EP2122728A1 - Plaque bipolaire pour pile a combustible a membrane polymere - Google Patents
Plaque bipolaire pour pile a combustible a membrane polymereInfo
- Publication number
- EP2122728A1 EP2122728A1 EP07857113A EP07857113A EP2122728A1 EP 2122728 A1 EP2122728 A1 EP 2122728A1 EP 07857113 A EP07857113 A EP 07857113A EP 07857113 A EP07857113 A EP 07857113A EP 2122728 A1 EP2122728 A1 EP 2122728A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plate
- plates
- inner face
- distribution
- bonding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0282—Inorganic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to ion exchange polymer membrane fuel cells. More particularly, it relates to the fluid distribution plates used in such fuel cells, such as bipolar plates installed between each of the elementary electrochemical cells and the end plates installed on either side of the stack of cells. different electrochemical cells.
- Bipolar plates used in fuel cells fulfill two very different functions. It is known that the fuel cell and the oxidizing gas, that is to say hydrogen and air or pure oxygen, must be fed to the cell, and that it must also be cooled, that is to say pass through a cooling fluid such as water. One of the functions of the bipolar plates is to allow the transport of these various fluids necessary for the operation of the fuel cell. In addition, the bipolar plates also fulfill an electrical function: to ensure the electrical conduction between the anode and the cathode of each of the adjacent electrochemical cells. Indeed, a fuel cell is always constituted by the series assembly of a large number of elementary electrochemical cells; the elementary electrochemical cells being connected in series, the nominal voltage of the fuel cell is the sum of the voltages of each elementary electrochemical cell.
- bipolar plates must have a very high electrical conductivity.
- the materials used must also be impervious to the fluids used and show a very high chemical stability vis-à-vis these fluids.
- the bipolar plates must have sufficient mechanical characteristics to allow the juxtaposition of a large number of elementary electrochemical cells and associated bipolar plates and the maintenance of the assembly by compression between end plates with tie rods.
- the bipolar plates must have sufficient mechanical characteristics to support this compression.
- Graphite is commonly used because this material offers both high electrical conductivity and is chemically inert to the fluids used.
- Patent application WO 2005/006472 shows a possible embodiment of such bipolar plates.
- the graphite plates comprise the networks of channels necessary for the distribution of fuel and oxidant gases, that is to say in hydrogen and air or pure oxygen, and the network of channels making it possible to cross each bipolar plate by a coolant like water.
- Patent Applications US 2003/0228512 and US 2005/0252892 disclose a bipolar fuel cell plate formed from two plates each formed of a metal substrate having a conductive core region, the conductive region being coated with an ultra-thin layer. of conductive metal, and interposition of a third partition plate. Again, the realization of such a coating obeys the cost price of bipolar plates and the proposed structure is even more complex.
- metal plates as bipolar plates offers several advantages over graphite plates.
- the main advantage to mention is the superior mechanical strength of the metal which makes it possible to reduce the thicknesses of the plates, and to avoid the problems of plate cracks.
- the object of the present invention is to provide a bipolar plate or end plate arrangement which is as easy to manufacture as possible, which achieves very high power output ratios relative to the weight and congestion of the fuel cell, that is to say that allows including cooling by a coolant, to make the use of the fuel cell in a motor vehicle much easier.
- the object of the present invention is to improve the metal bipolar plates, because of their high strength, while eliminating the problem of electrical loss to the second of the two contacts mentioned above.
- the invention provides a fuel cell distribution plate, consisting of the superimposition of a first plate and a second plate, the first plate being made of electrically conductive material and having an inner face and an outer face for to cooperate with an ion exchange membrane, the outer face having a distribution channel network for a first gas, the distribution plate having a second electrically conductive material plate having an outer face and having an inner face for to be applied against the inner face of the first plate, a network of channels for the circulation of a cooling fluid being arranged on the inner face of the first plate or the second plate, or on both, at least the inner faces of the first and second plates being devoid of surface coating, the plates being joined by a layer of an electrically conductive bonding material, said layer being secured to the inner face of each of the first and second plates.
- a suitable technique for joining the first and second plates is solder, preferably at high temperature.
- the invention is of course applicable to bipolar plates, that is to say to plates whose one side forms the anode of an elementary electrochemical cell of a fuel cell and the other side forms the cathode of an adjacent elementary electrochemical cell. But the invention also applies to end plates. In fact, the invention applies whenever one wants to make a distribution plate having an internal network of channels for circulating a cooling fluid. The remainder of the description only deals, in a nonlimiting manner, with a bipolar plate, in which the outer face of the second plate is intended to cooperate with an ion exchange membrane and comprises a network of distribution channels for a gas.
- the electrically conductive material used for the first and second plates is a metallic material.
- a sheet covering all or part of the inner face of each of the first and second plates is used to produce a solder which ensures excellent contact.
- Another advantage is that it provides an optimum seal between the cooling fluid circuit and the outside and between the cooling fluid circuit and the gas circuit (s).
- the invention also extends to a method of manufacturing a steel distribution plate, for fuel cell, said distribution plate comprising a first plate of electrically conductive material having an inner face and having an outer face intended to cooperate with an ion exchange membrane, the distribution plate having a second plate of electrically conductive material having an outer face and having an inner face to be applied against the inner face of the first plate, a network channels for the circulation of a cooling fluid being arranged on the inner face of the first plate or the second plate, or both, of superimposing said first and second plates by interposing a sheet of a bonding material conduct electricity, to heat the assembly obtained up to the melting temperature of the material of lia while maintaining said first and second plates pressed against each other, allowing the assembly to cool and then releasing the holding pressure of the plates to obtain said distribution plate.
- the invention allows the use of stainless steel, a material chemically inert to the fluids used, at least at the surface, more precisely at least for the surface in contact with said fluids. Indeed, it is very important that the surface of the material is not attacked by hydrogen, by oxygen, by the water which is reformed, by any other substance conveyed in the channels, and in particular that the material remains surface inert under severe conditions prevailing in a fuel cell in operation.
- bipolar plate The following describes in detail a bipolar plate.
- the invention is not limited to bipolar plates; it also extends to distribution plates arranged on either side of the stack of elementary cells.
- Figure 1 is an exploded showing the various components of a bipolar plate according to the invention
- Figure 2 is an exploded showing, from another angle of view, the various constituent elements of a bipolar plate according to the invention
- Figure 3 is a perspective showing a bipolar plate according to the invention as it appears when assembled
- Figure 4 is a perspective showing, from another angle of view, a bipolar plate according to the invention as it appears when assembled;
- Figure 5 is an elevational view of one of the outer faces of a bipolar plate according to the invention
- Figure 6 is a section along AA in Figure 5;
- Figure 7 is an enlargement of the portion identified by the circle B in Figure 6;
- FIG. 8 schematically shows an elementary electrochemical cell of a fuel cell using a distribution plate according to the invention. DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
- the first plate 11 and the second plate 12 comprise on one side an area having three openings 31, 32 and 33 of relatively large cross section, and on the opposite side another zone also having three openings 34, 35 and 36 of section relatively important. All the openings 31 are aligned from one plate 11 to the other 12. Similarly, all the openings 32, respectively 33, 34, 35 and 36 are aligned from one plate 11 to the other 12.
- the set of openings 34, respectively 36, form a nurse for the return of one of the gases: the openings 34 and 36 ensure the return (34) of hydrogen not consumed by the battery and the others (36) oxygen not consumed by the battery. All apertures 32 form a feeder which carries the coolant while all apertures 35 form a feeder which returns coolant for regulating the fuel cell temperature.
- One of the faces 11 o of the first plate 11 comprises a first distribution channel 1 1 1 traced to distribute over the entire useful section of the first plate 11 one of the two gases used by the fuel cell.
- the first distribution channel 111 begins with a hole 1 1 1a through the thickness of the first plate 11, and ends with a hole 1 1 1b also passing through the first plate January 1.
- One of the faces 12i of the second plate 12 has an internal channel 122, designed to distribute over the entire useful section of the second plate 12 the cooling fluid used to regulate the fuel cell temperature.
- the coolant may be a liquid or could be air. In the latter case, the fluid passage section should normally be larger.
- the orifice 111a is aligned with the end of a channel section 11 1c dug on the face 12i.
- the orifice 111b is aligned with the end of a channel section 111d dug on the same face 12i.
- Each of these channel sections 111c and 111d communicates with the openings 31 and 34. This ensures communication between the first distribution channel 111 and the nurses concerned.
- the second plate 12 has a second distribution channel 121, similar to the distribution channel 111 and also traced to distribute over the entire useful section of the second plate 12 the other of the two gases used by the fuel cell.
- the openings 33 and 36 of the second plate 12 are in communication with, respectively, a channel section 121c and with a channel section 121d both dug on the face 12i.
- Each of the channel sections 121c and 121d ends with an orifice 121a, respectively 121b, passing through the thickness of the second plate 12, for communicating the second channel 121 with the nipples concerned.
- An advantageous material is stainless steel for distribution plates.
- nickel or copper pure nickel or copper, preferably pure pure is understood as well known to those skilled in the art more than 99% of the element considered- or alloy based on copper or nickel-based alloy).
- Cu-P alloy about 95% copper, the phosphorus balance
- Ni-P alloy 89% Ni and 1% P
- Ni-Cr-Si alloy 71% Ni, 19% Cr and 10% Si
- Ni-B-Cr-Fe-Si alloy (74% Ni, 3% B, 14% Cr, 4.5% Fe and 4.5% Si)
- the solder material is used in paste or preferably in the form of a sheet.
- the solder sheet is cut to the size of the first and second plates.
- An assembly is formed formed by the first plate 11, the second plate 12, with interposition of a solder sheet 2.
- the thickness of this solder sheet is chosen such that the solder, on the one hand, provides electrical contact very uniform between the first and second plates, and secondly, ensure perfect sealing without impeding the smooth flow of heat transfer fluid.
- a typical but non-limiting thickness of this sheet is of the order of one hundredth of a millimeter. Recall that the inner faces 1 1 i and 12i of the first and second plates are free of surface coating.
- This assembly is heated at least up to the melting temperature of the solder metal. Typically, this temperature is exceeded of the order of 10 0 C to 20 0 C to be certain that the entire solder sheet passes into the liquid phase. Of course, the exact temperature is a function of the material chosen for the solder.
- a bipolar plate 1 having on one side of the channels 111, for example anode gas circuit, is obtained on the other side of the channels 121, in this example of the cathode gas circuit, and between the channel plates. 122, not visible after assembly, of the cooling fluid circuit.
- the assembly obtained is heated under a neutral gas atmosphere (for example nitrogen) until a temperature plateau below the melting temperature of the material (for example of the order of 800 ° C. for a copper solder). Then, evacuation is carried out in order to continue the temperature rise, up to about 1100 ° C. for pure copper brazing, more preferably after the temperature rise phase up to the melting temperature of the bonding material, the assembly is allowed to cool under vacuum until a temperature level lower than the melting point of the material (for example the same temperature step as during the temperature rise), and cooling is continued under an atmosphere of neutral gas (for example nitrogen).
- a neutral gas atmosphere for example nitrogen
- a bipolar plate according to the invention is intended to be associated with elements forming an electrochemical cell.
- an electrochemical cell 9 associated with two identical bipolar plates 1A and 1B.
- an electrochemical elementary cell 9 usually consists of the superposition of five layers: a ion exchange polymer membrane 91, two electrodes 92 (only one visible in the drawing) comprising chemical elements necessary for the conduct of the electrochemical reaction, such as for example platinum, and two gas diffusion layers 93 (only one visible in the drawing). ) to ensure a homogeneous distribution of the gases conveyed by the channel networks of bipolar plates over the entire surface of the ion exchange membrane.
- Apertures 31, 32, 33, 34, 35 and 36 are also provided on the polymeric membranes 91 and are aligned with the apertures of the distribution plates.
- Each of the faces 1 1 o and 12 o of the bipolar plates can cooperate with one of the diffusion layers of the electrochemical cells 9 adjacent.
- a large number of electrochemical cells 9 are superimposed with the interposition of bipolar plates 1, and single (non-bipolar) distribution plates are arranged at the ends to form a fuel cell.
- each of the elementary plates an electrically conductive material having sufficient mechanical characteristics to allow not only the transmission of service requirements for the fuel cell, but also to allow the automation of the manufacture of bipolar plates. Indeed, such automation requires manipulations by manufacturing robots and if these manipulations require little precautions thanks to the strength of the constituent material of the base plates, the realization of the automatic manufacturing will be simpler, more robust and more economical.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Plaque de distribution pour pile à combustible, comportant une première plaque (11) en matériau conducteur de l'électricité ayant une face intérieure et ayant une face extérieure (11o) destinée à coopérer avec une membrane échangeuse d'ions, la face extérieure (11o) comportant un réseau de canaux (111) de distribution pour un premier gaz, la plaque de distribution ayant une seconde plaque (12) en matériau conducteur de l'électricité ayant une face extérieure et ayant une face intérieure (12i) destinée à être appliquée contre la face intérieure de la première plaque (11), un réseau de canaux (122) pour la circulation d'un fluide de refroidissement étant aménagé sur la face intérieure soit de la première plaque (11) soit (12i) de la seconde plaque (12), soit sur les deux, les plaques étant réunies par une couche uniforme d'un matériau de liaison conducteur de l'électricité (2) recouvrant la face interne de chacune des première et seconde plaques.
Description
PLAQUE BIPOLAIRE POUR PILE A COMBUSTIBLE A MEMBRANE POLYMÈRE
DOMAINE DE L'INVENTION
La présente invention concerne les piles à combustible à membrane polymère échangeuse d'ions. Plus particulièrement, elle concerne les plaques de distribution de fluides utilisées dans de telles piles à combustible, comme par exemple les plaques bipolaires installées entre chacune des cellules électrochimiques élémentaires et les plaques d'extrémité installées de part et d'autre de l'empilage des différentes cellules électrochimiques.
ETAT DE LA TECHNIQUE
Les plaques bipolaires utilisées dans les piles à combustible remplissent deux fonctions très différentes. On sait qu'il faut alimenter la pile en gaz carburant et en gaz comburant, c'est-à-dire en hydrogène et en air ou en oxygène pur, et qu'il faut également la refroidir, c'est-à-dire la faire traverser par un fluide de refroidissement comme de l'eau. L'une des fonctions des plaques bipolaires est de permettre l'acheminement de ces différents fluides nécessaires au fonctionnement de la pile à combustible. Par ailleurs, les plaques bipolaires remplissent également une fonction électrique : assurer la conduction électrique entre l'anode et la cathode de chacune des cellules électrochimiques adjacentes. En effet, une pile à combustible est toujours constituée par l'assemblage en série d'un grand nombre de cellules électrochimiques élémentaires ; les cellules électrochimiques élémentaires étant connectées en série, la tension nominale de la pile à combustible est la somme des tensions de chaque cellule électrochimique élémentaire.
Ces différentes fonctions, acheminer les fluides et conduire l'électricité, donnent le cahier des charges auquel doivent satisfaire les matériaux utilisés pour la réalisation de ces plaques bipolaires. Les matériaux utilisés doivent présenter une très grande conductibilité électrique. Les matériaux utilisés doivent aussi être étanches aux fluides utilisés et faire preuve d'une très grande stabilité chimique vis-à-vis de ces fluides.
En outre, les plaques bipolaires doivent présenter les caractéristiques mécaniques suffisantes pour permettre la juxtaposition d'un grand nombre de cellules électrochimiques élémentaires et plaques bipolaires associées et le maintien de l'ensemble par compression entre des plaques d'extrémité grâce à des tirants. Les plaques bipolaires doivent présenter des caractéristiques mécaniques suffisantes pour supporter cette compression. Le graphite est couramment utilisé car ce matériau offre tout à la fois une grande conductibilité électrique et est chimiquement inerte aux fluides utilisés. La demande de brevet WO 2005/006472 montre une réalisation possible de telles plaques bipolaires. On voit qu'elles sont constituées par la superposition de deux plaques en graphite relativement rigides avec interposition d'une feuille réalisée en matière graphite assez souple afin de s'accommoder des tolérances d'épaisseur des différentes couches. Les plaques en graphite comportent les réseaux de canaux nécessaires à la distribution des gaz carburant et comburant, c'est-à-dire en hydrogène et en air ou en oxygène pur, et le réseau de canaux permettant de faire traverser chaque plaque bipolaire par un fluide de refroidissement comme de l'eau.
Malheureusement, les éléments rigides participant à la constitution des plaques bipolaires en graphite sont assez fragiles aux chocs, en particulier pendant les manipulations lors de l'assemblage de la pile. La couche réalisée en matériau graphite souple, dont il a été fait état précédemment, est en outre tout particulièrement difficile à manipuler de façon industrielle. Tout ceci obère de façon importante les coûts de fabrication de telles plaques bipolaires.
Le brevet US 6,379,476 propose de réaliser des plaques bipolaires en acier inoxydable revêtu d'un film passive en surface et ayant des inclusions en carbure faisant protubérance à la surface. Selon le déposant de ce brevet, le produit proposé devrait présenter une résistance électrique de contact suffisamment basse pour en faire des plaques bipolaires. Cependant, si cette solution peut présenter quelques avantages par rapport aux plaques bipolaires entièrement réalisées en graphite, notamment quant aux propriétés mécaniques, elle reste complexe à mettre en œuvre et la résistivité électrique peut s'avérer trop importante surtout si l'on vise à atteindre une très grande densité de puissance pour la pile à combustible.
D'autres demandes de brevet proposent de réaliser des plaques bipolaires en matériau non métallique, par exemple en matière plastique, en raison de la très grande
insensibilité de beaucoup de ces matières aux agressions chimiques dues aux gaz utilisés ainsi qu'au fluide de refroidissement. On citera par exemple la demande de brevet WO 2006/100029.
La demande de brevet US 2005/0100771 décrit une plaque bipolaire pour pile à combustible formée par mise en contact galvanique de deux plaques, chacune formée par un substrat métallique ayant une région centrale conductrice, la région conductrice étant revêtue d'une couche ultra mince de métal conducteur. La réalisation d'un tel revêtement obère le prix de revient des plaques bipolaires.
Les demandes de brevet US 2003/0228512 et US 2005/0252892 décrivent une plaque bipolaire pour pile à combustible formée à partir de deux plaques chacune formée par un substrat métallique ayant une région centrale conductrice, la région conductrice étant revêtue d'une couche ultra mince de métal conducteur, et interposition d'une troisième plaque de séparation. Là encore, la réalisation d'un tel revêtement obère le prix de revient des plaques bipolaires et la structure proposée est encore plus complexe.
Citons encore la demande de brevet EP 0955686. Là encore est décrite une plaque bipolaire pour pile à combustible formée par mise en contact galvanique de deux plaques en acier inoxydable revêtu d'étain. Comme déjà dit, la réalisation d'un tel revêtement obère le prix de revient des plaques bipolaires et le contact électrique obtenu dépend beaucoup de la qualité de l'empilage des éléments formant la pile à combustible ainsi que de leur vieillissement.
L'utilisation de plaques métalliques comme plaques bipolaires offre plusieurs avantages sur les plaques en graphite. Le principal avantage à citer est la résistance mécanique supérieure du métal qui permet de réduire les épaisseurs des plaques, et d'éviter les problèmes de fissures de plaques.
En revanche, les plaques métalliques, notamment celles en acier inoxydable, ont des résistances de contact électrique plus élevées que des plaques en graphite. La conséquence est l'obtention de performances moins élevées qu'avec des plaques en graphite ou même qu'avec des plaques dont le substrat est en matière plastique, la conduction électrique étant assurée par des éléments conducteurs rapportés. Dans le
cas des plaques bipolaires en acier inoxydable, les pertes ohmiques électriques surviennent aux contacts électriques : entre les couches de diffusion des gaz (communément appelées GDL pour Gaz
Diffusion Layer) et la plaque métallique elle-même ; - entre les deux plaques métalliques juxtaposées pour inclure un circuit de refroidissement.
L'objectif de la présente invention est de proposer un agencement pour plaque bipolaire ou pour plaque d'extrémité qui soit aussi facile à fabriquer que possible, qui permette d'atteindre de très hauts rapports de puissance délivrée par rapport au poids et à l'encombrement de la pile à combustible, c'est-à-dire qui permette notamment le refroidissement par un liquide de refroidissement, afin de rendre l'utilisation de la pile à combustible dans un véhicule automobile nettement plus aisée. L'objet de la présente invention est de perfectionner les plaques bipolaires métalliques, en raison de leur grande robustesse, tout en supprimant le problème de perte électrique au deuxième des deux contacts cités ci dessus.
BRÈVE DESCRIPTION DE L'INVENTION
L'invention propose une plaque de distribution pour pile à combustible, consistant en la superposition d'une première plaque et d'une seconde plaque, la première plaque étant en matériau conducteur de l'électricité et ayant une face intérieure et une face extérieure destinée à coopérer avec une membrane échangeuse d'ions, la face extérieure comportant un réseau de canaux de distribution pour un premier gaz, la plaque de distribution ayant une seconde plaque en matériau conducteur de l'électricité ayant une face extérieure et ayant une face intérieure destinée à être appliquée contre la face intérieure de la première plaque, un réseau de canaux pour la circulation d'un fluide de refroidissement étant aménagé sur la face intérieure soit de la première plaque soit de la seconde plaque, soit sur les deux, au moins les faces intérieures des première et seconde plaques étant dépourvues de revêtement de surface, les plaques étant réunies par une couche d'un matériau de liaison conducteur de l'électricité, ladite couche étant rendue solidaire de la face interne de chacune des première et seconde plaques. Une technique appropriée pour réunir la première et la seconde plaques est la brasure, de préférence à haute température.
L'invention s'applique bien entendu aux plaques bipolaires, c'est-à-dire aux plaques dont un côté forme l'anode d'une cellule électrochimique élémentaire d'une pile à combustible et l'autre côté forme la cathode d'une cellule électrochimique élémentaire adjacente. Mais l'invention s'applique aussi aux plaques d'extrémité. En fait, l'invention s'applique chaque fois que l'on veut réaliser une plaque de distribution comportant un réseau interne de canaux destiné à faire circuler un fluide de refroidissement. La suite de la description traite uniquement, de façon non limitative, de plaque bipolaire, dans laquelle la face extérieure de la seconde plaque est destinée à coopérer avec une membrane échangeuse d'ions et comporte un réseau de canaux de distribution pour un gaz.
De préférence, le matériau conducteur de l'électricité utilisé pour les première et seconde plaques est un matériau métallique. Comme couche d'un matériau de liaison conducteur de l'électricité entre première et seconde plaques, on utilise une feuille recouvrant tout ou partie de la face interne de chacune des première et seconde plaques pour réaliser une brasure qui permet d'assurer un excellent contact électrique et qui offre en outre un autre avantage : cela garantit une étanchéité optimale entre le circuit de fluide de refroidissement et l'extérieur et entre le circuit de fluide de refroidissement et le ou les circuits de gaz.
L'invention s'étend aussi à un procédé de fabrication d'une plaque de distribution en acier, pour pile à combustible, ladite plaque de distribution comportant une première plaque en matériau conducteur de l'électricité ayant une face intérieure et ayant une face extérieure destinée à coopérer avec une membrane échangeuse d'ions, la plaque de distribution ayant une seconde plaque en matériau conducteur de l'électricité ayant une face extérieure et ayant une face intérieure destinée à être appliquée contre la face intérieure de la première plaque, un réseau de canaux pour la circulation d'un fluide de refroidissement étant aménagé sur la face intérieure soit de la première plaque soit de la seconde plaque, soit des deux, consistant à superposer lesdites première et seconde plaques en interposant une feuille d'un matériau de liaison conducteur de l'électricité, à faire chauffer l'assemblage obtenu jusqu'à la température de fusion du matériau de liaison tout en maintenant lesdites première et seconde plaques en pression l'une contre l'autre, à laisser refroidir l'assemblage puis à libérer la pression de maintien des plaques pour obtenir ladite plaque de distribution.
L'invention permet l'utilisation d'acier inoxydable, matériau inerte chimiquement aux fluides utilisés, au moins en surface, plus précisément au moins pour la surface en contact avec lesdits fluides. En effet, il est très important que la surface du matériau ne soit pas attaquée par l'hydrogène, par l'oxygène, par l'eau qui se reforme, par toute autre substance véhiculée dans les canaux, et en particulier que le matériau reste inerte en surface aux conditions sévères régnant dans une pile à combustible en fonctionnement.
La suite décrit en détails une plaque bipolaire. Bien entendu comme déjà dit, l'invention ne se limite pas aux plaques bipolaires ; elle s'étend aussi aux plaques de distribution disposées de part et d'autre de l'empilage des cellules élémentaires.
BRÈVE DESCRIPTION DES FIGURES
La présente invention sera mieux comprise grâce à la description détaillée d'un mode de réalisation illustré avec les figures jointes dans lesquelles :
La figure 1 est un éclaté montrant les différents éléments constitutifs d'une plaque bipolaire selon l'invention ;
La figure 2 est un éclaté montrant, sous un autre angle de vue, les différents éléments constitutifs d'une plaque bipolaire selon l'invention ;
La figure 3 est une perspective montrant une plaque bipolaire selon l'invention telle qu'elle apparaît lorsqu'elle est assemblée ;
La figure 4 est une perspective montrant, sous un autre angle de vue, une plaque bipolaire selon l'invention telle qu'elle apparaît lorsqu'elle est assemblée ;
La figure 5 est une vue en élévation d'une des faces extérieures d'une plaque bipolaire selon l'invention ; La figure 6 est une coupe selon AA à la figure 5 ;
La figure 7 est un agrandissement de la partie identifiée par le cercle B à la figure 6 ;
La figure 8 montre de façon schématique une cellule électrochimique élémentaire d'une pile à combustible utilisant une plaque de distribution selon l'invention.
DESCRIPTION DU MODE DE REALISATION PREFERE DE L'INVENTION
Aux figures 1 et 2, on voit les éléments constitutifs d'une plaque bipolaire 1 formée par l'assemblage d'une première plaque 11 et d'une seconde plaque 12. La plaque bipolaire 1 une fois assemblée est visible aux figures 3 et 4.
La première plaque 1 1 et la deuxième plaque 12 comportent d'un côté une zone présentant trois ouvertures 31 , 32 et 33 de section relativement importante, ainsi que sur le côté opposé une autre zone présentant également trois ouvertures 34, 35 et 36 de section relativement importante. Toutes les ouvertures 31 sont alignées d'une plaque 11 à l'autre 12. De même, toutes les ouvertures 32, respectivement 33, 34, 35 et 36 sont alignées d'une plaque 11 à l'autre 12. L'ensemble des ouvertures 31 , respectivement 33, forme une nourrice pour l'acheminement d'un des gaz : les ouvertures 31 et 33 acheminent les unes (par exemple 31 ) l'hydrogène et les autres (par exemple 33) l'oxygène. L'ensemble des ouvertures 34, respectivement 36, forme une nourrice pour le retour d'un des gaz : les ouvertures 34 et 36 assurent le retour les unes (34) de l'hydrogène non consommé par la pile et les autres (36) de l'oxygène non consommé par la pile. Toutes les ouvertures 32 forment une nourrice qui achemine le fluide de refroidissement tandis que toutes les ouvertures 35 forment une nourrice qui assure le retour du fluide de refroidissement servant à réguler la pile à combustible en température.
L'une des faces 11 o de la première plaque 11 comporte un premier canal de distribution 1 1 1 tracé pour répartir sur la totalité de la section utile de la première plaque 11 l'un des deux gaz utilisés par la pile à combustible. Le premier canal de distribution 111 débute par un orifice 1 1 1a traversant l'épaisseur de la première plaque 11 , et se termine par un orifice 1 1 1 b traversant lui aussi la première plaque 1 1.
L'une des faces 12i de la seconde plaque 12 comporte un canal interne 122, tracé pour répartir sur la totalité de la section utile de la seconde plaque 12 le fluide de refroidissement utilisé pour réguler la pile à combustible en température. Le fluide de refroidissement peut être un liquide ou pourrait être de l'air. Dans ce dernier cas, la section de passage du fluide devrait normalement être plus importante.
L'orifice 111 a est aligné avec le bout d'un tronçon de canal 11 1c creusé sur la face 12i. L'orifice 111 b est aligné avec le bout d'un tronçon de canal 111d creusé sur la même face 12i. Chacun de ces tronçons de canal 111c et 111 d communique avec les ouvertures 31 et 34. Ceci assure la communication entre le premier canal de distribution 111 et les nourrices concernées.
Sur l'autre 12o de ces faces, visible à la figure 2, la seconde plaque 12 présente un deuxième canal de distribution 121 , semblable au canal de distribution 111 et lui aussi tracé pour répartir sur la totalité de la section utile de la seconde plaque 12 l'autre des deux gaz utilisés par la pile à combustible. Les ouvertures 33 et 36 de la seconde plaque 12 sont en communication avec, respectivement, un tronçon de canal 121 c et avec un tronçon de canal 121d creusés tous deux sur la face 12i. Chacun des tronçons de canal 121c et 121 d se termine par un orifice 121 a, respectivement 121 b, traversant l'épaisseur de la seconde plaque 12, pour mettre en communication le deuxième canal 121 avec les nourrices concernées.
Abordons maintenons la réalisation d'une brasure afin de relier définitivement les première et seconde plaque. Un matériau avantageux est l'acier inoxydable pour les plaques de distribution. Pour la brasure, on utilise avantageusement du nickel ou du cuivre (nickel pur ou cuivre, de préférence pur -on entend par pur comme bien connu de l'homme du métier plus de 99% de l'élément considéré- ou alliage à base de cuivre ou alliage à base de nickel). A titre uniquement exemplatif, citons l'alliage Cu-P (à 95% environ de cuivre, le solde de phosphore), l'alliage Ni-P (89%Ni et1 1 %P), l'alliage Ni- Cr-Si (71 % de Ni, 19% de Cr et 10% de Si), l'alliage Ni-B-Cr-Fe-Si (74% de Ni, 3% de B, 14% de Cr, 4.5% de Fe et 4.5% de Si),
Le matériau pour la brasure est utilisé en pâte ou de préférence sous la forme d'une feuille. La feuille de brasure est découpée à la dimension des première et seconde plaques. On réalise un assemblage formé par la première plaque 11 , la seconde plaque 12, avec interposition d'une feuille de brasure 2. L'épaisseur de cette feuille de brasure est choisie telle que la brasure, d'une part, assure un contact électrique très uniforme entre les première et seconde plaques, et d'autre part, garantisse la parfaite étanchéité sans entraver la bonne circulation du fluide caloporteur. Une épaisseur typique, mais non limitative de cette feuille est de l'ordre d'un centième de millimètre.
Rappelons que les faces intérieures 1 1 i et 12i des première et seconde plaques sont dépourvues de revêtement de surface.
On chauffe cet ensemble au moins jusqu'à la température de fusion du métal de brasure. Typiquement, on dépasse cette température de l'ordre de 100C à 200C pour être certain que la totalité de la feuille de brasure passe en phase liquide. Bien entendu, la température exacte est fonction du matériau choisi pour la brasure. On obtient, après refroidissement, une plaque bipolaire 1 comportant sur une face des canaux 111 , par exemple du circuit de gaz anode, sur l'autre face des canaux 121 , dans cet exemple du circuit de gaz cathode, et entre les plaques des canaux 122, non visibles après assemblage, du circuit de fluide de refroidissement.
De préférence, on chauffe l'assemblage obtenu sous atmosphère de gaz neutre (azote par exemple) jusqu'à un palier de température inférieur à la température de fusion du matériau (par exemple de l'ordre de 8000C pour une brasure au cuivre pur. Ensuite, on fait le vide pour poursuivre l'élévation de température, jusqu'à environ 1 1000C pour une brasure au cuivre pur. De préférence encore, après la phase d'élévation de la température jusqu'au-delà de la température de fusion du matériau de liaison, on laisse refroidir l'assemblage sous vide jusqu'à un palier de température inférieur à la température de fusion du matériau (par exemple le même palier de température que lors de l'élévation de température), et on poursuit le refroidissement sous atmosphère de gaz neutre (par exemple d'azote).
Le contact électrique entre plaques ainsi assemblées s'avère excellent. En outre, il n'est pas nécessaire de prévoir de joint au sein même de la plaque bipolaire, c'est-à- dire entre les deux plaques de distribution 11 et 12. Seul un joint 8 entre une plaque bipolaire et une membrane échangeuse d'ions est nécessaire. Les figures 5, 6 et 7 montrent l'implantation d'un tel joint. En particulier, l'agrandissement que montre la figure 7 permet de voir en coupe la disposition d'un tel joint.
Une plaque bipolaire selon l'invention est destinée à être associée à des éléments formant une cellule électrochimique. A la figure 8, on voit une cellule électrochimique 9 associée à deux plaques bipolaires identiques 1A et 1 B. On sait qu'une cellule électrochimique 9 élémentaire est à l'heure actuelle (sans que ceci ne limite en aucune façon l'invention) habituellement constituée de la superposition de cinq couches : une
membrane polymère 91 échangeuse d'ions, deux électrodes 92 (une seule visible au dessin) comportant des éléments chimiques nécessaires au déroulement de la réaction électrochimique, comme par exemple du platine, et deux couches de diffusion des gaz 93 (une seule visible au dessin) permettant d'assurer une diffusion homogène des gaz acheminés par les réseaux de canaux des plaques bipolaires sur la totalité de la surface de la membrane échangeuse d'ions.
Des ouvertures 31, respectivement 32, 33, 34, 35 et 36 sont également réalisées sur les membranes polymères 91 et sont alignées avec les ouvertures des plaques de distribution. Chacune des faces 1 1 o et 12o des plaques bipolaires peut coopérer avec une des couches de diffusion des cellules électrochimiques 9 adjacentes. On superpose un grand nombre de cellules électrochimiques 9 avec interposition de plaques bipolaires 1 , et on dispose aux extrémités des plaques de distribution simples (non bipolaires) pour former une pile à combustible.
Ainsi, grâce à l'invention, on peut choisir comme matériau constitutif de base de chacune des plaques élémentaires un matériau conducteur de l'électricité et présentant des caractéristiques mécaniques suffisantes pour permettre non seulement la transmission des sollicitations de service pour la pile à combustible, mais également pour permettre l'automatisation de la fabrication des plaques bipolaires. En effet, une telle automatisation suppose des manipulations par des robots de fabrication et si ces manipulations requièrent peu de précautions grâce à la solidité du matériau constitutif des plaques de base, la réalisation de la fabrication automatique n'en sera que plus simple, plus robuste et plus économique.
Claims
1. Plaque de distribution (1) pour pile à combustible, consistant en la superposition d'une première plaque (1 1) et d'une seconde plaque (12), la première plaque (11) étant en matériau conducteur de l'électricité et ayant une face intérieure (1 1 i) et une face extérieure (11o) destinée à coopérer avec une membrane échangeuse d'ions, la face extérieure (11 o) comportant un réseau de canaux (1 1 1 ) de distribution pour un premier gaz, la seconde plaque (12) étant en matériau conducteur de l'électricité et ayant une face extérieure (12o) et une face intérieure (12i) destinée à être appliquée contre la face intérieure (11i) de la première plaque (11), un réseau de canaux (122) pour la circulation d'un fluide de refroidissement étant aménagé sur la face intérieure soit (11 i) de la première plaque (11) soit (12i) de la seconde plaque (12), soit sur les deux, au moins les faces intérieures (1 1 i et
12i) des première et seconde plaques étant dépourvues de revêtement de surface, les plaques étant réunies par une couche d'un matériau de liaison conducteur de l'électricité (2) , ladite couche étant rendue solidaire de la face interne de chacune des première et seconde plaques.
2. Plaque de distribution selon la revendication 1, formant plaque bipolaire, dans laquelle la face extérieure (12o) de la seconde plaque (12) est destinée à coopérer avec une membrane échangeuse d'ions et comporte un réseau de canaux (121) de distribution pour un second gaz.
3. Plaque de distribution selon la revendication 1 ou 2, dans laquelle lesdites première et seconde plaques sont en matériau métallique.
4. Plaque de distribution selon la revendication 3 dans laquelle lesdites première et seconde plaques sont en acier inoxydable.
5. Plaque de distribution selon l'une des revendications 1 à 3, dans laquelle le matériau de liaison est un alliage choisi dans la liste formée des alliages à base de cuivre et des alliages à base de nickel.
6. Plaque de distribution selon l'une des revendications 1 à 3, dans laquelle le matériau de liaison est choisi dans la liste formée par le cuivre pur et le nickel pur.
7. Procédé de fabrication d'une plaque de distribution en acier, pour pile à combustible, ladite plaque de distribution comportant une première plaque (11 ) en matériau conducteur de l'électricité ayant une face intérieure (11 i) et ayant une face extérieure (1 1o) destinée à coopérer avec une membrane échangeuse d'ions, la plaque de distribution ayant une seconde plaque (12) en matériau conducteur de l'électricité ayant une face extérieure (12o) et ayant une face intérieure (12i) destinée à être appliquée contre la face intérieure (11 i) de la première plaque (1 1 ), un réseau de canaux (122) pour la circulation d'un fluide de refroidissement étant aménagé sur la face intérieure soit (11 i) de la première plaque (11) soit (12i) de la seconde plaque (12), soit des deux, consistant à superposer lesdites première et seconde plaques en interposant une feuille d'un matériau de liaison conducteur de l'électricité (2), à faire chauffer l'assemblage obtenu jusqu'au-delà de la température de fusion du matériau de liaison tout en maintenant lesdites première et seconde plaques en pression l'une contre l'autre, à laisser refroidir l'assemblage puis à libérer la pression de maintien des plaques pour obtenir ladite plaque de distribution.
8. Procédé selon la revendication 7, dans lequel lesdites première et seconde plaques sont en acier inoxydable.
9. Procédé selon la revendication 7, dans lequel le matériau de liaison est un alliage à base de cuivre.
10. Procédé selon la revendication 7, dans lequel le matériau de liaison est en cuivre pur.
11. Procédé selon la revendication 7 dans lequel on chauffe l'assemblage obtenu sous atmosphère de gaz neutre jusqu'à un palier de température inférieur à la température de fusion du matériau, et on fait le vide pour poursuivre l'élévation de température.
12. Procédé selon la revendication 1 1 dans lequel, après la phase d'élévation de la température jusqu'au-delà de la température de fusion du matériau de liaison, on laisse refroidir l'assemblage sous vide jusqu'à un palier de température inférieur à la température de fusion du matériau, et on poursuit le refroidissement sous atmosphère de gaz neutre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0700184A FR2911219B1 (fr) | 2007-01-09 | 2007-01-09 | Plaque bipolaire pour pile a combustible a membrane polymere |
PCT/EP2007/011407 WO2008083836A1 (fr) | 2007-01-09 | 2007-12-21 | Plaque bipolaire pour pile a combustible a membrane polymere |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2122728A1 true EP2122728A1 (fr) | 2009-11-25 |
Family
ID=38480571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07857113A Withdrawn EP2122728A1 (fr) | 2007-01-09 | 2007-12-21 | Plaque bipolaire pour pile a combustible a membrane polymere |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100310956A1 (fr) |
EP (1) | EP2122728A1 (fr) |
JP (1) | JP2010516027A (fr) |
KR (1) | KR20090108625A (fr) |
CN (1) | CN101601155A (fr) |
FR (1) | FR2911219B1 (fr) |
WO (1) | WO2008083836A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100009223A1 (en) * | 2008-06-23 | 2010-01-14 | Nuvera Fuel Cells, Inc. | Fuel cell stack with integrated process endplates |
DE102008056900A1 (de) * | 2008-11-12 | 2010-05-20 | Daimler Ag | Bipolarplatte für eine Brennstoffzellenanordnung, insbesondere zur Anordnung zwischen zwei benachbarten Membran-Elektroden-Anordnungen in einem Brennstoffzellenstapel |
DE102009035737A1 (de) | 2009-08-01 | 2011-02-03 | Assa Abloy Sicherheitstechnik Gmbh | Zuziehvorrichtung für eine Tür |
FR3060862A1 (fr) * | 2016-12-20 | 2018-06-22 | Compagnie Generale Des Etablissements Michelin | Procede de fabrication d'assemblage membrane-electrode pour pile a combustible |
CN112490463A (zh) * | 2020-11-16 | 2021-03-12 | 广州合之源氢能科技有限公司 | 一种燃料电池双极板制造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6783741B2 (en) * | 1996-10-30 | 2004-08-31 | Idatech, Llc | Fuel processing system |
US5776624A (en) * | 1996-12-23 | 1998-07-07 | General Motors Corporation | Brazed bipolar plates for PEM fuel cells |
JP4707786B2 (ja) * | 1998-05-07 | 2011-06-22 | トヨタ自動車株式会社 | 燃料電池用ガスセパレータの製造方法 |
AUPQ078899A0 (en) * | 1999-06-04 | 1999-06-24 | Ceramic Fuel Cells Limited | A fuel cell gas separator |
US6866958B2 (en) * | 2002-06-05 | 2005-03-15 | General Motors Corporation | Ultra-low loadings of Au for stainless steel bipolar plates |
WO2005006472A1 (fr) * | 2003-07-10 | 2005-01-20 | Conception Et Developpement Michelin S.A. | Procede et dispositif d'empilement de piles a combustible |
US7344798B2 (en) * | 2003-11-07 | 2008-03-18 | General Motors Corporation | Low contact resistance bonding method for bipolar plates in a pem fuel cell |
US8089027B2 (en) * | 2004-05-11 | 2012-01-03 | GM Global Technology Operations LLC | Laser welding of conductive coated metallic bipolar plates |
US7451907B2 (en) * | 2004-08-06 | 2008-11-18 | General Motors Corporation | Roll bonding of bipolar plates |
FR2883666B1 (fr) * | 2005-03-25 | 2013-07-05 | Conception & Dev Michelin Sa | Pile a combustible a membrane polymere |
-
2007
- 2007-01-09 FR FR0700184A patent/FR2911219B1/fr not_active Expired - Fee Related
- 2007-12-21 KR KR1020097016527A patent/KR20090108625A/ko not_active Application Discontinuation
- 2007-12-21 CN CNA2007800496043A patent/CN101601155A/zh active Pending
- 2007-12-21 US US12/522,670 patent/US20100310956A1/en not_active Abandoned
- 2007-12-21 WO PCT/EP2007/011407 patent/WO2008083836A1/fr active Application Filing
- 2007-12-21 JP JP2009545104A patent/JP2010516027A/ja active Pending
- 2007-12-21 EP EP07857113A patent/EP2122728A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2008083836A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2911219B1 (fr) | 2009-05-15 |
FR2911219A1 (fr) | 2008-07-11 |
KR20090108625A (ko) | 2009-10-15 |
CN101601155A (zh) | 2009-12-09 |
JP2010516027A (ja) | 2010-05-13 |
WO2008083836A1 (fr) | 2008-07-17 |
US20100310956A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1866990B1 (fr) | PlLE A COMBUSTIBLE A MEMBRANE POLYMERE | |
EP1915797B1 (fr) | Membrane polymere composite a conduction ionique/electronique, ses procedes de fabrication et c ur de pile a combustible planaire la comprenant | |
EP2061114B1 (fr) | Pile à combustible comportant une pluralité de cellules élémentaires connectées en série par les collecteurs de courant | |
EP1604420B1 (fr) | Pile a combustible planaire et procede de fabrication d une telle pile | |
WO2003071626A2 (fr) | Structure alvéolaire et procédé de fabrication d'une telle structure. | |
WO2008083836A1 (fr) | Plaque bipolaire pour pile a combustible a membrane polymere | |
FR3079675A1 (fr) | Plaque collectrice ayant un revetement anticorrosion | |
FR2819107A1 (fr) | Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible | |
EP1950825B1 (fr) | Plaque de distribution métal-graphite souple pour une pile à combustible | |
WO2009156373A1 (fr) | ASSEMBLAGE COMPORTANT UN JOINT D'ETANCHEITE INTERCALE ENTRE DEUX COMPOSANTS DE COEFFICIENT DE DILATATION MOYEN THERMIQUE DIFFERENT, JOINT D'ETANCHEITE ASSOCIE, APPLICATION A l'ETANCHEITE D'ELECTROLYSEURS EHT ET DES PILES A COMBUSTIBLE SOFC | |
EP1400150A1 (fr) | Perfectionnements a la structure d'un four a resistance graphite | |
WO2005015669A2 (fr) | Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode | |
EP1356135A2 (fr) | Electrode de grandes dimensions | |
EP0117804B1 (fr) | Procédé de fabrication d'une cavité hyperfréquence, et cavité obtenue par ce procédé | |
FR2896623A1 (fr) | Pile a combustible comportant des plaques bipolaires metalliques embouties | |
FR2524717A1 (fr) | Batterie de piles photovoltaiques au silicium amorphe | |
EP0538154B1 (fr) | Electrodes bipolaires pour accumulateur au plomb | |
FR2836285A1 (fr) | Plaque bipolaire pour pile a combustible | |
WO2023222982A1 (fr) | Conducteur électrique rigide comportant des éléments raccordés entre eux par soudage tig, procédé de fabrication et utilisation d'un tel conducteur électrique | |
WO2022136772A1 (fr) | Procédé de fabrication d'un conducteur électrique, comme une canne de courant, pour un dispositif électrochimique à haute température | |
FR2866477A1 (fr) | Architecture de pile a combustible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100204 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20101008 |