EP2122174B1 - Integrated internal gear pump with an electric motor - Google Patents

Integrated internal gear pump with an electric motor Download PDF

Info

Publication number
EP2122174B1
EP2122174B1 EP20080773826 EP08773826A EP2122174B1 EP 2122174 B1 EP2122174 B1 EP 2122174B1 EP 20080773826 EP20080773826 EP 20080773826 EP 08773826 A EP08773826 A EP 08773826A EP 2122174 B1 EP2122174 B1 EP 2122174B1
Authority
EP
European Patent Office
Prior art keywords
ring
rotor
rotor pump
magnets
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080773826
Other languages
German (de)
French (fr)
Other versions
EP2122174A1 (en
Inventor
Willi Schneider
Torsten Helle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joma Polytec GmbH
Original Assignee
Joma Polytec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE200710035239 priority Critical patent/DE102007035239A1/en
Application filed by Joma Polytec GmbH filed Critical Joma Polytec GmbH
Priority to PCT/EP2008/005415 priority patent/WO2009012872A1/en
Publication of EP2122174A1 publication Critical patent/EP2122174A1/en
Application granted granted Critical
Publication of EP2122174B1 publication Critical patent/EP2122174B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber

Description

  • The invention relates to a rotor pump with the features of the preamble of claim 1.
  • It is generally known that fluids can be conveyed by means of rotor pumps and gases can also be compressed. For this purpose, an externally toothed inner ring rolls in an externally toothed outer ring, wherein the inner ring is eccentric to the outer ring and is driven by means of a suitable drive. If the inner ring has e.g. five teeth, then they roll between six teeth of the outer ring. Per revolution of the inner ring, the fluid is sucked into five working chambers and then displaced from them.
  • From the DE 299 13 367 U1 an internal gear pump of this type is known in which the outer ring is driven by means of a hollow shaft motor. Arranged around the outer ring is the rotor of the hollow shaft motor carrying permanent magnets, wherein the outer ring and the rotor are connected to one another in a suitable manner, so that the rotor can drive the outer ring. A disadvantage is considered that such a Innenzahnradpumpe has large dimensions in the radial direction and that a large number of parts needed and must be mounted.
  • From the EP 1 803 938 A1 a rotor pump is known in which the rotor of the drive is coupled to the outer ring. Drive motor and outer ring thus represent two components that need to be connected together.
  • The JP 2 027 181 A discloses all the features of the preamble of claim 1 and shows a pump with an internally toothed outer ring with magnets arranged in the teeth.
  • The invention has for its object to provide a rotor pump, which has smaller dimensions with the same capacity and has fewer components.
  • This object is achieved with a rotor pump having the features of claim 1.
  • The integration of the rotor of the hollow shaft motor in the outer ring has the significant advantage that a component is saved and that at the same time the radial dimension can be reduced. In addition to the savings of components, such a rotor pump is also easier. In addition, the assembly is facilitated because no rotor must be connected to the outer ring. The inner ring runs loosely around an axis. It is advantageous that relatively large rotational or tangential forces can be transmitted, and there is no danger that vibrations or extreme temperature fluctuations cause a detachment of the rotor from the outer ring.
  • In this case, the magnets for the hollow shaft motor are arranged between the tooth gaps or in the teeth of the outer ring. This also reduces the size, since the space within the teeth is used to receive the magnets for the hollow shaft motor. The magnets can take special, adapted to the tooth shape shapes.
  • The outer ring has for receiving the magnets recesses, which are formed by openings or depressions. From the apertures relatively large magnets can be added, whereas in the depressions from both sides magnets can be inserted.
  • In order to be able to optimally utilize the existing space between the tooth gaps, the recesses have according to the invention a substantially lens-shaped cross section. The cross-sectional shape of the magnets are adjusted accordingly.
  • Optimal driving forces are generated by equating the pitch of the stator as the pitch of the outer ring or an integral multiple of the pitch of the outer ring.
  • A simple variant provides that the outer ring made of aluminum or plastic. As a result, the weight of the rotor pump is further reduced and such a rotor can be manufactured inexpensively.
  • Further features, advantages and details of the invention will become apparent from the dependent claims and the following description in which, with reference to the drawing, a particularly preferred embodiment is described in detail. The features shown in the drawing and mentioned in the description and in the claims may each be essential to the invention individually or in any combination.
  • In the drawing show:
  • FIG. 1
    a perspective view of the rotor pump according to the invention;
    FIG. 2
    a plan view of the rotor pump;
    FIG. 3
    a side view of the rotor pump in the direction of arrow III according to FIG. 2 ;
    FIG. 4
    a section IV-IV according to FIG. 2 ; and
    FIG. 5
    a section VV according to FIG. 3 ,
  • In the FIG. 1 Reference numeral 10 denotes a rotor pump with which, for example, fluid, in particular oil for an engine, such as an internal combustion engine, or urea for an exhaust gas purification system, is conveyed. For this purpose, the rotor pump 10 has an inlet 12 and an outlet 14. The inlet 12 and the outlet 14 are provided in a housing cover 16, which is flanged to a housing pot 18. In this case, the inlet 12 and the outlet 14 change when the direction of rotation. It can clearly be seen that the rotor pump 10 is self-contained and only open to the outside via the inlet 12 and the outlet 14. No drive shaft or the like leads into the rotor pump 10, so that seals are unnecessary for this purpose. Such a rotor pump 10 fulfills high tightness requirements.
  • The FIG. 2 shows a plan view of the housing cover 16 and it can be seen through the inlet 12 and outlet 14 displacement chambers 20. The FIG. 3 shows the rotor pump 10 in side view and the FIG. 4 in longitudinal section with removed housing pot 18th
  • As well as from the cross section according to the FIG. 5 can be seen, the displacement chambers 20 between an outer ring 22 and an inner ring 24 are formed. In this case, the outer ring 22 is internally toothed and has in the illustrated embodiment a total of six inwardly projecting teeth 26, between which tooth gaps 36 are located. The inner ring 24 is externally toothed and has a total of five outwardly facing teeth 28; which engage in the tooth gaps 36. The teeth 26 and 28 mesh and thereby form the Displacement spaces 20. In addition, the outer ring 22 and the inner ring 24 are aligned coaxially with each other, whereas their axes 30 and 32 have a distance 34 (eccentricity) to each other.
  • The outer ring 22 forms the rotor 38 of a hollow shaft motor 40 and is rotatably mounted in a stator 42. This stator 42 has longitudinally extending and radially outwardly open receptacles 44 for (not shown) coils, whereas the rotor 38 forming outer ring 22 recesses 46 for magnets 48 (FIGS. FIG. 4 ) having. The recesses 46 of the illustrated embodiment are designed as depressions, so that a magnet 48 can be used from each side. The cross-section of the recesses 46 is substantially lenticular with a first radially outer peripheral surface 50 curved about the axis 30 and a second radially inner peripheral surface 52 following the profile of the tooth 26.
  • Out FIG. 5 It is also clearly seen that rotation of the outer ring 22 causes rotation of the inner ring 24 about its axis 32, so that the teeth 26 and 28 mesh, thereby changing the size of the displacement spaces 20.
  • Such a rotor pump 10 is not only simple, but also has a low weight and is easy to install and also has a larger flow at the same speed. In addition, the radial dimensions due to the integration of the magnets 48 in the outer ring 22 are low. Furthermore, it is clearly in FIG. 5 recognizable that the housing of the rotor pump 10, that is, the housing cover 16 and the housing pot 18, is penetrated by no components, and therefore no leaks are to be feared.

Claims (4)

  1. A rotor pump (10) with an internally geared outer ring (22) and an externally geared inner ring (24) mounted therein and meshing therewith, wherein the outer ring (22) and the inner ring (24) are arranged axially parallel to each other and the axis (30) of the outer ring (22) and the axis (32) of the inner ring (24) have a distance (34) with respect to each other, and wherein the outer ring (22) is driven using a hollow shaft motor (40) with a stator (42) carrying coils and a rotor (38) rotatably mounted therein, and wherein the outer ring (22) forms the rotor (38) of the hollow shaft motor (40) and between the recesses (36) of the outer ring (22) magnets (48) are accommodated, and the outer ring (22) has recesses (46) for containing the magnets (48) which are formed by breakthroughs or depressions, characterized in that the recesses (46) having basically a lenticular cross section.
  2. Rotor pump according to claim 1, characterized in that the partition of the stator (42) is equal to the partition of the outer ring (22) or corresponds to a whole-number multiple of the partition of the outer ring (22).
  3. Rotor pump according to one of the preceding claims, characterized in that the outer ring (22) is made of aluminum or plastic.
  4. Rotor pump according to one of the preceding claims, characterized in that all parts are arranged inside or at the inner surface of the housing (16, 18) of the rotor pump (10) and the housing (16, 18) is not crossed by parts.
EP20080773826 2007-07-25 2008-07-03 Integrated internal gear pump with an electric motor Active EP2122174B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200710035239 DE102007035239A1 (en) 2007-07-25 2007-07-25 Rotor pump
PCT/EP2008/005415 WO2009012872A1 (en) 2007-07-25 2008-07-03 Integrated internal gear pump with an electric motor

Publications (2)

Publication Number Publication Date
EP2122174A1 EP2122174A1 (en) 2009-11-25
EP2122174B1 true EP2122174B1 (en) 2012-09-05

Family

ID=39790354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080773826 Active EP2122174B1 (en) 2007-07-25 2008-07-03 Integrated internal gear pump with an electric motor

Country Status (5)

Country Link
US (1) US8113794B2 (en)
EP (1) EP2122174B1 (en)
CN (1) CN101711313A (en)
DE (1) DE102007035239A1 (en)
WO (1) WO2009012872A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8376720B2 (en) * 2010-03-05 2013-02-19 GM Global Technology Operations LLC Outer ring driven gerotor pump
DE102010029338A1 (en) * 2010-05-27 2011-12-01 Robert Bosch Gmbh Internal gear pump
US8840385B2 (en) 2011-03-03 2014-09-23 Ti Group Automotive Systems, L.L.C. Positive displacement fluid pump
DE102011082705A1 (en) * 2011-09-14 2013-03-14 Robert Bosch Gmbh Pump, in particular oil pump for an internal combustion engine
KR101326838B1 (en) * 2011-11-02 2013-11-11 현대자동차주식회사 Ureawater pump structure
DE112013001156A5 (en) 2012-02-27 2014-12-11 Magna Powertrain Bad Homburg GmbH pump assembly
JP5771560B2 (en) * 2012-05-30 2015-09-02 日立アプライアンス株式会社 Gear pump and refrigerator equipped with the same
CN104769221B (en) * 2012-10-29 2019-06-04 皮尔伯格泵技术有限责任公司 Vehicle electric liquid pump
JP5952723B2 (en) * 2012-11-30 2016-07-13 株式会社日本自動車部品総合研究所 Rotary pump and brake device having the same
CN103967780B (en) * 2014-04-11 2016-08-17 西安交通大学 A kind of switch magnetic flow motor-driven duplex three gear internal messing compound electric pump
US9724787B2 (en) * 2014-08-07 2017-08-08 Illinois Tool Works Inc. System and method of monitoring a welding environment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US19661A (en) * 1858-03-16 Metallic sash
JPS6211348Y2 (en) * 1981-06-16 1987-03-17
JPH0337389B2 (en) * 1983-09-16 1991-06-05 Teijin Seiki Co Ltd
JPH01182585A (en) * 1988-01-13 1989-07-20 Komatsu Ltd Plastic gear pump
JP2819024B2 (en) * 1988-07-14 1998-10-30 株式会社タツノ・メカトロニクス Superconducting rotary pump
JP2924263B2 (en) * 1991-04-15 1999-07-26 住友電気工業株式会社 High-strength aluminum alloy pump rotor
USH1966H1 (en) * 1997-08-28 2001-06-05 The United States Of America As Represented By The Secretary Of The Navy Integrated motor/gear pump
JPH11210642A (en) * 1998-01-20 1999-08-03 Zexel:Kk Internal gear pump
DE29810548U1 (en) * 1998-06-16 1998-12-17 Joma Polytec Gmbh Gear for a gear pump
US7186101B2 (en) * 1998-07-31 2007-03-06 The Texas A&M University System Gerotor apparatus for a quasi-isothermal Brayton cycle Engine
DE29913367U1 (en) 1999-07-30 1999-12-09 Pumpenfabrik Ernst Scherzinger Internal gear pump, the ring gear of which is the inside of a rotor of an electric motor
JP2003164082A (en) * 2001-11-22 2003-06-06 Hitachi Metals Ltd Ferrite magnet, rotating machine and production method of ferrite magnet
DE10248933C1 (en) * 2002-10-19 2003-12-11 Pumpenfabrik Ernst Scherzinger Electrically-driven internal cogwheel pump has casing screening stator of electric motor from internally toothed hollow wheel and cooperating externally toothed wheel pressed against bearing pin for latter
JP4237731B2 (en) * 2005-05-31 2009-03-11 台湾日立股▲分▼有限公司 Motor-integrated internal gear pump, method for manufacturing the same, and electronic device
EP1803938A1 (en) 2005-12-27 2007-07-04 Techspace Aero S.A. High integrated pump unit with electric motor
DE102006007554A1 (en) * 2006-02-16 2007-08-23 Hydraulik-Ring Gmbh Feed pump for a urea solution, to treat heavy vehicle motor exhaust gases, is an electromotor with an integrated gear pump of two meshing cogwheels rotated by a magnetic field

Also Published As

Publication number Publication date
US20100111722A1 (en) 2010-05-06
CN101711313A (en) 2010-05-19
EP2122174A1 (en) 2009-11-25
DE102007035239A1 (en) 2009-01-29
US8113794B2 (en) 2012-02-14
WO2009012872A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
DK1540184T3 (en) Gear pump
EP1181453B1 (en) Motor-pump unit
US9631623B2 (en) Stepped parting joint on a transmission housing of a fluid machine
RU2700840C2 (en) Pump combined with two primary drives driven independently from each other (embodiments), and method of pump operation (embodiments)
EP1243794B1 (en) Vane hydraulic motor
US7578665B2 (en) Drive transmission mechanism between two or more rotary shafts and oil-free fluid machine equipped with the mechanism
KR20060111396A (en) Camshaft adjusting device of a combustion engine
CN203114622U (en) Compressor
EP2085616B1 (en) Combined scavenging Roots pump and feed pump
JP6143671B2 (en) Motor / transmission
US7501734B2 (en) Motor, compressor, and air conditioner
EP2690288A2 (en) Rotational clap suction/pressure device
KR20060124702A (en) Motor-driven pump unit
KR20110076987A (en) High efficiency supercharger outlet
EP1211421A2 (en) Rotary hydraulic vane pump with hydraulic vane actuation
ES2296732T3 (en) Operating system of a helicoidal spindle pump.
EP2459879B1 (en) Gear pump
EP1960671B1 (en) Screw pump for pumping gases
JP3971369B2 (en) Motor pump unit
US8801397B2 (en) Compressor
US20090053088A1 (en) Reduced Rotor Assembly Diameter Vane Pump
BRPI0406303A (en) Internal combustion engine with hydraulic device for adjusting the angle of rotation of a cam shaft relative to a crankshaft
RU2525054C1 (en) Centrifugal gear-type pump
EP2412083B1 (en) Drive unit
JP2005337025A (en) Motor-driven pump unit

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20090910

RAP1 Rights of an application transferred

Owner name: JOMA-POLYTEC GMBH

DAX Request for extension of the european patent (to any country) (deleted)
17Q First examination report despatched

Effective date: 20111213

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 574256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008112

Country of ref document: DE

Effective date: 20121031

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

26N No opposition filed

Effective date: 20130606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008112

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121216

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: IT

Payment date: 20130729

Year of fee payment: 6

BERE Be: lapsed

Owner name: JOMA-POLYTEC G.M.B.H.

Effective date: 20130731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130703

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 574256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130703

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080703

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PGFP Annual fee paid to national office [announced from national office to epo]

Ref country code: DE

Payment date: 20190923

Year of fee payment: 12