EP2125838B1 - Improved process for the preparation of oxidized phospholipids - Google Patents
Improved process for the preparation of oxidized phospholipids Download PDFInfo
- Publication number
- EP2125838B1 EP2125838B1 EP08700247.3A EP08700247A EP2125838B1 EP 2125838 B1 EP2125838 B1 EP 2125838B1 EP 08700247 A EP08700247 A EP 08700247A EP 2125838 B1 EP2125838 B1 EP 2125838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compound
- group
- moiety
- glycerolic backbone
- phosphoryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 90
- 150000003904 phospholipids Chemical class 0.000 title description 62
- 230000008569 process Effects 0.000 title description 24
- 238000002360 preparation method Methods 0.000 title description 22
- 150000001875 compounds Chemical class 0.000 claims description 218
- 239000002904 solvent Substances 0.000 claims description 48
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 46
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 38
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 29
- -1 phosphoryl cardiolipin Chemical group 0.000 claims description 29
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 24
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 24
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 claims description 22
- 125000006239 protecting group Chemical group 0.000 claims description 21
- SUHOOTKUPISOBE-UHFFFAOYSA-N O-phosphoethanolamine Chemical group NCCOP(O)(O)=O SUHOOTKUPISOBE-UHFFFAOYSA-N 0.000 claims description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 238000004440 column chromatography Methods 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 13
- 229910019142 PO4 Inorganic materials 0.000 claims description 11
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical group C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 claims description 11
- 235000011180 diphosphates Nutrition 0.000 claims description 10
- 239000010452 phosphate Substances 0.000 claims description 10
- 229950004354 phosphorylcholine Drugs 0.000 claims description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims description 9
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 claims description 9
- GIELSVRJHGSIJE-UHFFFAOYSA-N (oxo-lambda5-phosphanylidyne)methanol Chemical group P(=O)#CO GIELSVRJHGSIJE-UHFFFAOYSA-N 0.000 claims description 8
- QQHVEZXEGWKJEP-UHFFFAOYSA-N 2-(oxo-lambda5-phosphanylidyne)ethanol Chemical group OCC#P=O QQHVEZXEGWKJEP-UHFFFAOYSA-N 0.000 claims description 8
- OKLITDBMRKBZLC-UHFFFAOYSA-N 3-(oxo-$l^{5}-phosphanylidyne)propan-1-ol Chemical group OCCC#P=O OKLITDBMRKBZLC-UHFFFAOYSA-N 0.000 claims description 8
- VDRKXDRYHWOORA-UHFFFAOYSA-N 4-(oxo-$l^{5}-phosphanylidyne)butan-1-ol Chemical group OCCCC#P=O VDRKXDRYHWOORA-UHFFFAOYSA-N 0.000 claims description 8
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 claims description 8
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoserine Chemical group OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- VZYZHAVHYMUSNJ-UHFFFAOYSA-N [2-(dinitroamino)-1-phenylethyl] dihydrogen phosphate Chemical compound [N+](=O)([O-])N(CC(OP(=O)(O)O)C1=CC=CC=C1)[N+](=O)[O-] VZYZHAVHYMUSNJ-UHFFFAOYSA-N 0.000 claims description 8
- JGENYNHRIOHZOP-UHFFFAOYSA-N ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical group CCOP([O-])(=O)OCC[N+](C)(C)C JGENYNHRIOHZOP-UHFFFAOYSA-N 0.000 claims description 8
- AWUCVROLDVIAJX-UHFFFAOYSA-N glycerol 1-phosphate Chemical compound OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 claims description 8
- 229960000367 inositol Drugs 0.000 claims description 8
- 239000008101 lactose Substances 0.000 claims description 8
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 8
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 claims description 8
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical group CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 7
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Chemical group NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 claims description 7
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Chemical group OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 7
- 239000012454 non-polar solvent Substances 0.000 claims description 7
- 150000008104 phosphatidylethanolamines Chemical group 0.000 claims description 7
- 150000003905 phosphatidylinositols Chemical group 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 6
- 238000007248 oxidative elimination reaction Methods 0.000 claims description 4
- 238000005191 phase separation Methods 0.000 claims description 3
- 125000002525 phosphocholine group Chemical group OP(=O)(OCC[N+](C)(C)C)O* 0.000 claims 2
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 150000004702 methyl esters Chemical group 0.000 claims 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 54
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 239000000243 solution Substances 0.000 description 26
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 239000000543 intermediate Substances 0.000 description 17
- 150000002632 lipids Chemical class 0.000 description 16
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000009286 beneficial effect Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
- 150000002313 glycerolipids Chemical class 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 150000002327 glycerophospholipids Chemical class 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 201000001320 Atherosclerosis Diseases 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 150000002431 hydrogen Chemical group 0.000 description 6
- 229960004592 isopropanol Drugs 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical group [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 5
- 231100001261 hazardous Toxicity 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 238000007040 multi-step synthesis reaction Methods 0.000 description 5
- 108010071584 oxidized low density lipoprotein Proteins 0.000 description 5
- 239000012286 potassium permanganate Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- 108010007622 LDL Lipoproteins Proteins 0.000 description 3
- 102000007330 LDL Lipoproteins Human genes 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000004103 aminoalkyl group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- OOWQBDFWEXAXPB-IBGZPJMESA-N 1-O-hexadecyl-sn-glycerol Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](O)CO OOWQBDFWEXAXPB-IBGZPJMESA-N 0.000 description 2
- DYABJLMZPKIOLY-UHFFFAOYSA-N 1-hexadecoxy-3-trityloxypropan-2-ol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OCC(O)COCCCCCCCCCCCCCCCC)C1=CC=CC=C1 DYABJLMZPKIOLY-UHFFFAOYSA-N 0.000 description 2
- CDZVJFRXJAUXPP-AREMUKBSSA-N 2-O-glutaroyl-1-O-palmitoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCC(O)=O)COP([O-])(=O)OCC[N+](C)(C)C CDZVJFRXJAUXPP-AREMUKBSSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 230000036523 atherogenesis Effects 0.000 description 2
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical group 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 238000005949 ozonolysis reaction Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 230000010118 platelet activation Effects 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- LZTRCELOJRDYMQ-UHFFFAOYSA-N triphenylmethanol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C1=CC=CC=C1 LZTRCELOJRDYMQ-UHFFFAOYSA-N 0.000 description 2
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 description 1
- RKIDALSACBQVTN-HHHXNRCGSA-N 1-O-palmitoyl-2-O-(5-oxovaleryl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCC=O)COP([O-])(=O)OCC[N+](C)(C)C RKIDALSACBQVTN-HHHXNRCGSA-N 0.000 description 1
- HNTGIJLWHDPAFN-UHFFFAOYSA-N 1-bromohexadecane Chemical compound CCCCCCCCCCCCCCCCBr HNTGIJLWHDPAFN-UHFFFAOYSA-N 0.000 description 1
- NGXQYIUTTZZUHT-UHFFFAOYSA-N 3-hexadecylperoxypropane-1,2-diol Chemical compound CCCCCCCCCCCCCCCCOOCC(O)CO NGXQYIUTTZZUHT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RIMXEJYJXDBLIE-UHFFFAOYSA-N 6-bromohex-1-ene Chemical compound BrCCCCC=C RIMXEJYJXDBLIE-UHFFFAOYSA-N 0.000 description 1
- KKJUPNGICOCCDW-UHFFFAOYSA-N 7-N,N-Dimethylamino-1,2,3,4,5-pentathiocyclooctane Chemical compound CN(C)C1CSSSSSC1 KKJUPNGICOCCDW-UHFFFAOYSA-N 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 101100042630 Caenorhabditis elegans sin-3 gene Proteins 0.000 description 1
- 101100258233 Caenorhabditis elegans sun-1 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000007126 N-alkylation reaction Methods 0.000 description 1
- 229910004879 Na2S2O5 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- RNVYQYLELCKWAN-RXMQYKEDSA-N [(4r)-2,2-dimethyl-1,3-dioxolan-4-yl]methanol Chemical compound CC1(C)OC[C@@H](CO)O1 RNVYQYLELCKWAN-RXMQYKEDSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000000489 anti-atherogenic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 150000001649 bromium compounds Chemical group 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- CHVJITGCYZJHLR-UHFFFAOYSA-N cyclohepta-1,3,5-triene Chemical compound C1C=CC=CC=C1 CHVJITGCYZJHLR-UHFFFAOYSA-N 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N linoleic acid group Chemical group C(CCCCCCC\C=C/C\C=C/CCCCC)(=O)O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 125000003473 lipid group Chemical group 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 238000010915 one-step procedure Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 125000005429 oxyalkyl group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000002307 peroxisome proliferator activated receptor agonist Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000005328 phosphinyl group Chemical group [PH2](=O)* 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010963 scalable process Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
- C07F9/106—Adducts, complexes, salts of phosphatides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/26—Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/29—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/29—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with halogen-containing compounds which may be formed in situ
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/28—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/39—Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/091—Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to the field of synthetic chemistry, and more particularly, to novel synthetic processes useful for the preparation of oxidized phospholipids, derivatives, analogs and salts thereof.
- modified phospholipids are known in many applications.
- U.S. Patent No. 5,985,292 compositions for trans-dermal and trans-membranal application incorporating phospholipids bearing lipid-soluble active compounds are disclosed.
- U.S. Patent Nos. 6,261,597 , 6,017,513 and 4,614,796 phospholipid derivatives incorporated into liposomes and biovectors for drug delivery are disclosed.
- U.S. Patent No. 5,660,855 lipid constructs of aminomannosederivatized cholesterol suitable for targeting smooth muscle cells or tissue, formulated in liposomes, are disclosed. These formulations are aimed at reducing restenosis in arteries, using PTCA procedures.
- liposomes for treating atherosclerosis has been further disclosed in the PCT patent application published as WO 95/23592 .
- compositions of unilamellar liposomes that may contain phospholipids.
- the liposomes disclosed in WO 95/23592 are aimed at optimizing cholesterol efflux from atherosclerotic plaque and are typically non-oxidized phospholipids.
- Modified phospholipid derivatives mimicking platelet activation factor (PAF) structures are known to be pharmaceutically active, affecting such functions as vascular permeability, blood pressure and heart function inhibition.
- PAF platelet activation factor
- Oxidation of phospholipids occurs in vivo through the action of free radicals and enzymatic reactions abundant in atheromatous plaque.
- preparation of oxidized phospholipids usually involves simple chemical oxidation of a native LDL or LDL phospholipid component.
- Investigators studying the role of oxidized LDL have employed, for example, ferrous ions and ascorbic acid ( Itabe, H., et al., J.Biol. Chem. 1996; 271:33208-217 ) and copper sulfate ( George, J. et al., Atherosclerosis. 1998; 138:147-152 ; Ameli, S.
- oxidation techniques described above for preparing oxidized phospholipids involve reactions that are non-specific and yield a mixture of oxidized products.
- the non-specificity of the reactions reduces yield, requires a further separation step and raises concern for undesired side effects when the products are integrated in pharmaceutical compositions.
- 1-Palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphocholine (POVPC) and derivatives thereof such as 1-palmitoyl-2-glutaroyl- sn -glycero-3-phosphocholine (PGPC) are representative examples of mildly oxidized esterified phospholipids that have been studied with respect to atherogenesis (see, for example, Boullier et al., J. Biol. Chem.. 2000, 275:9163 ; Subbanagounder et al., Circulation Research, 1999, pp. 311 ).
- POVPC is typically prepared by providing a phosphatidyl choline bearing an unsaturated fatty acid and oxidizing the unsaturated bond of the fatty acid by, e.g., ozonolysis (oxidative cleavage) or using a periodate as an oxidizing agent.
- ozonolysis oxidative cleavage
- a periodate as an oxidizing agent.
- Such a synthetic pathway typically involves a multi-step synthesis and requires separation of most of the formed intermediates by means of column chromatography.
- etherified oxidized phospholipids have been similarly prepared by oxidizing an unsaturated bond of a fatty acid attached to a phospholipid backbone. More particularly, the etherified oxidized phospholipids were prepared, according to the teachings of this patent, by introducing an unsaturated short fatty acid to a glycerolipid, introducing a phosphate moiety to the obtained intermediate and oxidizing the unsaturated bond in the fatty acid chain by means of (i) hydrogen peroxide and formic acid, so as to obtain a diol, followed by potassium periodate, so as to obtain an aldehyde; or (ii) ozonolysis.
- esterified oxidized phospholipids prepared as above have the disadvantage of susceptibility to recognition, binding and metabolism of the active component in the body, making dosage and stability after administration an important consideration.
- Etherified oxidized phospholipids such as those described in U.S. Patent No. 6,838,452 and in WO 04/106486 , exhibit higher biostability and high therapeutic activity.
- a 2 is CH 2 ;
- R 1 is an alkyl having 1-30 carbon atoms;
- R 2 is whereas:
- X is an alkyl chain having 1-24 carbon atoms;
- Y is hydrogen; and
- Z is; and
- R 3 is selected from the group consisting of hydrogen, alkyl, aryl, phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inosi
- Isolating the third compound comprises: collecting the third compound; providing a solution of the third compound in a solvent, the solvent being selected such that the third compound is soluble therein whereby impurities formed during the reacting are insoluble therein, to thereby provide a mixture including the solution of the third compound in the solvent and insoluble impurities; removing the insoluble impurities; and removing the solvent, thereby obtaining the purified third compound.
- the oxidized moiety is selected from the group consisting of a carboxylic acid and an ester.
- the oxidizing agent comprises a mixture of a periodate and a permanganate.
- reacting the purified third compound with an oxidizing agent is effected in the presence of a base.
- the method further comprising, prior to the reacting the first compound and the second compound: protecting a free hydroxyl group at position sn- 3 of the glycerolic backbone with a protecting group.
- the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone further comprises a phosphorous-containing moiety attached to the glycerolic backbone, such that R 3 is selected from the group consisting of phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate
- the at least one phosphorous-containing moiety is a phosphate moiety being attached to the glycerolic backbone via a phosphodiester bond.
- Reacting the purified fourth compound with the phosphorous-containing moiety comprises: providing the purified fourth compound having a free hydroxyl group; reacting the purified fourth compound with a reactive phosphorous-containing compound having a second reactive group and a third reactive group, the second reactive group being capable of reacting with the free hydroxyl group and a second reactive group, to thereby provide the first compound, the third compound, the purified third compound, the fourth compound or the purified fourth compound having a reactive phosphorous-containing group attached to the glycerolic backbone; and converting the reactive phosphorous-containing group to the phosphorous-containing moiety.
- the reactive phosphorous-containing compound is phosphorous oxychloride (POCl 3 ).
- the present invention successfully addresses the shortcomings of the presently known configurations by providing novel synthetic routes that can be beneficially used in the scaled-up preparation of oxidized phospholipids.
- mixture describes a mixture that includes more than one substance and which can be in any form, for example, as a homogenous solution, a suspension, a dispersion, a biphasic solution and more.
- composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.
- method refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
- phospholipid is used herein to collectively describe compounds that include a non-polar lipid group and a highly polar end phosphate group.
- phosphoglycerides family of compounds.
- phospholipid is therefore typically used herein throughout to describe phosphoglycerides, unless otherwise indicated.
- phosphoglyceride is therefore used herein to describe compounds having a glycerol backbone, one or more lipid moieties and one or more phosphate end group, which are attached to the glycerolic backbone.
- Most of the naturally-occurring glycerolipids include two lipid moieties attached to the sun-1 and sn-2 positions and one phosphate moiety attached to the sn-3 position of the glycerol backbone.
- oxidized phospholipid is therefore used herein to describe a phospholipid, as well as a phosphoglyceride, which includes one or more oxidized moieties, as this term is described hereinbelow.
- the oxidized moiety is included within a lipid moiety.
- glycolipid describes a compound having a glycerolic backbone and one or two lipid moieties attached thereto.
- the lipid moieties can be attached to the glycerol backbone via an ester and/or an ether bond.
- lipid describes a hydrocarbon residue having 3-30 carbon atoms.
- the lipids in phospholipids and glycerolipids are derived from fatty acids and are therefore attached to the backbone via an O-acyl (ester) bond.
- the lipid moiety can be attached to the backbone either via and ether or an ester bond.
- the terms "mono-esterified” and “di-esterified” with respect to phospholipids or glycerolipids describe phospholipids or glycerolipids, either oxidized or non-oxidized, in which one or two of the lipid moieties, respectively, are attached to the glycerol backbone via an ester (e:g., O-fatty acyl) bond.
- ester e:g., O-fatty acyl
- the terms "mono-etherified” and “di-etherified” with respect to phospholipids or glycerolipids describe phospholipids or glycerolipids, either oxidized or non-oxidized, in which one or two of the lipid moieties, respectively, are attached to the glycerol backbone via an ether bond.
- phosphoglycerol describes a compound having a glycerolic backbone and a phosphate group attached to one position thereof.
- phosphoglycerides describes a compound having a glycerolic backbone, one or two lipid moieties and a phosphate moiety attached thereto.
- mono-etherified phosphoglyceride describes a phosphoglyceride, in which a lipid moiety is attached to the glycerolic backbone via an ether bond.
- moiety describes a functional substance or group which forms a part of a compound.
- the present invention is of novel methods of preparing oxidized phospholipids which can be efficiently used for a scaled up production of such oxidized phospholipids.
- the present invention is of novel methods of introducing an oxidized moiety to a compound having a glycerolic backbone and is further of novel methods of introducing a phosphorous-containing moiety to such a compound.
- the novel methods described herein are devoid of column chromatography and typically use commercially available and environmental friendly reactants.
- oxidized phospholipids can regulate the immune response to oxidized LDL and are thus highly effective in treating atherosclerosis and related diseases, as well as autoimmune diseases and inflammatory disorders. It has been further reported that generally, etherified oxidized phospholipids are superior to comparable esterified oxidized phospholipids as therapeutic agents.
- These highly beneficial oxidized phospholipids typically include a glycerolic backbone, to which a lipid residue, a phosphate residue and an oxidized moiety-containing lipid residue are attached, as is described in detail, for example, in U.S. Patent No. 6,838,452 and in WO 04/106486 .
- a method of preparing a compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond which is devoid of column chromatography.
- the method is effected by:
- a compound having a glycerolic backbone which is also referred to herein interchangeably as “a glycerolic compound”, or a “glycerol compound” describes a compound that includes the following skeleton:
- each of the glycerolic positions sn-1, sn-2 and sn-3 is substituted by a free hydroxyl group.
- oxidized moiety and “an oxidized moiety-containing residue”, which are used herein interchangeably, describe a carboxylic acid or carboxylic ester.
- a compound having an oxidized moiety-containing residue and “an oxidized moiety-containing compound” are also used herein interchangeably.
- the method according to the present invention is based on introducing an unsaturated moiety to the glycerolic compound and subjecting the unsaturated bond to oxidative cleavage.
- a synthetic route has been employed in the presently known syntheses of glycerolic oxidized phospholipids, the present inventors have now designed and successfully practiced such a process in which the glycerolic compound that has an oxidized moiety attached thereto can be isolated and purified without using column chromatography.
- a first compound which has a glycerolic backbone and at least one free hydroxyl group, is selected as the starting material.
- a compound that has an unsaturated moiety and a first reactive group, which is also referred to herein as the second compound, is obtained, either commercially or using methods known in the art, and is reacted with the glycerolic starting material.
- the first reactive group is selected capable of reacting with the free hydroxyl group. Reacting with the free hydroxyl group so as to form an ether bond is typically performed via a nucleophilic mechanism and therefore the first reactive group is preferably characterized as a good leaving group and can be, for example, halide, sulfonate, and any other leaving group.
- the reactive group is halide and more preferably, it is bromide.
- the second compound is preferably selected such that the unsaturated moiety is present at a terminus position thereof, so as to facilitate the oxidation reaction that follows.
- unsaturated moiety it is meant herein a moiety that includes at least two carbon atoms that are linked therebetween by an unsaturated bond, e.g., a double bond or a triple bond, preferably a double bond.
- the second compound comprises from 4 to 30 carbon atoms, more preferably from 4 to 27 carbon atoms, more preferably from 4 to 16 carbon atoms, more preferably from 4 to 10 carbon atoms, more preferably from 4 to 8 carbon atoms, and most preferably the second compound comprises 6 carbon atoms.
- Suitable bases for use in this context of the present invention include, without limitation, inorganic bases such as sodium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide and potassium hydroxide.
- Reacting the first compound and the second compound is typically performed in the presence of a solvent.
- Suitable solvents for use in this context of the present invention include, without limitation, non polar solvents such as petrol ether, hexane, benzene and toluene.
- the method according to this aspect of the present invention optionally and preferably further comprises, prior to reacting the first compound and the second compound, protecting the additional free hydroxyl groups that may be present within the first compound.
- the protecting group is trityl.
- Trityl is a bulky group, which typically serves as a selective protecting group, due to steric hindrance. Thus, while reacting a glycerolic compound that has more than one free hydroxyl group, typically, the trityl group would be reacted with the less hindered group.
- trityl group as the protecting group while introducing the above-described second compound to the glycerolic backbone is highly beneficial, since due to its bulkiness, protection of the hydroxyl end groups, at the sn -3 position would be effected, leaving the hydroxyl group at the sn-2 available for further substitutions.
- reaction mixture which contains a compound that has a glycerolic backbone and an unsaturated moiety-containing residue attached thereto via an ether bond is obtained.
- a compound is also referred to herein interchangeably as a third compound.
- the third compound can further include one or more protecting groups, protecting free hydroxyl groups that may be present within the glycerolic backbone.
- the third compound is then isolated from the reaction mixture and treated so as to obtain a purified compound.
- Isolating the third compound is performed by first collecting the formed third compound. Collecting the third compound is typically performed using conventional techniques such as extraction, removal of the solvent, filtration and the like, including any combination thereof. Once collected, the crude product is dissolved is a solvent, whereby the solvent is selected such that the third compound is soluble therein whereby impurities formed during the reaction between the first and the second compounds are insoluble therein.
- impurities is used herein to describe any substance that is present in the final crude product and is not the product itself and include, for example, unreacted starting materials and side products.
- Suitable solvents for use in this context of the present invention are non-polar solvents such as petrol ether, hexane, benzene, heptane and toluene.
- the solvent is petrol ether.
- the solvent is hexane.
- the insoluble impurities are then removed from the mixture, preferably by filtration, the solvent is removed and a purified third compound is obtained while circumventing the need to use column chromatography in the purification procedure thereof.
- the purified third compound is then reacted with an oxidizing agent, so as to oxidize the unsaturated moiety and thereby obtain a fourth compound, in which an oxidized moiety-containing residue is attached to the glycerolic backbone via an ether bond.
- periodate describes a compound having the formula XIO 4 , wherein X can be hydrogen (for periodic acid) or a monovalent cation of a metal (e.g., sodium, potassium).
- X can be hydrogen (for periodic acid) or a monovalent cation of a metal (e.g., sodium, potassium).
- a preferred periodate is sodium periodate (NaIO 4 ).
- permanganate describes a compound having the formula XMnO 4 , wherein X can be hydrogen or a monovalent cation of a metal (e.g., sodium, potassium). Preferred permanganate is potassium permanganate (KMnO 4 ).
- alkyl refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups.
- the alkyl group has 1 to 20 carbon atoms.
- a "cycloalkyl” group refers to an all-carbon monocyclic or fused ring ( i.e. , rings which share an adjacent pair of carbon atoms) group wherein one of more of the rings does not have a completely conjugated pi-electron system.
- Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, cycloheptane, cycloheptatriene, and adamantane.
- aryl group refers to an all-carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, naphthalenyl and anthracenyl.
- a fourth compound having a carboxylic acid as an oxidized moiety can be readily obtained by reacting the third compounds described herein with a mixture of a periodate and a permanganate as an oxidizing agent.
- the oxidizing agent utilized in this route comprises safe, non-hazardous agents.
- the oxidized moiety is carboxylic acid and oxidizing the third compound is effected by reacting the third compound with a mixture of a periodate and a permanganate.
- Such a reaction is preferably performed in the presence of a base.
- Preferred bases that are suitable for use in this embodiment of the present invention include sodium carbonate and sodium bicarbonate.
- the obtained fourth compound has a protecting group, as described hereinabove, once the fourth compound is obtained, isolated and optionally purified, the protecting group is removed.
- the fourth compound can be readily isolated upon removal of the protecting group and obtaining a compound that has a carboxylic moiety and a hydroxy moiety.
- the fourth compound can be readily purified by dissolving it in a solvent, whereby the solvent is selected such that the fourth compound is soluble therein whereby impurities formed during the oxidation process are insoluble therein.
- such a solvent can be selected such that the fourth compound is soluble therein whereby the protecting group is insoluble therein.
- Suitable solvents for use in this context of the present invention include, without limitation, non-polar solvents such as petrol ether, hexane, benzene, heptane and toluene, semi-polar solvents such as ethyl acetate and mixtures thereof.
- the solvent is petrol ether or hexane and/or a mixture of thereof with ethyl acetate.
- the insoluble impurities are then removed from the mixture, preferably by filtration, the solvent is removed and a purified fourth compound is obtained while circumventing the need to use column chromatography in the purification procedure thereof and further circumventing the need for multiple purification procedures of the various intermediates formed.
- the process is effected by providing a carboxylic-acid containing compound and then converting the carboxylic acid to the ester. This can be readily carried out, using procedures well known in the art. Exemplary procedures are described in the Examples section that follows.
- compounds having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone and further having a phosphorous-containing moiety attached to the glycerolic backbone, preferably a phosphate-containing moiety are known as oxidized phospholipids and are highly beneficial in treating various conditions.
- the process described herein optionally and preferably further comprises introduction of such a phosphorous-containing moiety to the glycerolic backbone.
- phosphorous-containing moiety describes a moiety, as defined herein, which includes phosphates and pyrophosphates.
- phosphinyl describes a -PR'R" group, with R' and R" as defined hereinabove.
- the phosphorous-containing moiety is a phosphate moiety which is attached to the glycerolic backbone via a phosphodiester bond.
- the phosphorous-containing moiety is selected from phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine and phosphoglycerol.
- the phosphorous-containing moiety is attached to the sin- 3 position of the glycerolic backbone and thus, introduction of such a moiety is performed selectively, by appropriately protecting other free hydroxyl groups that are present in the reacting compound or deprotecting a protected hydroxyl group at the desired position.
- the phosphorous-containing moiety is typically introduced prior to the provision of an oxidized-moiety containing compound.
- the phosphorous-containing moiety is phosphoryl choline
- the presently known methods involve N-alkylation reactions, which involve hazardous and environmentally unfriendly reagents such as, for example, trimethylamine.
- a phosphorous-containing moiety can be readily introduced subsequent to the provision of an oxidized moiety-containing compound; and (ii) the introduction of the phosphorous-containing moiety can be efficiently performed via a reactive phosphorous-containing intermediate.
- This process combined with the process described above for preparing the oxidized moiety-containing compound, can be beneficially used for preparing the therapeutically beneficial oxidizes phospholipids described above.
- a phosphorous-containing moiety to a glycerolic compound is therefore effected, according to the present embodiments, by reacting a purified fourth compound as described above, which has a free hydroxyl group, with a reactive phosphorous-containing compound, so as to produce a compound having a reactive phosphorous-containing group; and converting the reactive phosphorous-containing group to the phosphorous-containing moiety.
- the reactive phosphorous-containing compound is selected such that upon said reacting, a reactive phosphorous-containing group attached to the glycerolic backbone is obtained.
- the reactive phosphorous-containing compound is therefore selected as having a second reactive group and a third reactive group, whereby the second reactive group is selected capable of reacting with the free hydroxyl group and the third reactive group is selected capable of being converted to the phosphorous-containing moiety.
- Reactive groups that are capable of reacting with a free hydroxyl groups include, for example halides, sulfonyl chlorides, acyl halides and the like.
- the second reactive group is halide and more preferably it is chloride.
- preferable phosphorous-containing moieties are phosphate moieties
- converting the phosphorous-containing compound to the desired phosphorous-containing moiety typically involves a formation of a phosphate-ester bond.
- a bond can be obtained, for example, by reacting a phosphoric derivative such as phosphoryl chloride with a hydroxy-containing moiety.
- the reactive phosphorous-containing compound is phosphorous oxychloride (POCl 3 ), such that the third and the second reactive groups are both chlorides and the compound having a phosphorous-containing reactive group has a glycerolic backbone and a phosphoryl chloride residue attached thereto.
- POCl 3 phosphorous oxychloride
- Reacting the purified fourth compound with the phosphorous oxychloride is typically carried out in the presence of a base.
- Suitable bases include organic and inorganic bases, with organic bases being preferred.
- the reaction is preferably effected in presence of a base such as, for example, trialkylamine (e.g., triethylamine).
- This reaction is further preferably carried out in the presence of a solvent, preferably a polar solvent such as THF.
- a solvent preferably a polar solvent such as THF.
- the phosphoryl chloride-containing glycerolic containing compound obtained by the process described herein can be readily converted to any desired phosphorus-containing moiety and is therefore a highly beneficial intermediate.
- Preferred phosphate moieties that are incorporated in therapeutic oxidized phospholipids typically include an aminoalkyl group, which can be further N-alkylated.
- Converting the phosphoryl chloride intermediate to such phosphate moieties can thus be readily performed by reaction with a derivative of the desired aminoalkyl group, selected capable of reacting with the third reactive group (being a chloride).
- aminoalkyl-containing phosphate moieties can be obtained by reacting the phosphoryl chloride intermediate with an aminoalcohol. If desired, the aminoalcohol can thereafter be further alkylated, so as to produce an N-alkylated aminoalkyl phosphate moiety, as in the case of a phosphoryl choline moiety.
- N-alkylated aminoalkyl phosphate moiety attached to a glycerolic backbone using the process described above is highly beneficial since it circumvents the need to use hazardous materials such as the trimethylamine typically used for obtaining such compounds.
- the oxidized moiety-containing residue is attached to the sn-2 position of the compound.
- selective attachment of the oxidized moiety-containing residue is performed.
- the first compound therefore has the following general formula I: wherein:
- oxidized phospholipids and particularly therapeutically beneficial oxidized phospholipids such as 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine (also known in the art and referred to herein as CI-201).
- 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine also known in the art and referred to herein as CI-201.
- 1-Hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine was produced in an industrial scale of dozens of Kg.
- Example 1 illustrates the introduction of a reactive phosphorous-containing moiety to a glycerolipid compound having an oxidized moiety-containing residue attached thereto via an ether bond using a reactive phosphorous-containing compound (for example, phosphorous dichloride) for forming a reactive intermediate.
- a reactive phosphorous-containing compound for example, phosphorous dichloride
- reaction mixture was then cooled in an ice-bath and a solution of ethanolamine (0.16 ml) and triethylamine (0.64 ml) in THF (50 ml) was added dropwise thereto under vigorous stirring. The stirring was continued for additional 10 minutes in an ice-bath and further continued at room temperature for overnight. The reaction mixture was then filtered and the solvent removed under reduced pressure. The residue was dissolved in a mixture of acetic acid (24 ml) and water (10 ml) and the solution was heated to 70 °C for 1 hour. After cooling to room temperature, the mixture was extracted with chloroform (2 x 25ml) and the solvent was removed under reduced pressure.
- 1-hexadecyl-2-(5'-hexenyl)-3-tritylglycerol is directly oxidized to obtain the corresponding carboxylic acid in a one-step procedure, thus circumventing the need to perform the oxidation via a multiple-step procedure that requires laborious separations of the intermediates.
- the oxidation step is performed using safe, efficient and less hazardous oxidizing agents. Purification procedures of all the intermediates are performed while avoiding the use of industrially inapplicable column chromatography.
- the combined organic phase was washed with water (50 ml) and the solvent removed under reduced pressure.
- the residue was dissolved in 200 ml mixture of 90:10:5 methanol:water:concentrated hydrochloric acid (v/v) and the resulting solution was refluxed for 2 hours, followed by cooling to room temperature and addition of water (100 ml).
- the product was extracted with dichloromethane (3 x 100 ml), and the organic phase was washed consecutively with water (100 ml), saturated aqueous solution of sodium carbonate (100 ml) and again with water (100ml).
- the intermediate 1-Hexadecyl-2-(4'-carboxy)butyl-3-tritylglycerol was extracted with hexane (200 ml). The organic phase was washed with a solution of Na 2 S 2 O 5 (15 grams) in 100 ml water. Diluted hydrochloric acid (0.65 ml concentrated HCl in 13 ml water) was added to the organic phase and 200 ml of the solvent were distilled under reduced pressure. The remaining clear solution was heated to 80 °C for 6 hours. Analysis by TLC showed less than 5 % of intermediate 1-Hexadecyl-2-(4'-carboxy)butyl-3-tritylglycerol. Additional volume of 250 ml solvent was distilled off.
- the precipitated triphenylmethanol was filter off and washed 4 times with 10 ml water.
- the filtrate was extracted with a mixture of 50 ml hexane and 50 ml ethyl acetate to remove remaining triphenylmethanol and other impurities.
- the sodium salt of 1-hexadecyl-2-(4'-carboxy)butyl-sn-glycerol, present in the aqueous phase, was protonated with concentrated hydrochloric acid (8.45 ml, 101.4 mmol, 1.3 equivalents, pH 1).
- 1-Hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycero-3-phosphocholine A solution of 1-Hexadecyl-2-(4'-carboxymethyl)butyl-glycerol (8.60 grams, 19.97 mmol), and triethylamine (2.63 grams, 3.62 ml, 26 mmol) in 500 ml THF was added dropwise, over 25 minutes, to an ice-cooled solution of POCl 3 (3.90 grams, 2.40 ml, 26 mmol) in 100 ml THF. The resulting mixture was stirred for an additional 10 minutes in an ice-bath and for 45 minutes at room temperature (23 °C).
- the crude 1-hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycero-3-phosphoethanolamine was dissolved in a mixture of isopropanol (500 ml) and dichloromethane (180 ml).
- a solution of potassium carbonate (50 grams) in water (100 ml) was added to reach a pH above 11, and the solution was kept at 35-40 °C during the dropwise addition of methyltosylate (11.15 grams) in 100 ml of iso-propanol in a time period of 45 minutes. After additional 90 minutes, the mixture was acidified with hydrochloric acid. Water (100 ml) and dichloromethane (550 ml) were added and the phases separated.
- the crude 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine was purified by chromatography on a silica gel column. Dichloromethane followed by a mixture of dichloromethane, methanol, water, and triethylamine was used to elute the product from the column. The fractions containing the product were combined and evaporated. The resulting product was dried under vacuum. 7.10 grams of pure 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine (12.2 mmol, 66.1 % yield) were obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
- The present invention relates to the field of synthetic chemistry, and more particularly, to novel synthetic processes useful for the preparation of oxidized phospholipids, derivatives, analogs and salts thereof.
- In the art of pharmacology, modified phospholipids are known in many applications. In
U.S. Patent No. 5,985,292 compositions for trans-dermal and trans-membranal application incorporating phospholipids bearing lipid-soluble active compounds are disclosed. InU.S. Patent Nos. 6,261,597 ,6,017,513 and4,614,796 phospholipid derivatives incorporated into liposomes and biovectors for drug delivery are disclosed. InU.S. Patent No. 5,660,855 lipid constructs of aminomannosederivatized cholesterol suitable for targeting smooth muscle cells or tissue, formulated in liposomes, are disclosed. These formulations are aimed at reducing restenosis in arteries, using PTCA procedures. - The use of liposomes for treating atherosclerosis has been further disclosed in the
PCT patent application published as WO 95/23592 WO 95/23592 - Modified phospholipid derivatives mimicking platelet activation factor (PAF) structures are known to be pharmaceutically active, affecting such functions as vascular permeability, blood pressure and heart function inhibition. In
U.S. Patent No. 4,778,912 it is suggested that one group of such derivatives has anti-cancer activity. - In
U.S. Patent No. 4,329,302 synthetic 1-O-alkyl ether or 1-O-fatty acyl phosphoglycerides compounds which are lysolechitin derivatives usable in mediating platelet activation are disclosed. InU.S. Patent No. 4,329,302 is disclosed that small chain acylation of lysolechitin gave rise to compounds with platelet activating behavior, as opposed to long-chain acylation, and that the 1-O-alkyl ether are biologically superior to the corresponding 1-O-fatty acyl derivatives in mimicking PAF. - The structural effect of various phospholipids on the biological activity thereof has been investigated by Tokumura et al. (Journal of Pharmacology and Experimental Therapeutics. July 1981, Vol. 219, No. 1) and in
U.S. Patent No. 4,827,011 , with respect to hypertension. - In Swiss patent
CH 642,665 - Davies et al. (J. Biol. Chem. 2001, 276:16015) teach the use of oxidized phospholipids as peroxisome proliferator-activated receptor agonists.
- In
U.S. Patent No. 6,838,452 and inWO 04/106486 WO 02/41827 - Oxidation of phospholipids occurs in vivo through the action of free radicals and enzymatic reactions abundant in atheromatous plaque. In vitro, preparation of oxidized phospholipids usually involves simple chemical oxidation of a native LDL or LDL phospholipid component. Investigators studying the role of oxidized LDL have employed, for example, ferrous ions and ascorbic acid (Itabe, H., et al., J.Biol. Chem. 1996; 271:33208-217) and copper sulfate (George, J. et al., Atherosclerosis. 1998; 138:147-152; Ameli, S. et al., Arteriosclerosis Thromb Vasc Biol 1996; 16:1074-79) to produce oxidized, or mildly oxidized phospholipid molecules similar to those associated with plaque components. Similarly prepared molecules have been shown to be identical to auto-antigens associated with atherogenesis (Watson A.D. et al., J. Biol. Chem. 1997; 272:13597-607) and able to induce protective anti-atherogenic immune tolerance (
U.S. Patent Application No. 09/806,400 to Shoenfeld et al., filed Sept. 30, 1999 U.S. Patent No. 5,561,052 , a method of producing oxidized lipids and phospholipids using copper sulfate and superoxide dismutase to produce oxidized arachidonic or linoleic acids and oxidized LDL for diagnostic use is disclosed. - The oxidation techniques described above for preparing oxidized phospholipids involve reactions that are non-specific and yield a mixture of oxidized products. The non-specificity of the reactions reduces yield, requires a further separation step and raises concern for undesired side effects when the products are integrated in pharmaceutical compositions.
- 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and derivatives thereof such as 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are representative examples of mildly oxidized esterified phospholipids that have been studied with respect to atherogenesis (see, for example, Boullier et al., J. Biol. Chem.. 2000, 275:9163; Subbanagounder et al., Circulation Research, 1999, pp. 311). The effect of different structural analogs that belong to this class of oxidized phospholipids has also been studied (see, for example, Subbanagounder et al., Arterioscler. Thromb. Nasc. Biol. 2000, pp. 2248; Leitinger et al., Proc. Nat. Ac. Sci. 1999, 96:12010).
- POVPC is typically prepared by providing a phosphatidyl choline bearing an unsaturated fatty acid and oxidizing the unsaturated bond of the fatty acid by, e.g., ozonolysis (oxidative cleavage) or using a periodate as an oxidizing agent. Such a synthetic pathway typically involves a multi-step synthesis and requires separation of most of the formed intermediates by means of column chromatography.
- As described in
U.S. Patent No. 6,838,452 cited above, etherified oxidized phospholipids have been similarly prepared by oxidizing an unsaturated bond of a fatty acid attached to a phospholipid backbone. More particularly, the etherified oxidized phospholipids were prepared, according to the teachings of this patent, by introducing an unsaturated short fatty acid to a glycerolipid, introducing a phosphate moiety to the obtained intermediate and oxidizing the unsaturated bond in the fatty acid chain by means of (i) hydrogen peroxide and formic acid, so as to obtain a diol, followed by potassium periodate, so as to obtain an aldehyde; or (ii) ozonolysis. While the oxidative cleavage of the unsaturated bond results in an aldehyde moiety, other oxidized moieties (e.g., carboxylic acid, acetal, etc.) were obtained by further oxidizing the aldehyde moiety. Such a multi-step synthetic pathway is oftentimes characterized by relatively low overall yields and again, requires separation of most of the formed intermediates by means of column chromatography. - It has been found that in vivo applications employing esterified oxidized phospholipids prepared as above have the disadvantage of susceptibility to recognition, binding and metabolism of the active component in the body, making dosage and stability after administration an important consideration. Etherified oxidized phospholipids, such as those described in
U.S. Patent No. 6,838,452 and inWO 04/106486 - Thus, the currently known methods of preparing etherified, as well as esterified, oxidized phospholipids involve complex multi-step procedures suitable for laboratory preparation yet rendering industrial scale preparation inefficient and complex. In particular, these multi-step procedures require industrially inapplicable separation techniques such as column chromatography during various stages of the synthetic process.
- In view of the beneficial therapeutic activity of oxidized phospholipids in general and of etherified oxidized phospholipids in particular, there is a widely recognized need for and it would be highly advantageous to have an improved process for the preparation of etherified oxidized phospholipids devoid of at least some of the disadvantages of processes known in the art.
- According to the present invention there is provided a method as defined in the annexed claims of preparing a compound having a glycerolic compound and at least one oxidized moiety attached to the glycerolic backbone via an ether bond, the compound having the general Formula II:
- providing a first compound having a glycerolic backbone and at least one free hydroxyl group, the first compound having general Formula I:
- providing a second compound having at least one unsaturated bond and at least one reactive group capable of forming an ether bond with the free hydroxyl group; reacting the first compound and the second compound to thereby obtain a third compound, the third compound having the glycerolic backbone and an unsaturated bond-containing residue being attached to the glycerolic backbone via an ether bond at position sn-2; isolating the third compound, to thereby obtain a purified third compound; reacting the purified third compound with an oxidizing agent, to thereby obtain a fourth compound, the fourth compound having the glycerolic backbone and an oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond at position sn-2; and isolating the fourth compound to thereby obtain a purified fourth compound, thereby obtaining the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond, the method being devoid of column chromatography.
- Isolating the third compound comprises: collecting the third compound; providing a solution of the third compound in a solvent, the solvent being selected such that the third compound is soluble therein whereby impurities formed during the reacting are insoluble therein, to thereby provide a mixture including the solution of the third compound in the solvent and insoluble impurities; removing the insoluble impurities; and removing the solvent, thereby obtaining the purified third compound.
- The oxidized moiety is selected from the group consisting of a carboxylic acid and an ester.
- The oxidizing agent comprises a mixture of a periodate and a permanganate.
- According to further features in the described preferred embodiments reacting the purified third compound with an oxidizing agent is effected in the presence of a base.
- According to still further features in the described preferred embodiments wherein R3 is hydrogen, the method further comprising, prior to the reacting the first compound and the second compound: protecting a free hydroxyl group at position sn-3 of the glycerolic backbone with a protecting group.
- According to still further features in the described preferred embodiments the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone further comprises a phosphorous-containing moiety attached to the glycerolic backbone, such that R3 is selected from the group consisting of phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate; pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol, the method further comprising, subsequent to isolating the fourth compound: reacting the purified fourth compound with a phosphorous-containing moiety, to thereby obtain the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone and further having a phosphorous-containing moiety attached to the glycerolic backbone.
- According to still further features in the described preferred embodiments the at least one phosphorous-containing moiety is a phosphate moiety being attached to the glycerolic backbone via a phosphodiester bond.
- Reacting the purified fourth compound with the phosphorous-containing moiety comprises: providing the purified fourth compound having a free hydroxyl group; reacting the purified fourth compound with a reactive phosphorous-containing compound having a second reactive group and a third reactive group, the second reactive group being capable of reacting with the free hydroxyl group and a second reactive group, to thereby provide the first compound, the third compound, the purified third compound, the fourth compound or the purified fourth compound having a reactive phosphorous-containing group attached to the glycerolic backbone; and converting the reactive phosphorous-containing group to the phosphorous-containing moiety.
- According to still further features in the described preferred embodiments the reactive phosphorous-containing compound is phosphorous oxychloride (POCl3).
- The present invention successfully addresses the shortcomings of the presently known configurations by providing novel synthetic routes that can be beneficially used in the scaled-up preparation of oxidized phospholipids.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- As used herein the term "mixture" describes a mixture that includes more than one substance and which can be in any form, for example, as a homogenous solution, a suspension, a dispersion, a biphasic solution and more.
- As used in this application, the singular form "a", "an' and "the" include plural references unless the context clearly dictates otherwise.
- Throughout this disclosure, various aspects of this invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
- Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases "ranging/ranges between" a first indicate number and a second indicate number and "ranging/ranges from" a first indicate number "to" a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
- As used herein throughout, the terms "comprising", "including" and "containing" means that other steps and ingredients that do not affect the final result can be added. These terms encompass the terms "consisting of" and "consisting essentially of".
- The phrase "consisting essentially of" means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.
- The term "method" or "process" refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
- The term "phospholipid" is used herein to collectively describe compounds that include a non-polar lipid group and a highly polar end phosphate group. One particular and most prevalent in nature family of phospholipid compounds is the phosphoglycerides family of compounds. The term "phospholipid" is therefore typically used herein throughout to describe phosphoglycerides, unless otherwise indicated.
- The term "phosphoglyceride" is therefore used herein to describe compounds having a glycerol backbone, one or more lipid moieties and one or more phosphate end group, which are attached to the glycerolic backbone. Most of the naturally-occurring glycerolipids include two lipid moieties attached to the sun-1 and sn-2 positions and one phosphate moiety attached to the sn-3 position of the glycerol backbone.
- The term "oxidized phospholipid" is therefore used herein to describe a phospholipid, as well as a phosphoglyceride, which includes one or more oxidized moieties, as this term is described hereinbelow. Typically, in oxidized phospholipids, the oxidized moiety is included within a lipid moiety.
- The term "glycerolipid" describes a compound having a glycerolic backbone and one or two lipid moieties attached thereto. The lipid moieties can be attached to the glycerol backbone via an ester and/or an ether bond.
- As used herein, the term "lipid" describes a hydrocarbon residue having 3-30 carbon atoms. In naturally-occurring compounds, the lipids in phospholipids and glycerolipids are derived from fatty acids and are therefore attached to the backbone via an O-acyl (ester) bond. Herein, the lipid moiety can be attached to the backbone either via and ether or an ester bond.
- As used herein, the terms "mono-esterified" and "di-esterified" with respect to phospholipids or glycerolipids, describe phospholipids or glycerolipids, either oxidized or non-oxidized, in which one or two of the lipid moieties, respectively, are attached to the glycerol backbone via an ester (e:g., O-fatty acyl) bond.
- As used herein, the terms "mono-etherified" and "di-etherified" with respect to phospholipids or glycerolipids, describe phospholipids or glycerolipids, either oxidized or non-oxidized, in which one or two of the lipid moieties, respectively, are attached to the glycerol backbone via an ether bond.
- The term "phosphoglycerol" describes a compound having a glycerolic backbone and a phosphate group attached to one position thereof.
- The term "phosphoglycerides" describes a compound having a glycerolic backbone, one or two lipid moieties and a phosphate moiety attached thereto.
- The term "mono-etherified phosphoglyceride" describes a phosphoglyceride, in which a lipid moiety is attached to the glycerolic backbone via an ether bond.
- As used herein, the term "moiety" describes a functional substance or group which forms a part of a compound.
- The term "residue" as is well known in the art, is used to described a major portion of a molecule that is linked to another molecule.
- The present invention is of novel methods of preparing oxidized phospholipids which can be efficiently used for a scaled up production of such oxidized phospholipids. Specifically, the present invention is of novel methods of introducing an oxidized moiety to a compound having a glycerolic backbone and is further of novel methods of introducing a phosphorous-containing moiety to such a compound. The novel methods described herein are devoid of column chromatography and typically use commercially available and environmental friendly reactants.
- The principles and operation of the novel synthetic methods according to the present invention may be better understood with reference to the accompanying descriptions.
- Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details set forth in the following description of preferred embodiments or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
- As discussed hereinabove, it has been recently reported that well-defined, synthetically prepared oxidized phospholipids can regulate the immune response to oxidized LDL and are thus highly effective in treating atherosclerosis and related diseases, as well as autoimmune diseases and inflammatory disorders. It has been further reported that generally, etherified oxidized phospholipids are superior to comparable esterified oxidized phospholipids as therapeutic agents.
- These highly beneficial oxidized phospholipids typically include a glycerolic backbone, to which a lipid residue, a phosphate residue and an oxidized moiety-containing lipid residue are attached, as is described in detail, for example, in
U.S. Patent No. 6,838,452 and inWO 04/106486 - As is further discussed hereinabove, the presently known methods of preparing such well-defined synthetic oxidized phospholipids involve multi-step syntheses. While these multi-step syntheses were found to be relatively efficient, resulting in moderate to good yield, these methods are limited by the need to perform laborious isolation and purification procedures of the various intermediates formed throughout the syntheses. Particularly, these procedures typically involve techniques such as column chromatography, which, as is widely recognized by a skilled artisan, is industrially inapplicable, or at least inefficient in terms of costs, complexity and use of excessive amounts of organic solvents, which may be hazardous and requires special care of the waste disposal. The need to use column chromatography in these methods stems from the fact that the intermediates, as well as the final products formed during these multi-step syntheses, cannot be isolated and/or purified by more conventional techniques such as extraction, crystallization and the like.
- Since such synthetically-prepared oxidized phospholipids exhibit exceptionally beneficial therapeutic activity, it is highly desired to prepare these compounds in a high level of purity. Furthermore, since the preparation of such oxidized phospholipids involves multi-step syntheses, purification of the intermediates is required in order to perform such a process is reasonable yields and with minimal amount of side products.
- In a search for novel methods of preparing oxidized phospholipids, which could be efficiently utilized in the scaled-up production of these compounds, while circumventing the need to use laborious techniques such as column chromatography, the present inventors have designed and successfully practiced novel synthetic methodologies for introducing an oxidized moiety and/or a phosphate moiety to compounds that have a glycerolic backbone, which circumvent the disadvantageous use of column chromatography and which result in relatively high yield of pure compounds. The methods described herein further typically utilize commercially available, non-hazardous reactants, which further provides for the industrial applicability thereof.
- The novel synthetic methodologies described herein can be outlined as follows:
- (i) a novel method of introducing an oxidized moiety to a compound having a glycerolic backbone, via introduction of an unsaturated moiety and oxidation of the unsaturated moiety, whereby said oxidation is performed directly and allows isolation and purification of the oxidized product by simple phase-separation means; which may include
- (ii) a novel method of introducing a phosphate moiety to a glycerolipid optionally having an oxidized or pre-oxidized moiety attached thereto, via introduction of a reactive phosphorous-containing group.
- Due to the superior performance of oxidized phospholipids in which the oxidized moiety-containing residue is attached to the backbone via an ether bond, these methods are all directed for the attachment of the oxidized moiety-containing residue to the glycerolic backbone via an ether bond.
- As is demonstrated in the Examples section that follows, using these methodologies, well-defined oxidized phospholipids, have been successfully prepared in relatively high yield and purity.
- Thus, according to one aspect of the present invention as defined in the annexed claims there is provided a method of preparing a compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond, which is devoid of column chromatography. The method, according to this aspect of the present invention, is effected by:
- providing a first compound having a glycerolic backbone and at least one free hydroxyl group;
- providing a second compound having at least one unsaturated bond and at least one reactive group capable of forming an ether bond with said free hydroxyl group;
- reacting the first compound and the second compound to thereby obtain a third compound, which has a glycerolic backbone and an unsaturated bond-containing residue being attached to the glycerolic backbone via an ether bond;
- isolating the third compound, to thereby obtain a purified third compound;
- reacting the purified third compound with an oxidizing agent, to thereby obtain a fourth compound, which has a glycerolic backbone and an oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond; and
- isolating the fourth compound to thereby obtain a purified fourth compound, thereby obtaining the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond.
-
- When the compound is glycerol, each of the glycerolic positions sn-1, sn-2 and sn-3 is substituted by a free hydroxyl group.
- As used herein throughout, the phrases "oxidized moiety" and "an oxidized moiety-containing residue", which are used herein interchangeably, describe a carboxylic acid or carboxylic ester. The phrases "a compound having an oxidized moiety-containing residue" and "an oxidized moiety-containing compound" are also used herein interchangeably.
- The method according to the present invention is based on introducing an unsaturated moiety to the glycerolic compound and subjecting the unsaturated bond to oxidative cleavage. However, while such a synthetic route has been employed in the presently known syntheses of glycerolic oxidized phospholipids, the present inventors have now designed and successfully practiced such a process in which the glycerolic compound that has an oxidized moiety attached thereto can be isolated and purified without using column chromatography.
- Introduction of the unsaturated moiety to the glycerolic compound is typically performed using methods known in the art, such as described, for example, in
U.S. Patent No. 6,838,452 . - A first compound, which has a glycerolic backbone and at least one free hydroxyl group, is selected as the starting material.
- A compound that has an unsaturated moiety and a first reactive group, which is also referred to herein as the second compound, is obtained, either commercially or using methods known in the art, and is reacted with the glycerolic starting material.
- The first reactive group is selected capable of reacting with the free hydroxyl group. Reacting with the free hydroxyl group so as to form an ether bond is typically performed via a nucleophilic mechanism and therefore the first reactive group is preferably characterized as a good leaving group and can be, for example, halide, sulfonate, and any other leaving group.
- Preferably, the reactive group is halide and more preferably, it is bromide.
- The second compound is preferably selected such that the unsaturated moiety is present at a terminus position thereof, so as to facilitate the oxidation reaction that follows. By "unsaturated moiety" it is meant herein a moiety that includes at least two carbon atoms that are linked therebetween by an unsaturated bond, e.g., a double bond or a triple bond, preferably a double bond.
- Further preferably, the second compound comprises from 4 to 30 carbon atoms, more preferably from 4 to 27 carbon atoms, more preferably from 4 to 16 carbon atoms, more preferably from 4 to 10 carbon atoms, more preferably from 4 to 8 carbon atoms, and most preferably the second compound comprises 6 carbon atoms.
- Reacting the first compound and the second compound described herein is typically performed in the presence of a base. Suitable bases for use in this context of the present invention include, without limitation, inorganic bases such as sodium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide and potassium hydroxide.
- Reacting the first compound and the second compound is typically performed in the presence of a solvent. Suitable solvents for use in this context of the present invention include, without limitation, non polar solvents such as petrol ether, hexane, benzene and toluene.
- In order to perform the reaction selectively, namely, introducing the unsaturated moiety to a certain position of the glycerolic backbone, a free hydroxyl group other than the reacting hydroxyl, if present, should be protected prior to the reaction.
- Thus, in such cases, the method according to this aspect of the present invention optionally and preferably further comprises, prior to reacting the first compound and the second compound, protecting the additional free hydroxyl groups that may be present within the first compound.
- Any of the known hydroxyl-protecting groups can be used in this context of the present invention. According to preferred embodiment of this aspect of the present invention, the protecting group is trityl.
- Trityl is a bulky group, which typically serves as a selective protecting group, due to steric hindrance. Thus, while reacting a glycerolic compound that has more than one free hydroxyl group, typically, the trityl group would be reacted with the less hindered group.
- As noted hereinabove and is further discussed in detail in
U.S. Patent No. 6,838,452 and inWO 04/106486 U.S. Patent No. 6,838,452 , oxidized phospholipids that have an oxidized moiety-containing residue attached to the sn-2 position of the glycerol backbone exhibit a superior performance. - To that end, the use of trityl group as the protecting group while introducing the above-described second compound to the glycerolic backbone is highly beneficial, since due to its bulkiness, protection of the hydroxyl end groups, at the sn-3 position would be effected, leaving the hydroxyl group at the sn-2 available for further substitutions.
- Once the reaction between the first compound and the second compound is completed, a reaction mixture which contains a compound that has a glycerolic backbone and an unsaturated moiety-containing residue attached thereto via an ether bond is obtained. Such a compound is also referred to herein interchangeably as a third compound.
- Depending on the starting material used, the third compound can further include one or more protecting groups, protecting free hydroxyl groups that may be present within the glycerolic backbone.
- The third compound, either protected or deprotected, is then isolated from the reaction mixture and treated so as to obtain a purified compound.
- Isolating the third compound is performed by first collecting the formed third compound. Collecting the third compound is typically performed using conventional techniques such as extraction, removal of the solvent, filtration and the like, including any combination thereof. Once collected, the crude product is dissolved is a solvent, whereby the solvent is selected such that the third compound is soluble therein whereby impurities formed during the reaction between the first and the second compounds are insoluble therein.
- The term "impurities" is used herein to describe any substance that is present in the final crude product and is not the product itself and include, for example, unreacted starting materials and side products.
- Using such a solvent, a mixture that includes a solution of the third compound in such a solvent and insoluble substances is obtained. Suitable solvents for use in this context of the present invention are non-polar solvents such as petrol ether, hexane, benzene, heptane and toluene. Preferably, the solvent is petrol ether. Further preferably, the solvent is hexane.
- The insoluble impurities are then removed from the mixture, preferably by filtration, the solvent is removed and a purified third compound is obtained while circumventing the need to use column chromatography in the purification procedure thereof.
- The purified third compound is then reacted with an oxidizing agent, so as to oxidize the unsaturated moiety and thereby obtain a fourth compound, in which an oxidized moiety-containing residue is attached to the glycerolic backbone via an ether bond.
- As used herein, the term "periodate" describes a compound having the formula XIO4, wherein X can be hydrogen (for periodic acid) or a monovalent cation of a metal (e.g., sodium, potassium). A preferred periodate is sodium periodate (NaIO4).
- The term "permanganate" describes a compound having the formula XMnO4, wherein X can be hydrogen or a monovalent cation of a metal (e.g., sodium, potassium). Preferred permanganate is potassium permanganate (KMnO4).
- As used herein throughout, the term "alkyl" refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups. Preferably, the alkyl group has 1 to 20 carbon atoms.
- A "cycloalkyl" group refers to an all-carbon monocyclic or fused ring (i.e., rings which share an adjacent pair of carbon atoms) group wherein one of more of the rings does not have a completely conjugated pi-electron system. Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, cycloheptane, cycloheptatriene, and adamantane.
- An "aryl" group refers to an all-carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, naphthalenyl and anthracenyl.
- The terms "oxyalkyl", "oxycycloalkyl" and "oxyaryl" describe an R'-C(=O)-group, whereby R' is alkyl, cycloalkyl or aryl, respectively, such that the peroxide is a peroxycarboxylic acid.
- The present inventors have further uncovered that a fourth compound having a carboxylic acid as an oxidized moiety can be readily obtained by reacting the third compounds described herein with a mixture of a periodate and a permanganate as an oxidizing agent.
- Converting the third compound directly to a carboxylic acid-containing compound is highly beneficial since it evidently render the entire process more efficient by reducing the number of synthetic steps and further circumvents the need to purify the intermediates formed during the oxidation process. In addition, the oxidizing agent utilized in this route comprises safe, non-hazardous agents.
- Hence, according to the present invention, the oxidized moiety is carboxylic acid and oxidizing the third compound is effected by reacting the third compound with a mixture of a periodate and a permanganate.
- Such a reaction is preferably performed in the presence of a base. Preferred bases that are suitable for use in this embodiment of the present invention include sodium carbonate and sodium bicarbonate.
- In cases where the obtained fourth compound has a protecting group, as described hereinabove, once the fourth compound is obtained, isolated and optionally purified, the protecting group is removed.
- In cases where the oxidized moiety is a carboxylic acid, the fourth compound can be readily isolated upon removal of the protecting group and obtaining a compound that has a carboxylic moiety and a hydroxy moiety.
- Similarly to the procedure described hereinabove for isolating and purifying the third compound, the fourth compound can be readily purified by dissolving it in a solvent, whereby the solvent is selected such that the fourth compound is soluble therein whereby impurities formed during the oxidation process are insoluble therein.
- Moreover, such a solvent can be selected such that the fourth compound is soluble therein whereby the protecting group is insoluble therein. Thus, performing the removal of the protecting group under conditions that involve such a solvent allows removing both the protecting group and the impurities formed during the oxidation reaction within the same synthetic step.
- Using such a solvents, a mixture that includes a solution of the fourth compound in such a solvent and insoluble substances such as impurities and the protecting group is obtained. Suitable solvents for use in this context of the present invention include, without limitation, non-polar solvents such as petrol ether, hexane, benzene, heptane and toluene, semi-polar solvents such as ethyl acetate and mixtures thereof. Preferably, the solvent is petrol ether or hexane and/or a mixture of thereof with ethyl acetate.
- The insoluble impurities are then removed from the mixture, preferably by filtration, the solvent is removed and a purified fourth compound is obtained while circumventing the need to use column chromatography in the purification procedure thereof and further circumventing the need for multiple purification procedures of the various intermediates formed.
- In cases where the oxidized moiety is an ester, the process is effected by providing a carboxylic-acid containing compound and then converting the carboxylic acid to the ester. This can be readily carried out, using procedures well known in the art. Exemplary procedures are described in the Examples section that follows.
- As is discussed hereinabove, compounds having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone and further having a phosphorous-containing moiety attached to the glycerolic backbone, preferably a phosphate-containing moiety, are known as oxidized phospholipids and are highly beneficial in treating various conditions. Thus, the process described herein optionally and preferably further comprises introduction of such a phosphorous-containing moiety to the glycerolic backbone.
- As used herein, the phrase "phosphorous-containing moiety" describes a moiety, as defined herein, which includes phosphates and pyrophosphates.
- As used herein the term "phosphonate" describes a -P(=O)(OR')(OR") group, where R' and R" are each independently hydrogen, or substituted or unsubstituted alkyl, cycloalkyl or aryl, as defined herein.
- The term "phosphinyl" describes a -PR'R" group, with R' and R" as defined hereinabove.
- The term "phosphine oxide" describes a -P(=O)(R')(R") end group or a -P(=O)(R')- linking group, as these phrases are defined hereinabove, with R' and R" as defined herein.
- The term "pyrophosphate" describes an -O-P(=O)(OR')-O-P(=O)(OR')(OR")(OR"') group, with R', R" as defined herein, and R"' is defined as R' or R".
- The term "phosphite" describes an -O-PH(=O)(OR') group, with R' as defined herein.
- The term "phosphate" describes an -O-P(=O)2(OR') group, with R' as defined herein.
- The term "thiophosphate" describes an -O-P(=O)(=S)(OR') group, with R' as defined herein.
- Introduction of a phosphorous-containing moiety to a compound having a glycerolic compound is performed by:
- reacting the purified fourth compound described above, with a phosphorous-containing moiety, so as to obtain a compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone and further having a phosphorous-containing moiety attached to the glycerolic backbone.
- According to a preferred embodiment of the present invention, the phosphorous-containing moiety is a phosphate moiety which is attached to the glycerolic backbone via a phosphodiester bond.
- The phosphorous-containing moiety is selected from phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine and phosphoglycerol.
- The phosphorous-containing moiety is attached to the sin-3 position of the glycerolic backbone and thus, introduction of such a moiety is performed selectively, by appropriately protecting other free hydroxyl groups that are present in the reacting compound or deprotecting a protected hydroxyl group at the desired position.
- In the presently known methods of preparing oxidized phospholipids, the phosphorous-containing moiety is typically introduced prior to the provision of an oxidized-moiety containing compound.
- In addition, in cases where the phosphorous-containing moiety is phosphoryl choline, a widely used and beneficial moiety in such compounds, the presently known methods involve N-alkylation reactions, which involve hazardous and environmentally unfriendly reagents such as, for example, trimethylamine.
- The present inventors have now uncovered that (i) a phosphorous-containing moiety can be readily introduced subsequent to the provision of an oxidized moiety-containing compound; and (ii) the introduction of the phosphorous-containing moiety can be efficiently performed via a reactive phosphorous-containing intermediate.
- This process, combined with the process described above for preparing the oxidized moiety-containing compound, can be beneficially used for preparing the therapeutically beneficial oxidizes phospholipids described above.
- The introduction of a phosphorous-containing moiety to a glycerolic compound is therefore effected, according to the present embodiments, by reacting a purified fourth compound as described above, which has a free hydroxyl group, with a reactive phosphorous-containing compound, so as to produce a compound having a reactive phosphorous-containing group; and converting the reactive phosphorous-containing group to the phosphorous-containing moiety.
- The reactive phosphorous-containing compound is selected such that upon said reacting, a reactive phosphorous-containing group attached to the glycerolic backbone is obtained. The reactive phosphorous-containing compound is therefore selected as having a second reactive group and a third reactive group, whereby the second reactive group is selected capable of reacting with the free hydroxyl group and the third reactive group is selected capable of being converted to the phosphorous-containing moiety.
- Reactive groups that are capable of reacting with a free hydroxyl groups include, for example halides, sulfonyl chlorides, acyl halides and the like.
- Preferably the second reactive group is halide and more preferably it is chloride.
- While as described hereinabove, preferable phosphorous-containing moieties are phosphate moieties, converting the phosphorous-containing compound to the desired phosphorous-containing moiety typically involves a formation of a phosphate-ester bond. Such a bond can be obtained, for example, by reacting a phosphoric derivative such as phosphoryl chloride with a hydroxy-containing moiety.
- Thus, according to a preferred embodiment, the reactive phosphorous-containing compound is phosphorous oxychloride (POCl3), such that the third and the second reactive groups are both chlorides and the compound having a phosphorous-containing reactive group has a glycerolic backbone and a phosphoryl chloride residue attached thereto.
- Reacting the purified fourth compound with the phosphorous oxychloride is typically carried out in the presence of a base. Suitable bases include organic and inorganic bases, with organic bases being preferred. Thus, the reaction is preferably effected in presence of a base such as, for example, trialkylamine (e.g., triethylamine).
- This reaction is further preferably carried out in the presence of a solvent, preferably a polar solvent such as THF.
- The phosphoryl chloride-containing glycerolic containing compound obtained by the process described herein can be readily converted to any desired phosphorus-containing moiety and is therefore a highly beneficial intermediate.
- Thus, for example, it can be converted to phosphoric acid by a simple hydrolysis thereof, as is exemplified in the Examples section that follows.
- Alternatively, it can be reacted with a hydroxy-containing moiety, and optionally and preferably also with water, to thereby obtain other phosphate moieties.
- Preferred phosphate moieties that are incorporated in therapeutic oxidized phospholipids (e.g., phosphoryl choline, phosphoryl ethanolamine) typically include an aminoalkyl group, which can be further N-alkylated.
- Converting the phosphoryl chloride intermediate to such phosphate moieties can thus be readily performed by reaction with a derivative of the desired aminoalkyl group, selected capable of reacting with the third reactive group (being a chloride).
- Thus, for example, aminoalkyl-containing phosphate moieties can be obtained by reacting the phosphoryl chloride intermediate with an aminoalcohol. If desired, the aminoalcohol can thereafter be further alkylated, so as to produce an N-alkylated aminoalkyl phosphate moiety, as in the case of a phosphoryl choline moiety.
- Obtaining such an N-alkylated aminoalkyl phosphate moiety attached to a glycerolic backbone using the process described above is highly beneficial since it circumvents the need to use hazardous materials such as the trimethylamine typically used for obtaining such compounds.
- In any of the processes described herein the oxidized moiety-containing residue is attached to the sn-2 position of the compound. Thus, by appropriately selecting and/or protecting the first compound, selective attachment of the oxidized moiety-containing residue is performed.
-
- A1 is selected from the group consisting of CH2 and C=O;
- R1 is an alkyl having from 1 to 30 carbon atoms; and
- R3 is selected from the group consisting of hydrogen, alkyl, aryl, phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol.
-
- A1 is selected from the group consisting of CH2 and C=O and is preferably CH2;
- A2 is CH2;
- R1 is an alkyl having 1-30 carbon atoms;
- R2 is
- X is an alkyl chain having 1-24 carbon atoms;
- Y is hydrogen; and
- Z is
- R3 is selected from the group consisting of hydrogen, alkyl, aryl, phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol.
- As is demonstrated in the Examples section that follows, the above-described processes can be used for producing oxidized phospholipids, and particularly therapeutically beneficial oxidized phospholipids such as 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine (also known in the art and referred to herein as CI-201). For example, using the process described in Example 6 hereinbelow, 1-Hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine was produced in an industrial scale of dozens of Kg.
- Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
- Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.
- (i) Preparation of a glycerolipid compound having at least one oxidized moiety-containing residue attached thereto via an ether bond, by attachment of an unsaturated residue to a glycerolipid and oxidizing the unsaturated bond, while using a Girard reagent and/or crystallization of a triol-containing compound for isolating the oxidized product, as exemplified in Example 1 and Schemes I-V;
- (ii) Preparation of a glycerolipid compound having at least one oxidized moiety-containing residue attached thereto via an ether bond, by attachment of an unsaturated residue to a glycerolipid and oxidizing the unsaturated bond via an epoxide intermediate, while using an acetoxy protecting group, as exemplified in Example 2 and Schemes VI-X;
- (iii) Preparation of a glycerolipid compound having at least one oxidized moiety-containing residue attached thereto via an ether bond by direct introduction of an oxidized moiety-containing compound, as exemplified in Example 3 and Scheme XI; and
- The following reference Example 1 illustrates the introduction of a reactive phosphorous-containing moiety to a glycerolipid compound having an oxidized moiety-containing residue attached thereto via an ether bond using a reactive phosphorous-containing compound (for example, phosphorous dichloride) for forming a reactive intermediate.
- A solution of 1-Hexadecyl-2-(5'-carboxymethyl)butyl-glycerol (0.86 grams), 0.34 gram (2.6 mmole) triethylamine and 50 ml tetrahydrofuran was added dropwise, over 25 minutes to an ice-cooled solution of 0.24 ml (0.39 gram, 2.6 mmole) POCl3 and 10 ml tetrahydrofuran (THF). The resulting mixture was stirred for additional 10 minutes in an ice-bath and for 45 minutes at room temperature (23 °C). The reaction mixture was then cooled in an ice-bath and a solution of ethanolamine (0.16 ml) and triethylamine (0.64 ml) in THF (50 ml) was added dropwise thereto under vigorous stirring. The stirring was continued for additional 10 minutes in an ice-bath and further continued at room temperature for overnight. The reaction mixture was then filtered and the solvent removed under reduced pressure. The residue was dissolved in a mixture of acetic acid (24 ml) and water (10 ml) and the solution was heated to 70 °C for 1 hour. After cooling to room temperature, the mixture was extracted with chloroform (2 x 25ml) and the solvent was removed under reduced pressure. The residue was dissolved in a mixture of iso-propanol (50 ml) and dichloromethane (18 ml). Potassium carbonate (5.0 gram) in water (10 ml) was added thereto and the resulting mixture was warmed to 35-40 °C. A solution of dimethylsulfate (1 ml) in 10 ml iso-propanol was then added dropwise over 45 minutes. After additional 90 minutes the mixture was extracted with chloroform (3 x 50 ml) and the solvent was removed under reduced pressure to give 1.10 grams of 1-Hexadecyl-2-(4'-carboxymethyl)butyl-3-phosphocholine (92% yield).
- Preparation of 1-Hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine: 1-Hexadecyl-2-(4'-carboxymethyl)butyl-3-phosphocholine was dissolved in methanol (25 ml). Sodium hydroxide (1.0 gram) dissolved in 90 % methanol (20 ml) was added to the methanolic solution and the reaction mixture was stirred at room temperature for 5 hours. The pH of the reaction was adjusted to 4 by adding sodium dihydrogen phosphate. Water (50 ml) and chloroform (50 ml) were added, the organic phase was collected and the solvent was removed under reduced pressure. The residue was dissolved in chloroform, dried over anhydrous Na2SO4, filtered and the solvent was removed under reduced pressure. 1-Hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine (0.71 grams) were obtained (66 % yield).
-
- In this process, 1-hexadecyl-2-(5'-hexenyl)-3-tritylglycerol is directly oxidized to obtain the corresponding carboxylic acid in a one-step procedure, thus circumventing the need to perform the oxidation via a multiple-step procedure that requires laborious separations of the intermediates. The oxidation step is performed using safe, efficient and less hazardous oxidizing agents. Purification procedures of all the intermediates are performed while avoiding the use of industrially inapplicable column chromatography.
- This process was efficiently scaled-up, so as to industrially manufacture CI-201.
- Preparation of 1-Hexadecyl glycerol: (R)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (11 grams), powdered potassium hydroxide (20 grams) and hexadecyl bromide (27.96 grams) in toluene (150 ml) were stirred and refluxed for 6 hours, while removing the water formed by azeotropic distillation. The volume of the solvent was gradually reduced to about 40 ml. The reaction mixture was cooled to room temperature; water was added (100 ml) and the resulting mixture was extracted with dichloromethane (3 x 75 ml). The combined organic phase was washed with water (50 ml) and the solvent removed under reduced pressure. The residue was dissolved in 200 ml mixture of 90:10:5 methanol:water:concentrated hydrochloric acid (v/v) and the resulting solution was refluxed for 2 hours, followed by cooling to room temperature and addition of water (100 ml). The product was extracted with dichloromethane (3 x 100 ml), and the organic phase was washed consecutively with water (100 ml), saturated aqueous solution of sodium carbonate (100 ml) and again with water (100ml). The solvent was removed under reduced pressure and the product was crystallized from hexane (200 ml) to give 21.69 grams (yield 82 %) of pure 1-hexadecyl-glycerol, upon drying in a desiccator under reduced pressure.
- Preparation of 1-Hexadecyl-3-trityl-glycerol: 1-Hexadecyloxy-glycerol (20 grams) and triphenylchloromethane (21.29 grams) were placed in dry THF (369 ml) and dry acetonitrile (93 ml). Triethylamine (17.75 ml) was added and the reaction mixture was refluxed for 17 hours. The reaction mixture was thereafter cooled to room temperature, poured on ice (100 grams), transferred to a separatory funnel and extracted with ether. The organic phase was washed consecutively with water (200 ml), diluted (1.5 %) H2SO4 (2 x 200 ml), water (200 ml), saturated aqueous sodium bicarbonate (200 ml) and again with water (200 ml), dried over anhydrous sodium sulfate and the solvent removed under reduced pressure to give 36.86 grams of crude product.
- The residue was dissolved in hot hexane (200 ml) and the resulting solution was cooled at 4 °C overnight. The resulting precipitate was filtered to yield 23.77 grams of the purified compound. Additional purified product was collected by removing the solvent from the mother liquor under reduced pressure and dissolving the residue again in hot hexane (50 ml). The resulting solution was cooled at 4 °C overnight and the precipitate filtered to afford additional 6.94 grams of the product and a total amount of 30.71 grams.
- Preparation of 1-Hexadecyl-2-(5'-hexenyl)-3-tritylglycerol: 1-Hexadecyl-3-tritylglycerol (19.94 grams), 6-bromo-1-hexene (6.98 grams, 5.73 ml) and powdered potassium hydroxide (15 grams) in hexane (350 ml) were stirred and refluxed for 8 hours, while removing the water formed by azeotropic distillation. The reaction mixture was then cooled to room temperature, transferred to a separatory funnel and washed with water (2 x 200 ml). The solvent was thereafter removed under reduced pressure and the residue was dissolved in hexane (150 ml) and washed again with water (2 x 200 ml). The organic solution was kept at 4 °C overnight, during which precipitation of byproducts occurred. Filtration and removal of the solvent under reduced pressure gave 19.86 grams (86.6 % yield) of 1-hexadecyl-2-(5'-hexenyl)-3-tritylglycerol.
- Preparation of 1-hexadecyl-2-(4'-carboxy)butyl-sn-glycerol: In a three-neck round bottom flask equipped with thermometer and dropping funnel, sodium periodate (150.16 grams, 702 mmol, 9 equivalents) were suspended in 500 ml water. After addition of sodium bicarbonate (7.21 grams, 85.8 mmol, 1.1 equivalents) and potassium permanganate (2.47 grams, 15.6 mmol, 0.2 equivalent), the suspension was heated to 40 °C. 1-Hexadecyl-2-(5'-hexenyl)-3-tritylglycerol (50.00 grams, 78.0 mmol) was dissolved in tert-butanol (500 ml) and the solution was added to the NaIO4/KMnO4 mixture during 1 hour. After 1.5 hours, analysis by TLC showed 80 % conversion. Additional amount of potassium permanganate (0.62 gram, 3.9 mmol, 0.05 equivalent) was added and the mixture was stirred for 1.5 hours. Analysis by TLC showed less than 5 % of the starting material. The reaction mixture was then cooled to room temperature and transferred to separation funnel.
- The intermediate 1-Hexadecyl-2-(4'-carboxy)butyl-3-tritylglycerol was extracted with hexane (200 ml). The organic phase was washed with a solution of Na2S2O5 (15 grams) in 100 ml water. Diluted hydrochloric acid (0.65 ml concentrated HCl in 13 ml water) was added to the organic phase and 200 ml of the solvent were distilled under reduced pressure. The remaining clear solution was heated to 80 °C for 6 hours. Analysis by TLC showed less than 5 % of intermediate 1-Hexadecyl-2-(4'-carboxy)butyl-3-tritylglycerol. Additional volume of 250 ml solvent was distilled off.
- The residue was treated with 100 ml water and 10 ml 30 % NaOH to reach pH=12. The precipitated triphenylmethanol was filter off and washed 4 times with 10 ml water. The filtrate was extracted with a mixture of 50 ml hexane and 50 ml ethyl acetate to remove remaining triphenylmethanol and other impurities. The sodium salt of 1-hexadecyl-2-(4'-carboxy)butyl-sn-glycerol, present in the aqueous phase, was protonated with concentrated hydrochloric acid (8.45 ml, 101.4 mmol, 1.3 equivalents, pH=1). The resulting free carboxylic acid was extracted with hexane (100 ml). Evaporation to dryness and co-evaporation with 100 ml hexane gave 27.00 grams of crude 1-hexadecyl-2-(4'-carboxy)butyl-sn-glycerol.
- The crude product was crystallized by dissolving in a mixture of acetone and hexane (7 ml/68 ml) and cooling to 0 °C. The precipitate was filtered and washed with cold hexane (2 x 7 ml) and dried. 1-Hexadecyl-2-(4'-carboxy)butyl-sn-glycerol was obtained as an off-white solid (20.90 grams, 50.2 mmol, 64.3 % yield).
- Preparation of 1-Hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycerol: 1-Hexadecyl-2-(4'-carboxy)butyl-sn-glycerol (15.0 grams, 36.0 mmol) was dissolved in methanol (100 ml) and concentrated hydrochloric acid (3 ml) was added. The reaction mixture was stirred at room temperature overnight. Triethylamine was thereafter added until the reaction mixture reaches pH=7. The solution was transferred to separatory funnel and extracted with hexane (2 x 200 ml). The organic phase was washed with water and evaporation to dryness and co-evaporation with 100 ml hexane gave 14.92 grams of 1-hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycerol (34.65 mmol, 96.2 % yield).
- 1-Hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycero-3-phosphocholine: A solution of 1-Hexadecyl-2-(4'-carboxymethyl)butyl-glycerol (8.60 grams, 19.97 mmol), and triethylamine (2.63 grams, 3.62 ml, 26 mmol) in 500 ml THF was added dropwise, over 25 minutes, to an ice-cooled solution of POCl3 (3.90 grams, 2.40 ml, 26 mmol) in 100 ml THF. The resulting mixture was stirred for an additional 10 minutes in an ice-bath and for 45 minutes at room temperature (23 °C). A solution of ethanolamine (1.6 ml) and triethylamine (6.4 ml) in THF (500 ml) was then added dropwise under vigorous stirring to an ice-cooled reaction mixture. The stirring was continued for an additional 10 minutes in an ice-bath and further continued at room temperature for overnight. The reaction mixture was thereafter filtered and the solvent removed under reduced pressure. The residue was dissolved in a mixture of acetic acid (24 ml) and water (100 ml) and heated to 70 °C for 1 hour. The reaction mixture was thereafter cooled to room temperature and extracted with dichloromethane (2 x 250 ml). The solvent was removed under reduced pressure, to afford crude 1-hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycero-3-phosphoethanolamine.
- The crude 1-hexadecyl-2-(4'-carboxymethyl)butyl-sn-glycero-3-phosphoethanolamine was dissolved in a mixture of isopropanol (500 ml) and dichloromethane (180 ml). A solution of potassium carbonate (50 grams) in water (100 ml) was added to reach a pH above 11, and the solution was kept at 35-40 °C during the dropwise addition of methyltosylate (11.15 grams) in 100 ml of iso-propanol in a time period of 45 minutes. After additional 90 minutes, the mixture was acidified with hydrochloric acid. Water (100 ml) and dichloromethane (550 ml) were added and the phases separated. The organic phase was washed with water (100 ml) and the solvent removed under reduced pressure to give 11.0 grams of 1-hexadecyl-2-(5'-carboxymethyl)butyl-3-phosphocholine (18.46 mmol, 92.45 % yield).
- Preparation of 1-Hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine: 1-Hexadecyl-2-(4'-carboxymethyl)butyl-3-phosphocholine was dissolved in isopropanol (250 ml). Lithium hydroxide monohydrate (1.68 grams) was added and the reaction mixture was stirred at room temperature overnight. Isopropanol was partially evaporated by distillation and the pH of the reaction was brought acidic by addition of hydrochloric acid. Water (250 ml) was added and the solution extracted with dichloromethane (2 x 250 ml). The solvent was thereafter removed under reduced pressure and co-evaporated with dichloromethane to give crude 1-hexadecyl-2-(5'-carboxy)butyl-3-phosphocholine.
- The crude 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine was purified by chromatography on a silica gel column. Dichloromethane followed by a mixture of dichloromethane, methanol, water, and triethylamine was used to elute the product from the column. The fractions containing the product were combined and evaporated. The resulting product was dried under vacuum. 7.10 grams of pure 1-hexadecyl-2-(4'-carboxy)butyl-3-phosphocholine (12.2 mmol, 66.1 % yield) were obtained.
- It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Claims (10)
- A method of preparing a compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone via an ether bond, the compound having the general Formula II:A1 is selected from the group consisting of CH2 and C=O;A2 is CH2;R1 is an alkyl having 1-30 carbon atoms;R3 is selected from the group consisting of hydrogen, alkyl, aryl, phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol, the method comprising:removing said non-polar solvent, to thereby obtain a purified third compound;providing a first compound having a glycerolic backbone and at least one free hydroxyl group, said first compound having general Formula I:providing a second compound having at least one unsaturated bond which is capable of being subjected to oxidative cleavage, and at least one reactive group capable of forming an ether bond with said free hydroxyl group;reacting said first compound and said second compound to thereby obtain a third compound, said third compound having said glycerolic backbone and an unsaturated bond-containing residue being attached to said glycerolic backbone via an ether bond at position sn-2;wherein when R3 of said first compound is hydrogen, the method further comprises, prior to reacting said first compound and said second compound, protecting a free hydroxyl group at position sn-3 of said glycerolic backbone with a protecting group, such that said third compound comprises said protecting group at said position sn-3;collecting said third compound;providing a solution of said third compound in a non-polar solvent, said non-polar solvent being selected such that said third compound is soluble therein whereby impurities formed during said reacting are insoluble therein, to thereby provide a mixture including said solution of said third compound in said non-polar solvent and insoluble impurities;removing said insoluble impurities; andreacting said purified third compound with an oxidizing agent comprising a mixture of a periodate and a permanganate so as to oxidize said unsaturated bond to form said Z, to thereby obtain a fourth compound, said fourth compound having said glycerolic backbone and an oxidized moiety-containing residue attached to said glycerolic backbone via an ether bond at position sn-2; andisolating said fourth compound using phase-separation to thereby obtain a purified fourth compound, thereby obtaining the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to said glycerolic backbone via an ether bond,said isolating of said third compound and said isolating of said fourth compound each being devoid of column chromatography,wherein when the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone further comprises a phosphorus-containing moiety attached to the glycerolic backbone, such that R3 is selected from the group consisting of phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biphosphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol,the method further comprises, subsequent to isolating said fourth compound:providing said purified fourth compound having a free hydroxyl group;reacting said purified fourth compound with a reactive phosphorus-containing compound having a second reactive group and a third reactive group, said second reactive group being capable of reacting with said free hydroxyl group, to thereby provide said purified fourth compound having a reactive phosphorus-containing group attached to the glycerolic backbone; andconverting said reactive phosphorus-containing group to said phosphorus-containing moiety.
- The method of claim 1, wherein said reacting said purified third compound with an oxidizing agent is effected in the presence of a base.
- The method of claim 2, wherein said base is selected from the group consisting of a bicarbonate and a carbonate.
- The method of any of claims 1-3, further comprising, subsequent to reacting said third compound with said oxidizing agent, removing said protecting group.
- The method of claim 4, wherein removing said protecting group and isolating said fourth compound are performed simultaneously.
- The method of claim 5, further comprising, subsequent to reacting said third compound with said oxidizing agent:collecting said fourth compound;providing a solution of said fourth compound in a solvent, said solvent being selected such that said fourth compound is soluble therein whereby impurities formed during said reacting are insoluble therein, and further such that removing said protecting group is performed in said solvent and said protecting group is insoluble therein, to thereby provide a mixture including said solution of said fourth compound in said solvent, and insoluble protecting group and insoluble impurities;removing said insoluble impurities and said protecting group; andremoving said solvent, thereby obtaining said purified fourth compound.
- The method of any of claims 1-6, wherein the compound having a glycerolic backbone and at least one oxidized moiety-containing residue attached to the glycerolic backbone further comprises a phosphorus-containing moiety attached to the glycerolic backbone, such that R3 is selected from the group consisting of phosphoric acid, phosphoryl choline, phosphoryl ethanolamine, phosphoryl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphoryl cardiolipin, phosphoryl inositol, ethylphosphocholine, phosphorylmethanol, phosphorylethanol, phosphorylpropanol, phosphorylbutanol, phosphorylethanolamine-N-lactose, phosphoethanolamine-N-[methoxy(propylene glycol)], phosphoinositol-4-phosphate, phosphoinositol-4,5-biposphonate, pyrophosphate, phosphoethanolamine-diethylenetriamine-pentaacetate, dinitrophenyl-phosphoethanolamine, phosphoglycerol.
- The method of claim 7, wherein said reactive phosphorus-containing compound is phosphorus oxychloride (POCl3).
- The method of claim 1, comprising:(i) reacting said first compound having a glycerolic backbone, wherein a hydroxyl group at position sn-3 of the glycerolic backbone is protected with a trityl group, said first compound having the formula:
Br(CH2)4CHCH2
to obtain said third compound having the formula:(ii) providing the solution of said third compound and removing insoluble impurities from said solution to obtain said purified third compound;(iii) reacting said purified third compound with a mixture of periodate and permanganate to form an intermediate compound having the formula:(iv) removing said trityl group thereby forming said 1-hexadecyl-2-(4'-carboxy)butyl-glycerol having the formula:(v) isolating said 1-hexadecyl-2-(4'-carboxy)butyl-glycerol using phase separation to obtain isolated 1-hexadecyl-2-(4'-carboxy)butyl-glycerol as the compound of formula II. - The method of claim 9, further comprising:(vi) reacting the isolated 1-hexadecyl-2-(4'-carboxy)butyl-glycerol via a methyl ester compound having the formula:(vii) converting the reactive phosphorous-containing group to a phosphorous containing moiety to form a compound incorporating a phosphocholine moiety having the formula:(viii) hydrolyzing said methyl ester moiety of said compound incorporating a phosphocholine moiety thereby forming 1-hexadecyl-2-(4'-carboxy)butyl-glycero-3-phosphocholine as the compound of formula II.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12178298A EP2522672A1 (en) | 2007-01-09 | 2008-01-02 | Oxidized phospholipids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/650,973 US7807847B2 (en) | 2004-07-09 | 2007-01-09 | Process for the preparation of oxidized phospholipids |
PCT/IL2008/000013 WO2008084472A2 (en) | 2007-01-09 | 2008-01-02 | Improved process for the preparation of oxidized phospholipids |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12178298A Division-Into EP2522672A1 (en) | 2007-01-09 | 2008-01-02 | Oxidized phospholipids |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2125838A2 EP2125838A2 (en) | 2009-12-02 |
EP2125838A4 EP2125838A4 (en) | 2011-05-04 |
EP2125838B1 true EP2125838B1 (en) | 2016-05-11 |
Family
ID=39609128
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12178298A Ceased EP2522672A1 (en) | 2007-01-09 | 2008-01-02 | Oxidized phospholipids |
EP08700247.3A Not-in-force EP2125838B1 (en) | 2007-01-09 | 2008-01-02 | Improved process for the preparation of oxidized phospholipids |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12178298A Ceased EP2522672A1 (en) | 2007-01-09 | 2008-01-02 | Oxidized phospholipids |
Country Status (14)
Country | Link |
---|---|
US (5) | US7807847B2 (en) |
EP (2) | EP2522672A1 (en) |
JP (2) | JP5453109B2 (en) |
KR (1) | KR20090109095A (en) |
CN (2) | CN101679463B (en) |
AU (1) | AU2008204238B2 (en) |
CA (2) | CA2844908A1 (en) |
ES (1) | ES2574586T3 (en) |
HK (1) | HK1135990A1 (en) |
IL (1) | IL199792A (en) |
MX (1) | MX2009007422A (en) |
NZ (3) | NZ603980A (en) |
WO (1) | WO2008084472A2 (en) |
ZA (1) | ZA200905601B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6838452B2 (en) * | 2000-11-24 | 2005-01-04 | Vascular Biogenics Ltd. | Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis |
US7807847B2 (en) * | 2004-07-09 | 2010-10-05 | Vascular Biogenics Ltd. | Process for the preparation of oxidized phospholipids |
US7784501B2 (en) | 2005-04-08 | 2010-08-31 | Air Products And Chemicals, Inc. | Efficient system and method for delivery of product and return of carrier |
US8569529B2 (en) | 2007-01-09 | 2013-10-29 | Vascular Biogenics Ltd. | High-purity phospholipids |
US9006217B2 (en) | 2007-01-09 | 2015-04-14 | Vascular Biogenics Ltd. | High-purity phospholipids |
JP2010047550A (en) * | 2008-08-25 | 2010-03-04 | Daicel Chem Ind Ltd | Method of preparing alkoxyalkane carboxylate |
EP2348864A4 (en) * | 2008-10-08 | 2013-07-31 | Vascular Biogenics Ltd | Oxidized thiophospholipid compounds and uses thereof |
RU2532546C2 (en) * | 2008-11-06 | 2014-11-10 | Васкьюлар Байодженикс Лтд. | Oxidised lipid compounds and their application |
ES2768266T3 (en) | 2011-09-01 | 2020-06-22 | Vascular Biogenics Ltd | Formulations and dosage forms of oxidized phospholipids |
CN104327114A (en) * | 2014-11-06 | 2015-02-04 | 江南大学 | Preparation method of phosphatidyl serine |
WO2016084023A1 (en) | 2014-11-26 | 2016-06-02 | Vascular Biogenics Ltd. | Oxidized lipids and treatment or prevention of fibrosis |
US9771385B2 (en) | 2014-11-26 | 2017-09-26 | Vascular Biogenics Ltd. | Oxidized lipids |
CN105622665B (en) * | 2016-03-16 | 2017-11-24 | 北京美亚斯磷脂技术有限公司 | A kind of preparation method of modified soy bean lipoid |
WO2018000339A1 (en) * | 2016-06-30 | 2018-01-04 | 深圳市亚辉龙生物科技股份有限公司 | Modified cardiolipin-coated magnetic nanobead and preparation method therefor |
CN110845357B (en) * | 2019-11-22 | 2022-09-30 | 华东理工大学 | Quaternary ammonium salt type hydrazide compound, quaternary ammonium salt type hydrazone compound prepared from same and application of quaternary ammonium salt type hydrazone compound |
US10953023B1 (en) | 2020-01-28 | 2021-03-23 | Applaud Medical, Inc. | Phospholipid compounds and formulations |
JP2023525599A (en) * | 2020-01-28 | 2023-06-16 | アプロード メディカル, インコーポレイテッド | Phospholipid compounds and formulations |
CN114195821B (en) * | 2021-12-17 | 2024-03-12 | 郑州安图生物工程股份有限公司 | Cardiolipin derivative and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006161A2 (en) * | 2004-07-09 | 2006-01-19 | Vascular Biogenics Ltd. | Improved process for the preparation of oxidized phospholipids |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638578B2 (en) * | 1973-05-18 | 1981-09-08 | ||
CH642665A5 (en) | 1979-02-08 | 1984-04-30 | Rudolf Berchtold | Process for the preparation of 1-(omega-carboxyalkyl)-2-alkyl- glycero-3-phosphatides |
US4329302A (en) | 1980-06-27 | 1982-05-11 | Board Of Regents, The University Of Texas System | Synthetic phosphoglycerides possessing platelet activating properties |
DE3307925A1 (en) | 1983-03-05 | 1984-09-06 | A. Nattermann & Cie GmbH, 5000 Köln | NEW 0-ACYL-ALKANDIOL PHOSPHOLIPIDS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM |
US4614796A (en) | 1983-03-25 | 1986-09-30 | Nippon Shinyaku Co., Ltd. | Liposome and method of manufacture therefor |
JPS6041652A (en) * | 1983-08-13 | 1985-03-05 | Morinaga Milk Ind Co Ltd | Preparation of n-carbobenzyloxy-l-glutamic acid-gamma- choline ester salt |
JPS60100544A (en) | 1983-11-08 | 1985-06-04 | Ono Pharmaceut Co Ltd | Novel glycerin derivative, its preparation and drug containing it |
JPS60104066A (en) | 1983-11-10 | 1985-06-08 | Ono Pharmaceut Co Ltd | Glycerin derivative, its preparation, and drug containing it |
AT383130B (en) | 1984-05-15 | 1987-05-25 | Chemie Linz Ag | METHOD FOR THE PRODUCTION OF PHOSPHATIDYLCHOLINES AND PHOSPHATIDYLETHANOLAMINES SUBSTITUTED DIFFERENTLY AT C1 AND C2 OVER THE NEW COMPOUNDS 1-0-TRITYLGLYCEROPHOSPHOCHOLIN OR RELATED (1-0, N-DITYHOHOLINE) |
JPH0617307B2 (en) | 1984-11-09 | 1994-03-09 | 武田薬品工業株式会社 | Antitumor agent |
US4710579A (en) | 1984-11-09 | 1987-12-01 | Takeda Chemical Industries, Ltd. | 2-(acetoacetyloxy)-3-(octadecyloxy)propyl-3-trimethylammoniopropyl phosphate or a pharmaceutically acceptable salt thereof |
US4827011A (en) | 1984-12-10 | 1989-05-02 | American Cyanamid Company | Antihypertensive phosphate derivatives |
JPS61246196A (en) * | 1985-04-22 | 1986-11-01 | Fuji Kagaku Kogyo Kk | 5'-o-acyl-5-fluorouridine and production thereof |
EP0225129B1 (en) | 1985-11-29 | 1989-05-24 | Takeda Chemical Industries, Ltd. | Phospholipid derivatives, their production and use |
JPH01502584A (en) | 1986-03-24 | 1989-09-07 | ザ ユニバーシティー オブ シドニー | antigenic substance |
DE3777175D1 (en) * | 1986-04-07 | 1992-04-09 | Upjohn Co | ANTHELMINTIC QUATERNAERE ALKYL-ACYL-HYDRAZONE, METHOD FOR USE AND COMPOSITIONS. |
JPS6294A (en) | 1986-05-09 | 1987-01-06 | Toyama Chem Co Ltd | Novel glycerophosphoric acid derivative and salt and production thereof |
JPS6354386A (en) | 1986-08-26 | 1988-03-08 | Takeda Chem Ind Ltd | Phospholipid and use thereof |
JPS63190859A (en) * | 1986-09-18 | 1988-08-08 | Takeda Chem Ind Ltd | Glycerin derivative |
JPS63135395A (en) | 1986-11-28 | 1988-06-07 | Nippon Oil & Fats Co Ltd | Phospholipid derivative and production thereof |
JPS63188692A (en) * | 1987-01-29 | 1988-08-04 | Nippon Oil & Fats Co Ltd | Production of phospholipid derivative |
DE3807123A1 (en) | 1988-03-04 | 1989-09-14 | Boehringer Mannheim Gmbh | SUBSTRATE FOR PHOSPHOLIPASES |
JPH01258691A (en) | 1988-04-06 | 1989-10-16 | Nippon Oil & Fats Co Ltd | Phospholipid derivative and production thereof |
JP2534894B2 (en) | 1988-06-24 | 1996-09-18 | 日本ケミファ株式会社 | Novel glycerin derivative and antihypertensive agent containing the derivative |
JPH0248585A (en) | 1988-08-10 | 1990-02-19 | Nippon Oil & Fats Co Ltd | Phospholipid derivative and production thereof |
JPH03258740A (en) | 1990-03-06 | 1991-11-19 | Kao Corp | Liquid oil, production thereof and cosmetic containing same oil |
ES2019552A6 (en) | 1990-04-11 | 1991-06-16 | Menarini Lab | Process for the preparation of glycerophospholipids |
JP2869572B2 (en) | 1990-05-14 | 1999-03-10 | 和光純薬工業株式会社 | Method for producing phosphatidylcholine derivative |
US5561052A (en) | 1992-06-18 | 1996-10-01 | Koike; Katsumasa | Process for detecting oxidized lipids and process for forming oxidized lipids |
FR2714382B1 (en) | 1993-12-27 | 1996-02-02 | Roussel Uclaf | Phospholipids vector of active molecule, their preparation and their use in cosmetic or dermatological compositions. |
WO1995023592A1 (en) | 1994-03-04 | 1995-09-08 | The University Of British Columbia | Liposome compositions and methods for the treatment of atherosclerosis |
JP3364313B2 (en) | 1994-03-22 | 2003-01-08 | 株式会社トクヤマ | Porphyrin / indium complex and anion-sensitive membrane |
US5962437A (en) | 1994-08-29 | 1999-10-05 | Wake Forest University | Lipid analogs for treating viral infections |
JPH08208548A (en) | 1995-02-01 | 1996-08-13 | Kao Corp | Production of glycerol derivative |
US5660855A (en) | 1995-02-10 | 1997-08-26 | California Institute Of Technology | Lipid constructs for targeting to vascular smooth muscle tissue |
US6261597B1 (en) | 1995-08-31 | 2001-07-17 | Seymour J. Kurtz | Method for treating periodontal disease |
US6096291A (en) | 1996-12-27 | 2000-08-01 | Biovector Therapeutics, S.A. | Mucosal administration of substances to mammals |
CN1265670A (en) * | 1997-07-31 | 2000-09-06 | 伊兰药品公司 | Dipeptides and related compounds that inhibit VLA-4 mediated leukocyte adhesion |
JP3781877B2 (en) | 1997-10-03 | 2006-05-31 | 株式会社ムック | Ascorbic acid derivatives or salts thereof, and pharmaceuticals |
US6376450B1 (en) | 1998-10-23 | 2002-04-23 | Chanchal Kumar Ghosh | Cleaning compositions containing multiply-substituted protease variants |
US6414168B1 (en) * | 1998-12-28 | 2002-07-02 | Caschem, Inc. | Epoxidation of ricinic compounds using a phase-transfer catalyst |
US6348583B1 (en) | 1999-08-30 | 2002-02-19 | Bio-Rad Laboratories, Inc. | Poly(ether-thioether), poly(ether-sulfoxide) and poly(ether-sulfone) nucleic acids |
DE60017787T2 (en) | 1999-11-30 | 2006-01-05 | ARIZONA BOARD OF REGENTS, on behalf of THE UNIVERSITY OF ARIZONA, Tucson | RADIATION-SENSITIVE LIPOSOMES |
ATE306563T1 (en) | 2000-03-31 | 2005-10-15 | Univ California | FUNCTIONAL DETECTION OF HIGH DENSITY LIPOPROTEIN |
JP2002302470A (en) * | 2000-05-15 | 2002-10-18 | Toagosei Co Ltd | New quaternary ammonium salt and method for producing the same |
US6838452B2 (en) | 2000-11-24 | 2005-01-04 | Vascular Biogenics Ltd. | Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis |
CA2429817C (en) | 2000-11-24 | 2013-02-12 | Vascular Biogenics Ltd. | Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis |
FI20011466A0 (en) * | 2001-07-04 | 2001-07-04 | Orion Corp | Compounds with activity that inhibit prolyl oligopeptidase, processes for their preparation and use thereof |
DE10155095A1 (en) | 2001-11-09 | 2003-05-22 | Cognis Deutschland Gmbh | ylglycerinethercarbonsäuren alkyl (s) |
US7807847B2 (en) | 2004-07-09 | 2010-10-05 | Vascular Biogenics Ltd. | Process for the preparation of oxidized phospholipids |
US20060194765A1 (en) | 2004-11-16 | 2006-08-31 | Garcia Joe G N | Methods and compositions using oxidized phospholipids |
WO2007014001A2 (en) | 2005-07-21 | 2007-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Multiplex determination of lipid specific binding moieties |
US8137977B2 (en) | 2006-04-24 | 2012-03-20 | Children's Hospital & Research Center At Oakland | Lipidomic approaches to determining drug response phenotypes in cardiovascular disease |
US8703179B2 (en) | 2006-05-11 | 2014-04-22 | Kimberly-Clark Worldwide, Inc. | Mucosal formulation |
JP2008037763A (en) | 2006-08-01 | 2008-02-21 | Adeka Corp | Antibacterial agent and antibacterial agent composition |
US9006217B2 (en) | 2007-01-09 | 2015-04-14 | Vascular Biogenics Ltd. | High-purity phospholipids |
MX2010005676A (en) | 2007-11-28 | 2010-08-06 | Teva Pharma | Method of delaying the onset of clinically definite multiple sclerosis. |
EP2348864A4 (en) | 2008-10-08 | 2013-07-31 | Vascular Biogenics Ltd | Oxidized thiophospholipid compounds and uses thereof |
RU2532546C2 (en) | 2008-11-06 | 2014-11-10 | Васкьюлар Байодженикс Лтд. | Oxidised lipid compounds and their application |
CN102834011B (en) | 2010-01-05 | 2016-01-13 | 脉管生物生长有限公司 | Use the treatment of 1-cetyl-2-(4 '-carboxybutyl)-glycerol-3-phosphocholine |
ES2768266T3 (en) | 2011-09-01 | 2020-06-22 | Vascular Biogenics Ltd | Formulations and dosage forms of oxidized phospholipids |
-
2007
- 2007-01-09 US US11/650,973 patent/US7807847B2/en active Active
-
2008
- 2008-01-02 NZ NZ603980A patent/NZ603980A/en not_active IP Right Cessation
- 2008-01-02 ES ES08700247.3T patent/ES2574586T3/en active Active
- 2008-01-02 AU AU2008204238A patent/AU2008204238B2/en not_active Ceased
- 2008-01-02 KR KR1020097015780A patent/KR20090109095A/en active IP Right Grant
- 2008-01-02 WO PCT/IL2008/000013 patent/WO2008084472A2/en active Application Filing
- 2008-01-02 CA CA2844908A patent/CA2844908A1/en not_active Abandoned
- 2008-01-02 NZ NZ593529A patent/NZ593529A/en not_active IP Right Cessation
- 2008-01-02 CA CA2674902A patent/CA2674902C/en active Active
- 2008-01-02 EP EP12178298A patent/EP2522672A1/en not_active Ceased
- 2008-01-02 JP JP2009545295A patent/JP5453109B2/en not_active Expired - Fee Related
- 2008-01-02 CN CN200880006707.6A patent/CN101679463B/en not_active Expired - Fee Related
- 2008-01-02 EP EP08700247.3A patent/EP2125838B1/en not_active Not-in-force
- 2008-01-02 MX MX2009007422A patent/MX2009007422A/en active IP Right Grant
- 2008-01-02 NZ NZ578947A patent/NZ578947A/en not_active IP Right Cessation
- 2008-01-02 CN CN201410145506.1A patent/CN103864842A/en active Pending
-
2009
- 2009-07-09 IL IL199792A patent/IL199792A/en active IP Right Grant
- 2009-08-07 ZA ZA200905601A patent/ZA200905601B/en unknown
-
2010
- 2010-03-16 HK HK10102729.2A patent/HK1135990A1/en not_active IP Right Cessation
- 2010-08-24 US US12/861,921 patent/US8124800B2/en not_active Expired - Fee Related
-
2012
- 2012-01-26 US US13/358,573 patent/US20120130108A1/en not_active Abandoned
- 2012-12-10 US US13/709,198 patent/US8802875B2/en active Active
-
2013
- 2013-03-12 US US13/796,654 patent/US8759557B2/en active Active
-
2014
- 2014-01-06 JP JP2014000036A patent/JP2014088415A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006161A2 (en) * | 2004-07-09 | 2006-01-19 | Vascular Biogenics Ltd. | Improved process for the preparation of oxidized phospholipids |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2125838B1 (en) | Improved process for the preparation of oxidized phospholipids | |
JP5655117B2 (en) | Improved process for producing oxidized phospholipids | |
US9968622B2 (en) | High-purity phospholipids | |
AU2007200090B2 (en) | Improved Process for the Preparation of Oxidized Phospholipids | |
IL211795A (en) | Process for the preparation of oxidized phospholipids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090807 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
R17D | Deferred search report published (corrected) |
Effective date: 20091126 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1135990 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110404 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61K 31/66 20060101ALI20110329BHEP Ipc: C07F 9/02 20060101AFI20080730BHEP |
|
17Q | First examination report despatched |
Effective date: 20110414 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602008044164 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C07F0009020000 Ipc: C07F0009100000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 41/26 20060101ALI20150202BHEP Ipc: C07C 45/27 20060101ALI20150202BHEP Ipc: C07C 29/48 20060101ALI20150202BHEP Ipc: C07C 67/39 20060101ALI20150202BHEP Ipc: C07F 9/10 20060101AFI20150202BHEP Ipc: C07B 41/00 20060101ALI20150202BHEP Ipc: C07C 51/16 20060101ALI20150202BHEP Ipc: C07C 45/29 20060101ALI20150202BHEP Ipc: C07F 9/09 20060101ALI20150202BHEP Ipc: C07C 51/29 20060101ALI20150202BHEP Ipc: C07C 67/28 20060101ALI20150202BHEP Ipc: C07C 67/08 20060101ALI20150202BHEP |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151110 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20151124 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 798583 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: STOLMAR AND PARTNER INTELLECTUAL PROPERTY S.A., CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2574586 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160620 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008044164 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160811 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 798583 Country of ref document: AT Kind code of ref document: T Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160812 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160912 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008044164 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1135990 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: RUE DU CENDRIER 15 CP 1489, 1201 GENEVE (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20220119 Year of fee payment: 15 Ref country code: GB Payment date: 20220119 Year of fee payment: 15 Ref country code: CH Payment date: 20220119 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220120 Year of fee payment: 15 Ref country code: FR Payment date: 20220119 Year of fee payment: 15 Ref country code: ES Payment date: 20220325 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220620 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230102 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230102 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230102 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008044164 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |