EP2126445A1 - Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung - Google Patents

Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung

Info

Publication number
EP2126445A1
EP2126445A1 EP07848107A EP07848107A EP2126445A1 EP 2126445 A1 EP2126445 A1 EP 2126445A1 EP 07848107 A EP07848107 A EP 07848107A EP 07848107 A EP07848107 A EP 07848107A EP 2126445 A1 EP2126445 A1 EP 2126445A1
Authority
EP
European Patent Office
Prior art keywords
measuring tube
measuring
medium
adapter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07848107A
Other languages
English (en)
French (fr)
Inventor
Arno Lang
Jörg Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP2126445A1 publication Critical patent/EP2126445A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/08Joints with sleeve or socket with additional locking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • G01F15/185Connecting means, e.g. bypass conduits

Definitions

  • the invention relates to a device for measuring the volume or mass flow of a medium in a pipeline, with a measuring tube, which is flowed through by the medium in the direction of the longitudinal axis of the measuring tube, with a magnet system, which passes through the measuring tube, essentially generates magnetic field extending transversely to the longitudinal axis of the measuring tube, with two measuring electrodes coupling to the medium, which are arranged in a region of the measuring tube lying substantially perpendicular to the magnetic field, and with a control / evaluation unit which, based on the measuring voltage induced in the measuring electrodes, transmits information about provides the volume or mass flow of the medium in the measuring tube.
  • the invention relates to a measuring tube, which can be used in conjunction with an arbitrarily designed flow meter.
  • the flowmeter is, for example, a Coriolis or a thermal flowmeter, a magnetic-inductive, a vortex or a sonic or ultrasonic flowmeter.
  • the invention will be described below preferably in conjunction with a magnetic-inductive flowmeter.
  • the measuring tube designed according to the invention can in principle be used in conjunction with all known types of flowmeters.
  • Magnetic-inductive flowmeters make use of the principle of electrodynamic induction for volumetric flow measurement: charge carriers of the medium which are perpendicular to a magnetic field induce a measuring voltage in measuring electrodes which are also substantially perpendicular to the flow direction of the medium and perpendicular to the direction of the magnetic field.
  • the measuring voltage induced in the measuring electrodes is proportional to the average flow velocity of the medium over the cross section of the measuring tube; it is therefore proportional to the volume flow. If the density of the medium is known, the mass flow in the pipeline or in the measuring tube can be determine.
  • the measuring voltage is usually tapped via a pair of measuring electrodes, which is preferably arranged in the region of the maximum magnetic field strength, ie where the maximum measuring voltage is to be expected.
  • the measuring electrodes are usually galvanically coupled to the medium; However, magnetic-inductive flowmeters with capacitively coupling measuring electrodes have also become known.
  • the measuring tube may be made of either an electrically conductive material, e.g. Stainless steel, be made, or it is made of an electrically insulating material. If the measuring tube is made of an electrically conductive material, then it must be lined in the region in contact with the medium with a liner made of a non-conductive material.
  • the liner usually consists of a thermoplastic, a thermosetting or an elastomeric plastic.
  • magnetic-inductive flow meters with a ceramic lining have also become known.
  • the measuring electrodes are in addition to the magnetic system, the essential
  • measuring electrodes Components of a magnetic-inductive flowmeter.
  • care must be taken that they can be mounted as simply as possible in the measuring tube and that no leakage problems subsequently occur during measuring operation;
  • the measuring electrodes should be distinguished by a sensitive and at the same time low-interference measurement signal acquisition.
  • pin electrodes that can be mounted from the outside of the measuring tube, or measuring electrodes with a widened electrode head, which are mounted from the inside of the measuring tube.
  • a flow meter has become known in which the measuring tube is flangeless.
  • the measuring tube is over on both sides Welding or connectable with the pipeline via crimp seals.
  • the crimp seals are preassembled on the flowmeter.
  • the invention has for its object to provide a flow meter or a measuring tube for a flow meter, which is simple and inexpensive to produce.
  • the two end portions of the measuring tube in the direction of the longitudinal axis of the measuring tube are conical and have on its outer surface teeth which are configured and / or arranged such that a process connection, the corresponding teeth on its inner surface has, by sliding on one of the end portions in the press fit or clamped connectable to the measuring tube.
  • the measuring tube made of plastic. It has proved to be advantageous to produce the measuring tube of glass fiber reinforced polyamide or polyphthalamide.
  • the measuring tube is made of a conductive material
  • the inner surface of the measuring tube and the holes in which the measuring electrodes are arranged lined with a liner made of an electrically insulating material.
  • a magnetic-inductive flowmeter measuring tube that it has a substantially circular inner cross section in the two end regions, wherein the central region in which the magnet system is arranged, is approximately rectangular or oval ,
  • a transition region between the circular cross section of the measuring tube and the rectangular or oval cross-section of the measuring tube is designed to be continuous or stepped. It has been found that, in particular, the step-shaped adaptation of the different internal cross-sections is very advantageous: the pressure loss behind the constriction is relatively small in the step-shaped transition region, which is why the measured values are characterized by good reproducibility.
  • the necessary stability and compressive strength, reinforcing webs extending in the circumferential direction and / or in the longitudinal direction are provided on the outer wall of the measuring tube, which are arranged and / or configured such that this area of the measuring tube is pressure-resistant up to a predetermined maximum pressure of the flowing medium.
  • a variant of the inventive solution provides that an inner tube is inserted into the measuring tube. In this embodiment, it is sufficient if this inner tube withstands a desired high process pressure.
  • the outer shell has a purely mechanical protective function and / or it is a support member for other components of the flowmeter, e.g. for a display unit or a battery compartment, etc.
  • Device or the measuring tube according to the invention is in the process connection preferably an adapter with loose flange, an adapter with a fixed flange, an adapter with sleeve or an adapter with a straight piece of pipe.
  • the adapter is designed so that it is mounted there by simply pushing on the corresponding end portion of the measuring tube there in a press fit.
  • the adapter is freely selectable with regard to the material and its dimensions, depending on the pipeline into which the flowmeter is to be inserted. If, for example, the pipeline is a plastic pipe, an appropriate plastic part with a suitable pipe section can also be used as an adapter be used, which is subsequently welded to the pipeline.
  • Flow meter provides that provided between the adapter or the process connection and the measuring tube a seal.
  • the seal is preferably a sealing ring.
  • FIG. 1 is a schematic representation of a magnetic inductive flowmeter according to the invention
  • FIG. 2 shows a preferred embodiment of a measuring tube according to the invention, which is used in particular in conjunction with a magnetic-inductive flowmeter
  • Fig. 3 a perspective view of a process connection, consisting of adapter and pipe section, and
  • Fig. 4 a perspective view of a process connection, consisting of adapter and loose flange.
  • Fig. 1 shows a schematic representation of an embodiment of the device according to the invention 1.
  • the measuring tube 2 is flowed through by the medium 11 in the direction of the longitudinal axis 3 of the measuring tube 2.
  • the medium 11 is at least to a small extent electrically conductive.
  • the measuring tube 2 is made of an electrically conductive material, the measuring tube 2 must be lined on its inner surface 24 with an electrically non-conductive liner 17; the liner 17 is preferably made of a material that is highly chemically and / or mechanically resistant.
  • the perpendicular to the main flow direction S of the medium 11 aligned alternating magnetic field B is generated by a magnet system, for example via two diametrically arranged coil assemblies 6, 7 or via two diametrically arranged electromagnets.
  • a magnet system designed as a plug-in module is preferably used, as described in the German patent application filed at the same time as the present application Applicant is described in detail.
  • the plug-in module disclosed in the co-pending patent application in one-part or multi-part configuration is outstandingly suitable for mounting on the measuring tube 2 according to the invention.
  • the measuring voltage which builds up on the measuring electrodes 4, 5 is proportional to the flow velocity of the medium 11, averaged over the cross section of the measuring tube 2.
  • H It is a measure of the volume flow of the medium 11 in the measuring tube 2.
  • the two measuring electrodes 4, 5 are preferably measuring electrodes, whose end region coming into contact with the medium 11 is widened.
  • these lenticular measuring electrodes to be mounted from the inside, naturally also externally mountable pin electrodes can be used.
  • the measuring electrodes 4, 5 are connected to the control evaluation unit 8.
  • the connection between the coil arrangements 6, 7 of the magnet system and the control / evaluation unit 8 takes place via the electrical connection lines 14, 15.
  • the control / evaluation unit 8 is connected via the connection line 16 to an input / output unit 9.
  • the evaluation / control unit 8 is associated with the memory unit 10.
  • Fig. 2 shows a preferred embodiment of a measuring tube 2 according to the invention, which is used in particular in conjunction with a magnetic-inductive flowmeter 1.
  • the measuring tube 2 is preferably made of glass fiber reinforced polyamide or polyphthalamide.
  • the measuring tube 2 has a substantially circular inner cross section in its first end region 18 and in its second end region 19.
  • the inner cross section in the central region 20, in which the magnet system 6, 7 is arranged, is approximately rectangular or oval. With this configuration, with the same design of the magnet system 6, 7, the magnetic field strength in Increases the range of the measured value, resulting in a better measurement performance of the flowmeter 1 reflected.
  • the inner cross section in the central region 20 may also be configured as a circular surface.
  • the inner surface of the measuring tube 2 in the transition region between the circular cross-section of the measuring tube 2 and the rectangular or oval cross section of the measuring tube 2 is formed continuously or stepwise. It has been found that, in particular, the step-shaped adaptation of the different internal cross-sections is very advantageous: The pressure loss of the medium 11 behind the constriction is relatively low in the step-shaped transition region, which is why the measured values are characterized by good reproducibility.
  • Area 20 to give the necessary stability and compressive strength are provided on the outer wall of the measuring tube 2 in the circumferential direction and / or longitudinally extending reinforcing webs 27 which are arranged and / or configured that this area of the measuring tube 2 up to a predetermined maximum pressure of flowing medium 11 is pressure-resistant.
  • FIGS. 3 and 4 In the two process connections shown in Fig. 2 are on the right side of the measuring tube 2 to an adapter 23 with a molded pipe section 24 and on the left side of the measuring tube 2 to an adapter 26 with a loose flange.
  • the pipe section 24 is designed so that it can be welded to the pipeline, for example.
  • the two configurations of a process connection are again shown separately and enlarged in perspective views in FIGS. 3 and 4.
  • Each of the two adapters 23, 26 has at least in a portion of its inner surface 30 teeth 22.
  • teeth 22 shown in Figure 2 are circumferential grooves on the inner surface of the adapter 23; 26th
  • the two end portions 18, 19 of the measuring tube 2 are conical formed and have on its outer surface 29 also circumferential, grooved gears 21.
  • the adapter 23, 26 correspond to each other. If the adapter 23, 26 with the application of force on an end portion 18; 19 of the measuring tube 2 postponed, it is via a press fit of the adapter 23; 26 on the end piece 18; 19 a rigid, preferably non-detachable connection between the adapter 23; 26 and the respective end region 18; 19 reached. It has been shown that this simple way to attach a process connection perfectly fulfills its purpose.
  • the adapter 23; 26 by pushing on the end portion 18; 19 are mounted in a simple manner on the measuring tube 2.
  • the adapter 23; 26 is freely selectable with regard to its design and the material, depending on the pipeline in which the flowmeter 1 is to be mounted. If, for example, the pipe is a plastic pipe, it is also possible to use as adapter 23 a corresponding plastic part with matching pipe piece 24, which may e.g. subsequently welded into the pipeline.
  • a seal is preferably provided between the adapter 26 or the process connection and the measuring tube 2.
  • the seal is preferably a sealing ring 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)

Abstract

Die Erfindung betrifft ein Messrohr für eine Vorrichtung (1) zur Bestimmung oder Überwachung des Volumen- oder Massestroms eines Mediums (11) durch eine Rohrleitung. Die beiden Endbereiche (18, 19) des Messrohres (2) sind in Richtung der Längsachse (3) des Messrohres (2) konisch ausgestaltet und weisen an ihrer Außenfläche (29) Verzahnungen (21) auf, die derart ausgestaltet und/oder angeordnet sind, dass ein Prozessanschluss bzw. ein Adapter (23; 26), der an seiner Innenfläche (30) korrespondierend ausgestaltete Verzahnungen (22) aufweist, durch Aufschieben auf den Endbereich (18; 19) im Presssitz bzw. klemmend mit dem Messrohr (2) verbindbar ist.

Description

Beschreibung
Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums in einer
Rohrleitung
[0001] Die Erfindung betrifft eine Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums in einer Rohrleitung, mit einem Messrohr, das von dem Medium in Richtung der Längsachse des Messrohres durchströmt wird, mit einem Magnetsystem, das ein das Messrohr durchsetzendes, im wesentlichen quer zur Längsachse des Messrohres verlaufendes Magnetfeld erzeugt, mit zwei mit dem Medium koppelnden Messelektroden, die in einem im wesentlichen senkrecht zum Magnetfeld liegenden Bereich des Messrohres angeordnet sind, und mit einer Regel-/Auswerteeinheit, die anhand der in die Messelektroden induzierten Messspannung Information über den Volumen- oder Massestrom des Mediums in dem Messrohr liefert. Weiterhin betrifft die Erfindung ein Messrohr, das in Verbindung mit einem beliebig ausgestalteten Durchflussmessgerät verwendet werden kann. Bei dem Durchflussmessgerät handelt es sich beispielsweise um eine Coriolis- oder ein thermisches Durchflussmessgerät, ein magnetisch-induktives, ein Vortex- oder ein Schall- oder Ultraschall-Durchflussmessgerät.
[0002] Nachfolgend wird die Erfindung bevorzugt in Verbindung mit einem magnetisch-induktiven Durchflussmessgerät beschrieben. Allerdings ist das erfindungsgemäß ausgestaltete Messrohr rinzipiell in Verbindung mit allen bekannten Arten von Durchflussmessgeräten einsetzbar.
[0003] Magnetisch-induktive Durchflussmessgeräte nutzen für die volumetrische Strömungsmessung das Prinzip der elektrodynamischen Induktion aus: Senk-recht zu einem Magnetfeld bewegte Ladungsträger des Mediums induzieren in gleichfalls im wesentlichen senkrecht zur Durchflussrichtung des Mediums und senkrecht zur Richtung des Magnetfeldes angeordnete Messelektroden eine Messspannung. Die in die Messelektroden induzierte Messspannung ist proportional zu der über den Querschnitt des Messrohres gemittelten Strömungsgeschwindigkeit des Mediums; sie ist also proportional zum Volumenstrom. Ist die Dichte des Mediums bekannt, lässt sich der Massestrom in der Rohrleitung bzw. in dem Messrohr bestimmen. Die Messspannung wird üblicherweise über ein Messelektrodenpaar abgegriffen, das bevorzugt in dem Bereich der maximalen Magnetfeldstärke angeordnet ist, also dort, wo die maximale Messspannung zu erwarten ist. Die Messelektroden sind üblicherweise galvanisch mit dem Medium gekoppelt; es sind jedoch auch magnetisch-induktive Durchflussmessgeräte mit kapazitiv koppelnden Messelektroden bekannt geworden.
[0004] Das Messrohr kann entweder aus einem elektrisch leitfähigen Material, z.B. Edelstahl, gefertigt sein, oder es besteht aus einem elektrisch isolierenden Material. Ist das Messrohr aus einem elektrisch leitfähigen Material gefertigt, so muss es in dem mit dem Medium in Kontakt kommenden Bereich mit einem Liner aus einem nicht-leitfähigen Material ausgekleidet sein. Der Liner besteht üblicherweise aus einem thermoplastischen, einem duroplastischen oder einem elastomeren Kunststoff. Es sind jedoch auch magnetisch-induktive Durchflussmessgeräte mit einer keramischen Auskleidung bekannt geworden.
[0005] Die Messelektroden sind neben dem Magnetsystem die wesentlichen
Komponenten eines magnetisch-induktiven Durchflussmessgeräts. Bei der Ausgestaltung und Anordnung der Messelektroden ist darauf zu achten, dass sie möglichst einfach in dem Messrohr montiert werden können und dass nachfolgend im Messbetrieb keine Dichtigkeitsprobleme auftreten; darüber hinaus sollen sich die Messelektroden durch eine empfindliche und gleichzeitig störungsarme Messsignalerfassung auszeichnen. Bekannt geworden sind Stiftelektroden, die sich von außen an dem Messrohr montieren lassen, oder Messelektroden mit einem aufgeweiteten Elektrodenkopf, die von innen an dem Messrohr montiert werden.
[0006] Um das Durchflussmessgerät in der Rohrleitung zu montieren, sind üblicher-weise Flanschverbindungen vorgesehen, die an dem Durchflussmessgerät angebracht bzw. angeschweißt sind. Diese Schweißverbindungen sind relativ zeitaufwändig zu realisieren.
[0007] Aus der EP 1 715 303 A1 ist ein Durchflussmessgerät bekannt geworden, bei dem das Messrohr flanschlos ist. Das Messrohr ist beidseitig über Verschweißen oder über Quetschdichtmanschetten mit der Rohrleitung verbindbar. Bevorzugt sind die Quetschdichtmanschetten an dem Durchflussmessgerät vormontiert.
[0008] Der Erfindung liegt die Aufgabe zugrunde, ein Durchflussmessgerät bzw. ein Messrohr für ein Durchflussmessgerät vorzuschlagen, das einfach und kostengünstig herstellbar ist.
[0009] Die Aufgabe wird dadurch gelöst, dass die beiden Endbereiche des Messrohres in Richtung der Längsachse des Messrohres konisch ausgestaltet sind und an ihrer Außenfläche Verzahnungen aufweisen, die derart ausgestaltet und/oder angeordnet sind, dass ein Prozessanschluss, der an seiner Innenfläche korrespondierende Verzahnungen aufweist, durch Aufschieben auf einen der Endbereiche im Presssitz bzw. klemmend mit dem Messrohr verbindbar ist.
[0010] Gemäß einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung bzw. des erfindungsgemäßen Messrohres besteht das Messrohr aus Kunststoff. Es hat sich als vorteilhaft erwiesen, das Messrohr aus Glasfaser verstärktem Polyamid oder Polypthalamid herzustellen.
[0011] Alternativ ist vorgesehen, dass bei einem magnetisch-induktiven
Durchflussmessgerät, bei dem das Messrohr aus einem leitfähigen Material gefertigt ist, die Innenfläche des Messrohrs und die Bohrungen, in denen die Messelektroden angeordnet sind, mit einem Liner aus einem elektrisch isolierenden Material ausgekleidet ist.
[0012] Weiterhin ist bei einem für ein magnetisch-induktives Durchflussmessgerät ausgelegtes Messrohr vorgesehen, dass es in den beiden Endbereichen einen im wesentlichen kreisförmigen Innen-Querschnitt aufweist, wobei der mittlere Bereich, in dem das Magnetsystem angeordnet ist, näherungsweise rechteckförmig oder oval ausgestaltet ist. Durch diese Ausgestaltung wird bei gleicher Auslegung des Magnetsystems die Magnetfeldstärke im Bereich der Messwerterfassung vergrößert, was sich in einer besseren Messperformance des Durchflussmessgeräts niederschlägt.
[0013] Weiterhin ist vorgesehen, dass ein Übergangsbereich zwischen dem kreisförmigen Querschnitt des Messrohrs und dem rechteckförmigen oder ovalen Querschnitt des Messrohrs kontinuierlich oder stufenförmig ausgestaltet ist. Es hat sich gezeigt, dass insbesondere die stufenförmige Anpassung der unterschiedlichen Innenquerschnitte sehr vorteilhaft ist: Der Druckverlust hinter der Einschnürung ist beim stufenförmigen ausgestalteten Übergangsbereich relativ gering, weshalb sich die Messwerte durch eine gute Reproduzierbarkeit auszeichnen.
[0014] Um dem Messrohr insbesondere in dem eingeschnürten Bereich die notwendige Stabilität und Druckfestigkeit zu verleihen, sind an der Außenwand des Messrohres in Umfangsrichtung und/oder in Längsrichtung verlaufende Verstärkungsstege vorgesehen, die so angeordnet und/oder ausgestaltet sind, dass dieser Bereich des Messrohres bis zu einem vorgegebenen Maximaldruck des strömenden Mediums druckfest ist. Um das Volumen des Innenraums des Messrohrs zu minimieren, sieht eine Variante der erfindungsgemäßen Lösung vor, dass in das Messrohr ein inneres Rohr eingefügt ist. Bei dieser Ausgestaltung genügt es, wenn dieses innere Rohr einem gewünschten hohen Prozessdruck standhält. In diesem Fall hat die 'äußere Hülle eine reine mechanische Schutzfunktion und/oder sie ist ein Trägerteil für weitere Komponenten des Durchflussmessgeräts, z.B. für eine Anzeigeeinheit oder ein Batteriefach, usw.
[0015] Gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen
Vorrichtung bzw. des erfindungsgemäßen Messrohres handelt es sich bei dem Prozessanschluss bevorzugt um einen Adapter mit Losflansch, um einen Adapter mit einem fest angebrachten Flansch, um einen Adapter mit Muffe oder um einen Adapter mit einem geraden Rohrstück. Prinzipiell ist vorgesehen, dass der Adapter so ausgestaltet ist, dass er durch einfaches Aufschieben auf den entsprechenden Endbereich des Messrohres dort im Presssitz montiert ist. Der Adapter ist bezüglich des Materials und seiner Abmessungen in Abhängigkeit von der Rohrleitung, in die das Durchflussmessgerät eingefügt werden soll, frei wählbar. Handelt es sich beispielsweise bei der Rohrleitung um ein Kunststoffrohr, so kann auch als Adapter ein entsprechendes Kunststoffteil mit einem passenden Rohrstück verwendet werden, das nachfolgend an der Rohrleitung angeschweißt wird.
[0016] Eine vorteilhafte Ausgestaltung des erfindungsgemäßen
Durchflussmess-geräts sieht vor, dass zwischen dem Adapter bzw. dem Prozessanschluss und dem Messrohr eine Dichtung vorgesehen. Bevorzugt handelt es sich bei der Dichtung um einen Dichtring.
[0017] Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigt:
[0018] Fig. 1 : eine schematische Darstellung eines erfindungsgemäßen magnetisch-induktiven Durchflussmessgeräts,
[0019] Fig. 2: eine bevorzugte Ausgestaltung eines erfindungsgemäßen Messrohres, das insbesondere in Verbindung mit einem magnetisch-induktiven Durchflussmessgerät eingesetzt wird,
[0020] Fig. 3: eine perspektivische Darstellung eines Prozessanschlusses, bestehend aus Adapter und Rohrstück, und
[0021] Fig. 4: eine perspektivische Darstellung eines Prozessanschlusses, bestehend aus Adapter und Losflansch.
[0022] Fig. 1 zeigt eine schematische Darstellung einer Ausgestaltung der erfindungsgemäßen Vorrichtung 1. Das Messrohr 2 wird von dem Medium 11 in Richtung der Längsachse 3 des Messrohres 2 durchströmt. Das Medium 11 ist zumindest in geringem Umfang elektrisch leitfähig. Für den Fall, dass das Messrohr 2 aus einem elektrisch leitfähigen Material gefertigt ist, muss das Messrohr 2 an seiner Innenfläche 24 mit einem elektrisch nicht-leitfähigen Liner 17 ausgekleidet sein; der Liner 17 besteht bevorzugt aus einem Material, das in hohem Maße chemisch und/oder mechanisch beständig ist.
[0023] Das senkrecht zur Hauptströmungsrichtung S des Mediums 11 ausgerichtete alternierende Magnetfeld B wird über ein Magnetsystem, z.B. über zwei diametral angeordnete Spulenanordnungen 6, 7 bzw. über zwei diametral angeordnete Elektromagnete, erzeugt. In Verbindung mit der erfindungs-gemäßen Lösung wird bevorzugt ein als Steckmodul ausgestaltetes Magnetsystem eingesetzt, wie es in der zeitgleich mit der vorliegenden Anmeldung eingereichten Deutschen Patentanmeldung der Anmelderin im Detail beschrieben ist. Das in der parallel eingereichten Patentanmeldung offenbarte Steckmodul in ein- oder mehrteiliger Ausgestaltung ist hervorragend für die Montage an dem erfindungsgemäßen Messrohr 2 geeignet.
[0024] Unter dem Einfluss der Magnetfeldes B wandern in dem Medium 11 befindliche Ladungsträger je nach Polarität zu den beiden entgegengesetzt gepolten Messelektroden 4, 5 ab. Die sich an den Messelektroden 4, 5 aufbauende Messspannung ist proportional zu der über den Querschnitt des Messrohres 2 gemittelten Strömungsgeschwindigkeit des Mediums 11 , d. h. sie ist ein Maß für den Volumenstrom des Mediums 11 in dem Messrohr 2.
[0025] Bei den beiden Messelektroden 4, 5 handelt es sich bevorzugt um Messelektroden, deren mit dem Medium 11 in Kontakt kommender Endbereich aufgeweitet ist. Neben diesen linsenförmigen von innen zu montierenden Messelektroden können selbstverständlich auch von außen montierbare Stiftelektroden verwendet werden.
[0026] Über elektrische Verbindungsleitungen 12, 13 sind die Messelektroden 4, 5 mit der Regel-Auswerteeinheit 8 verbunden. Die Verbindung zwischen den Spulenanordnungen 6, 7 des Magnetsystems und der Regel-/Auswerteeinheit 8 erfolgt über die elektrischen Verbindungsleitungen 14, 15. Die Regel-/Auswerteeinheit 8 ist über die Verbindungsleitung 16 mit einer Eingabe-/Ausgabeeinheit 9 verbunden. Der Auswerte-/Regeleinheit 8 ist die Speichereinheit 10 zugeordnet.
[0027] Fig. 2 zeigt eine bevorzugte Ausgestaltung eines erfindungsgemäßen Messrohres 2, das insbesondere in Verbindung mit einem magnetisch-induktiven Durchflussmessgerät 1 einsetzbar ist. Das Messrohr 2 ist bevorzugt aus Glasfaser verstärktem Polyamid oder Polypthalamid gefertigt. Das Messrohr 2 hat in seinem ersten Endbereich 18 und in seinem zweiten Endbereich 19 einen im wesentlichen kreisförmigen Innenquerschnitt. Der Innenquerschnitt im mittleren Bereich 20, in dem das Magnetsystem 6, 7 angeordnet ist, ist näherungsweise rechteckförmig oder oval ausgestaltet. Durch diese Ausgestaltung wird bei gleicher Auslegung des Magnetsystems 6, 7 die Magnetfeldstärke im Bereich der Messwerterfassung vergrößert, was sich in einer besseren Messperformance des Durchflussmessgeräts 1 niederschlägt. Selbstverständlich kann der Innenquerschnitt im mittleren Bereich 20 auch als Kreisfläche ausgestaltet sein.
[0028] Weiterhin ist vorgesehen, dass die Innenfläche des Messrohres 2 im Übergangsbereich zwischen dem kreisförmigen Querschnitt des Messrohrs 2 und dem rechteckförmigen oder ovalen Querschnitt des Messrohrs 2 kontinuierlich oder stufenförmig geformt ist. Es hat sich gezeigt, dass insbesondere die stufenförmige Anpassung der unterschiedlichen Innenquerschnitte sehr vorteilhaft ist: Der Druckverlust des Mediums 11 hinter der Einschnürung ist beim stufenförmigen ausgestalteten Übergangsbereich relativ gering, weshalb sich die Messwerte durch eine gute Reproduzierbarkeit auszeichnen.
[0029] Um dem Messrohr 2 insbesondere in dem eingeschnürten mittleren
Bereich 20 die notwendige Stabilität und Druckfestigkeit zu verleihen, sind an der Außenwand des Messrohres 2 in Umfangsrichtung und/oder in Längsrichtung verlaufende Verstärkungsstege 27 vorgesehen, die so angeordnet und/oder ausgestaltet sind, dass dieser Bereich des Messrohres 2 bis zu einem vorgegebenen Maximaldruck des strömenden Mediums 11 druckfest ist.
[0030] Bei den beiden in Fig. 2 dargestellten Prozessanschlüssen handelt es sich auf der rechten Seite des Messrohres 2 um einen Adapter 23 mit einem angeformten Rohrstück 24 und auf der linken Seite des Messrohres 2 um einen Adapter 26 mit Losflansch. Das Rohrstück 24 ist so ausgelegt, dass es beispielsweise an die Rohrleitung angeschweißt werden kann. Die beiden Ausgestaltungen eines Prozessanschlusses sind in den Figuren Fig. 3 und Fig. 4 in perspektivischen Darstellungen noch einmal gesondert und vergrößert dargestellt.
[0031] Jeder der beiden Adapter 23, 26 hat zumindest in einem Teilbereich seiner Innenfläche 30 Verzahnungen 22. Bei den in Fig. 2 gezeigten Verzahnungen 22 handelt es sich um umlaufende Rillen an der Innenfläche des Adapters 23; 26.
[0032] Die beiden Endbereiche 18, 19 des Messrohres 2 sind konisch ausgebildet und weisen an ihrer Außenfläche 29 gleichfalls umlaufende, rillenförmige Verzahnungen 21. Die Verzahnungen 21 an der Außenfläche
29 des Endstückes 18; 19 und die Verzahnungen 22 an der Innenfläche
30 des Adapters 23, 26 korrespondieren zueinander. Wird der Adapter 23, 26 unter Kraftaufwendung auf einen Endbereich 18; 19 des Messrohres 2 aufgeschoben, so wird über einen Presssitz des Adapters 23; 26 auf dem Endstück 18; 19 eine starre, bevorzugt unlösbare Verbindung zwischen dem Adapter 23; 26 und dem jeweiligen Endbereich 18; 19 erreicht. Es hat sich gezeigt, dass diese einfache Möglichkeit zur Befestigung eines Prozessanschlusses ihren Zweck hervorragend erfüllt.
[0033] Es versteht sich von selbst, dass an dem Adapter 23, 26 auch ein
Festflansch angebracht sein kann. Möglich ist darüber hinaus auch ein Adapter mit Muffe. Welche Art von Prozessanschluss auch immer die jeweiligen Anforderungen des Kunden optimal erfüllt, stets kann der Adapter 23; 26 durch Aufschieben auf den Endbereich 18; 19 in einfacher Art und Weise an dem Messrohr 2 montiert werden. Der Adapter 23; 26 ist in Abhängigkeit von der Rohrleitung, in der das Durchflussmessgerät 1 montiert werden soll, hinsichtlich seiner Ausgestaltung und des Materials frei wählbar. Handelt es sich beispielsweise bei der Rohrleitung um ein Kunststoffrohr, so kann auch als Adapter 23 ein entsprechendes Kunststoffteil mit passendem Rohrstück 24 verwendet werden, das z.B. nachfolgend in die Rohrleitung eingeschweißt wird.
[0034] Wird als Prozessanschluss beispielsweise ein Adapter 26 mit Losflansch 25 eingesetzt, so ist bevorzugt zwischen dem Adapter 26 bzw. dem Prozessanschluss und dem Messrohr 2 eine Dichtung vorgesehen. Bevorzugt handelt es sich bei der Dichtung um einen Dichtring 28.
[0035] Bezugszeichenliste
1. Magnetisch-induktives Durchflussmessgerät
2. Messrohr
3. Längsachse des Messrohres 4. Messelektrode
5. Messelektrode
6. Spulenanordnung / Magnetsystem
7. Spulenanordnung / Magnetsystem
8. Regel-/Auswerteeinheit
9. Eingabe-/Ausgabeeinheit
10. Speichereinheit
11. Medium
12. Verbindungsleitung
13. Verbindungsleitung
14. Verbindungsleitung
15. Verbindungsleitung
16. Verbindungsleitung
17. Liner
18. Erster Endbereich
19. Zweiter Endbereich
20. Mittlerer Bereich
21. Verzahnung
22. Verzahnung
23. Adapter mit integriertem Rohrstück
24. Rohrstück
25. Losflansch
26. Adapter für Losflansch
27. Verstärkungssteg
28. Dichtring / Dichtung
29. Außenfläche
30. Innenfläche

Claims

Ansprüche
1. 1. Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums (11) in einer Rohrleitung, mit einem Messrohr (2), das von dem Medium (11) in Richtung der Längsachse (3) des Messrohres (2) durchströmt wird, mit einem Magnetsystem (6, 7), das ein das Messrohr (2) durchsetzendes, im wesentlichen quer zur Längsachse (3) des Messrohres (2) verlaufendes Magnetfeld (B) erzeugt, mit zwei mit dem Medium (11) koppelnden Messelektroden (4, 5), die in einem im wesentlichen senkrecht zum Magnetfeld (B) liegenden Bereich des Messrohres (2) angeordnet sind, und mit einer Regel-/Auswerteeinheit (8), die anhand der in die Messelektroden (4, 5) induzierten Messspannung Information über den Volumen- oder Massestrom des Mediums (11) in dem Messrohr (2) liefert, dadurch gekennzeichnet, dass die beiden Endbereiche (18, 19) des Messrohres (2) in Richtung der Längsachse (3) des Messrohres (2) konisch ausgestaltet sind und an ihrer Außenfläche (29) Verzahnungen (21) aufweisen, die derart ausgestaltet und/oder angeordnet sind, dass ein Prozessanschluss (23, 24; 26; 25) durch Aufschieben auf einen der Endbereiche (18; 19) im Presssitz mit dem Messrohr (2) verbunden ist.
2. 2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Messrohr (2) aus Kunststoff, vorzugsweise aus Glasfaser verstärktem Polyamid, besteht.
3. 3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass für den Fall, dass das Messrohr (2) aus einem leitfähigen Material gefertigt ist, die Innenfläche des Messrohrs (2) und die Bohrung, in der die Messelektrode (6, 7) angeordnet ist, mit einem Liner (17) aus einem elektrisch isolierenden Material ausgekleidet ist.
4. 4. Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass das Messrohr (2) in den beiden Endbereichen (18, 19) einen im wesentlichen kreisförmigen Innen-Querschnitt aufweist, wobei der mittlere Bereich (20), in dem das Magnetsystem (6, 7) angeordnet ist, näherungsweise rechteckförmig oder oval ausgestaltet ist.
5. 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, wobei ein Übergangsbereich zwischen dem kreisförmigen Querschnitt des Messrohrs (2) und dem rechteckförmigen oder ovalen Querschnitt des Messrohrs (2) kontinuierlich oder stufenförmig ausgestaltet ist.
6. 6. Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass an der Außenwand des Messrohres (2) in Umfangsrichtung und/oder in Längsrichtung verlaufende Verstärkungsstege (27) vorgesehen sind, die so angeordnet und ausgestaltet sind, dass das Messrohr (2) in dem eingeschnürten mittleren Bereich (20) bis zu einem vorgegebenen Maximaldruck des Mediums (11) druckfest ist.
7. 7. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem Prozessanschluss (23, 24; 26, 25) bevorzugt um einen Adapter (26) mit Losflansch (25), um einen Adapter mit einem fest angebrachten Flansch, um einen Adapter mit Muffe oder um einen oder um einen Adapter (23) mit einem Rohrstück (24) handelt.
8. 8. Vorrichtung nach Anspruch 1 oder 7, dadurch gekennzeichnet, dass zumindest eine Dichtung (28) zwischen dem Adapter (26) bzw. dem Prozessanschluss und dem Messrohr (2) vorgesehen ist.
9. 9. Messrohr für eine Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massestroms eines Mediums (11) durch eine Rohrleitung, dadurch gekennzeichnet, dass die beiden Endbereiche (18, 19) des Messrohres (2) in Richtung der Längsachse (3) des Messrohres (2) konisch ausgestaltet sind und an ihrer Außenfläche (29) Verzahnungen (21) aufweisen, die derart ausgestaltet und/oder angeordnet sind, dass ein Prozessanschluss bzw. ein Adapter (23; 26), der an seiner Innenfläche (30) korrespondierend ausgestaltete Verzahnungen (22) aufweist, durch Aufschieben auf einen Endbereich (18; 19) durch Presssitz bzw. klemmend mit dem Messrohr (2) verbindbar ist.
EP07848107A 2006-12-19 2007-12-14 Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung Withdrawn EP2126445A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610060446 DE102006060446A1 (de) 2006-12-19 2006-12-19 Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums in einer Rohrleitung
PCT/EP2007/063964 WO2008074742A1 (de) 2006-12-19 2007-12-14 Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung

Publications (1)

Publication Number Publication Date
EP2126445A1 true EP2126445A1 (de) 2009-12-02

Family

ID=39313307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07848107A Withdrawn EP2126445A1 (de) 2006-12-19 2007-12-14 Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung

Country Status (3)

Country Link
EP (1) EP2126445A1 (de)
DE (1) DE102006060446A1 (de)
WO (1) WO2008074742A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113843A1 (de) 2014-09-24 2016-03-24 Endress+Hauser Flowtec Ag Messrohr für ein Durchflussmessgerät und ein magnetisch-induktives Durchflussmessgerät

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057755B4 (de) * 2008-11-17 2015-12-17 Krohne Ag Magnetisch-induktives Durchflußmeßgerät
DE102010029343A1 (de) 2010-05-27 2011-12-01 Endress + Hauser Flowtec Ag Adapter zum Anschluss eines flanschlossen Durchflussmessgeräts an eine Rohrleitung
DE102010031433A1 (de) 2010-07-16 2012-01-19 Endress + Hauser Flowtec Ag Einsatz für ein magnetisch-induktives Durchflussmessgerät
CN102758981B (zh) * 2012-06-19 2014-03-12 苏州海伦哲专用车辆有限公司 消防水带接头
DE102012213507B3 (de) * 2012-07-31 2013-08-22 Ifm Electronic Gmbh Magnetisch-induktives Durchflussmessgerät
DE102012110665A1 (de) * 2012-11-07 2014-05-08 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät und Anordnung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2696737A (en) * 1949-12-14 1954-12-14 Erdco Eng Corp Magnetic type flowmeter
US3794364A (en) * 1971-12-27 1974-02-26 Johns Manville Conduit end connection
US4195515A (en) * 1976-06-28 1980-04-01 Smoll Owen C In line electromagnetic flow measurement transducer
JPS5885118A (ja) * 1981-11-14 1983-05-21 Yokogawa Hokushin Electric Corp 電磁流量計
DE3730641A1 (de) * 1987-09-11 1989-03-30 Flowtec Ag Verfahren zur herstellung eines magnetisch-induktiven messrohres
DE10064845A1 (de) * 2000-12-23 2002-07-04 Abb Patent Gmbh Durchflussmesseinrichtung
DE10104149C2 (de) * 2001-01-30 2002-07-11 Gasversorgung Thueringen Gmbh Funktionseinheit von Gasdruckregler und Gaszähler
GB0329450D0 (en) * 2003-12-19 2004-01-28 Abb Ltd Electromagnetic flow meter insert
DE102004063617A1 (de) * 2004-12-02 2006-06-08 Krohne Ag Magnetisch-induktives Durchflußmeßgerät und Herstellungsverfahren für ein magnetisch-induktives Durchflußmeßgerät
DE202005020808U1 (de) * 2005-03-23 2006-08-24 Abb Patent Gmbh Magnetisch-induktiver Durchflussmesser mit elektrisch isoliertem Messrohr
PL205157B1 (pl) * 2005-04-26 2010-03-31 Kominus Spo & Lstrok Ka Z Ogra Złącze sprężystych rur cienkościennych

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2008074742A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113843A1 (de) 2014-09-24 2016-03-24 Endress+Hauser Flowtec Ag Messrohr für ein Durchflussmessgerät und ein magnetisch-induktives Durchflussmessgerät

Also Published As

Publication number Publication date
WO2008074742A1 (de) 2008-06-26
DE102006060446A1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
EP2126445A1 (de) Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung
EP1666849B1 (de) Magnetisch-induktives Durchflussmessgerät und Herstellungsverfahren für ein magnetisch-induktives Durchflussmessgerät
DE102014107697A1 (de) Ultraschallströmungsmesser
EP2092277A1 (de) Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung
DE102014106706A1 (de) Vorrichtung zum Bestimmen von Eigenschaften eines Mediums
DE102005044677A1 (de) Magnetisch-induktiver Durchflussmesser mit einer Erdungsscheibe
DE102008055167A1 (de) Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall
DE102012110665A1 (de) Magnetisch-induktives Durchflussmessgerät und Anordnung
DE102012221616A1 (de) Magnetisch induktiver Durchflussmesser
EP2059771B1 (de) Magnetisch-induktives durchflussmessgerät
EP2761257A1 (de) Magnetisch-induktives durchflussmessgerät
DE102007004828B4 (de) Kompaktes, modular aufgebautes magnetisch induktives Durchflussmessgerät und Verfahren zur Herstellung eines solchen Durchflussmessgerätes
DE102005009675B3 (de) Durchflußmeßgerät
EP2413107B1 (de) Magnetisch-induktives Durchflussmessgerät
DE102006008451B4 (de) Magnetisch-induktiver Durchflussmesser mit einem Messrohr aus Metall
WO2021063710A1 (de) Messaufnehmer, messrohr, messgerät, magnetisch-induktive durchflussmessstelle
DE102006060442A1 (de) Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums in einer Rohrleitung
DE102013102544A1 (de) Durchflussmessgerät mit einem Kunststoffmessrohr
EP2169359A1 (de) Messarmatur und Verfahren zur Ermittlung eines Differenz- oder Summenvolumenstromes
EP2113068A1 (de) Vorrichtung zum messen des volumen- oder massestroms eines mediums in einer rohrleitung
WO2008107053A1 (de) Wirbelströmungsmesser zur erfassung der strömungsgeschwindigkeit in einer leitung
DE202008003584U1 (de) Vorrichtung zur Durchflussmessung eines Mediums
EP0892252B1 (de) Magnetisch-induktiver Durchflussaufnehmer mit einer galvanischen Elektrode
DE102009001413A1 (de) Spulenanordnung für ein magnetisch induktives Durchflussmessgerät
DE102010056077A1 (de) Magnetisch-induktiver Durchflussmesser mit einer innenwandseitig des Messrohres angeordneten Auskleidung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200701