Turbomaschinenritzel und des Großrades geringer ausgebildet sein und betragen bevorzugt höchstens das 0,91-fache der Verzahnungsbreite des Antriebsritzels.The drive and output pinions form a load gear, via which a large part of the power supplied by the drive unit, which can be in the range of 40 to 80 MW for steam turbines, for example, can be transmitted to the further compressor, which for example has a power in the range between 30 to 50 MW is applied. Preferably at least half, particularly preferably at least 60% of the power is transferred from the drive shaft to the output shaft. The large wheel distributes the remaining differential power accordingly to the turbomachine rotors in mesh with it. The toothing widths of the turbomachine pinion and the large wheel can therefore advantageously be made smaller and are preferably at most 0.91 times the toothing width of the drive pinion.

Als weiterer signifikanter Vorteil Ist zur Reduzierung der Antriebsaggregatsdrehzahl auf die Drehzahl des weiteren Kompressors auch kein separates Getriebe mehr erforderlich, was Fertigungs- und Montageaufwand sowie Bauraum spart.Another significant advantage is that a separate gearbox is no longer required to reduce the speed of the drive unit to the speed of the additional compressor, which saves manufacturing and assembly work as well as installation space.

Der weitere Kompressor ist bevorzugt in einem von einem Gehäuse der Getriebeturbomaschine getrennten Gehäuse aufgenommen. Hierdurch kann insbesondere vorteilhaft eine schwingungsmäßige Entkoppelung zwischen der Getriebeturbomaschine und dem weiteren Kompressor erreicht werden. Hierzu ist der weitere Kompressor vorzugsweise in axialer Richtung von der Getriebeturbomaschine beabstandet, was Insbesondere auch dann von Vorteil ist, wenn der weitere Kompressor als Hauptkompressor groß baut.The further compressor is preferably accommodated in a housing which is separate from a housing of the geared turbomachine. In this way, a vibration-like decoupling between the geared turbo machine and the further compressor can be achieved particularly advantageously. For this purpose, the further compressor is preferably spaced axially from the geared turbomachine, which is particularly advantageous if the further compressor is large as the main compressor.

Durch die erfindungsgemäße Integration eines drehzahluntersetzenden Lastgetriebes eines weiteren Kompressors, Insbesondere eines Hauptkompressors, in eine Getriebeturbomaschine ist das Lastgetriebe nicht im Gehäuse des weiteren bzw. Hauptkompressors aufgenommen, was schwingungstechnisch vorteilhaft sein kann.Due to the inventive integration of a speed-reducing load gear of a further compressor, in particular a main compressor, into a geared turbomachine, the load gear is not accommodated in the housing of the further or main compressor, which can be advantageous in terms of vibration.

Wie vorstehend ausgeführt, kann die Getriebeturbomaschine eine oder mehrere Expanderstufen aufweisen, Indem ein oder mehrere Turbomaschinenrotoren mit je wenigstens einem, zwei oder mehr Expanderlaufrädern bestückt sind. Hierdurch kann beispielsweise vorteilhaft ein Abfallmedium des im Maschinenstrang umgesetzten Prozesses und/oder das zuvor im Hauptkompressor verdichtete Prozessmedium, vorzugsweise einen Teilmassenstrom hiervon, entspannt und dessen Enthalpie zum Antrieb des weiteren Kompressors und/oder von Kompressorstufen der Getriebeturbomaschine genutzt werden. Zusätzlich oder alternativ kann die Getriebeturbomaschine, die dann als Boosterkompressor des Maschinenstranges wirkt, eine oder mehrere Kompressorstufen aufweisen, indem ein oder mehrere Turbomaschinenrotoren mit je wenigstens einem, zwei oder mehr Kompresorlaufrädern bestückt sind. Hierdurch kann beispielsweise das im weiteren Kompressor verdichtete Medium, vorzugsweise ein Teilmassenstrom aus dem Hauptkompressor, weiter komprimiert werden, um zum Beispiel nach Rückkühlung und Entspannung als Kühlmittel zu fungieren. Zusätzlich oder alternativ können in Kompressorstufen der Getriebeturbomaschine auch andere Medien, die den weiteren Kompressor nicht durchströmen, verdichtet werden. Die Getriebeturbomaschine kann also gleichermaßen als Arbelts- und/oder Kraftmaschine wirken, wobei die Turbomaschinenwellen ein Drehmoment auf ein Laufrad ausüben bzw. von diesem mit einem Drehmoment beaufschlagt werden.As stated above, the geared turbomachine can have one or more expander stages, in that one or more turbomachine rotors are each equipped with at least one, two or more expander impellers. In this way, for example, a waste medium from the process implemented in the machine train and / or the process medium previously compressed in the main compressor, preferably a partial mass flow thereof, can be relaxed and its enthalpy can be used to drive the further compressor and / or compressor stages of the geared turbomachine. Additionally or alternatively, the geared turbo machine, which then acts as a booster compressor of the machine train, can have one or more compressor stages, in that one or more turbomachine rotors are each equipped with at least one, two or more compressor impellers. In this way, for example, the medium compressed in the further compressor, preferably a partial mass flow from the main compressor, can be further compressed in order to act as a coolant, for example after recooling and expansion. Additionally or alternatively, other media that do not flow through the further compressor can also be compressed in the compressor stages of the geared turbine machine. The geared turbo machine can thus equally act as a work machine and / or an engine, the turbo machine shafts exerting a torque on an impeller or being acted upon by a torque from the impeller.

Zusätzlich oder alternativ kann eine das Antriebsaggregat unterstützende und/oder von dem Antriebsaggregat antreibbare Elektromaschine, Insbesondere ein Motor, ein Generator oder ein Motor/Generator, vorgesehen sein, dessen E-lektromaschinenelngangswelle mit dem Antriebsritzel, dem Großrad, dem Abtriebsritzel oder einem Turbomaschinenritzel in Eingriff steht oder mit der Antriebs-, der Abtriebswelle, der Weile des Großrades oder einem Turbinenrotor gekuppelt bzw. drehfest verbunden ist. Auf diese Weise kann beispielsweise zusätzliches Antriebsdrehmoment durch einen Elektromotor in die Getriebeturbomaschine eingeleitet oder dort zur Verfügung stehende mechanische Leistung in einem Generator in elektrische Leistung umgewandelt und beispielsweise gespeichert, dem Maschinenstrang zur Verfügung gestellt oder in ein Stromnetz eingespeist werden.Additionally or alternatively, an electric machine supporting the drive unit and / or drivable by the drive unit, in particular a motor, a generator or a motor / generator, can be provided, the electric machine input shaft of which engages with the drive pinion, the large wheel, the output pinion or a turbomachine pinion stands or is coupled or non-rotatably connected to the drive shaft, the output shaft, the while of the large wheel or a turbine rotor. In this way, for example, additional Drive torque is introduced into the geared turbo machine by an electric motor or the mechanical power available there is converted into electrical power in a generator and stored, for example, made available to the machine train or fed into a power grid.

Wird der Boosterkompressor von einem Medium durchströmt, das zuvor im Hauptkompressor verdichtet wurde, so können aufgrund der höheren Drücke und insbesondere bei Durchströmung mit nur einem Teilmassenstrom aus dem Hauptkompressor die durchströmten Querschnitte und damit Gehäuse-, Laufrad- bzw. Beschaufelungsdurchmesser der Getriebeturbomaschine kleiner ausgebildet werden als bei dem weiteren Kompressor. Vorzugsweise weist ein kleinster durchströmter Querschnitt des weiteren Kompressors daher wenigstens das 1,05-fache, vorzugsweise wenigstens das 1,1-fache und Insbesondere wenigstens das 1,2-fache des kleinsten durchströmten Querschnitts der Getriebeturbomaschine auf.If the booster compressor is flowed through by a medium that was previously compressed in the main compressor, the cross-sections through which the flow passes, and thus the housing, impeller or blading diameters of the geared turbomachine, can be made smaller due to the higher pressures and in particular when only a partial mass flow flows through from the main compressor than with the other compressor. Preferably, a smallest cross-section of the further compressor through which flow therefore has at least 1.05 times, preferably at least 1.1 times and in particular at least 1.2 times the smallest cross-section of the geared turbomachine through which there is flow.

Unter einer drehfesten Verbindung, beispielsweise zwischen Antriebsritzel und Antriebswelle, Turbomaschinenritzel und Turbomaschinenwelle oder Abtriebsritzel und Abtriebswelle, wird vorliegend sowohl eine lösbare Verbindung, die beispielsweise eine Keilwelle und/oder Schrauben umfassen kann, als auch eine unlösbare Verbindung, insbesondere eine Schweißverbindung oder eine integrale Ausbildung, beispielsweise als einstückiges Ur- und/oder Umformteil verstanden.In the present case, a non-rotatable connection, for example between the drive pinion and drive shaft, turbomachine pinion and turbomachine shaft or output pinion and output shaft, is a detachable connection, which can comprise, for example, a spline shaft and / or screws, as well as a non-detachable connection, in particular a welded connection or an integral design , understood for example as a one-piece original and / or shaped part.

Eine Kupplung zwischen der Abtriebswelle und der damit kuppelbaren, getrennten Kompressorantriebswelle kann beispielsweise Ober eine Flanschverbindung, eine Kupplung zum Ausgleich von Axial- und/oder Winkelversatz, und/oder eine schaltbare oder selbstschaltende Kupplung, etwa eine Überlastkupplung realisiert sein. Insofern werden insbesondere sowohl lösbar als auch unlösbar miteinander verbundene Abtriebswellen und Kompressorantriebswellen als kuppelbar bezeichnet. Vorteilhafterweise kann eine Kupplung zwischen Abtriebswelle und Kompressorantriebswelle Drehschwingungen, Axialstöße oder dergleichen dämpfen.A clutch between the output shaft and the separate compressor drive shaft that can be coupled with it can be realized, for example, via a flange connection, a clutch for compensating for axial and / or angular misalignment, and / or a switchable or self-switching clutch, for example an overload clutch. In this respect, both output shafts and compressor drive shafts that are connected to one another in a releasable and non-releasable manner are referred to as couplable. A coupling between the output shaft and the compressor drive shaft can advantageously dampen torsional vibrations, axial shocks or the like.

Ein In-Eingriff-Stehen umfasst Im Sinne der vorliegenden Erfindung einerseits einen direkten Eingriff, i.e. ein Kämmen von Verzahnungen, beispielsweise einfachen oder Doppelschrägverzahnungen, der beiden miteinander in Eingriff stehenden Elemente miteinander. Gleichermaßen Ist hiervon jedoch auch ein indirekter Eingriff unter Zwischenschaltung von einem oder mehreren Getriebestufen, insbesondere Stirnrad- und/oder Planetengetriebestufen umfasst, wie es beispielsweise aus der DE 42 41 141 A1 bekannt ist, deren Offenbarung diesbezüglich ausdrücklich in die vorliegende Beschreibung aufgenommen wird.In the sense of the present invention, an engagement comprises, on the one hand, a direct engagement, ie a meshing of toothings, for example single or double helical toothings, of the two elements which are in engagement with one another. Equally, however, this also includes an indirect intervention with the interposition of one or more gear stages, in particular Includes spur gear and / or planetary gear stages, such as from the DE 42 41 141 A1 is known, the disclosure of which is expressly included in this description in this regard.

Weist eine Getriebeturbomaschine nach dem ersten Aspekt der vorliegenden Erfindung zwei oder mehr Turbomaschinenrotoren auf, können alle Turbomaschinenritzel mit dem Großrad in Eingriff stehen, was eine gleichmäßigere Beaufschlagung der Großrades sowie eine schmaler bauende Getriebeturbomaschine ermöglicht. Gleichermaßen können jedoch auch ein oder mehrere Turbomaschinenritzel mit dem Abtriebsritzel in Eingriff stehen. Hierdurch vergrößert sich der Abstand dieser Turbomaschinenrotoren zu den durch das Großrad angetriebenen, was die konstruktive Gestaltungsfreiheit der einzelnen Turbomaschinenrotoren bzw. der durch sie gebildeten Kompressor- und/oder Expandorstufen vorteilhaft erhöht.If a geared turbo machine according to the first aspect of the present invention has two or more turbo machine rotors, all turbo machine pinions can be meshed with the large wheel, which enables a more even loading of the large wheel and a narrower built geared turbo machine. Likewise, however, one or more turbomachine pinions can also be in engagement with the output pinion. This increases the distance between these turbomachine rotors and those driven by the large wheel, which advantageously increases the design freedom of the individual turbomachine rotors or the compressor and / or expander stages formed by them.

In einer bevorzugten Ausführung sind eine Drehachse des Antriebsritzels, eine Drehachse des Großrades und eine Drehachse des Abtriebsritzels in einer gemeinsamen, vorzugsweise im Wesentlichen horizontalen, Ebene angeordnet. Dies verringert vorteilhaft die Bauhöhe der Getriebeturbomaschine senkrecht zu dieser Ebene. Die Drehachse eines mit dem Großrad in Eingriff stehenden Turbomaschinenritzels und/oder die Drehachse eines mit dem Abtriebsritzel in Eingriff stehenden Turbomaschinenritzels kann ebenfalls In dieser Ebene angeordnet sein und so die Bauhöhe weiter reduzieren. Stehen weitere Turbomaschinenritzel mit dem Großrad in Eingriff, so sind ihre Drehachsen bevorzugt in einer weiteren gemeinsamen Ebene angeordnet, die parallel zu der Ebene Ist, in welcher die Drehachse des Großrades liegt.In a preferred embodiment, an axis of rotation of the drive pinion, an axis of rotation of the large wheel and an axis of rotation of the output pinion are arranged in a common, preferably substantially horizontal, plane. This advantageously reduces the overall height of the geared turbo machine perpendicular to this plane. The axis of rotation of a turbomachine pinion meshing with the large wheel and / or the axis of rotation of a turbomachine pinion meshing with the output pinion can also be arranged in this plane and thus further reduce the overall height. If further turbomachine pinions are in engagement with the large wheel, their axes of rotation are preferably arranged in a further common plane which is parallel to the plane in which the axis of rotation of the large wheel lies.

Bevorzugt weist eine Getriebeturbomaschine ein mehrteiliges Gehäuse auf, welches das Antriebsritzel, das Großrad, das Abtriebsritzel und die Turbomaschinenritzel aufnimmt. Insbesondere, wenn die Drehachsen, wie vorstehend ausgeführt, In einer oder zwei zueinander parallelen, vorzugsweise horizontalen Ebenen liegen, ist es bevorzugt, dass dieses Gehäuse In dieser Ebene bzw. diesen Ebenen geteilt Ist. Dies vereinfacht die Montage und Wartung.A geared turbo machine preferably has a multi-part housing which accommodates the drive pinion, the large wheel, the output pinion and the turbomachine pinion. In particular, if, as stated above, the axes of rotation lie in one or two mutually parallel, preferably horizontal planes, it is preferred that this housing is divided in this plane or these planes. This simplifies assembly and maintenance.

Vorzugsweise sind das Abtriebsritzel und das Großrad in derselben Transversalebene des Antriebsritzels angeordnet. Hierdurch baut der Getriebeturbomaschine vorteilhaft axial besonders kurz. Gleichermaßen können Großrad und Abtriebsritzel auch in axial versetzten Ebenen angeordnet sein, wobei das Großrad oder das Antriebsritzel dann vorteilhafterweise zweistufig ausgebildet ist und zwei verschiedene Teilkreisdurchmesser zum Eingriff mit Antriebs- und Turbomaschinenritzeln (bei zweistufigem Großrad) bzw. zum Eingriff mit Großrad und Abtriebsritzel (bei zweistufigem Antriebsritzel) aufweist. Eine solche Anordnung kann insbesondere in der Ebene der Drehachsen von Antriebsritzel und Großrad schmaler bauen.The output pinion and the large wheel are preferably arranged in the same transverse plane of the drive pinion. This builds the geared turbo machine advantageous axially particularly short. Similarly, the large wheel and the output pinion can also be arranged in axially offset planes, the large wheel or the drive pinion then advantageously being designed in two stages and two different pitch circle diameters for engagement with drive and turbo-machine pinions (for a two-stage large wheel) or for engagement with the large wheel and output pinion (for two-stage drive pinion). Such an arrangement can be made narrower, particularly in the plane of the axes of rotation of the drive pinion and large wheel.

Bevorzugt sind nicht alle, sondern nur einige von dem Antriebsritzel, dem Großrad, den Turbomaschinenritzeln und dem Abtriebsritzel axial In einem Gehäuse der Getriebeturbomaschine gelagert, das hierzu beispielsweise zwei bis sechs Axiallager aufweist. Die übrigen von dem Antriebsritzel, dem Großrad, den Turbomaschinenritzeln und dem Abtriebsritzel können sich dann axial an diesen axial in dem Gehäuse der Getriebeturbomaschine gelagerten Elementen, insbesondere Ober Druckkämme, abstützen, wie sie aus der DE 42 41 141 A1 bekannt sind, deren Offenbarung diesbezüglich ausdrücklich in die vorliegende Beschreibung aufgenommen wird. Hierdurch kann mit baulich geringerem Aufwand der Axialschub der Laufräder bzw. des Antriebsaggregates aufgenommen werden.Not all, but only a few, of the drive pinion, the large wheel, the turbomachine pinions and the output pinion are preferably axially mounted in a housing of the geared turbine machine, which for this purpose has, for example, two to six axial bearings. The rest of the drive pinion, the large wheel, the turbomachine pinions and the driven pinion can then be supported axially on these elements, in particular upper pressure combs, axially supported in the housing of the geared turbomachine, as is known from the DE 42 41 141 A1 are known, the disclosure of which is expressly included in this description in this regard. As a result, the axial thrust of the impellers or the drive unit can be absorbed with less structural effort.

Besonders vorteilhaft kann in einem erfindungsgemäßen Maschinenstrang der weitere Kompressor auf der dem Antriebsaggregat gegenüberliegenden Seite der Getriebeturbomaschine angeordnet werden. Insbesondere auf diese Weise wird es möglich, das Antriebsaggregat, das somit auf der der Getriebeturbomaschine gegenüberliegenden Seite frei Ist, als Dampfturbine mit axialer Abströmung auszubilden. Hierdurch wird im Gegensatz zu herkömmlichen Maschinensträngen mit Dampfturbinen mit radialer Abströmung nicht nur der Wirkungsgrad verbessert. Es kann auch ein der Dampfturbine nachgeschalteter Kondensator im Wesentlichen auf derselben horizontalen Ebene angeordnet werden, was die Bauhöhe eines solchen Maschinenstranges deutlich reduziert. Daher ist nach einem zweiten Aspekt der vorliegenden Erfindung bei einem Maschinenstrang mit einer Getriebeturbomaschine und einem weiteren Kompressor, Insbesondere einem Hauptkompressor, eine Dampfturbine mit axialer Abströmung als Antriebsaggregat vorgesehen. Der vorstehend erläuterte erste und zweite Aspekt der vorliegenden Erfindung nach Anspruch 1, 10 und 12 bzw. 18 lösen jeweils die eingangs genannte Aufgabe, einen Maschinenstrang zu verbessern. Besonders vorteilhaft sind beide Aspekte miteinander kombiniert, dies ist jedoch nicht zwingend.In a machine train according to the invention, the further compressor can be arranged particularly advantageously on the side of the geared turbo machine opposite the drive unit. In this way in particular, it is possible to design the drive unit, which is thus free on the side opposite the geared turbomachine, as a steam turbine with an axial outflow. In contrast to conventional machine trains with steam turbines with radial outflow, this not only improves the efficiency. A condenser connected downstream of the steam turbine can also be arranged essentially on the same horizontal plane, which significantly reduces the overall height of such a machine train. Therefore, according to a second aspect of the present invention, in the case of a machine train with a geared turbo machine and a further compressor, in particular a main compressor, a steam turbine with axial outflow is provided as the drive unit. The above-explained first and second aspects of the present invention according to claims 1, 10 and 12 and 18 respectively solve the aforementioned Task to improve a machine train. Both aspects are particularly advantageously combined with one another, but this is not mandatory.

Im Folgenden werden daher beide Aspekte gemeinsam anhand von Ausführungsbeispielen der vorliegenden Erfindung erläutert, welche von beiden Aspekten Gebrauch macht, wobei ausdrücklich betont wird, dass die vorliegenden Erfindung notwendig nur wenigstens die Merkmale des ersten oder zweiten Aspekts aufweist. Weitere Merkmale und Vorteile beider Aspekte ergeben sich dementsprechend aus den Unteransprüchen und diesen Ausführungsbeispielen. Hierzu zeigt, teilweise schematisiert:

Fig. 1:
einen Maschinenstrang mit einer Getriebeturbomaschine mit integriertem Getriebe nach einer ersten Ausführung der vorliegenden Erfindung in einer Draufsicht von oben;
Fig. 2:
einen Maschinenstrang mit einer Getriebeturbomaschine mit integriertem Getriebe nach einer zweiten Ausführung der vorliegenden Erfindung in einer Draufsicht von oben;
Fig. 3A:
eine Getriebeanordnung der Getriebeturbomaschine nach Fig. 1 in axialer Ansicht;
Fig. 3B:
die Getriebeanordnung nach Fig. 3A in der Draufsicht von oben;
Fig. 4A:
eine Getriebeanordnung der Getriebeturbomaschine nach Fig. 2 in axialer Ansicht;
Fig. 4B:
die Getriebeanordnung nach Fig. 4A in der Draufsicht von oben;
Fig. 5:
eine Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer dritten Ausführung der vorliegenden Erfindung in der Draufsicht von oben;
Fig. 6:
eine Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer vierten Ausführung der vorliegenden Erfindung in der Draufsicht von oben; und
Fig. 7:
eine Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer fünften Ausführung der vorliegenden Erfindung in der Draufsicht von oben.
In the following, therefore, both aspects are explained together using exemplary embodiments of the present invention which makes use of both aspects, it being expressly emphasized that the present invention necessarily only has at least the features of the first or second aspect. Further features and advantages of both aspects result accordingly from the subclaims and these exemplary embodiments. Here shows, partly schematically:
Fig. 1:
a machine train with a geared turbo machine with integrated gear according to a first embodiment of the present invention in a plan view from above;
Fig. 2:
a machine train with a geared turbo machine with integrated gear according to a second embodiment of the present invention in a plan view from above;
Fig. 3A:
a gear arrangement of the geared turbo machine Fig. 1 in axial view;
3B:
the gear arrangement after Figure 3A in top view from above;
4A:
a gear arrangement of the geared turbo machine Fig. 2 in axial view;
4B:
the gear arrangement after Figure 4A in top view from above;
Fig. 5:
a gear arrangement of a geared turbo machine with integrated gear according to a third embodiment of the present invention in plan view from above;
Fig. 6:
a gear arrangement of a geared turbo machine with integrated gear according to a fourth embodiment of the present invention in plan view from above; and
Fig. 7:
a gear arrangement of a geared turbo machine with integrated gear according to a fifth embodiment of the present invention in a plan view from above.

Fig. 1, 3 zeigen die wesentlichen Elemente eines Maschinenstranges nach einer ersten Ausführung der vorliegenden Erfindung, bei dem der erste und zweite Aspekt der vorliegenden Erfindung gemeinsam verwirklicht sind. Fig. 1 , 3rd show the essential elements of a machine train according to a first embodiment of the present invention, in which the first and second aspects of the present invention are realized together.

Zunächst Bezug nehmend auf Fig. 1 ist mit 4 ein als axial ansaugender Einwellenkompressor ausgebildeter Hauptkompressor bezeichnet, der In der durch einen Pfeil angedeuteten Weise Luft ansaugt und auf beispielsweise 7 bar verdichtet.First referring to Fig. 1 4 denotes a main compressor designed as an axially suction single-shaft compressor, which draws air in the manner indicated by an arrow and compresses it to, for example, 7 bar.

Ein Teilmassenstrom dieser komprimierten Luft wird dann in nicht näher dargestellter Weise einem ersten Turbomaschinenrotor 3.10 eines Boosterkompressors zugeführt, welcher als nachfolgend näher erläuterte Getriebeturbomaschine 2 ausgebildet ist.A partial mass flow of this compressed air is then fed in a manner not shown to a first turbomachine rotor 3.10 of a booster compressor, which is designed as a geared turbomachine 2 explained in more detail below.

Die erste Turbomaschinenrotor 3.10 umfasst dabei zwei durch Dreiecke angedeutete Kompressorlaufräder 3.12, 3.13 (Fig. 3B), die auf einer gemeinsamen Turbomaschinenwelle sitzen und in nicht dargestellten Spiralgehäusen umlaufen, um die vom Hauptkompressor zugeführte Luft weiter zu verdichten und bildet so zwei Kompressorstufen des Boosterkompressors 2. Aus diesen wird die Luft dann in nicht näher dargestellter Weise einem zweiten Turbomaschinenrotor 3.20 des Boosterkompressors 2 zugeführt, dessen ebenfalls als Dreiecke angedeutete zwei Kompressorlaufräder 3.22, 3.23 (Fig. 3B) einen kleineren Durchmesser aufweisen und schneller drehen als die Laufräder des ersten Turbomaschinenrotors 3.10, um die Luft weiter zu verdichten und so zwei weitere Kompressorstufen des Boosterkompressors 2 bilden. Die darin weiter verdichtete Luft wird dann in wiederum nicht näher dargestellter Weise einem dritten Turbomaschinenrotor 3.30 des Boosterkompressors 2 zugeführt, deren zwei Kompressorlaufräder 3.32, 3.33 (Fig. 3B) einen abermals kleineren Durchmesser aufweisen und schneller drehen als die Laufräder des zweiten Turbomaschinenrotors 3.20, um die Luft schließlich auf einen gewünschten Enddruck von 75 bar zu verdichten und so zwei weitere Kompressorstufen des damit insgesamt sechsstufigen Boosterkompressors 2 bilden. Im Übrigen sind drei Turbomaschinenrotoren 3.10, 3.20 und 3.30 des Boosterkompressors 2 jedoch baulich analog ausgebildet.The first turbomachine rotor 3.10 comprises two compressor impellers 3.12, 3.13 (indicated by triangles) Figure 3B ), which sit on a common turbomachine shaft and rotate in spiral housings (not shown) in order to further compress the air supplied by the main compressor, and thus form two compressor stages of the booster compressor 2. From these, the air then becomes a second turbomachine rotor 3.20 of the booster compressor in a manner not shown in any more detail 2 supplied, the two compressor impellers 3.22, 3.23 (also indicated as triangles ( Figure 3B ) have a smaller diameter and rotate faster than the impellers of the first turbomachine rotor 3.10 in order to further compress the air and thus form two further compressor stages of the booster compressor 2. The air which is further compressed therein is then fed to a third turbomachine rotor 3.30 of the booster compressor 2, the two compressor impellers 3.32, 3.33 ( Figure 3B ) have a further smaller diameter and rotate faster than the impellers of the second turbomachine rotor 3.20 in order to finally compress the air to a desired final pressure of 75 bar and thus form two further compressor stages of the six-stage booster compressor 2. Incidentally, three turbo machine rotors 3.10, 3.20 and 3.30 of the booster compressor 2 are structurally analogous.

Wie in Fig. 3A, 3B In axialer bzw. Draufsicht von oben näher dargestellt, ist mit den Turbomaschinenwellen der drei Turbomaschinenrotoren 3.10, 3.20 und 3.30, auf denen die Laufräder 3.12 und 3.13, 3.22 und 3.23 bzw. 3.32 und 3.33 sitzen, je ein Turbomaschinenritzel 3.11, 3.21 bzw. 3.31 drehfest verbunden, beispielsweise auf die Turbomaschinenwelle aufgeschnitten oder als separates Ritzel über eine Welle-Nabe-Verbindung an Ihr befestigt. Alle drei Turbomaschinenritzel 3.11, 3.21 und 3.31 kämmen mit einem gemeinsamen Großrad 2.2 des somit als Mehrwellenkompressor ausgebildeten Boosterkompressors 2. Um dabei die unterschiedlichen Drehzahlen der drei Turbomaschinenrotoren zu realisieren, weist das Turbomaschinenritzel 3.11 des ersten, am langsamsten drehenden Turbomaschinenrotors 3.10 den größten Durchmesser auf, das Turbomaschinenritzel 3.31 des dritten, am schnellsten drehenden Turbomaschinenrotors 3.30 den kleinsten Durchmesser. Selbstverständlich sind In Abwandlung des Ausführungsbeispiels auch mehr, beispielsweise vier oder fünf Turbomaschinenrotoren mit je einem, zwei oder mehr Laufrädern möglich.As in 3A, 3B Shown in more detail in an axial or plan view from above, the turbomachine shafts of the three turbomachine rotors 3.10, 3.20 and 3.30, on which the impellers 3.12 and 3.13, 3.22 and 3.23 or 3.32 and 3.33 are seated, one turbo machine sprocket 3.11, 3.21 or 3.31 connected in a rotationally fixed manner, for example cut onto the turbo machine shaft or attached to it as a separate sprocket via a shaft-hub connection. All three turbo machine pinions 3.11, 3.21 and 3.31 mesh with a common large wheel 2.2 of the booster compressor 2, which is thus designed as a multi-shaft compressor. In order to achieve the different speeds of the three turbo machine rotors, the turbo machine pinion 3.11 of the first, slowest rotating turbo machine rotor 3.10 has the largest diameter, the turbomachine pinion 3.31 of the third, fastest rotating turbomachine rotor 3.30 the smallest diameter. Of course, in a modification of the exemplary embodiment, more, for example four or five turbomachine rotors, each with one, two or more impellers, are also possible.

Das Großrad 2.2 wird seinerseits von einem Antriebsritzel 2.1 kleineren Durchmessers angetrieben, das In nicht näher dargestellter Weise drehfest mit einer Antriebswelle einer Dampfturbine 1 (Fig. 1) oder einem anderen Antriebsaggregat, beispielsweise einer Gasturbine oder einem Expander, verbunden ist, so dass die Turbinendrehzahl auf die Turbomaschinenwellen der drei Turbomaschinenrotoren mit verschiedenen Übersetzungsverhältnissen ins Schnelle übersetzt wird.The large wheel 2.2 is in turn driven by a drive pinion 2.1 of smaller diameter, which is rotatably fixed in a manner not shown with a drive shaft of a steam turbine 1 ( Fig. 1 ) or another drive unit, for example a gas turbine or an expander, is connected so that the turbine speed is rapidly translated to the turbomachine shafts of the three turbomachine rotors with different transmission ratios.

Nach dem ersten Aspekt der vorliegenden Erfindung ist In derselben horizontalen Ebene, In der auch die Drehachsen des Antriebsritzels 2.1, des Großrades 2.2 und des Turbomaschinenritzels 3.11 angeordnet sind, auch die Drehachse eines Abtriebsritzels 2.3 angeordnet, welches mit den Antriebsritzel 2.1 auf der dem Großrad 2.2 gegenüberliegenden Seite In Eingriff steht. Antriebsritzel 2.1, Großrad 2.2 und Abtriebsritzel 2.3 sind dabei In derselben Transversalebene (Zeichenebene der Fig. 3A) angeordnet, so dass dieselbe Verzahnung des Antriebsritzels 2.1 sowohl mit dem Großrad 2.2 als auch dem Abtriebsritzel 2.3 kämmt. Wie In Fig. 3B schematisch angedeutet, ist aufgrund der unterschiedlichen Drehmomentflüsse die Verzahnungsbreite der Turbomaschinenritzel 3.11, 3.21, 3.31 geringer als diejenige des An- und Abtriebsritzels 2.1, 2.3.According to the first aspect of the present invention, in the same horizontal plane, in which the axes of rotation of the drive pinion 2.1, the large wheel 2.2 and the turbo machine pinion 3.11 are also arranged, the axis of rotation of an output pinion 2.3 is arranged, which is connected to the drive pinion 2.1 on the large wheel 2.2 opposite side is engaged. Drive pinion 2.1, large gear 2.2 and output pinion 2.3 are in the same transverse plane (plane of the Figure 3A ) arranged so that the same toothing of the drive pinion 2.1 meshes with both the large gear 2.2 and the output pinion 2.3. As in Figure 3B schematically indicated, due to the different torque flows, the tooth width of the turbo machine pinion 3.11, 3.21, 3.31 is smaller than that of the input and output pinion 2.1, 2.3.

Der Durchmesser des Abtriebsritzels 2.3 Ist größer als der Durchmesser des Antriebsritzels 2.1, so dass die Drehzahl der Dampfturbine 1, die das auf ihrer Antriebswelle sitzende Antriebsritzel 2.1 antreibt, auf die Abtriebswelle mit dem Abtriebsritzel 2.3 ins Langsame untersetzt wird. Die Abtriebswelle mit dem Abtriebsritzel 2.3 Ist durch eine in Fig. 1 angedeutete Kupplung mit einer Kompressorantriebswelle 4.1 des als Einwellenkompressor ausgebildeten Hauptkompressors 4 (Fig. 1) verbunden, so dass die Turbine diesen mit einer Untersetzung ins Langsame antreibt. An- und Abtriebsritzel 2.1, 2.3 bilden somit ein drehzahluntersetzendes Lastgetriebe, über das der Großteil der Turbinenleistung auf den Hauptkompressor 4 übertragen wird.The diameter of the driven pinion 2.3 is larger than the diameter of the driving pinion 2.1, so that the speed of the steam turbine 1, which drives the driving pinion 2.1 seated on its drive shaft, onto the driven shaft with the driven pinion 2.3 is slowed down. The output shaft with the output pinion 2.3 is by a in Fig. 1 indicated coupling with a compressor drive shaft 4.1 of the main compressor 4 designed as a single-shaft compressor ( Fig. 1 ) connected, so that the turbine drives it with a reduction in the slow. Input and output pinions 2.1, 2.3 thus form a speed-reducing load gear, via which the majority of the turbine power is transferred to the main compressor 4.

Aufgrund der Unter- bzw. Übersetzung der Turbinen- bzw. Antriebsritzeldrehzahl auf die langsamere Abtriebsritzeldrehzahl bzw. schnellere Turbomaschinenritzeldrehzahlen können Dampfturbine 1, Boosterkompressor 2 und Hauptkompressor 4 gleichzeitig in optimalen Drehzahlbereichen betrieben werden. Insbesondere kann die Drehzahl der Dampfturbine 1 bei geringerer Hauptkompressor-Drehzahl höher sein, was den Wirkungsgrad der Dampfturbine 1 verbessert und die Verwendung kleinerer, schneller drehender Dampfturbinen erlaubt. Aufgrund der Ausbildung als integrales Getriebe Ist hierzu vorteilhaft kein separates Lastgetriebe erforderlich, Maschinenstrang und Fundament können baulich kompakter gehalten werden.Due to the reduction or translation of the turbine or drive pinion speed to the slower output pinion speed or faster turbo machine pinion speeds, steam turbine 1, booster compressor 2 and main compressor 4 can be operated simultaneously in optimal speed ranges. In particular, the speed of the steam turbine 1 can be higher with a lower main compressor speed, which improves the efficiency of the steam turbine 1 and allows the use of smaller, faster rotating steam turbines. Due to the design as an integral gearbox, a separate load gearbox is advantageously not required for this; the machine train and foundation can be kept more compact in terms of construction.

An- und Abtriebsritzel 2.1, 2.3, das Großrad 2.2 sowie die mit diesem In Eingriff stehenden Turbomaschinenritzel 3.11, 3.21 und 3.31 sind in einem gemeinsamen Gehäuse (nicht dargestellt) aufgenommen. Dieses dreiteilige Gehäuse ist in der in Fig. 3A strichpunktiert angedeuteten Ebene, in der die Drehachsen von An- und Abtriebsritzel 2.1, 2.3, Großrad 2.2 und Turbomaschinenritzel 3.11 liegen, horizontal geteilt, so dass diese auf einfache Weise in einem ersten, unteren Gehäuseteil montiert werden können, auf welches ein zweites, mittleres Gehäuseteil aufgesetzt wird.Input and output pinions 2.1, 2.3, the large gear 2.2 and the engaging turbo machine pinions 3.11, 3.21 and 3.31 are accommodated in a common housing (not shown). This three-part housing is in the Figure 3A Dash-dotted plane, in which the axes of rotation of the input and output pinions 2.1, 2.3, large gear 2.2 and turbo machine pinion 3.11 lie, horizontally divided, so that they can be easily mounted in a first, lower housing part on which a second, middle housing part is put on.

Die Drehachsen der Turbomaschinenritzel 3.21, 3.31 des zweiten und dritten Turbomaschinenrotors 3.20 bzw. 3.30 liegen in einer in Fig. 3A strichpunktiert angedeuteten weiteren horizontalen Ebene, die zu der Ebene parallel ist, In der die Drehachsen von An- und Abtriebsritzel 2.1, 2.3, Großrad 2.2 und Turbomaschinenritzel 3.11 liegen. Das Gehäuse ist auch in dieser Ebene horizontal geteilt, so dass nach Aufsetzen des mittleren Gehäuseteils die Turbomaschinenritzel 3.21, 3.31 auf einfache Weise in dem mittleren Gehäuseteil montiert werden können, auf welches ein drittes, oberes Gehäuseteil aufgesetzt wird. Durch die Anordnung beider Turbomaschinenritzel 3.21, 3.31 in der weiteren horizontalen Ebene vertikal oberhalb der Ebene von An-, Abtriebsritzel- und Großraddrehachse Ist vorteilhaft kein Bauraum unterhalb des Großrades 2.2 zur Anordnung von Turbomaschinenrotoren erforderlich.The axes of rotation of the turbomachine pinions 3.21, 3.31 of the second and third turbomachine rotors 3.20 and 3.30 lie in one Figure 3A dash-dot indicated further horizontal plane, which is parallel to the plane in which the axes of rotation of the input and output pinions 2.1, 2.3, large wheel 2.2 and turbo machine pinion 3.11 lie. The housing is also divided horizontally in this plane, so that the turbomachine pinions 3.21, 3.31 can be mounted in the middle housing part in a simple manner after the middle housing part has been put in place. on which a third, upper housing part is placed. The arrangement of both turbo machine pinions 3.21, 3.31 in the further horizontal plane vertically above the plane of the input, output pinion and large wheel axis of rotation advantageously means that no installation space is required below the large wheel 2.2 for the arrangement of turbo machine rotors.

Der Hauptkompressor 4 weist ein von dem Boosterkompressor 2 getrenntes Gehäuse auf und Ist mit diesem nur über die Kompressorantriebswelle 4.1 verbunden. Damit können die beiden Gehäuse von Haupt- und Boosterkompressor, die beispielsweise auf einem nicht dargestellten Beton- oder Metallfundament ruhen, schwingungstechnisch vorteilhaft weitgehend entkoppelt werden.The main compressor 4 has a housing which is separate from the booster compressor 2 and is connected to it only via the compressor drive shaft 4.1. The two housings of the main compressor and the booster compressor, which for example rest on a concrete or metal foundation (not shown), can thus be largely decoupled in terms of vibration technology.

Wie insbesondere in Fig. 1 erkennbar, treibt die Dampfturbine 1 den Boosterkompressor 2 und den auf der ihr gegenüberliegenden Seite angeordneten Hauptkompressor 4 mit nur einer Antriebswelle an. Im Gegensatz zu den bisherigen doppeltantreibenden Turbinen weist eine solche Dampfturbine mit nur einem Weilenende vorteilhaft andere Eigenfrequenzen bzw. kritische Drehzahlen auf - insbesondere kann der Bereich zwischen benachbarten Eigenfrequenzen bzw. kritischer Drehzahlen, von denen im Betrieb ein ausreichender Abstand gehalten werden soll, um Resonanzprobleme zu vermeiden, vorteilhaft vergrößert und so der zulässige Betriebsbereich erweitert werden.As especially in Fig. 1 Recognizable, the steam turbine 1 drives the booster compressor 2 and the main compressor 4 arranged on the opposite side with only one drive shaft. In contrast to the previous double-driving turbines, such a steam turbine with only one end of the shaft advantageously has other natural frequencies or critical speeds - in particular, the area between neighboring natural frequencies or critical speeds, from which a sufficient distance should be kept during operation, to avoid resonance problems avoid, advantageously enlarged and thus the permissible operating range can be expanded.

Die Anordnung von Boosterkompressor 2 und Hauptkompressor 4 auf derselben Seite der Dampfturbine 1 ermöglicht eine in Fig. 1 durch einen Pfeil angedeutete axiale Abströmung aus der Dampfturbine 1 auf die Hauptkompressor 4 und Boosterkompressor 2 gegenüberliegende Seite (nach links In Fig. 1) gemäß des zweiten Aspekts der vorliegenden Erfindung. Hierdurch verbessert sich der Wirkungsgrad der Dampfturbine 1 vorteilhaft.The arrangement of the booster compressor 2 and the main compressor 4 on the same side of the steam turbine 1 enables an in Fig. 1 axial outflow indicated by an arrow from the steam turbine 1 to the opposite side of the main compressor 4 and the booster compressor 2 (to the left in Fig. 1 ) according to the second aspect of the present invention. This advantageously improves the efficiency of the steam turbine 1.

Der axiale Abdampf aus der Dampfturbine 1 strömt in einen dieser nachgeschalteten Kondensator (nicht dargestellt). Im Gegensatz zu herkömmlichen Maschinensträngen, bei denen Boosterkompressor und Hauptkompressor beidseits der Dampfturbine angeordnet sind, was eine radiale Abströmung und somit eine Anordnung eines nachgeschalteten Kondensators in vertikaler Richtung Ober oder unter der Ebene der Dampfturbine und dementsprechend einen zweigeschossigen Fundamentaufbau mit entsprechender vertikaler Bauhöhe bedingt, kann der Kondensator eines Maschinenstrangs nach dem zweiten Aspekt der vorliegenden Erfindung aufgrund der axialen Abströmung der Dampfturbine 1 im Wesentlichen auf derselben horizontalen Ebene wie diese angeordnet werden. Dies ermöglicht vorteilhaft einen eingeschossigen Aufbau des Maschinenstranges, was aufgrund des kompakteren Fundaments und der geringeren Bau- und damit Gebäudehöhe zu erheblichen Kosteneinsparungen führt. Hierzu trägt auch die Anordnung der Drehachsen von An-, Abtriebsritzel, Großrad und Turbomaschinenritzel in derselben bzw. einer hierzu parallelen weiteren, vertikal oberhalb angeordneten horizontalen Ebene vorteilhaft bei.The axial exhaust steam from the steam turbine 1 flows into one of these condensers (not shown). In contrast to conventional machine trains, in which the booster compressor and main compressor are arranged on both sides of the steam turbine, which can cause a radial outflow and thus an arrangement of a downstream condenser in the vertical direction above or below the level of the steam turbine and accordingly a two-storey foundation structure with a corresponding vertical height the capacitor of a machine train according to the second aspect of the present invention, due to the axial outflow of the steam turbine 1, are arranged essentially on the same horizontal plane as this. This advantageously enables a one-storey structure of the machine train, which leads to considerable cost savings due to the more compact foundation and the lower construction and thus building height. The arrangement of the axes of rotation of the input and output pinions, the large wheel and the turbomachine pinion in the same or in a further horizontal plane arranged parallel to this, advantageously also contributes to this.

Die Fig. 2, 4 zeigen in Fig. 1, 3 entsprechender Darstellung die wesentlichen Elemente eines Maschinenstranges nach einer zweiten Ausführung der vorliegenden Erfindung, die im Wesentlichen mit der ersten Ausführung übereinstimmt und bei der ebenfalls der erste und zweite Aspekt der vorliegenden Erfindung gemeinsam verwirklicht sind. Mit der ersten Ausführung übereinstimmende Elemente sind mit identischen Bezugszeichen bezeichnet, so dass insoweit auf die vorstehenden Erläuterungen zu der im Wesentlichen baugleichen ersten Ausführung verwiesen und nachfolgend lediglich auf die Unterschiede zwischen erster und zweiter Ausführung eingegangen wird.The Fig. 2 , 4th show in Fig. 1 , 3rd corresponding illustration, the essential elements of a machine train according to a second embodiment of the present invention, which essentially coincides with the first embodiment and in which the first and second aspects of the present invention are also realized together. Elements that correspond to the first embodiment are identified by identical reference numerals, so that in this respect reference is made to the above explanations of the essentially identical first embodiment and only the differences between the first and second embodiments are discussed below.

Wie in Fig. 2 durch einen Pfeil angedeutet, saugt der Hauptkompressor 4 in der zweiten Ausführung radial an. Der Boosterkompressor 2 der zweiten Ausführung unterscheidet sich von dem Boosterkompressor 2 der ersten Ausführung in der Anordnung des zweiten und dritten Turbomaschinenrotors 3.20, 3.30. Während die Drehachsen ihrer Turbomaschinenritzel 3.21, 3.31, wie in Fig. 3A dargestellt, In einer gemeinsamen weiteren horizontalen Ebene liegen, die zur Ebene der Drehachsen von An-, Abtriebsritzel und Großrad parallel ist, stehen bei der zweiten Ausführung nach Fig. 4 nur die Turbomaschinenritzel 3.11, 3.21 des ersten und zweiten Turbomaschinenrotors 3.10, 3.20 mit dem Großrad 2.2 in Eingriff, wobei die Turbomaschinenritzel 3.11, 3.21 des ersten und zweiten Turbomaschinenrotors 3.10, 3.20 und das Antriebsritzel 2.1 in Umfangrichtung um vorzugsweise Jeweils 90° versetzt In Eingriff mit dem Großrad 2.2 stehen, i.e. die Drehachse des zweiten Turbomaschinenritzels 3.21 horizontal zwischen den Drehachsen des Antriebsritzels 2.1 und des Turbomaschinenritzels 3.11 des ersten Turbomaschinenrotors und vertikal oberhalb der gemeinsamen horizontalen Ebene von An-, Abtriebsritzel 2.1, 2.3, Großrad 2.2 und Turbomaschinenritzel 3.11 liegt. In dieser gemeinsamen horizontalen Ebene der Drehachsen von An-, Abtriebsritzel 2.1, 2.3, Großrad 2.2 und Turbomaschinenritzel 3.11 liegt die Drehachse des Turbomaschinenritzels 3.31 des dritten Turbomaschinenrotors 3.30, das auf der dem Antriebsritzel 2.1 gegenüberliegenden Seite des Abtriebsritzels 2.3 mit diesem in Eingriff steht, so dass es von dem Antriebsritzel 2.1 nicht über das Großrad 2.2, sondern über Abtriebsritzel 2.3 angetrieben wird.As in Fig. 2 indicated by an arrow, the main compressor 4 sucks radially in the second embodiment. The booster compressor 2 of the second embodiment differs from the booster compressor 2 of the first embodiment in the arrangement of the second and third turbomachine rotors 3.20, 3.30. While the axes of rotation of their turbomachine pinions 3.21, 3.31, as in Figure 3A shown, lie in a common further horizontal plane, which is parallel to the plane of the axes of rotation of the input, output pinion and large wheel, are inferior in the second embodiment Fig. 4 only the turbomachine pinions 3.11, 3.21 of the first and second turbomachine rotors 3.10, 3.20 mesh with the large wheel 2.2, the turbomachine pinions 3.11, 3.21 of the first and second turbomachine rotors 3.10, 3.20 and the drive pinion 2.1 in the circumferential direction preferably offset by 90 ° each the large wheel 2.2, ie the axis of rotation of the second turbomachine pinion 3.21 is horizontal between the axes of rotation of the drive pinion 2.1 and the turbomachine pinion 3.11 of the first turbomachine rotor and vertically above the common horizontal plane of input, output pinion 2.1, 2.3, large gear 2.2 and turbo machine pinion 3.11. In this common horizontal plane of the axes of rotation of the input, output pinion 2.1, 2.3, large gear 2.2 and turbomachine pinion 3.11 is the axis of rotation of the turbomachine pinion 3.31 of the third turbomachine rotor 3.30, which is in engagement with the output pinion 2.1 on the side of the output pinion 2.3, so that it is driven by the drive pinion 2.1 not via the large wheel 2.2, but via the output pinion 2.3.

Wie bei der ersten Ausführung kann durch die Zwischenschaltung von Großrad 2.2 bzw. Abtriebsritzel 2.3 die Drehrichtung der Antriebswelle in den Turbomaschinenwellen beibehalten, in der Abtriebswelle hingegen umgekehrt werden. Sofern es vorteilhaft ist, kann natürlich der Drehsinn durch Zwischenschaltung weiterer Getriebestufen zwischen An-, Abtriebsritzel, Großrad und/oder Turbomaschinenritzeln auch anders orientiert werden. Insbesondere ist es möglich, die Turbomaschinenritzel als Hohlräder eines Planetengetriebes auszubilden, welches die Turbomaschinenwelle antreibt, wie dies in der DE 42 41 141 A1 beschrieben ist, deren Offenbarung insoweit ausdrücklich in die vorliegende Beschreibung aufgenommen wird.As in the first embodiment, the interposition of large wheel 2.2 or output pinion 2.3 can maintain the direction of rotation of the drive shaft in the turbomachine shafts, but can be reversed in the output shaft. If it is advantageous, the direction of rotation can of course also be oriented differently by interposing further gear stages between the input and output pinion, large wheel and / or turbo machine pinion. In particular, it is possible to design the turbomachine pinion as ring gears of a planetary gear which drives the turbomachine shaft, as is shown in FIG DE 42 41 141 A1 is described, the disclosure of which is expressly included in the present description.

Fig. 5 zeigt In Fig. 3B, 4B entsprechender Darstellung die wesentlichen Elemente einer Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer dritten Ausführung der vorliegenden Erfindung, die im Wesentlichen mit der ersten und zweiten Ausführung übereinstimmt und bei der ebenfalls der erste und zweite Aspekt der vorliegenden Erfindung gemeinsam verwirklicht sind. Mit der ersten und zweiten Ausführung übereinstimmende Elemente sind mit identischen Bezugszeichen bezeichnet, so dass insowelt auf die vorstehenden Erläuterungen zu der im Wesentlichen baugleichen ersten und zweiten Ausführung verwiesen und nachfolgend lediglich auf die Unterschiede zwischen erster, zweiter und dritter Ausführung eingegangen wird. Fig. 5 shows In Figure 3B , 4B Corresponding representation of the essential elements of a gear arrangement of a geared turbo machine with an integrated gear according to a third embodiment of the present invention, which essentially corresponds to the first and second embodiments and in which the first and second aspects of the present invention are also realized jointly. Elements corresponding to the first and second versions are identified by identical reference numerals, so that reference is made to the above explanations regarding the essentially identical first and second versions and only the differences between the first, second and third versions are discussed below.

Bei der dritten Ausführung ist der erste Turbomaschinenrotor 3.10 durch eine Elektromaschineneingangswelle 5.1 ersetzt, die über eine Kupplung mit einer Elektromaschine 5, beispielsweise einem Elektromotor oder Generator, verbunden ist. Die Elektromaschineneingangswelle 5.1 weist ein Elektromaschinenritzel 2.4 auf, welches anstelle des Turbomaschinenritzels 3.11 mit dem Großrad 2.2 in Eingriff steht. Durch entsprechende Wahl der Übersetzungsverhältnisse zwischen Elektromaschinenritzel 2.4 und Großrad 2.2 kann beispielsweise eine höhere Drehzahl des Antriebsritzels 2.1 auf eine niedrigere Drehzahl des Elektromaschinenritzels untersetzt werden, die - in Abhängigkeit von einer Netzfrequenz - beispielsweise 3000 oder 3600 U/min beträgt.In the third embodiment, the first turbomachine rotor 3.10 is replaced by an electric machine input shaft 5.1, which is connected to an electric machine 5, for example an electric motor or generator, via a clutch. The electric machine input shaft 5.1 has an electric machine pinion 2.4, which engages with the large wheel 2.2 instead of the turbo machine pinion 3.11. By appropriate selection of the gear ratios between the electrical machine pinion 2.4 and the large wheel 2.2, for example, a higher speed of the drive pinion 2.1 can be reduced to a lower speed of the electrical machine pinion, which is - depending on a mains frequency - for example 3000 or 3600 rpm.

Ist die Elektromaschine 5 als Generator oder Motor/Generator ausgebildet, kann so mechanische Leistung der Dampfturbine 1, die nicht zum Antrieb des Hauptkompressors 4 und der Kompressorstufen der Getriebeturbomaschine 2 benötigt wird, in elektrische Energie umgewandelt und beispielsweise in ein Stromversorgungsnetz eingespeist werden.If the electric machine 5 is designed as a generator or motor / generator, mechanical power of the steam turbine 1, which is not required to drive the main compressor 4 and the compressor stages of the geared turbine machine 2, can be converted into electrical energy and fed into a power supply network, for example.

Ist die Elektromaschine 5 als Motor oder Motor/Generator ausgebildet, kann umgekehrt zusätzliches Drehmoment zum Antrieb des Hauptkompressors 4 und der Kompressorstufen der Getriebeturbomaschine 2 in die Getriebeturbomaschine 2 eingespeist werden.If the electric machine 5 is designed as a motor or motor / generator, conversely, additional torque for driving the main compressor 4 and the compressor stages of the geared turbo machine 2 can be fed into the geared turbo machine 2.

Hierzu ist als weiterer Unterschied zur vorstehend erläuterten ersten und zweiten Ausführung bei der dritten Ausführung nach Fig. 5 ein Laufrad des dritten Turbomaschinenrotors 3.30 als Expanderlaufrad 3.34 ausgebildet, das andere wie bei der ersten und zweiten Ausführung als Kompressorlaufrad 3.33, was In Fig. 5 durch gleichsinnige Dreiecke angedeutet ist. Die Getriebeturbomaschine 2 weist damit fünf Kompressorstufen und eine Expanderstufe auf und wirkt zugleich als Arbeits- und als Kraftmaschine (Kompander). Während In den Kompressorstufen ein Teilmassenstrom der im Hauptkompressor 4 verdichteten Luft weiter verdichtet wird, kann in der Expanderstufe des Expanderlaufrads 3.34 ein Medium, beispielsweise ein Im Prozess anfallendes Restgas, entspannt und so zusätzliches Drehmoment zum Antrieb des Hauptkompressors 4 und der Kompressorstufen der Getriebeturbomaschine 2 in die Getriebeturbomaschine 2 eingespeist werden.This is another difference from the first and second embodiments explained above in the third embodiment Fig. 5 one impeller of the third turbomachine rotor 3.30 is designed as an expander impeller 3.34, the other as in the first and second embodiment as a compressor impeller 3.33, which is In Fig. 5 is indicated by triangles in the same direction. The geared turbo machine 2 thus has five compressor stages and one expander stage and at the same time acts as a working machine and as an engine (compander). While in the compressor stages a partial mass flow of the air compressed in the main compressor 4 is further compressed, a medium, for example a residual gas arising in the process, can be relaxed in the expander stage of the expander impeller 3.34 and thus additional torque for driving the main compressor 4 and the compressor stages of the geared turbine engine 2 in the geared turbo machine 2 are fed.

Fig. 6 zeigt in Fig. 5 entsprechender Darstellung die wesentlichen Elemente einer Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer vierten Ausführung der vorliegenden Erfindung, die Im Wesentlichen mit der dritten Ausführung übereinstimmt und bei der ebenfalls der erste und zweite Aspekt der vorliegenden Erfindung gemeinsam verwirklicht sind. Mit der dritten Ausführung übereinstimmende Elemente sind mit identischen Bezugszeichen bezeichnet, so dass insoweit auf die vorstehenden Erläuterungen zu der im Wesentlichen baugleichen dritten Ausführung verwiesen und nachfolgend lediglich auf die Unterschiede zwischen dritter und vierter Ausführung eingegangen wird. Fig. 6 shows in Fig. 5 Corresponding representation of the essential elements of a gear arrangement of a geared turbomachine with an integrated gear according to a fourth embodiment of the present invention, which essentially corresponds to the third embodiment and in which the first and second aspects of the present invention are also realized jointly. With the third version Matching elements are identified with identical reference numerals, so that in this respect reference is made to the above explanations for the essentially identical third embodiment and only the differences between the third and fourth embodiments are discussed below.

Während bei der dritten Ausführung die Turbomaschinenritzel 3.21, 3.31 des zweiten und dritten Turbomaschinenrotors 3.20, 3.30 beide mit dem Großrad 2.2 kämmen und ihre Drehachsen hierzu in einer gemeinsamen horizontalen Ebene angeordnet sind, in der auch eine Teilungs- bzw. Trennfuge des Gehäuses der Getriebeturbomaschine 2 liegt, steht In der vierten Ausführung nur das Turbomaschinenritzel 3.21 des Turbomaschinenrotors 3.20 mit dem Großrad 2.2 in Eingriff, während das Turbomaschinenritzel 3.31 des Turbomaschinenrotors 3.30, der ein Kompressorlaufrad 3.33 und ein Expanderlaufrad 3.34 trägt, mit dem Abtriebsritzel 2.3 in Eingriff steht, wie dies auch bei der zweiten Ausführung (vgl. Fig. 4B) der Fall ist.In the third embodiment, the turbomachine pinions 3.21, 3.31 of the second and third turbomachine rotors 3.20, 3.30 both mesh with the large wheel 2.2 and their axes of rotation are arranged in a common horizontal plane, in which a dividing or separating joint of the housing of the geared turbomachine 2 is also arranged In the fourth embodiment, only the turbomachine pinion 3.21 of the turbomachine rotor 3.20 meshes with the large gear 2.2, while the turbomachine pinion 3.31 of the turbomachine rotor 3.30, which carries a compressor impeller 3.33 and an expander impeller 3.34, is in engagement with the output pinion 2.3, as is also the case in the second version (cf. Figure 4B ) the case is.

Fig. 7 zeigt In Flg. 6 entsprechender Darstellung die wesentlichen Elemente einer Getriebeanordnung einer Getriebeturbomaschine mit integriertem Getriebe nach einer fünften Ausführung der vorliegenden Erfindung, die Im Wesentlichen mit der vierten Ausführung übereinstimmt und bei der ebenfalls der erste und zweite Aspekt der vorliegenden Erfindung gemeinsam verwirklicht sind. Mit der vierten Ausführung übereinstimmende Elemente sind mit identischen Bezugszeichen bezeichnet, so dass Insoweit auf die vorstehenden Erläuterungen zu der im Wesentlichen baugleichen vierten Ausführung verwiesen und nachfolgend lediglich auf die Unterschiede zwischen vierter und fünfter Ausführung eingegangen wird. Fig. 7 shows In Flg. 6 corresponding representation, the essential elements of a gear arrangement of a geared turbomachine with an integrated gear according to a fifth embodiment of the present invention, which essentially corresponds to the fourth embodiment and in which the first and second aspects of the present invention are also realized jointly. Elements that correspond to the fourth embodiment are identified by identical reference numerals, so that in this respect reference is made to the above explanations of the fourth embodiment, which is essentially identical in construction, and only the differences between the fourth and fifth embodiments are discussed below.

Zusätzlich zu dem Turbomaschinenrotor 3.20, dessen Turbomaschinenritzel 3.21 mit dem Großrad 2.2 in Eingriff steht, und dem Turbomaschinenrotor 3.30, dessen Turbomaschinenritzel 3.31 mit dem Abtriebsritzel 2.3 in Eingriff steht, Ist bei der fünften Ausführung nach Fig. 7 ein weiterer Turbomaschinenrotor 3.10 mit zwei Kompressorlaufrädern 3.12, 3.13 vorgesehen, dessen Turbomaschinenritzel 3.11 auf der dem Großrad 2.2 gegenüberliegenden Seite mit dem Elektromaschinenritzel 2.4 in Eingriff steht.In addition to the turbomachine rotor 3.20, whose turbomachine pinion 3.21 is in engagement with the large gear 2.2, and the turbomachine rotor 3.30, whose turbomachine pinion 3.31 is in engagement with the output pinion 2.3, is the fifth embodiment Fig. 7 a further turbomachine rotor 3.10 is provided with two compressor impellers 3.12, 3.13, the turbomachine pinion 3.11 of which engages with the electric machine pinion 2.4 on the side opposite the large wheel 2.2.

Als weiterer Unterschied zur vorstehend erläuterten vierten Ausführung sind bei der fünften Ausführung nach Fig. 7 beide Laufräder 3.34, 3.35 des dritten Turbomaschinenrotors 3.30 als Expanderlaufräder ausgebildet, was in Fig. 7 durch gegenüber den Kompressorlaufrädern 3.12, 3.13, 3.21 und 3.22 gegensinnige Dreiecke angedeutet ist. Die Getriebeturbomaschine 2 weist damit vier Kompressorstufen und zwei Expanderstufen auf und wirkt ebenfalls als Kompander. Während in den Kompressorstufen ein Teilmassenstrom der Im Hauptkompressor 4 verdichteten Luft weiter verdichtet wird, kann In den Expanderstufen ein Medium, beispielsweise ein im Prozess anfallendes Restgas, entspannt und so zusätzliches Drehmoment zum Antrieb des Hauptkompressors 4 und der Kompressorstufen der Getriebeturbomaschine 2 In die Getriebeturbomaschine 2 eingespeist werden.As a further difference from the fourth embodiment explained above, in the fifth embodiment according to Fig. 7 both impellers 3.34, 3.35 of the third turbomachine rotor 3.30 trained as expander impellers, which in Fig. 7 is indicated by triangles opposite to the compressor impellers 3.12, 3.13, 3.21 and 3.22. The geared turbo machine 2 thus has four compressor stages and two expander stages and also acts as a compander. While a partial mass flow of the air compressed in the main compressor 4 is further compressed in the compressor stages, a medium, for example a residual gas arising in the process, can be relaxed in the expander stages and thus additional torque for driving the main compressor 4 and the compressor stages of the geared turbo machine 2 into the geared turbo machine 2 be fed.

Wie bei der zweiten Ausführung nach Fig. 2, 4 liegen die Drehachsen der Turbomaschinenritzel 3.11, 3.31, des Elektromaschinenritzels 2.4, des Großrades 2.2, des Antriebsritzels 2.1 und des Abtriebsritzels 2.3 bevorzugt alle in derselben horizontalen Teilungsebene des Gehäuses der Getriebeturbomaschine 2.As with the second version after Fig. 2 , 4th the axes of rotation of the turbomachine pinions 3.11, 3.31, the electric machine pinion 2.4, the large wheel 2.2, the drive pinion 2.1 and the output pinion 2.3 are preferably all in the same horizontal division plane of the housing of the geared turbomachine 2.

Wie auch bei den vorstehend beschriebenen Ausführungen können einige oder alle Kompressorlaufräder der Getriebeturbomaschine 2 Medium, vorzugsweise einen Teilmassenstrom hiervon, verdichten, das den Hauptkompressor durchströmt hat, oder ein anderes Medium, beispielsweise ein weiteres Prozessgas. Die Getriebeturbomaschine 2 kann mit ihren verschiedenen Kompressorlaufrädern auch unterschiedlichen Medien verdichten.As with the embodiments described above, some or all of the compressor impellers of the geared turbomachine 2 can compress medium, preferably a partial mass flow thereof, that has flowed through the main compressor, or another medium, for example another process gas. The geared turbo machine 2 can also compress different media with its different compressor impellers.

Wie bei den vorigen Ausführungen können Dampfturbine, Hauptkompressor und die Turbomaschinenrotoren der Getriebeturbomaschine jeweils In optimalen Drehzahibereichen betrieben werden, die durch entsprechende Wahl der Übersetzungen im Getriebe der Getriebeturbomaschine 2 und dem Lastgetriebe 2.1, 2.3 aufeinander abgestimmt werden können. Insbesondere kann die Dampfturbine aufgrund der Kopplung mit dem langsamer drehenden Hauptkompressor 4 über das drehzahluntersetzende Lastgetriebe schneller drehen, so dass sich ihr Wirkungsgrad verbessert und kleinere Dampfturbinenbaugrößen verwendet werden können.As in the previous versions, the steam turbine, main compressor and the turbomachine rotors of the geared turbomachine can each be operated in optimal speed ranges, which can be coordinated with one another by appropriate selection of the ratios in the gearbox of the geared turbomachine 2 and the load gear 2.1, 2.3. In particular, the steam turbine can rotate faster due to the coupling with the slower rotating main compressor 4 via the speed-reducing load transmission, so that its efficiency improves and smaller steam turbine sizes can be used.

Durch die Integration des Lastgetriebes in den Getriebeturbomaschine 2 ist vorteilhaft kein separates Lastgetriebe erforderlich, was zu einem kompakteren Maschinenstrang und geringerem Herstellungs- und Montageaufwand führt. Aufgrund des hiervon getrennten Hauptkompressorgehäuses ist eine teilweise schwingungstechnische Entkopplung von Hauptkompressor und Getriebeturbomaschine möglich.The integration of the load gear in the geared turbo machine 2 advantageously means that no separate load gear is required, which leads to a more compact machine train and less manufacturing and assembly work. Because of the main compressor housing, which is separate from this, it is partially vibration-related Decoupling of main compressor and geared turbo machine possible.

Aufgrund der axialen Abströmung der Dampfturbine, die nur zu einer, der Abströmung abgewandten Seite hin abtreibt, ist es möglich, einen nachgeschalteten Kondensator im Wesentlichen auf derselben horizontalen Ebene wie die Dampfturbine 1 anzuordnen, was im Gegensatz zu herkömmlichen zweigeschossigen Maschinensträngen, bei denen der Kondensator vertikal unterhalb der radial abströmenden Dampfturbine angeordnet ist, vorteilhaft einen eingeschossige Maschinenstrangaufbau und somit kompaktere Fundamente und Gebäude zur Aufnahme eines solchen Stranges ermöglicht.Due to the axial outflow of the steam turbine, which only drives to one side facing away from the outflow, it is possible to arrange a downstream condenser essentially on the same horizontal plane as the steam turbine 1, which is in contrast to conventional two-storey machine trains in which the condenser is arranged vertically below the radially outflowing steam turbine, advantageously allows a single-story machine train structure and thus more compact foundations and buildings to accommodate such a train.

Vorstehend wurde die Erfindung anhand eines Maschinenstranges mit einer Dampfturbine als Antriebsaggregat erläutert. Gleichermaßen können jedoch auch andere Strömungsmaschinen, Insbesondere eine Gasturbine oder ein Expander wie eine Entspannungs- oder Restgasturbine eingesetzt werden.The invention was explained above using a machine train with a steam turbine as the drive unit. However, other turbomachines, in particular a gas turbine or an expander such as a relaxation or residual gas turbine, can equally be used.

BezugszeichenlisteReference symbol list

11
DampfturbineSteam turbine
22nd
BoosterkompressorBooster compressor
2.12.1
AntriebsritzelDrive pinion
2.22.2
GroßradBig wheel
2.32.3
AbtriebsritzelOutput pinion
2.42.4
ElektromaschinenritzelElectric machine pinion
3.10, 3.20, 3.303.10, 3.20, 3.30
TurbomaschinenrotorTurbo machine rotor
3.11, 3.21, 3.313.11, 3.21, 3.31
TurbomaschinenritzelTurbo machine pinion
3.12, 3.13, 3,22, 3,23, 3.32, 3.333.12, 3.13, 3.22, 3.23, 3.32, 3.33
KompressorlaufradCompressor impeller
3.34, 3.353.34, 3.35
ExpanderlaufradExpander wheel
44th
Einweilenkompressor (Hauptkompressor)Single compressor (main compressor)
4.14.1
KompressorantriebswelleCompressor drive shaft
55
ElektromaschineElectric machine
5.15.1
ElektromaschinenwelleElectric machine shaft

Claims (22)

  1. An integrated transmission for a transmission turbo machine (2) of a machine train, having a drive pinion (2.1), which is non-rotatably connected to a driveshaft;
    a bull gear (2.2) that is in mesh with the drive pinion; and at least one turbo machine rotor (3.10, 3.20, 3.30) having a turbo machine shaft for the torque transmission having at least one impeller (3.12, 3.13, 3.22, 3.23, 3.32, 3.33, 3.34) of the transmission turbo machine, and
    a turbo machine pinion (3, 11, 3.21, 3.31) that is non-rotatably connected to the turbo machine shaft and in mesh with the bull gear;
    wherein an output pinion (2.3) of a rotational speed step-down power transmission is in mesh with the drive pinion (2.1), which is non-rotatably connected to an output shaft for driving a compressor driveshaft (4.1) that can be coupled to the output shaft, of a further compressor (4) separated from the transmission turbo machine, in particular of a main compressor of the machine train, characterized in that the further compressor (4) can be coupled on the side of the transmission turbo machine (2) located opposite the drive unit (1) and an axis of rotation of the drive pinion (2.1), of the bull gear (2.2), at least of one turbo machine pinion (3.11; 3.21; 3.31) and of the output pinion (2.3) are substantially arranged in a common horizontal plane and the bull gear (2.2) and the output pinion (2.3) are arranged in a common transversal plane of the drive pinion (2.1).
  2. The integrated transmission according to Claim 1, characterized in that it comprises at least two, in particular three or four turbo machine rotors (3.10, 3.20, 3.30) each with a turbo machine shaft and a turbo machine pinion (3.11, 3.21, 3.31) that is non-rotatably connected to this turbo machine shaft, wherein a turbo machine pinion (3.11, 3.21, 3.31) of at least one turbo machine rotor (3.10, 3.20, 3.30) is in mesh with the bull gear (2.2) and/or a turbo machine pinion (3.31) of a turbo machine rotor (3.30) is in mesh with the output pinion (2.3).
  3. The integrated transmission according to any one of the preceding claims, characterized in that it comprises a multi-part housing which receives the drive pinion (2.1), the bull gear (2.2), the output pinion (2.3) and the at least one turbo machine pinion (3.11, 3.21, 3.31), wherein the housing is split in a plane in which an axis of rotation of the drive pinion, of the bull gear, of a turbo machine pinion and/or of the output pinion are arranged.
  4. The integrated transmission according to any one of the preceding claims, characterized in that at least one of the drive pinion, the bull gear, the turbo machine pinions and the output pinion is axially mounted in a housing of the transmission turbo machine and at least on other one of the drive pinion, the bull gear, the turbo machine pinions and the drive pinion supports itself axially on the one of the drive pinion, the bull gear, the turbo machine pinions and the output pinion that are axially mounted in the housing of the transmission turbo machine, in particular via a thrust cone.
  5. The integrated transmission according to any one of the preceding claims, characterized in that the rotational speed step-down power transmission reduces a rotational speed of the drive pinion (2.1) with a transmission ratio (i2.1/2.3) to a rotational speed of the output pinion (2.3), which is in the range from 1.25 to 1.45, preferentially in the range from 1.3 to 1.4 and in particular in the range between 1.32 to 1.38, wherein the transmission ratio (i2.1/2.3) is defined as quotient of drive pinion rotational speed divided by output pinion rotational speed.
  6. The integrated transmission according to any one of the preceding claims, characterized in that a turbo machine pinion (3.11, 3.21, 3.31) with the drive pinion (2.1) has a transmission ratio (i2.1/3.n1), which is in the range from 0.28 to 0.54, preferentially in the range from 0.30 to 0.52 and in particular in the range between 0.32 to 0.50, wherein the transmission ratio (i2.1/3.n1) is defined as quotient of drive pinion rotational speed divided by turbo machine pinion rotational speed.
  7. The integrated transmission according to any one of the preceding claims, characterized in that a teeth width of the drive pinion (2.1) amounts to at least 1.1 times the teeth width of the bull gear (2.2).
  8. A transmission turbo machine (2) for a machine train having an integrated transmission according to any one of the preceding claims, characterized in that at least one impeller (3.12, 3.13, 3.22, 3.23, 3.32, 3.33, 3.34) of a compressor or expander stage of the transmission turbo machine is non-rotatably connected to a turbo machine shaft of a turbo machine rotor (3.10, 3.20, 3.30).
  9. The transmission turbo machine according to Claim 8, characterized in that an impeller (3.12, 3.22, 3.32) of a compressor or expander stage of the transmission turbo machine and a further impeller (3.13, 3.23, 3.33, 3.34) of a compressor or expander stage of the transmission turbo machine is non-rotatably connected to at least one turbo machine shaft of a turbo machine rotor (3.10, 3.20, 3.30).
  10. A machine train having a drive unit, in particular a steam turbine (1), a gas turbine or an expander, having a transmission turbo machine (2) according to any one of the preceding Claims 8 to 10, and having a further compressor (4) in particular a main compressor separated from the transmission turbo machine, which is spaced apart from the transmission turbo machine (2) in the axial direction.
  11. The machine train according to Claim 10, characterized in that the further compressor is a single-shaft compressor formed in particular as axial compressor, radial compressor, preferentially with horizontal and/or vertical split joint, radial isothermal compressor or combined axial-radial compressor.
  12. The machine train according to any one of the preceding Claims 10 to 11, characterized in that the further compressor (4) is received in a housing that is separated from a housing of the transmission turbo machine (2).
  13. The machine train according to any one of the preceding Claims 10 to 12, characterized in that the transmission turbo machine is formed as booster compressor having at least one compressor stage, which is maximally supplied with a part mass flow of medium compressed by the main compressor and/or a medium not compressed by the main compressor.
  14. The machine train according to any one of the preceding Claims 10 to 13, characterized in that a smallest flowed-through cross section of the further compressor is at least 1.05 times, preferentially at least 1.1 times and in particular at least 1.2 times the smallest flowed-through cross section of the transmission turbo machine.
  15. The machine train according to any one of the Claims 10 to 14, characterized in that the further compressor (4) is arranged on the side of the transmission turbo machine (2) located opposite the drive unit (1).
  16. The machine train, in particular according to any one of the Claims 10 to 15, having a steam turbine (1), a transmission turbo machine (2), and a separate further compressor (4), in particular a main compressor, characterized in that the steam turbine (1) has an axial outflow.
  17. The machine train according to Claim 16, characterized in that the steam turbine and a condenser connected downstream of the steam turbine are substantially arranged on the same horizontal plane.
  18. The machine train according to any one of the Claims 10 to 17, characterized in that in nominal operation at least 50 %, preferentially at least 60 % of the output is transmitted from the driveshaft to the driveshaft.
  19. The machine train according to any one of the Claims 10 to 18, characterized in that it comprises a driving electric machine (5), in particular a motor or a motor/generator, and/or a drivable electric machine, in particular a generator or a motor/generator with an electric machine input shaft (5.1), which is in mesh, non-rotatably connected or coupled to the drive pinion (2.1), the bull gear (2.2), the output pinion (2.3) or a turbo machine pinion (3.11).
  20. The machine train according to Claim 19, characterized in that the electric machine input shaft (5.1) has an electric machine pinion (2.4) which is in mesh with the bull gear (2.2) and/or a turbo machine pinion (3.31) of a turbo machine rotor.
  21. The machine train according to the preceding Claims 19, characterized in that it comprises a multi-part housing which receives the drive pinion (2.1), the bull gear (2.2), the output pinion (2.3), at least one turbo machine pinion (3.11, 3.21, 3.31) and the electric machine pinion (2.4), wherein the housing is split in a plane in which an axis of rotation of the drive pinion, of the bull gear, of a turbo machine pinion, of the electric machine pinion and/or of the output pinion are arranged.
  22. The machine train according to any one of the preceding Claims 20 to 21, characterized in that at least one of the drive pinion, the bull gear, the turbo machine pinions, the electric machine pinion and the output pinion is axially mounted in a housing of the transmission turbo machine and at least one other one of the drive pinion, the bull gear, the turbo machine pinions, the electric machine pinion and the output pinion supports itself axially on the one of the drive pinion, the bull gear, the turbo machine pinions, the electric machine pinion and the output pinion axially mounted in the housing of the transmission turbo machine, in particular by way of a thrust cone.
EP09006649.9A 2008-05-29 2009-05-16 Drive turbo machine for a machine line, machine line with and drive for drive turbo machine Active EP2128448B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008025695 2008-05-29
DE102008030103 2008-06-25
DE102008031116.2A DE102008031116B4 (en) 2008-05-29 2008-07-01 Geared turbomachine for a machine train, machine train with and gear for geared turbomachine

Publications (3)

Publication Number Publication Date
EP2128448A2 EP2128448A2 (en) 2009-12-02
EP2128448A3 EP2128448A3 (en) 2017-07-26
EP2128448B1 true EP2128448B1 (en) 2020-06-24

Family

ID=41254065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09006649.9A Active EP2128448B1 (en) 2008-05-29 2009-05-16 Drive turbo machine for a machine line, machine line with and drive for drive turbo machine

Country Status (5)

Country Link
US (1) US8414250B2 (en)
EP (1) EP2128448B1 (en)
JP (1) JP4991789B2 (en)
CN (1) CN101592045B (en)
DE (1) DE102008031116B4 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003525A1 (en) * 2011-02-02 2012-08-02 Siemens Aktiengesellschaft Stepped parting line on a gearbox
NO335032B1 (en) * 2011-06-01 2014-08-25 Vetco Gray Scandinavia As Submarine compression system with pump driven by compressed gas
JP5863320B2 (en) 2011-08-05 2016-02-16 三菱重工コンプレッサ株式会社 Centrifugal compressor
DE102012018468B4 (en) * 2012-09-19 2022-07-14 Man Energy Solutions Se geared turbomachine
DE102012217441A1 (en) * 2012-09-26 2014-03-27 Siemens Aktiengesellschaft geared compressors
DE102012022131A1 (en) * 2012-11-13 2014-05-15 Man Diesel & Turbo Se Geared turbine machine
DE102013208564A1 (en) 2013-05-08 2014-11-13 Voith Patent Gmbh Transmission and transmission compressor system
DE102013210497A1 (en) * 2013-06-06 2014-12-11 Siemens Aktiengesellschaft geared compressors
US20150211539A1 (en) 2014-01-24 2015-07-30 Air Products And Chemicals, Inc. Systems and methods for compressing air
DE102014221339A1 (en) * 2014-10-21 2016-04-21 Siemens Aktiengesellschaft Stepped parting line on a gearbox
KR102500189B1 (en) 2014-11-21 2023-02-14 보이트 파텐트 게엠베하 Transmission and transmission turbomachine
DE102015001418A1 (en) 2015-02-06 2016-08-11 Man Diesel & Turbo Se Geared turbine machine
DE202015000883U1 (en) 2015-02-06 2015-03-16 Man Diesel & Turbo Se Geared turbine machine
WO2018106528A1 (en) 2016-12-08 2018-06-14 Atlas Copco Comptec, Llc Waste heat recovery system
CN108445488B (en) * 2018-06-14 2020-08-14 西安交通大学 Laser active imaging detection system and method
KR20210141068A (en) 2020-05-15 2021-11-23 한화파워시스템 주식회사 Compander
FR3115812B1 (en) * 2020-10-29 2023-09-08 Safran Helicopter Engines Free turbine turbogenerator comprising a reversible electric machine coupled to the free turbine
JP2021156281A (en) 2021-02-01 2021-10-07 三菱重工コンプレッサ株式会社 Geared compressor and method for designing geared compressor
JP2023082432A (en) 2021-12-02 2023-06-14 三菱重工コンプレッサ株式会社 geared compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7122098U (en) 1971-06-08 1972-02-10 Aeg-Kanis Gmbh SPUR GEAR CASE
US3826587A (en) 1973-04-10 1974-07-30 Ingersoll Rand Co Centrifugal gas compressor unit
DE4003482A1 (en) * 1990-02-06 1991-08-08 Borsig Babcock Ag GEARBOX TURBO COMPRESSOR
US5402631A (en) * 1991-05-10 1995-04-04 Praxair Technology, Inc. Integration of combustor-turbine units and integral-gear pressure processors
DE9201858U1 (en) * 1992-02-11 1992-04-02 Mannesmann Ag, 4000 Duesseldorf, De
DE4234739C1 (en) 1992-10-15 1993-11-25 Gutehoffnungshuette Man Gearbox multi-shaft turbo compressor with feedback stages
DE4241141A1 (en) * 1992-12-07 1994-06-09 Bhs Voith Getriebetechnik Gmbh Compressor system with a gear transmission engaged in the drive train between a drive unit and a compressor area of the system
JPH10196313A (en) * 1997-01-13 1998-07-28 Fuji Electric Co Ltd Axial flow exhaust type condenser
GB2321502B (en) 1997-01-24 2001-02-07 Europ Gas Turbines Ltd Turbocharger arrangement
US6116027A (en) 1998-09-29 2000-09-12 Air Products And Chemicals, Inc. Supplemental air supply for an air separation system
DE102005002702A1 (en) 2005-01-19 2006-07-27 Man Turbo Ag Multi-stage turbocompressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102008031116B4 (en) 2022-02-03
CN101592045B (en) 2012-08-15
US8414250B2 (en) 2013-04-09
JP4991789B2 (en) 2012-08-01
DE102008031116A1 (en) 2009-12-03
EP2128448A2 (en) 2009-12-02
CN101592045A (en) 2009-12-02
EP2128448A3 (en) 2017-07-26
JP2009287555A (en) 2009-12-10
US20090297337A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP2128448B1 (en) Drive turbo machine for a machine line, machine line with and drive for drive turbo machine
EP0592803B1 (en) Gear driven multi-shaft compressor
EP0521379B1 (en) Prop-fan engine with counterrotating low pressure compressor
EP2569542B1 (en) Multi-stage integrally geared compressor
EP1726814B1 (en) Jet engine
DE102015001418A1 (en) Geared turbine machine
EP1279867A2 (en) Power-split-transmission
DE102012022131A1 (en) Geared turbine machine
DE102018133388B4 (en) Planetary gear and method of assembling a planetary gear
EP1757839A1 (en) Transmission for roller crusher
EP2136032A2 (en) Gas turbine comprising at least a compressor section having multiple stages compression modules
EP3940200A1 (en) Bucket wheel of a turbomachine
DE102014225136A1 (en) Transmission compressor, arrangement with a drive and a gear compressor
WO2011023690A2 (en) Compressor
DE102019117038A1 (en) Gearbox and gas turbine engine
WO2014195390A1 (en) Geared compressor
DE102005023161A1 (en) Preparation of nitric acid comprises combusting ammonia by passing air at low pressure in a compressor, forming nitrogen gas at high pressure and partially introducing water to nitrogen gas
DE102009003386A1 (en) Turbine systems for power generation
DE102011121925A1 (en) Compressor and method for operating a compressor
EP2711503B1 (en) Geared turbomachine
DE202015000883U1 (en) Geared turbine machine
EP2143912A1 (en) Gas turbine with at least one multi-stage compressor unit with multiple compressor modules
EP3299630A1 (en) Compressor assembly
EP3767102A1 (en) Drive train assembly
EP3491272B1 (en) Drive device with speed modulation gearbox

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN DIESEL & TURBO SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 25/16 20060101ALI20170616BHEP

Ipc: F04D 25/02 20060101AFI20170616BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170828

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009016224

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009016224

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009016224

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1284158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624