EP2122169A1 - Fluid machine - Google Patents

Fluid machine

Info

Publication number
EP2122169A1
EP2122169A1 EP07856620A EP07856620A EP2122169A1 EP 2122169 A1 EP2122169 A1 EP 2122169A1 EP 07856620 A EP07856620 A EP 07856620A EP 07856620 A EP07856620 A EP 07856620A EP 2122169 A1 EP2122169 A1 EP 2122169A1
Authority
EP
European Patent Office
Prior art keywords
piston
liquid
fluid
solid
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07856620A
Other languages
German (de)
French (fr)
Other versions
EP2122169B1 (en
Inventor
Manfred Dehnen
Heiko Habel
Christopher Skamel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andreas Hofer Hochdrucktechnik GmbH
Original Assignee
Andreas Hofer Hochdrucktechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Hofer Hochdrucktechnik GmbH filed Critical Andreas Hofer Hochdrucktechnik GmbH
Publication of EP2122169A1 publication Critical patent/EP2122169A1/en
Application granted granted Critical
Publication of EP2122169B1 publication Critical patent/EP2122169B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/042Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
    • F04B17/044Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow using solenoids directly actuating the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/02Multi-stage pumps of stepped piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0011Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons liquid pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped

Definitions

  • the invention relates to a fluid working machine for compressing or conveying fluids, in particular for compressing gases to high pressures, with a linear motor, at least one cylinder, a solid piston movable axially in the cylinder or an axially movable liquid piston and at least one between the cylinder and the Solid piston or the liquid piston formed compression space, the linear motor transmits a translational driving force on the solid-state piston or the liquid piston.
  • Fluid power machines are known in various embodiments and variants of the prior art.
  • the fluid working machines can be subdivided first according to whether they are provided for conveying or compressing liquids or gases.
  • Fluid power machines used to convey fluids are also commonly referred to as pumps, while fluid power machines are referred to as compressors for compressing gases.
  • fluid working machines can also be distinguished according to the type of drive force - hydraulic, electrical or electro-magnetic - as well as the type of drive movement - rotational or translatory.
  • the present invention relates to a fluid working machine in which the driving force is generated by a linear motor which exerts a translational driving force on a piston guided in a cylinder directly, ie without converting a rotational movement via a gear. If a gas is to be compressed with such a fluid working machine, then the machine can also be referred to as a piston compressor or as a linear compressor.
  • the linear motor consists essentially of a stator or stator and a rotor or actuator, wherein the linear motor as well as a rotating motor may be formed as an asynchronous or synchronous linear motor.
  • the linear motor then corresponds to a developed asynchronous motor with a squirrel-cage rotor or a permanently excited synchronous motor, wherein a traveling field is generated by the coil or winding of the stator instead of a rotating field.
  • the power transmission takes place as in Three-phase machines either by voltage induction in the squirrel-cage rotor of the induction motor or by interaction with the field of permanent magnets of the synchronous motor.
  • a previously described linear compressor in which the magnet of the rotor is attached to a magnetic frame which is fixedly mounted on an end face of the piston.
  • a cooling channel is provided for cooling the linear motor, by which the coil of the stator mounted on a coil holder is cooled with a coolant.
  • a pump is provided which promotes oil within a hermetically sealing the linear compressor container through the cooling channel to the coil or the bobbin holder. The returning oil is collected in the lower part of the hermetically sealed container.
  • a compressor for a motor vehicle air conditioner with a closed refrigerant circuit which has a compressor housing with a compression space formed therein and a reciprocating in this reciprocating piston, in which as a drive for the compressor, a linear motor is used with variable drive frequency, is attached to the reaction part on the compressor chamber side end face of the reciprocating piston.
  • the well-known compressor is simple, consists of only a few components and is relatively small-sized. Storage, lubrication and sealing problems should not occur at any pressure level on the high pressure side between 80 and 160 bar.
  • the sealing of the reciprocating piston with respect to the compression space wall by means of conventional ring seals on the reciprocating piston. Since leakages to the atmosphere occur in principle in such moving seals, at least over time, the compressor known from DE 102 14 047 A1 is at least not suitable for compression to high pressures (> 150 bar) and is not provided.
  • a solid-state piston should be understood to mean (conventional) solid or solid (metal) pistons. as they have long been known.
  • the compressors described above have such solid-state pistons.
  • a liquid piston in the context of the invention should be understood to mean a liquid which, although liquid, behaves as a solid insofar as a compression of the gas is achieved by a change in the liquid level of the liquid. In this case, the liquid and the gas to be compressed are both in the cylinder, but without causing a mixing of liquid and gas.
  • the liquid piston or "liquid piston” thus assumes the function of the solid-state piston, the liquid piston as well as the solid-state piston being driven translationally by the traveling magnetic field of the linear motor generated by means of coils.
  • a fluid working machine with a liquid piston is known, for example, from DE 10 2004 046 316 A1, wherein in the compressor disclosed there, an ionic liquid is preferably used, so that the compressor is also referred to as an "ionic compressor".
  • the known compressor has two interconnected cylinders, in each of which a liquid and the gas to be compressed are located. By means of a hydraulic pump, the liquid levels in the two cylinders are varied so that one of the cylinders sucks the gas to be compressed, while in the other cylinder, a compression of the gas takes place.
  • the present invention has for its object to provide an initially described fluid working machine for compressing or conveying fluids available, the simplest possible structure a leakage and possibly also lubricant-free compression or delivery of fluids, in particular a compression of gases to high Pressures, allows.
  • this object is initially achieved in that the solid-body piston or the liquid piston in the region of the linear motor is enclosed by a fixed can.
  • the arrangement of a split tube can be achieved in a simple manner, the freedom from leaks to the atmosphere. By sealing the solid-state piston to the drive and thus the atmosphere of moving seals inherent leaks are by avoided the can.
  • the arrangement of the split tube can be sealed to the atmosphere only with static seals.
  • the can is arranged in the radial direction between the rotor and the coil of the stator, so that the can encloses the rotor.
  • the split tube is thus between the stator and the rotor.
  • both the rotor and the coil of the stator are arranged within the can, so that the can encloses the rotor and the stator.
  • the can thus serves as a partition between the electric drive system and the fluid-contacting compression chamber or the moving solid-state piston, wherein the can is penetrated by the magnetic field for energy transfer.
  • This disadvantage of greater losses does not occur in the second embodiment in which the can encloses the rotor and the stator.
  • This embodiment is thus - at least theoretically - advantageous unless it is to be compacted with the fluid handling machine aggressive media. In this case, the coil would also be exposed to the aggressive medium in the outer can, which can lead to a deterioration of the life of the coil.
  • the fluid working machine according to the invention can be advantageously constructed simply by the fact that the magnets of the rotor are arranged directly on the piston. By attaching the magnets of the rotor directly on the piston eliminates the formation and arrangement of a separate magnetic frame. In addition, this embodiment can reduce the radial dimensions of the fluid working machine, in particular of the cylinder.
  • the fluid-working machine is designed in multiple stages, ie the compression of a gas takes place in at least two, preferably in four stages. Alternatively, a single-stage compression is possible, in which case preferably a compensation stage is provided in order to keep the resulting forces necessary for compaction low. If the compression of the gas in several stages, it is advantageously provided that the solid-state piston has a plurality of sections with different diameters.
  • the piston can be composed manufacturing technology of several piston sections.
  • the compression chamber connected to the can is directly or via a conduit or a channel formed in the cylinder or in the housing with the fluid inlet side, d. H. connected to the suction side of the fluid work machine.
  • the pressure in the region of the can is reduced to the low pressure at the fluid inlet side.
  • Internal leaks that occur along the moving piston seals are released to the suction pressure and discharged to the fluid inlet side.
  • the required wall thickness of the split tube can be reduced, thereby reducing the electrical losses in an arrangement of the can between the rotor and the coil of the stator.
  • An otherwise required at particularly high pressures thick or double-walled design of the can can be eliminated. Irrespective of this, however, the use of a double-walled split tube is possible in order to increase safety, in particular in the case of particularly hazardous gases (toxic, polluting or radioactive gases).
  • the can it is also possible to make the can not made of metal but of a plastic or ceramic. When choosing the plastic or the ceramic care must be taken to ensure that the canned pipe can withstand the maximum occurring pressure safely.
  • a further embodiment of the invention is - as basically known in the art - at least one heat exchanger for return Cooling of the fluid provided.
  • a heat exchanger is preferably arranged after each compression stage.
  • the coolant required for the recooling of a gas through the heat exchanger can then preferably also be used for cooling the linear motor.
  • the cooling is preferably carried out from the outside, ie via a housing surrounding the linear motor, so that neither the rotor nor the stator comes directly into contact with the coolant.
  • the fluid itself can be used both for re-cooling the fluid and for cooling the linear motor, provided that the fluid is in a correspondingly cold state. If the gas to be compressed, for example hydrogen, is present in the liquid phase before deep-freezing, then the gas can be used as coolant in the liquid phase.
  • the liquid piston is preferably formed of a magnetizable liquid which has no vapor pressure, so that no molecules of the liquid mix with the gas to be compressed.
  • a liquid piston for example, an ionic liquid can be used. If such a liquid is used, which does not mix with the gas to be compressed, as long as its decomposition temperature is not reached, it can be dispensed with a subsequent separation of the liquid from the compressed gas.
  • the gap tube is preferably arranged in the radial direction within the coil of the stator, so that the gap tube surrounds the liquid acting as a rotor. In the area of the linear motor, the can thus has the function of the cylinder wall.
  • liquid piston instead of a solid-state piston, not only the use of the solid piston but also the otherwise required piston seals can be dispensed with.
  • the sealing of the compression space is carried out directly by the liquid piston forming liquid so that leakage to the atmosphere can not occur.
  • Piston seals also the maintenance of the fluid working machine, since no wearing parts are used within the working space.
  • the change in the liquid level is not by means of a hydraulic pump but by the linear motor, whose traveling magnetic field generated by the coils exerts a translational motive force on the magnetizable liquid.
  • a linear motor instead of a hydraulic pump, on the one hand, a higher maximum pressure of the gas to be compressed can be achieved, on the other hand, the wear occurring when using a hydraulic pump is avoided.
  • a liquid piston also has the advantage that over the liquid an at least partial discharge of the compression heat generated during compression and simultaneously cooling of the linear motor, in particular cooling of the coil of the stator, can take place.
  • at least one heat exchanger for recooling the liquid is preferably provided.
  • the above-described fluid working machine according to the invention is particularly suitable for the compression of gases to high pressures, in particular for the compression of hydrogen to 500 bar or more.
  • a linear compressor is particularly suitable for the equipment of water Stofftankstellen.
  • 1 shows a first embodiment of a fluid working machine according to the invention
  • 2 is an enlarged view of the portion A of the Fluidar- beitsmaschine of FIG. 1,
  • FIG. 3 shows a second exemplary embodiment of a fluid-assisting machine according to the invention
  • FIG. 4 is an enlarged view of a portion of the Fluidarbeits- machine according to FIG. 3,
  • Fig. 5 shows a third embodiment of a fluid-working machine according to the invention.
  • FIG. 6 shows a fourth exemplary embodiment of a fluid-operated machine according to the invention
  • FIGS. 1, 3, 5 and 6 show four different exemplary embodiments of a fluid working machine 1 according to the invention, wherein the figures are merely simplified representations, so that only the essential components for the present invention are shown.
  • the fluid working machines 1 shown in the figures serve to compress gases, in particular hydrogen, to a high pressure of, for example, 500 bar. Such fluid working machines 1 can therefore be used advantageously in particular for equipping hydrogen refueling stations.
  • the fluid working machines 1 shown in FIGS. 1, 3 and 5 each have a linear motor 2 for driving a solid-body piston 4 movably arranged in a cylinder 3.
  • a linear motor 2 for driving a solid-body piston 4 movably arranged in a cylinder 3.
  • a translatory drive force is exerted on the solid-state piston 4, so that the solid-state piston 4 can move axially back and forth within the cylinder 3, 3 * .
  • Within the cylinder 3 is at least one compression space 5, for the gas to be compressed, wherein the size of the compression space 5 changes depending on the position of the solid-state piston 4.
  • the fluid working machine 1 is a total of 4 stages, so that the compression of the Gas takes place in four successive stages. Accordingly, in these two embodiments, four sections 41, 42, 43, 44, each having different diameters, are formed on the solid-body piston 4. Correspondingly, the cylinder 3, 3 1 has four different sections with different inside diameters, so that a total of four compression spaces 5 are formed.
  • the fluid-working machine 1 according to FIG. 5 is designed to be single-stage, but here it is a double-acting fluid working machine 1, so that in each case a compression space 5 is formed on both sides of the solid-body piston 4.
  • the linear motor 2 illustrated in FIGS. 1 to 5 has a stator with a coil 9 and a rotor with a plurality of magnets 10, the magnets 10 being arranged directly on the solid-state piston 4.
  • the can 6 is arranged in the radial direction between the rotor, ie the magnet 10 and the coil 9 of the stator, so that the can 6 not only the solid-body piston 4 but also encloses the magnets 10 of the rotor.
  • the can 6 is thus between the stator and the rotor, so that the can 6 is penetrated by the magnetic field.
  • both the rotor that is, the magnets 10 and the coil 9 of the stator disposed within the can 6.
  • not only the magnets 10 but also the coil 9 are exposed to the fluid which, despite the piston seal 8, enters the cylinder interior 7 in the region of the can 6.
  • FIGS. 1, 3 and 5 it is indicated that the compression space 5 connected to the gap space 6 is connected via a line 11 to the fluid inlet side 12 of the fluid work machine 1.
  • the pressure in the cylinder interior 7 surrounded by the can 6 is reduced, whereby the can 6 in the embodiment according to FIGS. 1 and 2 or the coil 9 and the can 6 in the embodiment according to FIGS. 3 and 4 are not unnecessary be charged.
  • a correspondingly smaller wall thickness for the can 6 can be selected, which leads to a reduction of eddy current losses occurring in the can 6.
  • the compression space 5 connected to the gap space 6 may also be directly connected to the fluid entry side 12, that is, the fluid chamber 12 may be connected directly to the fluid inlet side 12. H. the fluid enters into the compression space 5 connected to the gap 6. If the fluid to be compressed has a low temperature, cooling of the linear motor 2 can take place simultaneously.
  • valves 13 which are arranged in the region of the individual compression chambers 5 and preferably formed as a plate valves.
  • FIGS. 1 and 3 it is further indicated that the individual compression chambers 5 are connected to one another via lines 14, wherein a heat exchanger 15 for recooling the compressed gas is provided in each of the individual lines 14.
  • the fluid working machine 1 has a coolant circuit 16 for cooling the coil 9 of the stator and thus for cooling the linear motor 2 in total. The cooling takes place from the outside, d. H. via a housing surrounding the coil 9 17, so that the coil 9 does not come into direct contact with the coolant. Both for re-cooling of the compressed gas in the heat exchangers 15 and for cooling the linear motor 2 while the same coolant can be used.
  • the illustrated embodiments of the fluid power machine 1 each have two cylinders 3, 3 ', wherein the linear motor 2 with the split tube 6 or the housing surrounding the linear motor 2 17 between the two cylinders 3, 3' is.
  • the sealing between the end faces of the two cylinders 3, 3 'and the corresponding end faces of the housing 17 takes place via static seals 18th
  • Figs. 3 and 4 is also still removable that the electrical leads 19 to the inside of the can 6 arranged stator with the help of pressure-tight cable glands 20 are leak-free to the terminal box 21, wherein the terminal box 21 pressure-tight cable glands 20, so that the obtained by the can 6 leakage freedom to atmosphere is not repealed by the connection of the required lines 19.
  • FIG. 6 an embodiment of a fluid working machine 1 is shown, which has a liquid piston 4 'instead of a solid piston.
  • the liquid piston 4 1 forming liquid is disposed within the formed from the two cylinders 3, 3 1 and the split tube 6 U-shaped housing. Above the liquid is in both cylinders 3, 3 1 each a compression space 5 for the gas to be compressed, wherein the size of the two compression spaces 5 in dependence on the liquid level of the liquid, ie, changes from the position of the liquid piston 4 '.
  • the fluid working machine 1 shown in FIG. 6, just like the fluid working machine 1 according to FIG. 5, has a one-stage design, which is also a double-acting fluid working machine 1, so that in each case a compression space 5 is formed on both sides of the liquid piston 4 ' is.
  • a valve 13 is arranged at the inlet or at the outlet, wherein the outlets of the two compression chambers 5 via lines 14, in each of which a heat exchanger 15 is arranged for recooling the compressed gas, are interconnected.
  • the linear motor 2 is arranged together with the can 6 or the housing surrounding the linear motor 2 17 between the two cylinders 3, 3 ', so that the can 6 in the region of the linear motor 2, the cylinder wall for the liquid.
  • the fluid working machines 1 shown in the figures are particularly suitable for compressing gases, preferably hydrogen, to high pressures of, for example, 1000 bar, so that such fluid working machines 1 are particularly suitable for equipping hydrogen refueling stations.

Abstract

A fluid machine is shown and described for compressing or conveying fluids, in particular for compressing gases to high pressures, with a linear motor (2), at least one cylinder (3), a solid piston (4) which can be moved axially in the cylinder (3) or a liquid piston (4') which can be moved axially, and at least one compression space (5) which is formed between the cylinder (3) and the solid piston (4) or the liquid piston (4'), wherein the linear motor (2) transfers a translatory driving force to the solid piston (4) or to the liquid piston (4'). For such a fluid machine, the leakage-free and lubricant-free compression and conveying of fluids, in particular a compression of gases to high pressures, and a rather simple construction is made possible owing to the fact that the solid piston (4) and/or the liquid piston (4') is surrounded in the area of the linear motor (2) by a firmly attached opening pipe (6).

Description

Fluidarbeitsmaschine Fluid-working machine
Die Erfindung betrifft eine Fluidarbeitsmaschine zum Verdichten bzw. Fördern von Fluiden, insbesondere zum Verdichten von Gasen auf hohe Drücke, mit einem Linearmotor, mindestens einem Zylinder, einem in dem Zylinder axial bewegbaren Festkörperkolben oder einem axial bewegbaren Flüssigkeitskolben und mindestens einem zwischen dem Zylinder und dem Festkörperkolben bzw. dem Flüssigkeitskolben ausgebildeten Kompressionsraum, wobei der Linearmotor eine translatorische Antriebskraft auf den Festkörper- kolben bzw. den Flüssigkeitskolben überträgt.The invention relates to a fluid working machine for compressing or conveying fluids, in particular for compressing gases to high pressures, with a linear motor, at least one cylinder, a solid piston movable axially in the cylinder or an axially movable liquid piston and at least one between the cylinder and the Solid piston or the liquid piston formed compression space, the linear motor transmits a translational driving force on the solid-state piston or the liquid piston.
Fluidarbeitsmaschinen sind in verschiedenen Ausführungsformen und Varianten aus dem Stand der Technik bekannt. Die Fluidarbeitsmaschinen kann man dabei zunächst danach unterteilen, ob sie zum Fördern bzw. Verdichten von Flüssigkeiten oder von Gasen vorgesehen sind. Fluidarbeitsmaschinen, die zum Fördern von Flüssigkeiten eingesetzt werden, werden allgemein auch als Pumpen bezeichnet, während Fluidarbeitsmaschinen zum Verdichten von Gasen als Verdichter oder Kompressoren bezeichnet werden. Darüber hinaus können Fluidarbeitsmaschinen auch nach der Art der Antriebskraft - hydrau- lisch, elektrisch oder elektro-magnetisch - sowie nach der Art der Antriebsbewegung - rotatorisch oder translatorisch - unterschieden werden.Fluid power machines are known in various embodiments and variants of the prior art. The fluid working machines can be subdivided first according to whether they are provided for conveying or compressing liquids or gases. Fluid power machines used to convey fluids are also commonly referred to as pumps, while fluid power machines are referred to as compressors for compressing gases. In addition, fluid working machines can also be distinguished according to the type of drive force - hydraulic, electrical or electro-magnetic - as well as the type of drive movement - rotational or translatory.
Die vorliegende Erfindung betrifft eine Fluidarbeitsmaschine, bei der die Antriebskraft von einem Linearmotor erzeugt wird, der auf einen in einem Zy lin- der geführten Kolben direkt, d. h. ohne Umwandlung einer Drehbewegung über eine Getriebe, eine translatorische Antriebskraft ausübt. Soll mit einer derartigen Fluidarbeitsmaschine ein Gas verdichtet werden, so kann die Maschine auch als Kolbenverdichter oder als Linearkompressor bezeichnet werden. Der Linearmotor besteht dabei im wesentlichen aus einem Stator bzw. Ständer und einem Läufer bzw. Aktuator, wobei der Linearmotor wie auch ein rotierender Motor als Asynchron- oder Synchron-Linearmotor ausgebildet sein kann. Der Linearmotor entspricht dann einem abgewickelten Asynchronmotor mit Kurzschlußläufer oder einem permanent erregten Synchron- Motor, wobei von der Spule bzw. Wicklung des Stators anstelle eines Dreh- feldes ein Wanderfeld erzeugt wird. Die Kraftübertragung erfolgt wie bei Drehfeldmaschinen entweder durch Spannungsinduktion im Kurzschlußläufer des Asynchronmotors oder durch Interaktion mit dem Feld der Permanentmagnete des Synchronmotors.The present invention relates to a fluid working machine in which the driving force is generated by a linear motor which exerts a translational driving force on a piston guided in a cylinder directly, ie without converting a rotational movement via a gear. If a gas is to be compressed with such a fluid working machine, then the machine can also be referred to as a piston compressor or as a linear compressor. The linear motor consists essentially of a stator or stator and a rotor or actuator, wherein the linear motor as well as a rotating motor may be formed as an asynchronous or synchronous linear motor. The linear motor then corresponds to a developed asynchronous motor with a squirrel-cage rotor or a permanently excited synchronous motor, wherein a traveling field is generated by the coil or winding of the stator instead of a rotating field. The power transmission takes place as in Three-phase machines either by voltage induction in the squirrel-cage rotor of the induction motor or by interaction with the field of permanent magnets of the synchronous motor.
Aus der DE 10 2004 055 924 Al ist ein zuvor beschriebener Linearkompressor bekannt, bei dem der Magnet des Läufers an einem Magnetrahmen befestigt ist, der fest an einer Stirnseite des Kolbens angebracht ist. Bei dem bekannten Linearkompressor ist zur Kühlung des Linearmotors ein Kühlkanal vorgesehen, durch den die auf einem Spulenhalter befestigte Spule des Stators mit einem Kühlmittel gekühlt wird. Hierzu ist eine Pumpe vorgesehen, die Öl innerhalb eines den Linearkompressor hermetisch abdichtenden Behälters durch den Kühlkanal zur Spule bzw. zum Spulenhalter fördert. Das rücklaufende Öl wird dabei im unteren Teil des hermetisch abgedichteten Behälters gesammelt.From DE 10 2004 055 924 Al a previously described linear compressor is known, in which the magnet of the rotor is attached to a magnetic frame which is fixedly mounted on an end face of the piston. In the known linear compressor, a cooling channel is provided for cooling the linear motor, by which the coil of the stator mounted on a coil holder is cooled with a coolant. For this purpose, a pump is provided which promotes oil within a hermetically sealing the linear compressor container through the cooling channel to the coil or the bobbin holder. The returning oil is collected in the lower part of the hermetically sealed container.
Aus der DE 102 14 047 Al ist ein Kompressor für eine Kraftfahrzeug-Klimaanlage mit einem geschlossenen Kältemittelkreislauf bekannt, der ein Kompressorgehäuse mit einem darin ausgebildeten Kompressionsraum und einem in diesem hin- und her bewegbaren Hubkolben aufweist, bei dem als Antrieb für den Kompressor ein Linearmotor mit veränderbarer Ansteuerfrequenz eingesetzt ist, an dessen Reaktionsteil an der kompressorraumseitigen Stirnseite der Hubkolben befestigt ist. Der bekannte Kompressor ist einfach aufgebaut, besteht aus nur wenigen Bauteilen und ist relativ kleinbauend. Lagerungs-, Schmierungs- und Dichtungsprobleme sollen -jedenfalls bei einem Druckni- veau auf der Hochdruckseite zwischen 80 und 160 bar — nicht auftreten. Die Abdichtung des Hubkolbens gegenüber der Kompressionsraumwandung erfolgt mittels üblicher Ringdichtungen am Hubkolben. Da bei derartig bewegten Dichtungen zumindest im Laufe der Zeit prinzipbedingt Leckagen zur Atmosphäre auftreten, ist der aus der DE 102 14 047 Al bekannte Kompres- sor zumindest nicht zum Verdichten bis auf hohe Drücke (> 150 bar) geeignet und auch nicht vorgesehen.From DE 102 14 047 Al a compressor for a motor vehicle air conditioner with a closed refrigerant circuit is known, which has a compressor housing with a compression space formed therein and a reciprocating in this reciprocating piston, in which as a drive for the compressor, a linear motor is used with variable drive frequency, is attached to the reaction part on the compressor chamber side end face of the reciprocating piston. The well-known compressor is simple, consists of only a few components and is relatively small-sized. Storage, lubrication and sealing problems should not occur at any pressure level on the high pressure side between 80 and 160 bar. The sealing of the reciprocating piston with respect to the compression space wall by means of conventional ring seals on the reciprocating piston. Since leakages to the atmosphere occur in principle in such moving seals, at least over time, the compressor known from DE 102 14 047 A1 is at least not suitable for compression to high pressures (> 150 bar) and is not provided.
Eingangs ist ausgeführt, daß die Fluidarbeitsmaschine einem in dem Zylinder axial bewegbaren Festkörperkolben oder einem axial bewegbaren Flüssig- keitskolben aufweist. Unter einem Festkörperkolben sollen dabei im Rahmen der Erfindung (übliche) feste bzw. massive (Metall-)Kolben verstanden wer- den, wie sie seit langem bekannt sind. Die zuvor beschriebenen Kompressoren weisen derartige Festkörperkolben auf. Unter einem Flüssigkeitskolben sollen dagegen im Rahmen der Erfindung eine Flüssigkeit verstanden werden, die zwar flüssig ist, sich jedoch insoweit wie ein Feststoff verhält, als durch eine Veränderung des Flüssigkeitsstandes der Flüssigkeit eine Verdichtung des Gases erreicht wird. Dabei befinden sich die Flüssigkeit und das zu verdichtende Gas beide in dem Zylinder, ohne daß es jedoch zu einer Vermischung von Flüssigkeit und Gas kommt. Der Flüssigkeitskolben oder "flüssige Kolben" übernimmt somit die Funktion des Festkörperkolbens, wobei der Flüssigkeits- kolben ebenso wie der Festkörperkolben durch das mittels Spulen erzeugte Wandermagnetfeld des Linearmotors translatorisch angetrieben wird.It is stated at the outset that the fluid working machine has a solid-state piston which is axially movable in the cylinder or an axially movable liquid piston. In the context of the invention, a solid-state piston should be understood to mean (conventional) solid or solid (metal) pistons. as they have long been known. The compressors described above have such solid-state pistons. By contrast, a liquid piston in the context of the invention should be understood to mean a liquid which, although liquid, behaves as a solid insofar as a compression of the gas is achieved by a change in the liquid level of the liquid. In this case, the liquid and the gas to be compressed are both in the cylinder, but without causing a mixing of liquid and gas. The liquid piston or "liquid piston" thus assumes the function of the solid-state piston, the liquid piston as well as the solid-state piston being driven translationally by the traveling magnetic field of the linear motor generated by means of coils.
Eine Fluidarbeitsmaschine mit einem Flüssigkeitskolben ist beispielsweise aus der DE 10 2004 046 316 Al bekannt, wobei bei dem dort offenbarten Ver- dichter vorzugsweise eine ionische Flüssigkeit verwendet wird, so daß der Verdichter auch als "ionischer Verdichter" bezeichnet wird. Der bekannte Verdichter weist zwei miteinander verbundene Zylinder auf, in denen sich jeweils eine Flüssigkeit und das zu verdichtende Gas befinden. Mittels einer Hydraulikpumpe werden die Flüssigkeitsstände in den beiden Zylindern derart variiert, daß einer der Zylinder das zu verdichtende Gas ansaugt, während in dem anderen Zylinder eine Verdichtung des Gases erfolgt.A fluid working machine with a liquid piston is known, for example, from DE 10 2004 046 316 A1, wherein in the compressor disclosed there, an ionic liquid is preferably used, so that the compressor is also referred to as an "ionic compressor". The known compressor has two interconnected cylinders, in each of which a liquid and the gas to be compressed are located. By means of a hydraulic pump, the liquid levels in the two cylinders are varied so that one of the cylinders sucks the gas to be compressed, while in the other cylinder, a compression of the gas takes place.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine eingangs beschriebene Fluidarbeitsmaschine zum Verdichten bzw. Fördern von Fluiden zur Verfügung zu stellen, die bei möglichst einfachem Aufbau eine leckage- und möglichst auch schmiermittelfreie Verdichtung bzw. Förderung von Fluiden, insbesondere eine Verdichtung von Gasen auf hohe Drücke, ermöglicht.The present invention has for its object to provide an initially described fluid working machine for compressing or conveying fluids available, the simplest possible structure a leakage and possibly also lubricant-free compression or delivery of fluids, in particular a compression of gases to high Pressures, allows.
Diese Aufgabe ist bei der eingangs beschriebenen Fluidarbeitsmaschine zu- nächst dadurch gelöst, daß der Festkörperkolben bzw. der Flüssigkeitskolben im Bereich des Linearmotors von einem fest angeordneten Spaltrohr umschlossen ist. Durch die Anordnung eines Spaltrohres kann dabei auf einfache Art und Weise die Leckagefreiheit zur Atmosphäre erreicht werden. Die bei Abdichtung des Festkörperkolbens zum Antrieb und somit zur Atmosphäre an bewegten Dichtungen prinzipbedingt auftretenden Leckagen werden durch das Spaltrohr vermieden. Durch die Anordnung des Spaltrohres kann zur Atmosphäre ausschließlich mit statischen Dichtungen abgedichtet werden.In the case of the fluid working machine described at the outset, this object is initially achieved in that the solid-body piston or the liquid piston in the region of the linear motor is enclosed by a fixed can. The arrangement of a split tube can be achieved in a simple manner, the freedom from leaks to the atmosphere. By sealing the solid-state piston to the drive and thus the atmosphere of moving seals inherent leaks are by avoided the can. The arrangement of the split tube can be sealed to the atmosphere only with static seals.
Nachfolgend werden zunächst bevorzugte Ausführungsbeispiels einer Fluid- arbeitsmaschine mit einem Festkörperkolben, d. h. mit einem massiven Kolben beschrieben. Gemäß einer ersten vorteilhaften Ausgestaltung der Erfindung ist das Spaltrohr in radialer Richtung zwischen dem Läufer und der Spule des Stators angeordnet, so daß das Spaltrohr den Läufer umschließt. Bei dieser Ausführungsform befindet sich das Spaltrohr somit zwischen dem Sta- tor und dem Läufer. Gemäß einer alternativen Ausgestaltung der Erfindung sind sowohl der Läufer als auch die Spule des Stators innerhalb des Spaltrohres angeordnet, so daß das Spaltrohr den Läufer und den Stator umschließt.Hereinafter, preferred embodiment of a fluid-powered machine with a solid-state piston, d. H. described with a massive piston. According to a first advantageous embodiment of the invention, the can is arranged in the radial direction between the rotor and the coil of the stator, so that the can encloses the rotor. In this embodiment, the split tube is thus between the stator and the rotor. According to an alternative embodiment of the invention, both the rotor and the coil of the stator are arranged within the can, so that the can encloses the rotor and the stator.
Bei der ersten Ausführungsvariante dient das Spaltrohr somit als Trennwand zwischen dem elektrischen Antriebssystem und dem fluidberührten Kompressionsraum bzw. dem bewegten Festkörperkolben, wobei das Spaltrohr zur Energieübertragung vom Magnetfeld durchdrungen wird. Dadurch kommt es zu elektrischen Verlusten als Folge von Wirbelströmen im Spaltrohr sowie zu einer Erwärmung des Spaltrohres, so daß der Wirkungsgrad eines Linearmo- tors mit dazwischen angeordnetem Spaltrohr geringer ist als der Wirkungsgrad eines Linearmotors mit außen liegendem Spaltrohr. Dieser Nachteil der größeren Verluste tritt bei der zweiten Ausführungsvariante, bei der das Spaltrohr den Läufer und den Stator umschließt, nicht auf. Diese Ausführungsform ist somit - zumindest theoretisch - vorteilhaft, es sei denn, daß mit der Flui- darbeitsmaschine aggressive Medien verdichtet werden sollen. In diesem Fall wäre die Spule bei dem außen liegenden Spaltrohr ebenfalls dem aggressiven Medium ausgesetzt, was zu einer Beeinträchtigung der Lebensdauer der Spule führen kann.In the first embodiment, the can thus serves as a partition between the electric drive system and the fluid-contacting compression chamber or the moving solid-state piston, wherein the can is penetrated by the magnetic field for energy transfer. This leads to electrical losses as a result of eddy currents in the can and to a heating of the can, so that the efficiency of a linear motor with interposed gap tube is lower than the efficiency of a linear motor with external gap. This disadvantage of greater losses does not occur in the second embodiment in which the can encloses the rotor and the stator. This embodiment is thus - at least theoretically - advantageous unless it is to be compacted with the fluid handling machine aggressive media. In this case, the coil would also be exposed to the aggressive medium in the outer can, which can lead to a deterioration of the life of the coil.
Die erfindungsgemäße Fluidarbeitsmaschine kann vorteilhafter Weise dadurch einfach aufgebaut sein, daß die Magnete des Läufers direkt auf dem Kolben angeordnet sind. Durch eine Befestigung der Magnete des Läufers direkt auf dem Kolben entfällt die Ausbildung und Anordnung eines separaten Magnetrahmens. Darüber hinaus können durch diese Ausgestaltung die radialen Ab- messungen der Fluidarbeitsmaschine, insbesondere des Zylinders, verringert werden. Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist die Fluid- arbeitsmaschine mehrstufig ausgebildet, d. h. die Verdichtung eines Gases erfolgt in mindestens zwei, vorzugsweise in vier Stufen. Alternativ dazu ist auch eine einstufige Verdichtung möglich, wobei dann vorzugsweise eine Aus- gleichsstufe vorgesehen ist, um die für die Verdichtung notwenigen resultierenden Kräfte gering zu halten. Erfolgt die Verdichtung des Gases mehrstufig, so ist vorteilhafter vorgesehen, daß der Festkörperkolben mehrere Abschnitte mit unterschiedlichen Durchmessern aufweist. Der Kolben kann dabei herstellungstechnisch aus mehreren Kolbenabschnitten zusammengesetzt sein.The fluid working machine according to the invention can be advantageously constructed simply by the fact that the magnets of the rotor are arranged directly on the piston. By attaching the magnets of the rotor directly on the piston eliminates the formation and arrangement of a separate magnetic frame. In addition, this embodiment can reduce the radial dimensions of the fluid working machine, in particular of the cylinder. According to a further preferred embodiment of the invention, the fluid-working machine is designed in multiple stages, ie the compression of a gas takes place in at least two, preferably in four stages. Alternatively, a single-stage compression is possible, in which case preferably a compensation stage is provided in order to keep the resulting forces necessary for compaction low. If the compression of the gas in several stages, it is advantageously provided that the solid-state piston has a plurality of sections with different diameters. The piston can be composed manufacturing technology of several piston sections.
Gemäß einer anderen vorteilhaften Ausgestaltung der erfindungsgemäßen Fluidarbeitsmaschine mit einem Festkörperkolben ist der mit dem Spaltrohr verbundene Kompressionsraumdirekt oder über eine Leitung bzw. einen im Zylinder oder im Gehäuse ausgebildeten Kanal mit der Fluideintrittsseite, d. h. mit der Saugseite der Fluidarbeitsmaschine verbunden. Durch diese Maßnahme wird der Druck im Bereich des Spaltrohres auf den niedrigen Druck an der Fluideintrittsseite reduziert. Interne Leckagen, die entlang der bewegten Kolbenabdichtungen auftreten, werden auf den Saugdruck entspannt und an die Fluideintrittsseite abgeführt. Dadurch kann die erforderliche Wandstärke des Spaltrohres reduziert werden, wodurch sich bei einer Anordnung des Spaltrohres zwischen dem Läufer und der Spule des Stators die elektrischen Verluste verringern. Eine bei besonders hohen Drücken ansonsten erforderliche dick- oder doppelwandige Ausführung des Spaltrohres kann dadurch entfallen. Unabhängig davon ist jedoch zur Erhöhung der Sicherheit, insbesondere bei be- sonders gefährlichen Gasen (toxischen, umweltbelastenden oder radioaktiven Gasen) die Verwendung eines doppelwandigen Spaltrohres möglich.According to another advantageous embodiment of the fluid working machine according to the invention with a solid-state piston, the compression chamber connected to the can is directly or via a conduit or a channel formed in the cylinder or in the housing with the fluid inlet side, d. H. connected to the suction side of the fluid work machine. By this measure, the pressure in the region of the can is reduced to the low pressure at the fluid inlet side. Internal leaks that occur along the moving piston seals are released to the suction pressure and discharged to the fluid inlet side. As a result, the required wall thickness of the split tube can be reduced, thereby reducing the electrical losses in an arrangement of the can between the rotor and the coil of the stator. An otherwise required at particularly high pressures thick or double-walled design of the can can be eliminated. Irrespective of this, however, the use of a double-walled split tube is possible in order to increase safety, in particular in the case of particularly hazardous gases (toxic, polluting or radioactive gases).
Zur Reduzierung von elektrischen Verlusten, die durch die Verwendung des Spaltrohres auftreten können, ist es darüber hinaus möglich, das Spaltrohr nicht aus Metall sondern aus einem Kunststoff oder aus Keramik herzustellen. Bei der Auswahl des Kunststoffes bzw. der Keramik muß dabei darauf geachtet werden, daß das Spaltrohr auch dem maximal auftretenden Druck sicher standhalten kann.To reduce electrical losses that may occur through the use of the can, it is also possible to make the can not made of metal but of a plastic or ceramic. When choosing the plastic or the ceramic care must be taken to ensure that the canned pipe can withstand the maximum occurring pressure safely.
Gemäß einer weiteren Ausgestaltung der Erfindung ist - wie im Stand der Technik grundsätzlich bekannt - mindestens ein Wärmetauscher zur Rück- kühlung des Fluids vorgesehen. Bei einer mehrstufigen Fluidarbeitsmaschine ist dabei vorzugsweise nach jeder Verdichtungsstufe ein derartiger Wärmetauscher angeordnet. Das zur Rückkühlung eines Gases durch den Wärmetauscher benötigte Kühlmittel kann dann vorzugsweise auch zur Kühlung des Li- nearmotors verwendet werden. Die Kühlung erfolgt dabei vorzugsweise von außen, d. h. über ein den Linearmotor umgebendes Gehäuse, so daß weder der Läufer noch der Stator direkt mit dem Kühlmittel in Berührung kommt. Alternativ zur Verwendung eines separaten Kühlmittels kann sowohl zur Rückkühlung des Fluids als auch zur Kühlung des Linearmotors das Fluid selber ver- wendet werden, sofern dieses in einem entsprechend kaltem Zustand vorliegt. Handelt es sich bei dem zu verdichtenden Gas, beispielsweise um Wasserstoff, welches vor der Verdichtung tiefkalt in der Flüssigphase vorliegt, so kann das Gas in der Flüssigphase als Kühlmittel genutzt werden.According to a further embodiment of the invention is - as basically known in the art - at least one heat exchanger for return Cooling of the fluid provided. In a multistage fluid working machine, such a heat exchanger is preferably arranged after each compression stage. The coolant required for the recooling of a gas through the heat exchanger can then preferably also be used for cooling the linear motor. The cooling is preferably carried out from the outside, ie via a housing surrounding the linear motor, so that neither the rotor nor the stator comes directly into contact with the coolant. As an alternative to the use of a separate coolant, the fluid itself can be used both for re-cooling the fluid and for cooling the linear motor, provided that the fluid is in a correspondingly cold state. If the gas to be compressed, for example hydrogen, is present in the liquid phase before deep-freezing, then the gas can be used as coolant in the liquid phase.
Bei einer Fluidarbeitsmaschine zum Verdichten von Gasen auf hohe Drücke mit einem Flüssigkeitskolben ist der Flüssigkeitskolben vorzugsweise von einer magnetisierbaren Flüssigkeit gebildet, die keinen Dampfdruck aufweist, so daß sich keine Moleküle der Flüssigkeit mit dem zu verdichtenden Gas vermischen. Als Flüssigkeit für einen derartigen Flüssigkeitskolben kann beispiels- weise eine ionische Flüssigkeit verwendet werden. Wird eine solche Flüssigkeit verwendet, die sich nicht mit dem zu verdichtenden Gas vermischt, solange ihre Zersetzungstemperatur nicht erreicht ist, so kann auf ein nachfolgendes Trennen der Flüssigkeit von dem verdichteten Gas verzichtet werden.In a fluid work machine for compressing gases at high pressures with a liquid piston, the liquid piston is preferably formed of a magnetizable liquid which has no vapor pressure, so that no molecules of the liquid mix with the gas to be compressed. As the liquid for such a liquid piston, for example, an ionic liquid can be used. If such a liquid is used, which does not mix with the gas to be compressed, as long as its decomposition temperature is not reached, it can be dispensed with a subsequent separation of the liquid from the compressed gas.
Bei einer Fluidarbeitsmaschine mit einem Flüssigkeitskolben ist das Spaltrohr in radialer Richtung vorzugsweise innerhalb der Spule des Stators angeordnet, so daß das Spaltrohr die als Läufer fungierende Flüssigkeit umschließt. Im Bereich des Linearmotors weist das Spaltrohr somit die Funktion der Zylinderwand auf.In a fluid working machine with a liquid piston, the gap tube is preferably arranged in the radial direction within the coil of the stator, so that the gap tube surrounds the liquid acting as a rotor. In the area of the linear motor, the can thus has the function of the cylinder wall.
Durch die Verwendung des Flüssigkeitskolbens anstelle eines Festkörperkolbens kann nicht nur auf die Verwendung des massiven Kolbens sondern darüber hinaus auch auf die ansonsten benötigten Kolbenabdichtungen verzichtet werden. Die Abdichtung des Kompressionsraums erfolgt direkt durch die den Flüssigkeitskolben bildende Flüssigkeit, so daß eine Leckage zur Atmosphäre nicht auftreten kann. Darüber hinaus reduziert sich durch den Wegfall der Kolbenabdichtungen auch der Wartungsaufwand der Fluidarbeitsmaschine, da innerhalb des Arbeitsraumes keine Verschleißteile eingesetzt werden.By using the liquid piston instead of a solid-state piston, not only the use of the solid piston but also the otherwise required piston seals can be dispensed with. The sealing of the compression space is carried out directly by the liquid piston forming liquid so that leakage to the atmosphere can not occur. In addition, reduced by eliminating the Piston seals also the maintenance of the fluid working machine, since no wearing parts are used within the working space.
Im Unterschied zu dem aus dem Stand der Technik bekannten "ionischen Verdichter" erfolgt bei der erfindungsgemäßen Fluidarbeitsmaschine die Veränderung des Flüssigkeitsstandes nicht mittels einer Hydraulikpumpe sondern durch den Linearmotor, dessen von den Spulen erzeugtes Wandermagnetfeld auf die magnetisierbare Flüssigkeit eine translatorische Bewegungskraft ausübt. Durch die Verwendung eines Linearmotors anstelle einer Hydraulikpum- pe kann zum einen ein höherer maximaler Druck des zu verdichtetenden Gases erreicht werden, wird zum anderen der bei der Verwendung einer Hydraulikpumpe auftretende Verschleiß vermieden.In contrast to the "ionic compressor" known from the prior art, in the fluid working machine according to the invention, the change in the liquid level is not by means of a hydraulic pump but by the linear motor, whose traveling magnetic field generated by the coils exerts a translational motive force on the magnetizable liquid. By using a linear motor instead of a hydraulic pump, on the one hand, a higher maximum pressure of the gas to be compressed can be achieved, on the other hand, the wear occurring when using a hydraulic pump is avoided.
Die Verwendung eines Flüssigkeitskolbens weist darüber hinaus den Vorteil auf, daß über die Flüssigkeit eine zumindest teilweise Abführung der bei der Verdichtung entstehenden Verdichtungswärme sowie gleichzeitig eine Kühlung des Linearmotors, insbesondere eine Kühlung der Spule des Stators, erfolgen kann. Hierzu ist vorzugsweise mindestens ein Wärmetauscher zur Rückkühlung der Flüssigkeit vorgesehen.The use of a liquid piston also has the advantage that over the liquid an at least partial discharge of the compression heat generated during compression and simultaneously cooling of the linear motor, in particular cooling of the coil of the stator, can take place. For this purpose, at least one heat exchanger for recooling the liquid is preferably provided.
Die zuvor beschriebene erfindungsgemäße Fluidarbeitsmaschine eignet sich insbesondere zur Verdichtung von Gasen auf hohe Drücke, insbesondere zur Verdichtung von Wasserstoff auf 500 bar oder mehr. Damit eignet sich ein derartiger Linearkompressor insbesondere für die Ausrüstung von Wasser- Stofftankstellen.The above-described fluid working machine according to the invention is particularly suitable for the compression of gases to high pressures, in particular for the compression of hydrogen to 500 bar or more. Thus, such a linear compressor is particularly suitable for the equipment of water Stofftankstellen.
Im einzelnen gibt es nun eine Vielzahl von Möglichkeiten, die erfindungsgemäße Fluidarbeitsmaschine auszugestalten und weiterzubilden. Dazu wird verwiesen auf die dem Patentanspruch 1 nachgeordneten Patentansprüche so- wie auf die Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit der Zeichnung. In der Zeichnung zeigenIn particular, there are a variety of ways to design and develop the fluid working machine according to the invention. Reference is made to the claims subordinate to claim 1 as well as to the description of preferred embodiments in conjunction with the drawings. In the drawing show
Fig. 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Fluidarbeitsmaschine, Fig. 2 eine vergrößerte Darstellung des Teilbereichs A der Fluidar- beitsmaschine gemäß Fig. 1,1 shows a first embodiment of a fluid working machine according to the invention, 2 is an enlarged view of the portion A of the Fluidar- beitsmaschine of FIG. 1,
Fig. 3 ein zweites Ausführungsbeispiel einer erfindungsgemäßen Flui- darbeitsmaschine,FIG. 3 shows a second exemplary embodiment of a fluid-assisting machine according to the invention, FIG.
Fig. 4 eine vergrößerte Darstellung eines Teilbereichs der Fluidarbeits- maschine gemäß Fig. 3,4 is an enlarged view of a portion of the Fluidarbeits- machine according to FIG. 3,
Fig. 5 ein drittes Ausführungsbeispiel einer erfindungsgemäßen Fluid- arbeitsmaschine, undFig. 5 shows a third embodiment of a fluid-working machine according to the invention, and
Fig. 6 ein viertes Ausführungsbeispiel einer erfindungsgemäßen Fluid- arbeitsmaschine6 shows a fourth exemplary embodiment of a fluid-operated machine according to the invention
Die Fig. 1, 3, 5 und 6 zeigen vier unterschiedliche Ausfuhrungsbeispiele einer erfindungsgemäßen Fluidarbeitsmaschine 1 , wobei es sich bei den Figuren lediglich um vereinfachte Darstellungen handelt, so daß nur die für die vorliegende Erfindung wesentlichen Bauteile dargestellt sind. Die in den Figuren dargestellten Fluidarbeitsmaschinen 1 dienen zum Verdichten von Gasen, insbesondere von Wasserstoff, auf einen hohen Druck von beispielsweise 500 bar. Derartige Fluidarbeitsmaschinen 1 sind daher insbesondere für die Ausrüstung von Wasserstofftankstellen vorteilhaft einsetzbar.1, 3, 5 and 6 show four different exemplary embodiments of a fluid working machine 1 according to the invention, wherein the figures are merely simplified representations, so that only the essential components for the present invention are shown. The fluid working machines 1 shown in the figures serve to compress gases, in particular hydrogen, to a high pressure of, for example, 500 bar. Such fluid working machines 1 can therefore be used advantageously in particular for equipping hydrogen refueling stations.
Die in den Fig. 1, 3 und 5 dargestellten Fluidarbeitsmaschinen 1 weisen jeweils einen Linearmotor 2 zum Antrieb eines in einem Zylinder 3 bewegbar angeordneten Festkörperkolbens 4 auf. Durch den Einsatz des Linearmotors 2 als Antrieb wird auf den Festkörperkolben 4 eine translatorische Antriebskraft ausgeübt, so daß sich der Festkörperkolben 4 axial innerhalb des Zylinders 3, 3* hin und her bewegen kann. Innerhalb des Zylinders 3 befindet sich mindestens ein Kompressionsraum 5, für das zu verdichtende Gas, wobei sich die Größe des Kompressionsraums 5 in Abhängigkeit von der Position des Festkörperkolbens 4 verändert.The fluid working machines 1 shown in FIGS. 1, 3 and 5 each have a linear motor 2 for driving a solid-body piston 4 movably arranged in a cylinder 3. Through the use of the linear motor 2 as a drive, a translatory drive force is exerted on the solid-state piston 4, so that the solid-state piston 4 can move axially back and forth within the cylinder 3, 3 * . Within the cylinder 3 is at least one compression space 5, for the gas to be compressed, wherein the size of the compression space 5 changes depending on the position of the solid-state piston 4.
Bei den beiden Ausführungsbeispielen gemäß den Fig. 1 und 3 ist die Fluidarbeitsmaschine 1 insgesamt 4-stufig ausgebildet, so daß die Verdichtung des Gases in vier aufeinanderfolgenden Stufen erfolgt. Entsprechend sind bei diesen beiden Ausführungsbeispielen an dem Festkörperkolben 4 vier Abschnitte 41, 42, 43, 44 mit jeweils unterschiedlichen Durchmessern ausgebildet. Korrespondierend dazu weist auch der Zylinder 3, 31 vier unterschiedliche Ab- schnitte mit unterschiedlichen Innendurchmessern auf, so daß insgesamt vier Kompressionsräume 5 ausgebildet sind. Im Unterschied dazu ist die Fluid- arbeitsmaschine 1 gemäß Fig. 5 nur einstufig ausgebildet, wobei es sich hier jedoch um eine doppelt wirkende Fluidarbeitsmaschine 1 handelt, so daß auf beiden Seiten des Festkörperkolbens 4 jeweils ein Kompressionsraum 5 aus- gebildet ist.In the two embodiments according to FIGS. 1 and 3, the fluid working machine 1 is a total of 4 stages, so that the compression of the Gas takes place in four successive stages. Accordingly, in these two embodiments, four sections 41, 42, 43, 44, each having different diameters, are formed on the solid-body piston 4. Correspondingly, the cylinder 3, 3 1 has four different sections with different inside diameters, so that a total of four compression spaces 5 are formed. In contrast, the fluid-working machine 1 according to FIG. 5 is designed to be single-stage, but here it is a double-acting fluid working machine 1, so that in each case a compression space 5 is formed on both sides of the solid-body piston 4.
Allen drei Ausführungsvarianten ist gemeinsam, daß der Festkörperkolben 4 im Bereich des Linearmotors 2 von einem fest angeordneten Spaltrohr 6 umschlossen ist. Durch die Anordnung des Spaltrohres 6 wird dabei eine sichere Abdichtung des Zylinderinnenraums 7 gewährleistet, so daß insgesamt die gewünschte Leckagefreiheit der Fluidarbeitsmaschine 1 auf einfache Art und Weise erreicht wird. Die Leckagefreiheit zur Atmosphäre muß dabei nicht mehr durch die an dem Festkörperkolben 4 angeordneten Kolbenabdichtungen 8 realisiert werden, die die Leckagefreiheit aufgrund ihrer Anordnung und Ausbildung als bewegte Dichtungen prinzipbedingt nicht bzw. nicht dauerhaft und insbesondere nicht schmiermittelfrei gewährleisten können. Die sonst übliche Durchführung der Kolbenstange zum Antrieb entfällt somit, ebenso die dafür erforderlichen bewegten Dichtsysteme. Die Leckagefreiheit zur Atmosphäre wird somit ausschließlich mit statischen Dichtungen 18 gewährleistet.All three embodiments have in common that the solid-state piston 4 is enclosed in the region of the linear motor 2 by a fixedly arranged can 6. By the arrangement of the can 6 while a secure seal of the cylinder interior 7 is ensured, so that overall the desired leakage freedom of the fluid power machine 1 is achieved in a simple manner. The freedom from leaks to the atmosphere no longer has to be realized by the piston seals 8 arranged on the solid-body piston 4, which due to their arrangement and design as moving seals inherently can not or can not ensure permanent or in particular non-lubricant-free operation. The usual implementation of the piston rod to the drive thus eliminated, as well as the required moving sealing systems. The absence of leakage to the atmosphere is thus ensured only with static seals 18.
Der in den Figuren 1 bis 5 dargestellte Linearmotor 2 weist einen Stator mit einer Spule 9 und einen Läufer mit mehreren Magneten 10 auf, wobei die Magnete 10 unmittelbar auf dem Festkörperkolben 4 angeordnet sind.The linear motor 2 illustrated in FIGS. 1 to 5 has a stator with a coil 9 and a rotor with a plurality of magnets 10, the magnets 10 being arranged directly on the solid-state piston 4.
Bei dem Ausführungsbeispiel gemäß Fig. 1 bzw. entsprechend der vergrößerten Darstellung in Fig. 2 ist das Spaltrohr 6 in radialer Richtung zwischen dem Läufer, d. h. den Magneten 10 und der Spule 9 des Stators angeordnet, so daß das Spaltrohr 6 nicht nur den Festkörperkolben 4 sondern auch die Magnete 10 des Läufers umschließt. Bei dieser Ausführungsform befindet sich das Spaltrohr 6 somit zwischen dem Stator und dem Läufer, so daß das Spaltrohr 6 vom magnetischen Feld durchsetzt wird. Im Unterschied dazu sind bei dem Ausführungsbeispiel gemäß Fig. 3 bzw. entsprechend der vergrößerten Darstellung in Fig. 4 sowohl der Läufer, d. h. die Magnete 10 als auch die Spule 9 des Stators innerhalb des Spaltrohres 6 angeordnet. Bei dieser Ausführungsva- riante sind somit nicht nur die Magnete 10 sondern auch die Spule 9 dem FIu- id ausgesetzt, welches trotz der Kolbenabdichtung 8 in den Zylinderinnenraum 7 im Bereich des Spaltrohres 6 eintritt.In the embodiment according to FIG. 1 or according to the enlarged illustration in FIG. 2, the can 6 is arranged in the radial direction between the rotor, ie the magnet 10 and the coil 9 of the stator, so that the can 6 not only the solid-body piston 4 but also encloses the magnets 10 of the rotor. In this embodiment, the can 6 is thus between the stator and the rotor, so that the can 6 is penetrated by the magnetic field. In contrast, in the case of Embodiment of FIG. 3 and corresponding to the enlarged view in FIG. 4, both the rotor, that is, the magnets 10 and the coil 9 of the stator disposed within the can 6. In this embodiment variant, not only the magnets 10 but also the coil 9 are exposed to the fluid which, despite the piston seal 8, enters the cylinder interior 7 in the region of the can 6.
In den Fig. 1, 3 und 5 ist angedeutet, daß der mit dem Spaltraum 6 verbundene Kompressionsraum 5 über eine Leitung 11 mit der Fluideintrittsseite 12 der Fluidarbeitsmaschine 1 verbunden ist. Dies fuhrt dazu, daß interne Leckagen, die trotz der Kolbenabdichtungen 8 zwischen dem Außenumfang des Festkörperkolbens 4 und der Innenwandung des Zylinders 3 auftreten, auf den Saugdruck entspannt und an die Fluideintrittsseite 12 abgeführt werden. Dadurch wird der Druck in dem von dem Spaltrohr 6 umgebenen Zylinderinnenraum 7 reduziert, wodurch das Spaltrohr 6 bei der Ausgestaltung gemäß den Fig. 1 und 2 bzw. die Spule 9 und das Spaltrohr 6 bei der Ausgestaltung gemäß den Fig. 3 und 4 nicht unnötig belastet werden. Durch die so erfolgte Reduzierung des Drucks in dem vom Spaltrohr 6 umgebenden Zylinderinnenraum 7 kann eine entsprechend geringere Wandstärke für das Spaltrohr 6 ausgewählt wer- den, wodurch es zu einer Reduzierung von in dem Spaltrohr 6 auftretenden Wirbelstromverlusten kommt.In FIGS. 1, 3 and 5 it is indicated that the compression space 5 connected to the gap space 6 is connected via a line 11 to the fluid inlet side 12 of the fluid work machine 1. This leads to internal leaks that occur in spite of the piston seals 8 between the outer periphery of the solid-state piston 4 and the inner wall of the cylinder 3, relaxed to the suction pressure and discharged to the fluid inlet side 12. As a result, the pressure in the cylinder interior 7 surrounded by the can 6 is reduced, whereby the can 6 in the embodiment according to FIGS. 1 and 2 or the coil 9 and the can 6 in the embodiment according to FIGS. 3 and 4 are not unnecessary be charged. By thus reducing the pressure in the cylinder interior 7 surrounding the can 6, a correspondingly smaller wall thickness for the can 6 can be selected, which leads to a reduction of eddy current losses occurring in the can 6.
Alternativ dazu kann der mit dem Spaltraum 6 verbundene Kompressionsraum 5 auch direkt mit der Fluideintrittsseite 12 verbunden sein, d. h. der Fluideintritt erfolgt in dem mit dem Spaltraum 6 verbundene Kompressionsraum 5. Weist das zu verdichtende Fluid eine niedrige Temperatur auf, so kann dadurch gleichzeitig eine Kühlung des Linearmotors 2 erfolgen.Alternatively, the compression space 5 connected to the gap space 6 may also be directly connected to the fluid entry side 12, that is, the fluid chamber 12 may be connected directly to the fluid inlet side 12. H. the fluid enters into the compression space 5 connected to the gap 6. If the fluid to be compressed has a low temperature, cooling of the linear motor 2 can take place simultaneously.
Wie im Stand der Technik bekannt, erfolgt der Einlaß sowie der Auslaß des zu verdichtenden Gases über Ventile 13, die im Bereich der einzelnen Kompressionsräume 5 angeordnet und vorzugsweise als Plattenventile ausgebildet sind. Durch die anliegenden Differenzdrücke zwischen dem Kompressionsraum 5 und dem jeweiligen Ein- bzw. Auslaß erfolgt dann ein selbsttätiges Öffnen bzw. Schließen der Ventile 13. Da bei den beiden Ausführungsbeispie- len gemäß den Fig. 1 und 3 eine vierstufige Verdichtung des Gases erfolgt, weisen die Fluidarbeitsmaschinen 1 auch jeweils vier Einlaß- bzw. Auslaßventile 13 auf.As is known in the art, the inlet and the outlet of the gas to be compressed via valves 13, which are arranged in the region of the individual compression chambers 5 and preferably formed as a plate valves. By the applied differential pressures between the compression chamber 5 and the respective inlet and outlet then an automatic opening or closing of the valves 13 takes place. Since in the two Ausführungsbeispie- len according to FIGS. 1 and 3, a four-stage compression of the gas takes place, The fluid working machines 1 also each have four intake and exhaust valves 13.
In den Fig. 1 und 3 ist darüber hinaus angedeutet, daß die einzelnen Kompres- sionsräume 5 über Leitungen 14 miteinander verbunden sind, wobei in den einzelnen Leitungen 14 jeweils ein Wärmetauscher 15 zur Rückkühlung des komprimierten Gases vorgesehen ist. Darüber hinaus ist in den Fig. 1 , 3 und 5 noch angedeutet, daß die Fluidarbeitsmaschine 1 einen Kühlmittelkreislauf 16 zur Kühlung der Spule 9 des Stators und somit zur Kühlung des Linearmotors 2 insgesamt aufweist. Die Kühlung erfolgt dabei von außen, d. h. über ein die Spule 9 umgebendes Gehäuse 17, so daß die Spule 9 nicht direkt mit dem Kühlmittel in Berührung kommt. Sowohl zur Rückkühlung des verdichteten Gases in den Wärmetauschern 15 als auch zur Kühlung des Linearmotors 2 kann dabei dasselbe Kühlmittel verwendet werden.In FIGS. 1 and 3 it is further indicated that the individual compression chambers 5 are connected to one another via lines 14, wherein a heat exchanger 15 for recooling the compressed gas is provided in each of the individual lines 14. In addition, it is indicated in FIGS. 1, 3 and 5 that the fluid working machine 1 has a coolant circuit 16 for cooling the coil 9 of the stator and thus for cooling the linear motor 2 in total. The cooling takes place from the outside, d. H. via a housing surrounding the coil 9 17, so that the coil 9 does not come into direct contact with the coolant. Both for re-cooling of the compressed gas in the heat exchangers 15 and for cooling the linear motor 2 while the same coolant can be used.
Schließlich ist aus den Figuren noch ersichtlich, daß die dargestellten Ausführungsbeispiele der Fluidarbeitsmaschine 1 jeweils zwei Zylinder 3, 3' aufweisen, wobei der Linearmotor 2 mit dem Spaltrohr 6 bzw. das den Linearmotor 2 umgebende Gehäuse 17 zwischen den beiden Zylindern 3, 3' angeordnet ist. Die Abdichtung zwischen den Stirnseiten der beiden Zylinder 3, 3' und den korrespondierenden Stirnseiten des Gehäuses 17 erfolgt dabei über statische Dichtungen 18.Finally, it can be seen from the figures that the illustrated embodiments of the fluid power machine 1 each have two cylinders 3, 3 ', wherein the linear motor 2 with the split tube 6 or the housing surrounding the linear motor 2 17 between the two cylinders 3, 3' is. The sealing between the end faces of the two cylinders 3, 3 'and the corresponding end faces of the housing 17 takes place via static seals 18th
Den Fig. 3 und 4 ist darüber hinaus noch entnehmbar, daß die elektrischen Leitungen 19 zu dem innerhalb des Spaltrohres 6 angeordneten Stator mit Hilfe druckdichter Kabeldurchführungen 20 leckagefrei zum Anschlußkasten 21 gefühlt sind, wobei auch der Anschlußkasten 21 druckdichte Kabeldurchführungen 20 aufweist, so daß die durch das Spaltrohr 6 gewonnene Leckagefreiheit zur Atmosphäre nicht durch den Anschluß der erforderlichen Leitungen 19 aufgehoben wird.Figs. 3 and 4 is also still removable that the electrical leads 19 to the inside of the can 6 arranged stator with the help of pressure-tight cable glands 20 are leak-free to the terminal box 21, wherein the terminal box 21 pressure-tight cable glands 20, so that the obtained by the can 6 leakage freedom to atmosphere is not repealed by the connection of the required lines 19.
In Fig. 6 ist ein Ausführungsbeispiel einer Fluidarbeitsmaschine 1 dargestellt, die anstelle eines massiven Kolbens einen Flüssigkeitskolben 4' aufweist. Die den Flüssigkeitskolben 41 bildende Flüssigkeit ist innerhalb des aus den beiden Zylindern 3, 31 und dem Spaltrohr 6 gebildeten U-förmigen Gehäuses angeordnet. Oberhalb der Flüssigkeit befindet sich in beiden Zylindern 3, 31 jeweils ein Kompressionsraum 5 für das zu verdichtende Gas, wobei sich die Größe der beiden Kompressionsräume 5 in Abhängigkeit vom Flüssigkeitsstand der Flüssigkeit, d. h. von der Position des Flüssigkeitskolbens 4' ändert. Die in Fig. 6 dargestellte Fluidarbeitsmaschine 1 ist ebenso wie die Fluidarbeitsma- schine 1 gemäß Fig. 5 einstufig ausgebildet, wobei es sich auch hier um eine doppelt wirkende Fluidarbeitsmaschine 1 handelt, so daß auf beiden Seiten des Flüssigkeitskolbens 4' jeweils ein Kompressionsraum 5 ausgebildet ist.In Fig. 6, an embodiment of a fluid working machine 1 is shown, which has a liquid piston 4 'instead of a solid piston. The liquid piston 4 1 forming liquid is disposed within the formed from the two cylinders 3, 3 1 and the split tube 6 U-shaped housing. Above the liquid is in both cylinders 3, 3 1 each a compression space 5 for the gas to be compressed, wherein the size of the two compression spaces 5 in dependence on the liquid level of the liquid, ie, changes from the position of the liquid piston 4 '. The fluid working machine 1 shown in FIG. 6, just like the fluid working machine 1 according to FIG. 5, has a one-stage design, which is also a double-acting fluid working machine 1, so that in each case a compression space 5 is formed on both sides of the liquid piston 4 ' is.
In beiden Kompressionsräumen 5 ist jeweils ein Ventil 13 am Einlaß bzw. am Auslaß angeordnet, wobei die Auslässe der beiden Kompressionsräume 5 über Leitungen 14, in denen jeweils ein Wärmetauscher 15 zur Rückkühlung des komprimierten Gases angeordnet ist, miteinander verbunden sind. Der Linearmotor 2 ist zusammen mit dem Spaltrohr 6 bzw. dem den Linearmotor 2 umgebenden Gehäuse 17 zwischen den beiden Zylindern 3, 3' angeordnet, so daß das Spaltrohr 6 im Bereich des Linearmotors 2 die Zylinderwand für die Flüssigkeit darstellt.In both compression chambers 5, a valve 13 is arranged at the inlet or at the outlet, wherein the outlets of the two compression chambers 5 via lines 14, in each of which a heat exchanger 15 is arranged for recooling the compressed gas, are interconnected. The linear motor 2 is arranged together with the can 6 or the housing surrounding the linear motor 2 17 between the two cylinders 3, 3 ', so that the can 6 in the region of the linear motor 2, the cylinder wall for the liquid.
Die in den Figuren dargestellten Fluidarbeitsmaschinen 1 eignen sich insbesondere zur Verdichtung von Gasen, vorzugsweise von Wasserstoff, auf hohe Drücke von beispielsweise 1000 bar, so daß derartige Fluidarbeitsmaschinen 1 zur Ausrüstung von Wasserstofftankstellen besonders geeignet sind. The fluid working machines 1 shown in the figures are particularly suitable for compressing gases, preferably hydrogen, to high pressures of, for example, 1000 bar, so that such fluid working machines 1 are particularly suitable for equipping hydrogen refueling stations.

Claims

Patentansprüche: claims:
1. Fluidarbeitsmaschine zum Verdichten bzw. Fördern von Fluiden, insbesondere zum Verdichten von Gasen auf hohe Drücke, mit einem Linearmotor (2), mindestens einem Zylinder (3), einem in dem Zylinder (3) axial bewegbaren Festkörperkolben (4) oder einem axial bewegbaren Flüssigkeitskolben (4') und mindestens einem zwischen dem Zylinder (3) und dem Festkörperkolben (4) bzw. dem Flüssigkeitskolben (41) ausgebildeten Kompressionsraum (5), wobei der Linearmotor (2) eine translatorische Antriebskraft auf den Festkör- perkolben (4) bzw. dem Flüssigkeitskolben (41) überträgt, dadurch gekennzeichnet, daß der Festkörperkolben (4) bzw. der Flüssigkeitskolben (41) im Bereich des Linearmotors (2) von einem fest angeordneten Spaltrohr (6) umschlossen ist.1. fluid working machine for compressing or conveying fluids, in particular for compressing gases to high pressures, with a linear motor (2), at least one cylinder (3), in the cylinder (3) axially movable solid-state piston (4) or an axial movable liquid piston (4 ') and at least one between the cylinder (3) and the solid-state piston (4) or the liquid piston (4 1 ) formed compression space (5), wherein the linear motor (2) a translational driving force on the solid piston ( 4) or the liquid piston (4 1 ) transmits, characterized in that the solid-state piston (4) or the liquid piston (4 1 ) in the region of the linear motor (2) by a fixedly arranged can (6) is enclosed.
2. Fluidarbeitsmaschine nach Anspruch 1, mit einem Festkörperkolben (4), wobei der Linearmotor (2) einen Stator und einen Läufer aufweist, dadurch gekennzeichnet, daß das Spaltrohr (6) in radialer Richtung zwischen dem Läu- fer und der Spule (9) des Stators angeordnet ist, so daß das Spaltrohr (6) den Läufer umschließt.2. Fluid work machine according to claim 1, comprising a solid-state piston (4), wherein the linear motor (2) comprises a stator and a rotor, characterized in that the can (6) in the radial direction between the rotor and the coil (9) of the stator is arranged so that the split tube (6) surrounds the rotor.
3. Fluidarbeitsmaschine nach Anspruch 1, mit einem Festkörperkolben (4), wobei der Linearmotor (2) einen Stator und einen Läufer aufweist, dadurch gekennzeichnet, daß sowohl der Läufer als auch die Spule (9) des Stators innerhalb des Spaltrohres (6) angeordnet sind, so daß das Spaltrohr (6) den Läufer und den Stator umschließt.3. fluid work machine according to claim 1, comprising a solid-state piston (4), wherein the linear motor (2) comprises a stator and a rotor, characterized in that arranged both the rotor and the coil (9) of the stator within the can (6) are so that the can (6) encloses the rotor and the stator.
4. Fluidarbeitsmaschine nach Ansprüche 2 oder 3, wobei der Läufer Magne- te (10) aufweist, dadurch gekennzeichnet, daß die Magnete (10) des Läufers direkt auf dem Kolben (4) angeordnet sind.4. Fluid work machine according to claims 2 or 3, wherein the rotor magnet (10), characterized in that the magnets (10) of the rotor are arranged directly on the piston (4).
5. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 4, mit einem Festkörperkolben (4), dadurch gekennzeichnet, daß die Verdichtung eines Gases mehrstufig erfolgt. 5. fluid work machine according to one of claims 1 to 4, with a solid-state piston (4), characterized in that the compression of a gas takes place in several stages.
6. Fluidarbeitsmaschine nach Anspruch 5, dadurch gekennzeichnet, daß der Festkörperkolben (4) mehrere Abschnitte (41, 42, 43, 44) mit unterschiedlichen Durchmessern aufweist.6. fluid work machine according to claim 5, characterized in that the solid-state piston (4) has a plurality of sections (41, 42, 43, 44) with different diameters.
7. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 6, mit einem Festkörperkolben (4), dadurch gekennzeichnet, daß der mit dem Spaltrohr (6) verbundene Kompressionsraum (5) direkt oder über eine Leitung (11) bzw. einen Kanal mit der Fluideintrittsseite (12) verbunden ist.7. Fluid work machine according to one of claims 1 to 6, with a solid-state piston (4), characterized in that the with the can (6) connected to the compression chamber (5) directly or via a conduit (11) or a channel with the fluid inlet side ( 12) is connected.
8. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 7, mit einem Festkörperkolben (4), dadurch gekennzeichnet, daß ein Kühlmittelkreislauf (16) zur Kühlung des Linearmotors (2), insbesondere zur Kühlung der Spule (7) des Stators ausgebildet ist.8. fluid work machine according to one of claims 1 to 7, with a solid-state piston (4), characterized in that a coolant circuit (16) for cooling the linear motor (2), in particular for cooling the coil (7) of the stator is formed.
9. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 8, mit einem Festkörperkolben (4), dadurch gekennzeichnet, daß mindestens ein Wärmetauscher (15) zur Rückkühlung des Fluids vorgesehen ist.9. fluid work machine according to one of claims 1 to 8, with a solid-state piston (4), characterized in that at least one heat exchanger (15) is provided for the re-cooling of the fluid.
10. Fluidarbeitsmaschine nach Anspruch 8 und 9, dadurch gekennzeichnet, daß zur Kühlung des Linearmotors (2) und zur Rückkühlung des Fluids dasselbe Kühlmittel oder das zu verdichtende Fluid verwendet wird.10. fluid work machine according to claim 8 and 9, characterized in that the same coolant or the fluid to be compressed is used for cooling the linear motor (2) and for re-cooling the fluid.
1 1. Fluidarbeitsmaschine nach Anspruch 1 , zum Verdichten von Gasen auf hohe Drücke, mit einem Flüssigkeitskolben (41), dadurch gekennzeichnet, daß der Flüssigkeitskolben (4') von einer magnetisierbaren Flüssigkeit gebildet wird, die keinen Dampfdruck aufweist, so daß sich keine Moleküle der Flüssigkeit mit dem zu verdichtenden Gas vermischen.1 1. Fluidworking machine according to claim 1, for compressing gases to high pressures, with a liquid piston (4 1 ), characterized in that the liquid piston (4 ') is formed by a magnetizable liquid which has no vapor pressure, so that no Mix molecules of liquid with the gas to be compressed.
12. Fluidarbeitsmaschine nach Anspruch 11, dadurch gekennzeichnet, daß als Flüssigkeit eine ionische Flüssigkeit verwendet wird.12. fluid work machine according to claim 11, characterized in that an ionic liquid is used as the liquid.
13. Fluidarbeitsmaschine nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß das Spaltrohr (6) in radialer Richtung innerhalb der Spule (9) des Stators angeordnet ist, so daß das Spaltrohr (6) die als Läufer fungierende Flüs- sigkeit umschließt. 13. Fluid work machine according to claim 11 or 12, characterized in that the can (6) is arranged in the radial direction within the coil (9) of the stator, so that the can (6) surrounds the liquid acting as a runner.
14. Fluidarbeitsmaschine nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß mindestens ein Wärmetauscher (15) zur Rückkühlung der Flüssigkeit vorgesehen ist, wobei vorzugsweise die Flüssigkeit auch zur Kühlung des Linearmotors (2) verwendet wird.14. Fluid work machine according to one of claims 11 to 13, characterized in that at least one heat exchanger (15) is provided for recooling the liquid, wherein preferably the liquid is also used for cooling the linear motor (2).
15. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 14, mit zwei Zylindern (3, 3'), dadurch gekennzeichnet, daß der Linearmotor (2) mit dem Spaltrohr (6) zwischen den beiden Zylindern (3, 3') angeordnet ist.15. Fluid work machine according to one of claims 1 to 14, with two cylinders (3, 3 '), characterized in that the linear motor (2) with the split tube (6) between the two cylinders (3, 3') is arranged.
16. Fluidarbeitsmaschine nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Spaltrohr (6) aus Metall, aus Kunststoff oder aus Keramik besteht. 16. fluid work machine according to one of claims 1 to 15, characterized in that the can (6) consists of metal, plastic or ceramic.
EP07856620.5A 2006-12-18 2007-12-12 Fluid machine Active EP2122169B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060147A DE102006060147B4 (en) 2006-12-18 2006-12-18 Fluid-working machine
PCT/EP2007/010872 WO2008074428A1 (en) 2006-12-18 2007-12-12 Fluid machine

Publications (2)

Publication Number Publication Date
EP2122169A1 true EP2122169A1 (en) 2009-11-25
EP2122169B1 EP2122169B1 (en) 2015-09-23

Family

ID=39124605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856620.5A Active EP2122169B1 (en) 2006-12-18 2007-12-12 Fluid machine

Country Status (5)

Country Link
US (1) US20110052430A1 (en)
EP (1) EP2122169B1 (en)
JP (2) JP5431953B2 (en)
DE (1) DE102006060147B4 (en)
WO (1) WO2008074428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016222A1 (en) 2012-08-01 2014-02-06 Technische Universität Dresden Cylinder-, piston- and valveless, continuously working fluid working machine for e.g. dosing liquid in chemical system during plastic production, has blocking region, where portions of liquids slide from region side to region opposite side

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036528A1 (en) 2008-08-06 2010-02-11 Bentec Gmbh Drilling & Oilfield Systems Method for operating a multi-pulse piston pump, multi-pulse piston pump and production of such
DE102008060659A1 (en) 2008-12-08 2010-06-10 Bentec Gmbh Drilling & Oilfield Systems Clamping device for cylinder liners and their use and rinsing pump with clamping device
JP5377162B2 (en) * 2009-08-28 2013-12-25 有限会社いどや Electromagnetic pump and electromagnetic pump system using the same
US20110192573A1 (en) * 2010-02-08 2011-08-11 Harmel Defretin System and method for moving a first fluid using a second fluid
DE102010053091A1 (en) * 2010-12-01 2012-06-06 Linde Aktiengesellschaft Multi-stage piston compressor
DE102012008811A1 (en) 2012-04-25 2013-10-31 Bpg Beteiligungs Gmbh Heat engine for driving linear generator utilized to produce electrical power in e.g. smaller industries, has cylinder units enabling supply of combustible gas into and discharging of combustion residues from chamber of cylinders
CN103670996B (en) * 2012-09-14 2016-02-10 胜瑞兰工业设备(苏州)有限公司 A kind of No leakage formula magnetic driving reciprocating pump
EP2725227B1 (en) * 2012-10-24 2015-05-20 Delphi International Operations Luxembourg S.à r.l. Pump assembly
JP6087713B2 (en) 2013-04-24 2017-03-01 株式会社神戸製鋼所 Compression device
US10323628B2 (en) * 2013-11-07 2019-06-18 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
US11466678B2 (en) * 2013-11-07 2022-10-11 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
DE102013019499A1 (en) * 2013-11-21 2015-05-21 Linde Aktiengesellschaft Piston compressor and method for compressing a cryogenic, gaseous medium, in particular hydrogen
JP6035590B2 (en) 2014-05-27 2016-11-30 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid robot and power assist device
JP6163646B2 (en) * 2014-05-27 2017-07-19 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid robot and power assist device
JP6276120B2 (en) * 2014-06-27 2018-02-07 株式会社神戸製鋼所 Gas compressor
DE102014012977A1 (en) * 2014-09-08 2016-03-10 Albonair Gmbh Reducing agent metering system with improved delivery pump
JP6276154B2 (en) * 2014-09-26 2018-02-07 株式会社神戸製鋼所 Reciprocating compressor
JP2016213314A (en) * 2015-05-08 2016-12-15 富士通株式会社 Cooling module and electronic device
DE102015209728A1 (en) 2015-05-27 2016-12-01 Robert Bosch Gmbh Pump device, brake system
CN105443977B (en) * 2015-12-28 2017-12-26 重庆耐德能源装备集成有限公司 Natural gas inner-cooled hydraulic booster container
US11118578B2 (en) * 2017-02-15 2021-09-14 Extiel Holdings, Llc Internally cooled inline drive compressor
CN107605691B (en) * 2017-09-08 2019-04-02 中国神华能源股份有限公司 Linear drives plunger pump, linear drives emulsion pump system and control method
PL240516B1 (en) * 2018-01-09 2022-04-19 Dobrianski Jurij Steam engine
BE1026881B1 (en) * 2018-12-18 2020-07-22 Atlas Copco Airpower Nv Piston compressor
BE1026883B1 (en) * 2018-12-18 2020-07-22 Atlas Copco Airpower Nv Piston compressor and method in which such a reciprocating compressor is used
JP7330088B2 (en) * 2019-12-16 2023-08-21 株式会社東芝 Liquid piston device and liquid piston operating method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196797A (en) * 1961-09-18 1965-07-27 Mario Pagano S P A Dynamic thrust electromagnetic compressor, particularly suitable for compressing liquid or gaseous substances
DE2937157C2 (en) * 1979-09-13 1982-06-16 Franz Klaus Union Armaturen, Pumpen Gmbh & Co, 4630 Bochum Piston displacement pumps, in particular metering pumps
US4496287A (en) * 1980-02-14 1985-01-29 Robert M. Nelson Sensors for detection of fluid condition, and control systems utilizing their signals
NL8204005A (en) * 1982-10-18 1984-05-16 Philips Nv COOLING SYSTEM WITH TWO-STAGE COMPRESSION DEVICE.
JPS60125371U (en) * 1984-02-03 1985-08-23 三菱重工業株式会社 positive displacement pump or blower
US4815949A (en) * 1985-06-24 1989-03-28 Rabson Thomas A In-well submersible motor with stacked component stator
US5354185A (en) * 1992-10-05 1994-10-11 Aura Systems, Inc. Electromagnetically actuated reciprocating compressor driver
EP1020013B1 (en) * 1997-10-04 2004-04-28 Z & D Limited Linear motor compressor
DE19846711C2 (en) * 1998-10-09 2003-05-08 Trumpf Sachsen Gmbh High pressure pump with linear motor drive
US6183206B1 (en) * 1999-05-10 2001-02-06 The United States Of America As Represented By The Secretary Of The Air Force Magnetohydrodynamically-driven compressor
DE10149506A1 (en) * 2001-10-06 2003-04-10 Leybold Vakuum Gmbh Oscillatory piston drive for vacuum pump uses electromagnetic coils cooperating with drive magnet between two sections of vacuum pump piston
DE10214047A1 (en) * 2002-03-28 2003-10-09 Volkswagen Ag Compressor for a motor vehicle air-conditioning facility has a closed carbon dioxide coolant circuit, a housing as a compression area with a to-and-fro-stroke piston and inlet/outlet valves.
DE10314007A1 (en) * 2003-03-28 2004-10-07 Leybold Vakuum Gmbh Piston vacuum pump for pumping gas, has sensor that detects speed of switching supply of energizing current between electrical coils by magnet arrangement
JP2005307796A (en) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Linear compressor
JP2005351255A (en) * 2004-06-10 2005-12-22 Kaken Geneqs:Kk Reciprocating compressor
DE102004046316A1 (en) * 2004-09-24 2006-03-30 Linde Ag Method and apparatus for compressing a gaseous medium
KR100613514B1 (en) * 2004-10-07 2006-08-17 엘지전자 주식회사 Structure of Discharge part for linear compressor
DE102004055924B4 (en) * 2004-11-19 2011-08-18 Lg Electronics Inc., Seoul Linear compressor, has magnet frame transmitting linear movement of magnet to piston, and cooling pipe disposed in contact with bobbin, where cooling fluid supply unit supplies cooling fluid into pipe
EP1785625A3 (en) * 2005-11-10 2009-11-25 LG Electronics Inc. Linear Compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008074428A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016222A1 (en) 2012-08-01 2014-02-06 Technische Universität Dresden Cylinder-, piston- and valveless, continuously working fluid working machine for e.g. dosing liquid in chemical system during plastic production, has blocking region, where portions of liquids slide from region side to region opposite side

Also Published As

Publication number Publication date
JP5868382B2 (en) 2016-02-24
WO2008074428A1 (en) 2008-06-26
JP5431953B2 (en) 2014-03-05
EP2122169B1 (en) 2015-09-23
JP2010513779A (en) 2010-04-30
DE102006060147B4 (en) 2009-05-14
DE102006060147A1 (en) 2008-06-19
JP2014090663A (en) 2014-05-15
US20110052430A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
EP2122169B1 (en) Fluid machine
EP1999375B1 (en) Compressor unit
EP1069313B1 (en) Turbo compressor
DE4203677C2 (en) Scroll compressor
AT503361B1 (en) DRIVE
EP1074746A2 (en) Turbo compressor
WO2007110275A1 (en) Compressor unit
EP2806164B1 (en) Scroll compressor and CO2 vehicle air conditioner with a scroll compressor
EP3523537B1 (en) Semi-hermetic coolant compressor
DE102016010669A1 (en) Motor-pump device
DE102010064061A1 (en) Turbo compressor for fuel cell drive of internal combustion engine of hybrid drive for motor vehicle, has drive unit and two compressor wheels driven by drive unit
WO2018059929A1 (en) Cooling system
DE102007004187A1 (en) Adjustable coolant pump
WO2020094510A1 (en) Electric machine with a fluid-type cooling device
WO2013000745A2 (en) Micropump, bearing element for a micropump, and working method
DE102011077096A1 (en) Reciprocating vacuum pump
EP2226920B1 (en) Co-generation unit with a combustion piston engine and an electric machine
DE10342421A1 (en) Plunger compressor for refrigerants
DE3814269A1 (en) PISTON MACHINE
EP2052158A1 (en) Rotor cooling for dry-running twin-shaft vacuum pumps or compressors
WO2010084002A2 (en) Hydraulic machine assembly
EP2473739B1 (en) Dry screw pump having inner compression
WO2016193262A1 (en) Electrically-driven liquid filter pump and electrically-driven liquid positive displacement pump for use in the liquid filter pump
DE4134939C2 (en) Scroll compressor
WO2021160677A1 (en) Screw compressor having rotors mounted on one side

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014253

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014253

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151223

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151223

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 17

Ref country code: IT

Payment date: 20231228

Year of fee payment: 17

Ref country code: FR

Payment date: 20231221

Year of fee payment: 17

Ref country code: AT

Payment date: 20231221

Year of fee payment: 17