EP2118855B1 - Safety and/or valuable document having a photonic crystal - Google Patents

Safety and/or valuable document having a photonic crystal Download PDF

Info

Publication number
EP2118855B1
EP2118855B1 EP08715461.3A EP08715461A EP2118855B1 EP 2118855 B1 EP2118855 B1 EP 2118855B1 EP 08715461 A EP08715461 A EP 08715461A EP 2118855 B1 EP2118855 B1 EP 2118855B1
Authority
EP
European Patent Office
Prior art keywords
security
photonic crystal
luminescent substance
particles
valuable document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08715461.3A
Other languages
German (de)
French (fr)
Other versions
EP2118855A2 (en
Inventor
Malte Pflughoefft
Oliver Muth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP2118855A2 publication Critical patent/EP2118855A2/en
Application granted granted Critical
Publication of EP2118855B1 publication Critical patent/EP2118855B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light

Definitions

  • the invention relates to a security and / or value document with a security element, the security element containing a photonic crystal and a luminescent substance arranged on a substrate with an orientation defined in relation to a surface of the substrate.
  • the invention also relates to a method for its production and a method for its verification.
  • optically variable colors have established themselves as a good security feature because they can be easily checked without technical aids.
  • Such optically variable colors are known from practice, for example from bank notes and documents. These are difficult to reproduce, a check at a cash register, for example, is often only fleeting, so that only the presence of a color change is observed. Due to the large number of colors and pigments, for example liquid crystals or platelets or flakes, which have such effects and are commercially available, falsified impressions are known which are clearly different from the original color change colors differ, but are not necessarily recognizable for an inexperienced layman.
  • a security and / or value document of the structure mentioned above is known.
  • a layer is used as the photonic crystal, which is made up of spheres or spheres with a narrow monomodal diameter distribution, the spheres forming a dense packing of spheres, that is, a crystal structure.
  • the diameter of the spheres is in a range of 50-500 nm, so that different reflection conditions according to Bragg's law are present at different network planes of the crystal for different components of visible light. This makes a visually more variable Obtain color effect, namely when pivoting the security and / or value document or viewing at changing viewing angles.
  • Document of value additionally contain a luminescent substance.
  • the diameter of the spheres is chosen so that the desired optically variable effects are achieved, completely independently of any possible luminescence.
  • Structures suitable for the production of photonic crystals are for example in the literature references WHERE. 03/025035 A2 , U.S. 4,391,928 , EP 0 441 559 B1 and EP 0 955 323 B1 described.
  • Luminescence radiation typically does not have a directional characteristic, since the emitter centers are oriented statistically within a coating, color or the like. From other technical fields, for example laser diode technology, it is known to generate directional luminescence radiation by using layer structures whose layers have a thickness that leads to the reflection or forward amplification of the luminescence radiation in a defined spatial direction. Such structures are less suitable for value and security printing due to the complex production.
  • the invention is therefore based on the technical problem of providing a security element which can easily be checked with minimal resources, but with increased reliability, even with a cursory inspection.
  • the particles with which the photonic crystal is formed in terms of diameter and arrangement with the proviso on the Emission wavelength adjusted so that the intensity of the luminescence radiation is different at different viewing angles.
  • the invention makes a considerable improvement in the safe and simple checking of luminescent security elements reached. Because a checking person only needs to expose the security and / or valuable document to radiation that stimulates luminescence, for example UV, and to check i) whether luminescence is observed, and ii) if so, whether its intensity when the security and / or or value document varies. The security and / or value document is only accepted as genuine if both criteria are met. A luminescence security element according to the invention can no longer be reproduced with simple means.
  • the invention uses the knowledge that a photonic crystal can also be used to equip the non-directional luminescence radiation with an anisotropic distribution of the intensity in the solid angle by refraction.
  • Security documents and / or documents of value are only mentioned as examples: ID cards, passports, ID cards, access control cards, visas, tax codes, tickets, driving licenses, vehicle documents, banknotes, checks, postage stamps, credit cards, any chip cards and adhesive labels (e.g. for product security).
  • Such security and / or value documents typically have a substrate, a printing layer and optionally a transparent cover layer.
  • a substrate is a support structure on which the printing layer is attached Information, images, patterns and the like is applied. All conventional materials based on paper and / or plastic can be used as materials for a substrate.
  • a security element is a structural unit that includes at least one security feature.
  • a security element can be an independent structural unit that can be connected to a security and / or value document, for example glued, but it can also be an integral part of a security and / or value document.
  • An example of the former is a visa that can be stuck onto a security and / or valuable document.
  • An example of the latter is a flat construct that is integrated, for example, laminated into a bank note or an identity card. The latter also includes layers or coatings that are applied to a substrate.
  • a security feature is a structure that can only be produced, reproduced, manipulated or changed with increased effort (compared to simple copying) or not at all in an unauthorized manner.
  • the security feature is formed by the composite of photonic crystal and luminescent substance.
  • the term “network” refers to the optical coupling with coordination of network level spacing and emission wavelength.
  • luminescence refers to the emission of electromagnetic radiation, especially in the IR, visible or UV range, in the course of a relaxation of an atomic or molecular electronic system from an excited state to an energetically lower state, generally the electronic ground state.
  • the previous excitation can take place through electrical energy or an electrical potential (electroluminescence), bombardment with electrons (cathodoluminescence), bombardment with photons (photoluminescence), the action of heat (thermoluminescence) or friction (triboluminescence).
  • photoluminescence is preferred.
  • Luminescence includes in particular phosphorescence and (photo) fluorescence.
  • Fluorescence is a radiant deactivation of excited electronic states, the transition from the excited state to the lower energetic state, for example the ground state, being spin-allowed.
  • the dwell time in the excited state is typically approx. 10 -8 s, ie the emission of fluorescent radiation ends immediately after the end of the energy input for excitation.
  • phosphorescence is a spin-forbidden deactivation of excited states via intercombination processes. Therefore the relaxation is weak and slow.
  • the dwell time in an excited state is a few milliseconds up to hours and the emission of the phosphorescent radiation can be observed for a correspondingly long time.
  • the emission wavelength of a luminescent substance is characteristic of the substance used and is determined by the energy difference between the excited state and the energetically lower electronic state, for example the ground state.
  • the maximum emission intensity in an emission spectrum is referred to as the emission wavelength.
  • a luminescent substance contains atoms, molecules or particles that are capable of luminescence.
  • a luminescent substance can be used to create a luminescent paint or ink that contains the other components of paints or inks customary in the art, such as binders, penetrants, adjusting agents, biocides, surfactants, buffer substances, solvents (water and / or organic solvents), fillers, pigments , Effect pigments, antifoam agents, anti-settling agents, UV stabilizers, etc ..
  • Suitable ink formulations for various printing processes are well known to those skilled in the art from the prior art and luminescent substances used according to the invention are in this respect added instead of or in addition to conventional dyes or pigments.
  • Radiation is typically functional to excite luminescence when the wavelength of the radiation is smaller than the wavelength of the luminescence radiation. However, radiation with a higher wavelength can be functional if the luminescent substance in question is capable of so-called up-conversion processes.
  • a network plane is defined in space by the Miller indices h, k, and 1.
  • the distance d is defined as the smallest distance between parallel network planes, i.e. of lattice planes with the same Miller indices.
  • a close packing of spheres corresponds to an fcc (face centered cubic, cubic close packing) or hcc or hcp (hexagonal close packed, hexagonal close packing) lattice.
  • diameter D denotes the mean diameter of the spheres (or mean distance between the closest spheres adjacent to one another), which is defined as the maximum of the number-related (monomodal) linear normalized density distribution.
  • the density distribution should be as narrow as possible so that clearly visible and reproducible angle dependencies arise when viewed. It is preferred if the (mostly Gaussian-like) density distribution at half the maximum value of the density has a width of less than 10% of the (mean) diameter D, preferably less than 5% of the diameter D, ideally less than 2% of the diameter D.
  • photonic crystals with a complete band gap have so far only been postulated theoretically and are characterized by the fact that light cannot propagate in any spatial direction.
  • photonic crystals with an incomplete band gap as used in particular in the context of the invention, the propagation of the light is only possible in certain spatial directions.
  • the luminescent substance can in principle emit in the IR, visible, or UV. It is preferred if the emission takes place in the visible, since then the Security and / or value documents can be done by simple inspection.
  • the luminescent substance can comprise a luminescent dye and / or a luminescent pigment.
  • the luminescent dye can be selected from the group consisting of "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more different such substances".
  • the luminescent pigment can be selected from the group consisting of "ZnS: Ag, Zn-Silicate, SiC, ZnS, CdS (activated with Cu or Mn), ZnS / CdS: Ag, ZnS: Cu, Al, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, YVO 4 : Eu, Zn 2 SiO 4 : Mn, CaVVO 4 , (Zn, Mg) F 2 : Mn, MgSiO 3 : Mn, ZnO: Zn, Gd 2 O 2 S: Tb , Y 2 O 2 S: Tb, La 2 O 2 S: Tb, BaFCl: Eu, LaOBr: Tb, Mg tungstate, (Zn, Be) silicate: Mn, Cd borate: Mn, Ca 10 (PO 4 ) 6 F, Cl: Sb, Mn, (SrMg) 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Sn
  • the luminescent substance is a fluorescent dye which is selected from the group consisting of "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more different such substances ".
  • organic fluorescent dyes naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more different such substances ".
  • fluorescent dyes which is selected from the group consisting of "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixture
  • two or more different luminescent substances can advantageously also be used, the different luminescent substances having different emission wavelengths.
  • the term of the different emission wavelengths denotes a wavelength difference of at least 3 nm, 5 nm, 10 nm, 20 nm, or 30 nm, in the visible.
  • the different emission wavelengths then result in different angles at which the different colors of the luminescence can be observed with particularly high or low intensity.
  • the term high intensity denotes the maximum intensity that can be observed with respect to an emission wavelength.
  • a low intensity then denotes an intensity that is reduced compared to the high intensity, for example reduced by at least 5%, 10%, 20%, 30%, 50%, or 80%.
  • a luminescence color change is generated when the security and / or value document is tilted.
  • the grid points or particles of the photonic crystal can in principle have any shape, for example as small discs or rods. However, it is preferred if the lattice points or particles are designed as spheres (spheres).
  • the spheres are core-shell particles which are arranged in a tight packing of spheres.
  • the mean diameter of the spheres to be set depends on the emission wavelength of the luminescent substance used.
  • the mean diameter of the spheres can thus be in the range from 270-5000 nm, in particular from 270-2500 nm, if the luminescent substance emits in the IR (780-3000 nm).
  • the mean diameter of the spheres can be in the range from 135 to 1200 nm, in particular from 135 to 600 nm, if the luminescent substance emits in the visible (380 to 780 nm).
  • the mean diameter of the spheres can be in the range of 35-600 nm, in particular 35-300 nm, if the luminescent substance emits in the UV (100-380 nm).
  • the photonic crystal can be produced by deposition from the liquid phase by means of self-assembly, for example under pressure, as in the inkjet printing process.
  • self-assembly for example under pressure
  • the production of artificial opals from SiO 2 from solutions is well known.
  • the core / shell particles have a core made of an organic or inorganic core material and a shell made of a polymer have organic shell material, wherein the shell material is flowable at an elevated temperature, while the core material is not flowable at the elevated temperature.
  • the periodic remote structure required for this for example the close packing of spheres, must be produced in a defined orientation in order to form a photonic crystal. If a bed or emulsion or suspension with such core-shell particles is exposed to a compressive force at an elevated temperature, the shear forces that arise between the particles cause the particles to arrange themselves to form a dense packing of spheres on a surface of a substrate and align themselves when the particles move can move against each other.
  • a jacket that is flowable under the pressure and temperature conditions facilitates such movements of the particles in relation to one another and the result is a photonic crystal with excellent long-range order and clear orientation on the substrate.
  • the inorganic core material can be selected from the group consisting of "metals, semimetals, metal chalcogenides, especially metal oxides, metal pnictides, especially metal nitrides or metal phosphides, and mixtures of two or more different such substances, the metal being an element of the first three main groups of the periodic table or a metallic element of the subgroups and wherein the semimetal can comprise Si, Ge, As, Sb, and Bi ", in particular is selected from the group consisting of "SiO 2 , TiO 2 , ZrO 2 , SnO 2 , and Al 2 O 3 ".
  • the organic core material is preferably selected from the group consisting of "aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins such as formaldehyde condensates of melamine, urea or phenol, epoxy resins, acrylic esters such as methyl ( meth) acrylate, butyl (meth) acrylate, isopropyl (meth) acrylate, polystyrene, PVC, polyacrylonitrile, random or block copolymers of one or more such homopolymers, and mixtures of two or more different such homo- or copolymers ".
  • the jacket material can be selected from the group consisting of "aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins such as formaldehyde condensates of melamine, urea or phenol, epoxy resins, polyepoxides, poly (meth) acrylates, such as polymethyl (meth) acrylate, polybutyl (meth) acrylate, polyisopropyl (meth) acrylate, polystyrene, PVC, polyacrylonitrile, polyethylene, polypropylene, polyethylene oxide, polybutadiene, polytetrafluoroethylene, polyoxymethylene, rubber, polyisoprene, random or block copolymers a or more such homopolymers, and mixtures of two or more different such homo- or copolymers ".
  • the core material has a higher glass transition temperature than the cladding material, since then at a temperature between the glass transition temperatures of the materials only the cladding material and not the core material flows.
  • the core material can, for example, have a glass transition temperature in the range of more than 60 ° C, preferably more than 80 ° C, most preferably more than 90 ° C, while the jacket material, for example, has a glass transition temperature in the range of 40 - 90 ° C, in particular 60 - 80 ° C.
  • Such a range of glass transition temperatures is recommended as core material for organic polymers, for example.
  • the glass transition temperature of the core material can be above 300 ° C, and then the glass transition temperature of the cladding area, for example in the case of polycarbonates, can also be high, for example in the range of 80 - 250 ° C, in particular 120 - 200 ° C.
  • the cladding material which can form a matrix in the course of the production of the photonic crystal, in which the spheres or cores are embedded (and fixed), should have a refractive index (also called refractive index) different from the refractive index of the core material.
  • refractive index also called refractive index
  • the expression of the different refractive index denotes a difference of at least 0.001, better at least 0.01, advantageously at least 0.1.
  • the person skilled in the art can easily select suitable material pairings from the above materials for the core material and the cladding material with regard to the difference in the refractive index.
  • the core material, but also the cladding material have the higher refractive index in each case.
  • the weight ratio of core material to cladding material can be in the range from 2: 1 to 1: 5, in particular in the range from 3: 2 to 1: 3. In the case of polymeric materials, this ratio is preferably no greater than 2: 3 for both materials.
  • a coupling layer can be set up between the core and the shell of a core-shell particle.
  • crosslinked or partially crosslinked organic polymers come into consideration.
  • the surface of the core can be functionalized in a manner customary in the art for binding or adhesion of the jacket material.
  • core-shell particles suitable for the production of photonic crystals is described, for example, in the prior art mentioned at the beginning, as well as further variants and details for core materials, shell materials, coupling layers, etc. This prior art is hereby expressly described in Referenced.
  • Photonic crystals which can be used according to the invention can be formed as a film, layer or foil. Accordingly, they can be applied to a substrate using conventional coating processes or adhesion promoters. In doing so, they can be an integral part of a. Form document, for example in the case of card structures.
  • Photonic crystals according to the invention can form a visible pattern, for example the outline of an object or a person, or a sequence of characters made up of letters and / or numbers. Barcodes can also be used as samples. Then the coating takes place with the appropriate printing process or a film is cut out accordingly. It goes without saying that a photonic crystal is also macroscopically isotropic, i.e. without pattern, can be formed.
  • the luminescent substance can be arranged in the particles of the photonic crystal.
  • core-shell particles an arrangement in the core material and / or in the shell material of the core-shell particles is possible.
  • the material in question is preferably mixed homogeneously with the luminescent substance prior to solidification or polymerization in the course of producing the particles.
  • the luminescence-generating doping for example with rare earth elements, which are built into the host lattice of the core material, can take place.
  • the photonic crystal can then be produced without admixing luminescent particles, as a result of which disturbances in the formation of the photonic crystal due to the presence of interstitial luminescent particles are reliably avoided.
  • the respective polymer can contain luminescent monomer units, namely regularly, statically, in blocks or as side chains (graft copolymers).
  • the crosslinking agent can also be luminescent.
  • luminescent substances can be covalently, ionically or complexed bound to the polymer chain.
  • the luminescent substance can, however, also be arranged between the particles of the photonic grating.
  • the ratio of the diameter D p of the pigment particles to the diameter D (or D ⁇ ) of the particles of the photonic grating D p / D (or D p / D ⁇ ) is less than 0.5 , preferably less than 0.1, most preferably less than 0.02.
  • the pigment particles can then be arranged between the particles or spheres of the photonic crystal and damage to the particles or spheres as a result of the action of pressure is practically impossible.
  • the luminescent substance is a luminescent dye, it can in any case be freely distributed between the particles of the photonic grating without disturbing them or their arrangement.
  • the photonic crystal is produced by mixing particles of the photonic crystal with the luminescent substance and then forming the long-range order to form the crystal, as described above.
  • a variant of this is when the luminescent substance is deposited on the surface of the particles of the photonic crystal, for example by layer by layer Absorption. This results in a uniform growth on the particles of the photonic crystal, with the result that the narrow density distribution is maintained.
  • the advantage here is that the particles of the photonic crystal and the luminescent substance can be selected and modified independently of one another, which enables easier adaptation to different products of the value and security printing.
  • the photonic crystal can also be underlaid with the luminescent substance.
  • the substrate can be coated, for example printed, with a paint or ink which contains the luminescent substance.
  • the photonic crystal is then applied to the coating, for example in the simplest case as a film.
  • This variant is the simplest in terms of process engineering and also allows modifications of the luminescent substance / photonic crystal system in a simple manner, for example for different types or values of security and / or value documents.
  • non-luminescent colorants such as dyes or pigments
  • all colorants customary in the field of security and / or value documents that are known to the average person skilled in the art can be used.
  • Usual forensic feature substances can also be used in the photonic Crystal or another layer of the security and / or value document can be provided.
  • the invention further relates to a method for producing a security and / or value document according to the invention or a security element therefor, wherein a substrate is provided on a surface or partial surface with a coating containing the particles of the photonic crystal to be formed and this coating is provided with the simultaneous action of Heat and pressure is compressed, optionally with a luminescent layer containing the luminescent substance being applied to the substrate prior to coating with the particles, and / or wherein the particles contain the luminescent substance or are mixed with it.
  • the compression is used to form the photonic crystal.
  • the action of heat preferably takes place at a temperature in the range of 60-260 ° C, in particular 70-190 ° C, and for a duration of 0.5-7200 s, preferably 0.5-3600 s, most preferably 1 - 10 s.
  • the compression can take place at a pressure of 1-100 bar, preferably 1-20 bar.
  • the compaction takes place by means of a press, in particular a laminating press.
  • the action of heat is at correspondingly higher temperature, for example at 140-250 ° C.
  • a separating and / or protective layer can be arranged on the coating with particles of the photonic crystal.
  • the protective layer can be welded to the substrate, possibly the luminescent layer, and the coating with particles or laminated to form a layer composite.
  • the protective layer should be transparent in relation to the emission wavelength lambda.
  • a security and / or value document according to the invention can also be produced by applying a finished photonic crystal, in particular in the form of a film (thickness, for example 0.1-500 ⁇ m ), to the substrate and connecting it to it, be it by gluing, be it by lamination.
  • a finished photonic crystal in particular in the form of a film (thickness, for example 0.1-500 ⁇ m )
  • the luminescent substance can already be present in the photonic crystal.
  • the substrate it is also possible here for the substrate to be provided beforehand with a separate coating, for example a printing layer containing the luminescent substance.
  • the invention further relates to a security and / or value document which can be obtained using a method according to the invention mentioned above.
  • the invention relates to a method for verifying a security system according to the invention and / or value document or security element, the luminescent substance being stimulated to emit luminescent radiation, for example by exposure to UV radiation, the intensity of the luminescent radiation being determined as a function of the angle with respect to the surface of the security and / or value document, and wherein the specific angle dependence of the luminescence radiation is compared with a predetermined angle dependency. If no angle dependency is determined, or if the determined angle dependency does not match the predefined angle dependency, then this is not a security and / or valuable document according to the invention and consequently a replica. If the determined angle dependency corresponds to the predetermined angle dependency, the security and / or value document is verified as being according to the invention and consequently genuine.
  • the determination can be carried out by means of visual inspection. But it is also possible to determine the angle dependency by machine. In the case of different luminescent substances, the determination is carried out in each case for the relevant emission wavelengths for which different angle dependencies are specified.
  • a substrate 1 which can be single-layer or multi-layer.
  • a printing layer 2 is applied directly to this substrate, the printing layer 2 containing two different fluorescent substances in a uniform distribution.
  • a first fluorescent substance has an emission wavelength of 500 nm and a second fluorescent substance has an emission wavelength of 707 nm.
  • a photonic crystal 3 in the form of a film follows in the layer sequence.
  • This photonic crystal 3 is made of core-shell particles according to the literature reference WO 2003/025035 A2 educated.
  • the core / shell particles have a mean particle diameter of 354 nm.
  • the photonic crystal 3 is followed by a protective layer 4 which is transparent to visible light and which in turn can be single-layer or multilayer.
  • a single-layer or multi-layer intermediate layer is arranged between the printing layer 2 and the photonic crystal 3, which is not shown for the sake of clarity.
  • the substrate 1 with the printing layer 2, the photonic crystal 3 and the protective layer 4 are connected to one another by lamination and form a monolithic layer block.
  • red (707 nm) with maximum intensity at around 45 ° relative to the surface normal of the security and / or value document is emitted, but at 0 ° and 90 ° the intensity is greatly reduced, more typically below 90% of the maximum intensity.
  • green (500 nm) can be observed at 45 ° with only 10% or less of the maximum intensity, but at 0 ° and 90 ° with maximum intensity.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Credit Cards Or The Like (AREA)
  • Optical Filters (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

Gebiet der ErfindungField of invention

Die Erfindung betrifft ein Sicherheits- und/oder Wertdokument mit einem Sicherheitselement, wobei das Sicherheitselement einen auf einem Substrat mit in Bezug auf eine Oberfläche des Substrates definierter Orientierung angeordneten photonischen Kristall und einen Lumineszenzstoff enthält. Die Erfindung betrifft des Weiteren ein Verfahren zu dessen Herstellung sowie ein Verfahren zu dessen Verifikation.The invention relates to a security and / or value document with a security element, the security element containing a photonic crystal and a luminescent substance arranged on a substrate with an orientation defined in relation to a surface of the substrate. The invention also relates to a method for its production and a method for its verification.

Hintergrund der Erfindung und Stand der TechnikBackground of the Invention and Prior Art

Im Wert- und Sicherheitsdruck haben sich optisch variable Farben als gutes Sicherheitsmerkmal durchgesetzt, da diese ohne technische Hilfsmittel leicht zu überprüfen sind. Aus der Praxis sind solche optisch variablen Farben beispielsweise von Banknoten und Dokumenten bekannt. Diese sind zwar schwer nachzustellen, eine Überprüfung zum Beispiel an einer Kasse erfolgt oft nur flüchtig, so dass nur das Vorhandensein eines Farbwechsels beobachtet wird. Aufgrund der Vielzahl von Farben und Pigmenten, beispielsweise Flüssigkristalle oder Plättchen bzw. Flakes, welche solche Effekte aufweisen und käuflich erwerbbar sind, sind Eindrucksfälschungen bekannt, welche sich zwar deutlich von den originalen Farbwechselfarben unterscheiden, jedoch für einen ungeübten Laien nicht unbedingt erkennbar sind.In value and security printing, optically variable colors have established themselves as a good security feature because they can be easily checked without technical aids. Such optically variable colors are known from practice, for example from bank notes and documents. These are difficult to reproduce, a check at a cash register, for example, is often only fleeting, so that only the presence of a color change is observed. Due to the large number of colors and pigments, for example liquid crystals or platelets or flakes, which have such effects and are commercially available, falsified impressions are known which are clearly different from the original color change colors differ, but are not necessarily recognizable for an inexperienced layman.

Ein weiteres, weit verbreitetes Sicherheitssystem umfasst die Verwendung von Lumineszenzstoffen. In den meisten Dokumenten des Wert- und Sicherheitsdruckes finden sich Lumineszenzen, da diese mit einfachen Mitteln (Drucker, Kopierer) nicht nachstellbar sind und zur Überprüfung lediglich eine UV-Lichtquelle erfordern. Nachteilig ist, dass meist nur eine schnelle Überprüfung nach dem Farbeindruck erfolgt, so dass eine Lumineszenz teilweise beispielsweise mit einem Textmarker nachgestellt werden kann. Für eine genaue Untersuchung sind demgegenüber aufwändige Spektrometer erforderlich, mit welchen zwischen verschiedenen Lumineszenzwellenlängen unterschieden werden kann. Zwar gelingt dadurch eine maschinelle Überprüfung unschwer und zuverlässig, aber der apparative Aufwand ist erheblich und folglich aufwändig.Another widely used security system involves the use of luminescent substances. In most documents relating to value and security printing, there are luminescences, as these cannot be reproduced using simple means (printer, copier) and only require a UV light source for checking. It is disadvantageous that usually only a quick check takes place after the color impression, so that a luminescence can be partially simulated, for example with a highlighter. In contrast, for a precise examination, complex spectrometers are required with which it is possible to differentiate between different luminescence wavelengths. It is true that a machine check is easy and reliable as a result, but the outlay on equipment is considerable and consequently complex.

Aus der Literaturstelle WO 2006/045567 A2 ist ein Sicherheits- und/oder Wertdokument des eingangs genannten Aufbaus bekannt. Hierbei wird als photonischer Kristall eine Schicht eingesetzt, welche aus Kugeln bzw. Sphären mit enger monomodaler Durchmesserverteilung aufgebaut ist, wobei die Sphären eine dichte Kugelpackung, also eine Kristallstruktur, bilden. Der Durchmesser der Kugeln liegt dabei in einem Bereich von 50 - 500 nm, so dass sich für verschiedene Komponenten des sichtbaren Lichtes unterschiedliche Reflexionsbedingungen gemäß dem Bragg'schen Gesetz an verschiedenen Netzebenen des Kristalls darstellen. Dadurch wird ein optisch variabler Farbeffekt erhalten, nämlich beim Verschwenken des Sicherheits- und/oder Wertdokumentes bzw. Betrachtung unter sich verändernden Beobachtungswinkeln. Gemäß diesem Stand der Technik kann das Sicherheits- und/oderFrom the reference WO 2006/045567 A2 a security and / or value document of the structure mentioned above is known. In this case, a layer is used as the photonic crystal, which is made up of spheres or spheres with a narrow monomodal diameter distribution, the spheres forming a dense packing of spheres, that is, a crystal structure. The diameter of the spheres is in a range of 50-500 nm, so that different reflection conditions according to Bragg's law are present at different network planes of the crystal for different components of visible light. This makes a visually more variable Obtain color effect, namely when pivoting the security and / or value document or viewing at changing viewing angles. According to this prior art, the security and / or

Wertdokument zusätzlich einen Lumineszenzstoff enthalten. Der Durchmesser der Sphären ist jedoch so gewählt, dass sich die gewünschten optisch variablen Effekte einstellen, und zwar völlig unabhängig von einer eventuellen Lumineszenz.Document of value additionally contain a luminescent substance. The diameter of the spheres, however, is chosen so that the desired optically variable effects are achieved, completely independently of any possible luminescence.

Für die Herstellung von photonischen Kristalle geeignete Strukturen sind beispielsweise in den Literaturstellen WO. 03/025035 A2 , US 4,391,928 , EP 0 441 559 B1 und EP 0 955 323 B1 beschrieben.Structures suitable for the production of photonic crystals are for example in the literature references WHERE. 03/025035 A2 , U.S. 4,391,928 , EP 0 441 559 B1 and EP 0 955 323 B1 described.

Aus der WO 2005 077 668 A1 ist ein Sicherheitsdokument mit auf einer Oberfläche eines Substrats angeordneten Kern-Mantel-Partikeln und fluoreszierenden Partikeln bekannt.From the WO 2005 077 668 A1 a security document is known with core-shell particles and fluorescent particles arranged on a surface of a substrate.

Lumineszenzstrahlung weist typischerweise keine Richtcharakteristik auf, da die Emitterzentren innerhalb einer Beschichtung, Farbe oder dergleichen statistisch orientiert sind. Aus anderen technischen Bereichen, beispielsweise der Technologie der Laserdioden, ist es bekannt, gerichtete Lumineszenzstrahlung zu erzeugen, indem Schichtstrukturen verwendet werden, deren Schichten eine Dicke aufweisen, die zur Reflexion oder Vorwärtsverstärkung der Lumineszenzstrahlung in einer definierten Raumrichtung führen. Solche Strukturen sind für den Wert- und Sicherheitsdruck weniger geeignet auf Grund der aufwändigen Herstellung.Luminescence radiation typically does not have a directional characteristic, since the emitter centers are oriented statistically within a coating, color or the like. From other technical fields, for example laser diode technology, it is known to generate directional luminescence radiation by using layer structures whose layers have a thickness that leads to the reflection or forward amplification of the luminescence radiation in a defined spatial direction. Such structures are less suitable for value and security printing due to the complex production.

Technisches Problem der ErfindungTechnical problem of the invention

Der Erfindung liegt daher das technische Problem zu Grunde, ein Sicherheitselement zur Verfügung zu stellen, welches leicht mit minimalen Hilfsmitteln, aber erhöhter Zuverlässigkeit, auch bei flüchtiger Betrachtung, überprüfbar ist.The invention is therefore based on the technical problem of providing a security element which can easily be checked with minimal resources, but with increased reliability, even with a cursory inspection.

Grundzüge der ErfindungMain features of the invention

Zur Lösung dieses technischen Problems lehrt die Erfindung, dass eine Emissionswellenlänge Iambda des Lumineszenzstoffes und eine Gitterkonstante des photonischen Kristalls nach Maßgabe der Formel Iambda = m * 2 * d

Figure imgb0001
aufeinander abgestimmt sind, wobei d ein Abstand zwischen zwei Netzebenen des photonischen Kristalls ist und d mit der Gitterkonstante a wie folgt zusammenhängt d = a / h 2 + k 2 + l 2 0,5
Figure imgb0002
und m eine positive ganze Zahl sind.To solve this technical problem, the invention teaches that an emission wavelength Iambda of the luminescent substance and a lattice constant of the photonic crystal in accordance with the formula Iambda = m * 2 * d
Figure imgb0001
are matched to one another, where d is a distance between two lattice planes of the photonic crystal and d is related to the lattice constant a as follows d = a / H 2 + k 2 + l 2 0.5
Figure imgb0002
and m is a positive integer.

Mit anderen Worten ausgedrückt, die Partikel, mit welchen der photonische Kristall gebildet wird, werden in Hinblick auf Durchmesser und Anordnung mit der Maßgabe auf die Emissionswellenlänge abgestimmt, dass die Intensität der Lumineszenzstrahlung unter verschiedenen Betrachtungswinkeln verschieden ist.In other words, the particles with which the photonic crystal is formed, in terms of diameter and arrangement with the proviso on the Emission wavelength adjusted so that the intensity of the luminescence radiation is different at different viewing angles.

Mit der Erfindung wird eine beachtliche Verbesserung der sicheren und einfachen Überprüfung von Lumineszenz-Sicherheitselementen erreicht. Denn eine überprüfende Person braucht lediglich das Sicherheits- und/oder Wertdokument einer die Lumineszenz anregenden Strahlung, beispielsweise UV, auszusetzen, und zu überprüfen, i) ob Lumineszenz beobachtet wird, und ii) bejahendfalls, ob deren Intensität beim Verkippen des Sicherheits- und/oder Wertdokumentes variiert. Nur wenn beide Kriterien erfüllt sind, wird das Sicherheits- und/oder Wertdokument als echt akzeptiert. Ein erfindungsgemäßes Lumineszenz-Sicherheitselement ist mit einfachen Mitteln nicht mehr nachbildbar.The invention makes a considerable improvement in the safe and simple checking of luminescent security elements reached. Because a checking person only needs to expose the security and / or valuable document to radiation that stimulates luminescence, for example UV, and to check i) whether luminescence is observed, and ii) if so, whether its intensity when the security and / or or value document varies. The security and / or value document is only accepted as genuine if both criteria are met. A luminescence security element according to the invention can no longer be reproduced with simple means.

Die Erfindung nutzt die Erkenntnis, dass ein photonischer Kristall auch dafür genutzt werden kann, die an sich ungerichtete Lumineszenzstrahlung durch Brechung mit einer anisotropen Verteilung der Intensität im Raumwinkel auszustatten.The invention uses the knowledge that a photonic crystal can also be used to equip the non-directional luminescence radiation with an anisotropic distribution of the intensity in the solid angle by refraction.

DefinitionenDefinitions

Als Sicherheits- und/oder Wertdokumente seien lediglich beispielhaft genannt: Personalausweise, Reisepässe, ID-Karten, Zugangskontrollausweise, Visa, Steuerzeichen, Tickets, Führerscheine, Kraftfahrzeugpapiere, Banknoten, Schecks, Postwertzeichen, Kreditkarten, beliebige Chipkarten und Haftetiketten (z.B. zur Produktsicherung). Solche Sicherheits- und/oder Wertdokumente weisen typischerweise ein Substrat, eine Druckschicht und optional eine transparente Deckschicht auf. Ein Substrat ist eine Trägerstruktur, auf welche die Druckschicht mit Informationen, Bildern, Mustern und dergleichen aufgebracht wird. Als Materialien für ein Substrat kommen alle fachüblichen Werkstoffe auf Papier- und/oder Kunststoffbasis in Frage.Security documents and / or documents of value are only mentioned as examples: ID cards, passports, ID cards, access control cards, visas, tax codes, tickets, driving licenses, vehicle documents, banknotes, checks, postage stamps, credit cards, any chip cards and adhesive labels (e.g. for product security). Such security and / or value documents typically have a substrate, a printing layer and optionally a transparent cover layer. A substrate is a support structure on which the printing layer is attached Information, images, patterns and the like is applied. All conventional materials based on paper and / or plastic can be used as materials for a substrate.

Ein Sicherheitselement ist eine bauliche Einheit, die zumindest ein Sicherheitsmerkmal umfasst. Ein Sicherheitselement kann eine selbstständige bauliche Einheit sein, die mit einem Sicherheits- und/oder Wertdokument verbunden, beispielsweise verklebt werden kann, es kann sich aber auch um einen integralen Bestandteil eines Sicherheits- und/oder Wertdokumentes handeln. Ein Beispiel für ersteres ist ein auf ein Sicherheits- und/oder Wertdokument aufklebbares Visum. Ein Beispiel für letzteres ist ein in einen Geldschein oder einen Ausweis integriertes, beispielsweise einlaminiertes, flächiges Konstrukt. Unter letzteres fallen auch Schichten bzw. Beschichtungen, die auf ein Substrat angebracht werden.A security element is a structural unit that includes at least one security feature. A security element can be an independent structural unit that can be connected to a security and / or value document, for example glued, but it can also be an integral part of a security and / or value document. An example of the former is a visa that can be stuck onto a security and / or valuable document. An example of the latter is a flat construct that is integrated, for example, laminated into a bank note or an identity card. The latter also includes layers or coatings that are applied to a substrate.

Ein Sicherheitsmerkmal ist eine Struktur, die nur mit (gegenüber einfachem Kopieren) erhöhtem Aufwand oder gar nicht unauthorisiert herstellbar, reproduzierbar, manipulierbar oder veränderbar ist. Im Rahmen der Erfindung wird das Sicherheitsmerkmal durch den Verbund aus photonischem Kristall und Lumineszenzstoff gebildet. Der Begriff des Verbundes bezeichnet dabei die optische Koppelung mit Abstimmung von Netzebenenabstand und Emissionswellenlänge.A security feature is a structure that can only be produced, reproduced, manipulated or changed with increased effort (compared to simple copying) or not at all in an unauthorized manner. In the context of the invention, the security feature is formed by the composite of photonic crystal and luminescent substance. The term “network” refers to the optical coupling with coordination of network level spacing and emission wavelength.

Der Begriff der Lumineszenz bezeichnet die Emission von elektromagnetischer Strahlung, insbesondere im IR-, sichtbaren oder UV-Bereich, im Verlauf einer Relaxation eines atomaren oder molekularen elektronischen Systems aus einem angeregten Zustand in einen energetisch niedrigeren Zustand, im Allgemeinen den elektronischen Grundzustand. Hierbei kann die vorherige Anregung durch elektrische Energie bzw. ein elektrisches Potential (Elektrolumineszenz), Beschuss mit Elektronen (Kathodolumineszenz), Beschuss mit Photonen (Photolumineszenz), Wärmeeinwirkung (Thermolumineszenz) oder Reibung (Tribolumineszenz) erfolgen. Im Rahmen der Erfindung ist die Photolumineszenz bevorzugt. Die Lumineszenz umfasst insbesondere die Phosphoreszenz sowie die (Photo-) Fluoreszenz.The term luminescence refers to the emission of electromagnetic radiation, especially in the IR, visible or UV range, in the course of a relaxation of an atomic or molecular electronic system from an excited state to an energetically lower state, generally the electronic ground state. In this case, the previous excitation can take place through electrical energy or an electrical potential (electroluminescence), bombardment with electrons (cathodoluminescence), bombardment with photons (photoluminescence), the action of heat (thermoluminescence) or friction (triboluminescence). In the context of the invention, photoluminescence is preferred. Luminescence includes in particular phosphorescence and (photo) fluorescence.

Die Fluoreszenz ist eine strahlende Deaktivierung von angeregten elektronischen Zuständen, wobei der Übergang vom angeregten Zustand in den niedrigeren energetischen Zustand, beispielsweise den Grundzustand, spinerlaubt ist. Die Verweildauer im angeregten Zustand beträgt typischerweise ca. 10-8 s, i.e. die Emission der Fluoreszenzstrahlung endet unmittelbar nach dem Ende des Energieeintrages zur Anregung. Die Phosphoreszenz ist dagegen eine spinverbotene Deaktivierung von angeregten Zuständen über Interkombinationsprozesse. Daher ist die Relaxation schwach und langsam. Die Verweildauer in einem angeregten Zustand beträgt einige Millisekunden bis zu Stunden und entsprechend lange ist die Emission der Phosphoreszenzstrahlung zu beobachten.Fluorescence is a radiant deactivation of excited electronic states, the transition from the excited state to the lower energetic state, for example the ground state, being spin-allowed. The dwell time in the excited state is typically approx. 10 -8 s, ie the emission of fluorescent radiation ends immediately after the end of the energy input for excitation. In contrast, phosphorescence is a spin-forbidden deactivation of excited states via intercombination processes. Therefore the relaxation is weak and slow. The dwell time in an excited state is a few milliseconds up to hours and the emission of the phosphorescent radiation can be observed for a correspondingly long time.

Die Emissionswellenlänge eines Lumineszenzstoffes ist für den verwendeten Stoff charakteristisch und bestimmt durch die Energiedifferenz zwischen angeregtem Zustand und dem energetisch niedrigeren elektronischen Zustand, beispielsweise dem Grundzustand. Als Emissionswellenlänge wird dabei das Maximum der Emissionsintensität in einem Emissionspektrum bezeichnet.The emission wavelength of a luminescent substance is characteristic of the substance used and is determined by the energy difference between the excited state and the energetically lower electronic state, for example the ground state. The maximum emission intensity in an emission spectrum is referred to as the emission wavelength.

Ein Lumineszenzstoff enthält Atome, Moleküle oder Partikel, die zur Lumineszenz befähigt sind. Mit einem Lumineszenzstoff kann eine Lumineszenzfarbe oder -tinte geschaffen werden, welche die fachüblichen weiteren Komponenten von Farben oder Tinten enthält, wie etwa Binder, Penetrationsmittel, Stellmittel, Biozide, Tenside, Puffersubstanzen, Lösungsmittel (Wasser und/oder organische Lösungsmittel), Füllstoffe, Pigmente, Effektpigmente, Antischaummittel, Antiabsetzmittel, UV-Stabilisatoren, etc.. Geeignete Tintenformulierungen für verschiedene Druckverfahren sind dem Durchschnittsfachmann aus dem Stand der Technik wohl bekannt und erfindungsgemäß eingesetzte Lumineszenzstoffe werden insofern an Stelle oder zusätzlich zu konventionellen Farbstoffen bzw. Pigmenten beigemischt.A luminescent substance contains atoms, molecules or particles that are capable of luminescence. A luminescent substance can be used to create a luminescent paint or ink that contains the other components of paints or inks customary in the art, such as binders, penetrants, adjusting agents, biocides, surfactants, buffer substances, solvents (water and / or organic solvents), fillers, pigments , Effect pigments, antifoam agents, anti-settling agents, UV stabilizers, etc .. Suitable ink formulations for various printing processes are well known to those skilled in the art from the prior art and luminescent substances used according to the invention are in this respect added instead of or in addition to conventional dyes or pigments.

Eine Strahlung ist zur Anregung der Lumineszenz typischerweise funktional, wenn die Wellenlänge der Strahlung kleiner ist als die Wellenlänge der Lumineszenzstrahlung. Jedoch kann eine Strahlung mit höherer Wellenlänge funktional sein, wenn der betreffende Lumineszenzstoff zu sogenannten Up-Conversion Prozessen fähig ist.Radiation is typically functional to excite luminescence when the wavelength of the radiation is smaller than the wavelength of the luminescence radiation. However, radiation with a higher wavelength can be functional if the luminescent substance in question is capable of so-called up-conversion processes.

Eine Netzebene ist im Raum definiert durch die Miller'schen Indizes h, k, und 1. Der Abstand d ist dabei definiert als der kleinste Abstand zueinander paralleler Netzebenen, i.e. von Netzebenen mit gleichen Miller'schen Indizes.A network plane is defined in space by the Miller indices h, k, and 1. The distance d is defined as the smallest distance between parallel network planes, i.e. of lattice planes with the same Miller indices.

Eine dichte Kugelpackung entspricht einem fcc (face centered cubic, flächenzentriert kubisch, kubisch dichte Kugelpackung) oder hcc bzw. hcp (hexagonal close packed, hexagonal dichte Kugelpackung) Gitter. Die Gitterkonstante a ist dabei a = 2 0,5 * D

Figure imgb0003
wobei D der Durchmesser der Kugeln bzw. Sphären ist, welcher als Abstand der nächsten benachbarten Sphärenmittelpunkte, gegeben ist.A close packing of spheres corresponds to an fcc (face centered cubic, cubic close packing) or hcc or hcp (hexagonal close packed, hexagonal close packing) lattice. The lattice constant a is included a = 2 0.5 * D.
Figure imgb0003
where D is the diameter of the balls or spheres, which is given as the distance between the next adjacent spherical centers.

Die Reflexionsbedingung nach dem Bragg'schen Gesetz ist: lambda = m * 2 * d

Figure imgb0004
mit d als Abstand der Netzebenen und m eine positive ganze Zahl (Ordnung), insbesondere 1, 2, 3, 4, 5, 6, 7, 8, 9, oder 10. Folgend wird mit m = 1 (1. Ordnung) gerechnet.The reflection condition according to Bragg's law is: lambda = m * 2 * d
Figure imgb0004
with d as the distance between the network levels and m a positive whole number (order), in particular 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. The following is calculated with m = 1 (1st order) .

d und a hängen wie folgt zusammen: d = a / h 2 + k 2 + l 2 0,5 .

Figure imgb0005
d and a are related as follows: d = a / H 2 + k 2 + l 2 0.5 .
Figure imgb0005

Für den Zusammenhang zwischen der Emissionswellenlänge lambda und dem Durchmesser D der Kugeln ergibt sich dann: D = h 2 + k 2 + l 2 / 8 0,5 * lambda

Figure imgb0006
bzw. D = n / 8 0,5 * lambda ,
Figure imgb0007
wenn (h2 + k2 + l2) als n zusammen gefasst wird.The relationship between the emission wavelength lambda and the diameter D of the spheres then results: D. = H 2 + k 2 + l 2 / 8th 0.5 * lambda
Figure imgb0006
or. D. = n / 8th 0.5 * lambda ,
Figure imgb0007
if (h 2 + k 2 + l 2 ) is summarized as n.

Der Begriff des Durchmessers D bezeichnet den mittleren Durchmesser der Sphären (bzw. mittleren Abstand der nächsten zueinander benachbarter Sphären), welcher als Maximum der einer Anzahl-bezogenen (monomodalen) linearen normierten Dichteverteilung definiert ist. Diese Dichteverteilung ist gegeben durch q r x = dQ r / dx

Figure imgb0008
mit qr der Dichteverteilung, Qr(x) der Summenverteilung, bezogen auf die Anzahl und dx, dem Durchmesserdiffential.The term diameter D denotes the mean diameter of the spheres (or mean distance between the closest spheres adjacent to one another), which is defined as the maximum of the number-related (monomodal) linear normalized density distribution. This density distribution is given by q r x = dQ r / dx
Figure imgb0008
with q r the density distribution, Qr (x) the cumulative distribution, related to the number and dx the diameter differential.

Im Rahmen der Erfindung sollte die Dichteverteilung möglichst eng sein, damit deutlich sichtbare und reproduzierbare Winkelabhängigkeiten bei der Betrachtung entstehen. Bevorzugt ist es, wenn die (meist Gaussverteilungs-ähnliche) Dichteverteilung beim halben Maximumswert der Dichte eine Breite von weniger als 10% des (mittleren) Durchmessers D, vorzugsweise weniger als 5% des Durchmessers D, idealerweise weniger als 2% des Durchmessers D, aufweist.In the context of the invention, the density distribution should be as narrow as possible so that clearly visible and reproducible angle dependencies arise when viewed. It is preferred if the (mostly Gaussian-like) density distribution at half the maximum value of the density has a width of less than 10% of the (mean) diameter D, preferably less than 5% of the diameter D, ideally less than 2% of the diameter D.

Werden an Stelle von Sphären andere Partikelformen, wie Scheibchen oder Stäbchen eingesetzt, so ist ebenfalls eine enge Größenverteilung im vorstehenden Sinne wichtig. An Stelle des mittleren Durchmessers D tritt dann der mittlere Äquivalentdurchmesser DÄ, welcher nach definierten geometrischen Regeln aus der betreffenden Form berechnet wird. In diesem Falle ist aber auch eine entsprechend enge Verteilung des Aspektverhältnisses (verschiedene geometrische Erstreckungen eines Partikels) wichtig.If other particle shapes, such as discs or rods, are used instead of spheres, a narrow size distribution in the above sense is also important. Instead of the mean diameter D, the mean equivalent diameter D Ä , which is calculated from the relevant shape according to defined geometric rules, then occurs. In this case, however, a correspondingly narrow distribution of the aspect ratio (different geometric extensions of a particle) is also important.

Im Rahmen der Erfindung wird in der Regel eingerichtet sein, dass der photonische Kristall bei der Emissionswellenlänge keine vollständige Bandlücke aufweist. Photonische Kristalle mit vollständiger Bandlücke sind bislang nur theoretisch postuliert und zeichnen sich dadurch aus, dass das Licht sich in keiner Raumrichtung ausbreiten kann. Bei photonischen Kristallen mit unvollständiger Bandlücke, wie im Rahmen der Erfindung insbesondere eingesetzt, ist die Ausbreitung des Lichtes demgegenüber nur in bestimmten Raumrichtungen möglich.Within the scope of the invention, it will generally be set up so that the photonic crystal does not have a complete band gap at the emission wavelength. Photonic crystals with a complete band gap have so far only been postulated theoretically and are characterized by the fact that light cannot propagate in any spatial direction. In the case of photonic crystals with an incomplete band gap, as used in particular in the context of the invention, the propagation of the light is only possible in certain spatial directions.

Ausführungsformen der ErfindungEmbodiments of the invention

Der Lumineszenzstoff kann grundsätzlich im IR, Sichtbaren, oder UV emittieren. Bevorzugt ist es, wenn die Emission im Sichtbaren erfolgt, da dann eine Überprüfung des Sicherheits- und/oder Wertdokumentes durch einfache Inaugenscheinnahme erfolgen kann.The luminescent substance can in principle emit in the IR, visible, or UV. It is preferred if the emission takes place in the visible, since then the Security and / or value documents can be done by simple inspection.

Der Lumineszenzstoff kann einen Lumineszenzfarbstoff und/oder ein Lumineszenzpigment umfassen.The luminescent substance can comprise a luminescent dye and / or a luminescent pigment.

Der Lumineszenzfarbstoff kann ausgewählt sein aus der Gruppe bestehend aus "organische Fluoreszenzfarbstoffe, Naphthalimide, Coumarine, Xanthene, Thioxanthene, Naphtholactame, Azlactone, Methine, Oxazine, Thiazine, und Mischungen von zwei oder mehr verschiedenen solchen Substanzen". Das Lumineszenzpigment kann ausgewählt sein aus der Gruppe bestehend aus "ZnS:Ag, Zn-Silikat, SiC, ZnS, CdS (mit Cu oder Mn Aktiviert), ZnS/CdS:Ag, ZnS:Cu,Al, Y2O2S:Eu, Y2O3:Eu, YVO4:Eu, Zn2SiO4:Mn, CaVVO4, (Zn,Mg)F2:Mn, MgSiO3:Mn, ZnO:Zn, Gd2O2S:Tb, Y2O2S:Tb, La2O2S:Tb, BaFCl:Eu, LaOBr:Tb, Mg-Wolframat, (Zn,Be)-Silikat:Mn, Cd-Borat:Mn, Ca10(PO4)6F, Cl:Sb, Mn, (SrMg)2P2O7:Eu, Sr2P2O7:Sn, Sr4Al14O25: Eu, Y2SiO5 : Ce, Tb, Y(P,V)O4:Eu, BaMg2Al10O27:Eu, MaAl11O19:Ce, Tb, und Mischungen von zwei oder mehr verschiedenen solchen Substanzen". Hierbei ist vor dem ":" das Wirtsgitter und nach dem ":" ein Dotierungselement angegeben.The luminescent dye can be selected from the group consisting of "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more different such substances". The luminescent pigment can be selected from the group consisting of "ZnS: Ag, Zn-Silicate, SiC, ZnS, CdS (activated with Cu or Mn), ZnS / CdS: Ag, ZnS: Cu, Al, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, YVO 4 : Eu, Zn 2 SiO 4 : Mn, CaVVO 4 , (Zn, Mg) F 2 : Mn, MgSiO 3 : Mn, ZnO: Zn, Gd 2 O 2 S: Tb , Y 2 O 2 S: Tb, La 2 O 2 S: Tb, BaFCl: Eu, LaOBr: Tb, Mg tungstate, (Zn, Be) silicate: Mn, Cd borate: Mn, Ca 10 (PO 4 ) 6 F, Cl: Sb, Mn, (SrMg) 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, Y 2 SiO 5 : Ce, Tb, Y ( P, V) O 4 : Eu, BaMg 2 Al 10 O 27 : Eu, MaAl 11 O 19 : Ce, Tb, and mixtures of two or more different such substances ". The host lattice is indicated in front of the ":" and a doping element after the ":".

Bevorzugt ist es, wenn der Lumineszenzstoff ein Fluoreszenzfarbstoff ist, welcher ausgewählt ist aus der Gruppe bestehend aus "organische Fluoreszenzfarbstoffe, Naphthalimide, Coumarine, Xanthene, Thioxanthene, Naphtholactame, Azlactone, Methine, Oxazine, Thiazine, und Mischungen von zwei oder mehr verschiedenen solchen Substanzen". Zu weiteren geeigneten und bevorzugten Fluoreszenzfarbstoffen wird lediglich beispielsweise auf die Literaturstellen Schwander et al., "Fluorescent Dyes" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2002 , WO 03/052025 A , WO 02/053677 A , EP 0147252 A , GB 2,258,659 und F.M. Winnik et al., Xerox Discloser Journal Vol. 17, No. 3, 1992, Seiten 161-162 , verwiesen.It is preferred if the luminescent substance is a fluorescent dye which is selected from the group consisting of "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more different such substances ". To other suitable and preferred Fluorescent dyes is only referred to, for example, in the literature Schwander et al., "Fluorescent Dyes" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2002 , WO 03/052025 A , WO 02/053677 A , EP 0147252 A , GB 2,258,659 and FM Winnik et al., Xerox Discloser Journal Vol. 17, No. 3, 1992, pp. 161-162 , referenced.

Im Rahmen der Erfindung können vorteilhafterweise auch zwei oder mehr verschiedene Lumineszenzstoffe eingesetzt werden, wobei die verschiedenen Lumineszenzstoffe verschiedene Emissionswellenlängen aufweisen. Der Begriff der verschiedenen Emissionswellenlängen bezeichnet dabei einen Wellenlängenunterschied von zumindest 3 nm, 5 nm, 10 nm, 20 nm, oder 30nm, im Sichtbaren. Auf Grund der verschiedenen Emissionswellenlängen ergeben sich dann unterschiedliche Winkel, unter denen die verschiedenen Farben der Lumineszenz jeweils mit besonders hoher oder niedriger Intensität beobachtet werden können. Der Begriff der hohen Intensität bezeichnet bezüglich einer Emissionswellenlänge die maximal zu beobachtenden Intensität. Eine niedrige Intensität bezeichnet dann eine gegenüber der hohen Intensität verminderte Intensität, beispielsweise um zumindest 5%, 10%, 20%, 30%, 50%, oder 80% vermindert. Dadurch wird bei Verkippen des Sicherheits- und/oder Wertdokumentes ein Lumineszenzfarbwechsel erzeugt.In the context of the invention, two or more different luminescent substances can advantageously also be used, the different luminescent substances having different emission wavelengths. The term of the different emission wavelengths denotes a wavelength difference of at least 3 nm, 5 nm, 10 nm, 20 nm, or 30 nm, in the visible. The different emission wavelengths then result in different angles at which the different colors of the luminescence can be observed with particularly high or low intensity. The term high intensity denotes the maximum intensity that can be observed with respect to an emission wavelength. A low intensity then denotes an intensity that is reduced compared to the high intensity, for example reduced by at least 5%, 10%, 20%, 30%, 50%, or 80%. As a result, a luminescence color change is generated when the security and / or value document is tilted.

Der photonische Kristall ist vorteilhafterweise durch ein fcc oder hcc Gitter mit einer Gitterkonstante a gebildet ist, und wobei d = a / n0,5 mit n = 1 bis 20, insbesondere 1 bis 5, ist, und wobei n für (h2 + k2 + l2) mit h, k, und 1 als Miller'sche Indizes steht. Die Gitterpunkte bzw. Partikel des photonischen Kristalls können grundsätzlich, beliebige Formen aufweisen, beispielsweise als Scheibchen oder Stäbchen. Bevorzugt ist es jedoch, wenn die Gitterpunkte bzw. Partikel als Sphären (Kugeln) ausgebildet sind.The photonic crystal is advantageously formed by an fcc or hcc lattice with a lattice constant a, and where d = a / n 0.5 with n = 1 to 20, in particular 1 to 5, and where n for (h 2 + k 2 + l 2 ) with h, k, and 1 stands as Miller indices. The grid points or particles of the photonic crystal can in principle have any shape, for example as small discs or rods. However, it is preferred if the lattice points or particles are designed as spheres (spheres).

Dann ist es besonders bevorzugt, wenn die Sphären Kern-Mantel-Partikel sind, welche in einer dichten Kugelpackung angeordnet sind. Der einzustellende mittlere Durchmesser der Sphären hängt dabei von der Emissionswellenlänge des eingesetzten Lumineszenzstoffes ab. So kann der mittlere Durchmesser der Sphären im Bereich von 270 - 5000 nm, insbesondere von 270 - 2500 nm liegen, wenn der Lumineszenzstoff im IR (780 - 3000 nm) emittiert. Der mittlere Durchmesser der Sphären kann im Bereich von 135 - 1200 nm, insbesondere von 135 - 600 nm liegen, wenn der Lumineszenzstoff im Sichtbaren (380 - 780 nm) emittiert. Der mittlere Durchmesser der Sphären kann im Bereich von 35 - 600 nm, insbesondere von 35 - 300 nm liegen, wenn der Lumineszenzstoff im UV (100 - 380 nm) emittiert.It is then particularly preferred if the spheres are core-shell particles which are arranged in a tight packing of spheres. The mean diameter of the spheres to be set depends on the emission wavelength of the luminescent substance used. The mean diameter of the spheres can thus be in the range from 270-5000 nm, in particular from 270-2500 nm, if the luminescent substance emits in the IR (780-3000 nm). The mean diameter of the spheres can be in the range from 135 to 1200 nm, in particular from 135 to 600 nm, if the luminescent substance emits in the visible (380 to 780 nm). The mean diameter of the spheres can be in the range of 35-600 nm, in particular 35-300 nm, if the luminescent substance emits in the UV (100-380 nm).

Der photonische Kristall kann durch Abscheidung aus flüssiger Phase mittels Selbstanordnung, beispielsweise unter Druck, wie beim Inkjet Druckverfahren, hergestellt werden. Beispielsweise die Herstellung künstlicher Opale aus SiO2 aus Lösungen ist gut bekannt.The photonic crystal can be produced by deposition from the liquid phase by means of self-assembly, for example under pressure, as in the inkjet printing process. For example, the production of artificial opals from SiO 2 from solutions is well known.

Besonders bevorzugt ist es, wenn die Kern-Mantel-Partikel einen Kern aus einem organischen oder anorganischen Kernmaterial und einen Mantel aus einem polymeren organischen Mantelmaterial aufweisen, wobei das Mantelmaterial unter erhöhter Temperatur fließfähig ist, während das Kernmaterial bei der erhöhten Temperatur nicht fließfähig ist. Hintergrund ist, dass zur Bildung eines photonischen Kristalls die hierfür notwendige periodische Fernstruktur, beispielsweise die dichte Kugelpackung, in definierter Orientierung hergestellt werden muss. Wird eine Schüttung oder Emulsion oder Suspension mit solchen Kern-Mantel-Partikeln unter erhöhter Temperatur einer Druckkraft ausgesetzt, so bewirken die zwischen den Partikeln entstehenden Scherkräfte, dass die Partikel sich zur dichten Kugelpackung auf einer Oberfläche eines Substrates anordnen und ausrichten, wenn die Partikel sich gegeneinander bewegen können. Ein unter den Druck- und Temperaturbedingungen fließfähiger Mantel erleichtert solche Ordnungsbewegungen der Partikel gegeneinander und es resultiert ein photonischer Kristall mit ausgezeichneter Fernordnung und eindeutiger Orientierung auf dem Substrat. Im Einzelnen bestehen dabei verschiedene Möglichkeiten der Ausführung.It is particularly preferred if the core / shell particles have a core made of an organic or inorganic core material and a shell made of a polymer have organic shell material, wherein the shell material is flowable at an elevated temperature, while the core material is not flowable at the elevated temperature. The background to this is that the periodic remote structure required for this, for example the close packing of spheres, must be produced in a defined orientation in order to form a photonic crystal. If a bed or emulsion or suspension with such core-shell particles is exposed to a compressive force at an elevated temperature, the shear forces that arise between the particles cause the particles to arrange themselves to form a dense packing of spheres on a surface of a substrate and align themselves when the particles move can move against each other. A jacket that is flowable under the pressure and temperature conditions facilitates such movements of the particles in relation to one another and the result is a photonic crystal with excellent long-range order and clear orientation on the substrate. In detail, there are various options for execution.

Das anorganische Kernmaterial kann ausgewählt sein aus der Gruppe bestehend aus "Metalle, Halbmetalle, Metallchalcogenide, insbesondere Metalloxide, Metallpnictide, insbesondere Metallnitride oder Metallphosphide, und Mischungen von zwei oder mehr verschiedenen solchen Substanzen, wobei das Metall aus einem Element der ersten drei Hauptgruppen des Periodensystems oder einem metallischen Element der Nebengruppen gebildet sein kann und wobei das Halbmetall Si, Ge, As, Sb, und Bi umfassen kann", insbesondere ausgewählt ist aus der Gruppe bestehend aus "SiO2, TiO2, ZrO2, SnO2, und Al2O3".The inorganic core material can be selected from the group consisting of "metals, semimetals, metal chalcogenides, especially metal oxides, metal pnictides, especially metal nitrides or metal phosphides, and mixtures of two or more different such substances, the metal being an element of the first three main groups of the periodic table or a metallic element of the subgroups and wherein the semimetal can comprise Si, Ge, As, Sb, and Bi ", in particular is selected from the group consisting of "SiO 2 , TiO 2 , ZrO 2 , SnO 2 , and Al 2 O 3 ".

Bevorzugterweise ist das organische Kernmaterial ausgewählt aus der Gruppe bestehend aus "aliphatische, aliphatisch/aromatische oder vollaromatische Polyester, Polyamide, Polycarbonate, Polyharnstoff, Polyurethane, Aminoplastharze, Phenoplastharze, wie beispielsweise Formaldehydkondensate von Melamin, Harnstoff oder Phenol, Epoxidharze, Acrylester, wie Methyl(meth)acrylat, Butyl(meth)acrylat, Isopropyl(meth)acrylat, Polystyrol, PVC, Polyacrylnitril, Random- oder Block-Copolymerisate einer oder mehrerer solcher Homopolymere, und Mischungen von zwei oder mehr verschiedenen solchen Homo- oder Copolymere" .The organic core material is preferably selected from the group consisting of "aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins such as formaldehyde condensates of melamine, urea or phenol, epoxy resins, acrylic esters such as methyl ( meth) acrylate, butyl (meth) acrylate, isopropyl (meth) acrylate, polystyrene, PVC, polyacrylonitrile, random or block copolymers of one or more such homopolymers, and mixtures of two or more different such homo- or copolymers ".

Das Mantelmaterial kann ausgewählt sein aus der Gruppe bestehend aus "aliphatische, aliphatisch/aromatische oder vollaromatische Polyester, Polyamide, Polycarbonate, Polyharnstoff, Polyurethane, Aminoplastharze, Phenoplastharze, wie beispielsweise Formaldehydkondensate von Melamin, Harnstoff oder Phenol, Epoxidharze, Polyepoxide, Poly(meth)acrylate, wie Polymethyl(meth)acrylat, Polybutyl(meth)acrylat, Polyisopropyl(meth)acrylat, Polystyrol, PVC, Polyacrylnitril, Polyethylen, Polypropylen, Polyethylenoxid, Polybutadien, Polytetrafluorethylen, Polyoxymethylen, Kautschuk, Polyisopren, Random- oder Block-Copolymerisate einer oder mehrerer solcher Homopolymere, und Mischungen von zwei oder mehr verschiedenen solchen Homo- oder Copolymere". Zweckmäßig ist es, wenn das Kernmaterial eine höhere Glastemperatur als das Mantelmaterial aufweist, da dann bei einer Temperatur zwischen den Glastemperaturen der Materialien ausschließlich das Mantelmaterial und nicht das Kernmaterial fließt. Das Kernmaterial kann beispielsweise eine Glastemperatur im Bereich von mehr als 60 °C, vorzugsweise mehr als 80 °C, höchstvorzugsweise von mehr als 90 °C aufweisen, während das Mantelmaterial beispielsweise eine Glastemperatur im Bereich von 40 - 90 °C, insbesondere von 60 - 80 °C, aufweisen kann. Solche Bereich der Glastemperaturen werden sich beispielsweise bei organischen Polymeren als Kernmaterial empfehlen. Alternativ kann, beispielsweise im Falle anorganischer Kernmaterialien, die Glastemperatur des Kernmaterials oberhalb von 300 °C liegen, und dann kann die Glastemperatur des Mantelbereiches, beispielsweise im Falle von Polycarbonaten, auch hoch, beispielsweise im Bereich von 80 - 250 °C, insbesondere 120 - 200 °C, sein.The jacket material can be selected from the group consisting of "aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins such as formaldehyde condensates of melamine, urea or phenol, epoxy resins, polyepoxides, poly (meth) acrylates, such as polymethyl (meth) acrylate, polybutyl (meth) acrylate, polyisopropyl (meth) acrylate, polystyrene, PVC, polyacrylonitrile, polyethylene, polypropylene, polyethylene oxide, polybutadiene, polytetrafluoroethylene, polyoxymethylene, rubber, polyisoprene, random or block copolymers a or more such homopolymers, and mixtures of two or more different such homo- or copolymers ". It is useful if the core material has a higher glass transition temperature than the cladding material, since then at a temperature between the glass transition temperatures of the materials only the cladding material and not the core material flows. The core material can, for example, have a glass transition temperature in the range of more than 60 ° C, preferably more than 80 ° C, most preferably more than 90 ° C, while the jacket material, for example, has a glass transition temperature in the range of 40 - 90 ° C, in particular 60 - 80 ° C. Such a range of glass transition temperatures is recommended as core material for organic polymers, for example. Alternatively, for example in the case of inorganic core materials, the glass transition temperature of the core material can be above 300 ° C, and then the glass transition temperature of the cladding area, for example in the case of polycarbonates, can also be high, for example in the range of 80 - 250 ° C, in particular 120 - 200 ° C.

Das Mantelmaterial, welches im Zuge der Herstellung des photonischen Kristalls eine Matrix bilden kann, in welche die Sphären bzw. Kerne eingebettet (und fixiert) sind, sollte einen von dem Brechungsindex des Kernmaterials verschiedenen Brechungsindex (auch Brechzahl genannt) aufweisen. Der Ausdruck des verschiedenen Brechungsindexes bezeichnet dabei einen Unterschied von mindestens 0,001, besser mindestens 0,01, vorteilhafterweise mindestens 0,1. Der Fachmann kann aus den vorstehenden Stoffen für das Kernmaterial und das Mantelmaterial unschwer in Hinblick auf den Unterschied im Brechungsindex geeignete Stoffpaarungen auswählen. Dabei kann das Kernmaterial, aber auch das Mantelmaterial den jeweils höheren Brechungsindex aufweisen.The cladding material, which can form a matrix in the course of the production of the photonic crystal, in which the spheres or cores are embedded (and fixed), should have a refractive index (also called refractive index) different from the refractive index of the core material. The expression of the different refractive index denotes a difference of at least 0.001, better at least 0.01, advantageously at least 0.1. The person skilled in the art can easily select suitable material pairings from the above materials for the core material and the cladding material with regard to the difference in the refractive index. The core material, but also the cladding material have the higher refractive index in each case.

Das Gewichtsverhältnis von Kernmaterial zu Mantelmaterial kann im Bereich von 2 : 1 bis 1 : 5, insbesondere im Bereich von 3 : 2 zu 1 : 3, liegen. Vorzugsweise ist dieses Verhältnis im Falle polymerer Werkstoffe für beide Materialien nicht größer als 2 : 3.The weight ratio of core material to cladding material can be in the range from 2: 1 to 1: 5, in particular in the range from 3: 2 to 1: 3. In the case of polymeric materials, this ratio is preferably no greater than 2: 3 for both materials.

Zwischen Kern und Mantel eines Kern-Mantel-Partikels kann eine Kopplungsschicht eingerichtet sein. Hierfür kommen beispielsweise vernetzte oder teilvernetzte organische Polymere in Frage. Alternativ kann die Oberfläche des Kerns für eine Bindung bzw. Haftung des Mantelmaterials in fachüblicher Weise funktionalisiert sein.A coupling layer can be set up between the core and the shell of a core-shell particle. For example, crosslinked or partially crosslinked organic polymers come into consideration. Alternatively, the surface of the core can be functionalized in a manner customary in the art for binding or adhesion of the jacket material.

Die Herstellung von für die Erzeugung von photonischen Kristallen geeigneten Kern-Mantel-Partikeln ist beispielsweise in dem eingangs genannten Stand der Technik beschrieben, ebenso wie weitere Varianten und Details für Kernmaterialien, Mantelmaterialien, Kopplungsschichten, usw.. Dieser Stand der Technik wird hiermit ausdrücklich in Bezug genommen.The production of core-shell particles suitable for the production of photonic crystals is described, for example, in the prior art mentioned at the beginning, as well as further variants and details for core materials, shell materials, coupling layers, etc. This prior art is hereby expressly described in Referenced.

Erfindungsgemäß einsetzbare photonische Kristalle können als Film, Schicht oder Folie ausgebildet sein. Dementsprechend können sie mit üblichen Beschichtungsverfahren, oder Haftvermittlern auf einem Substrat angebracht werden. Hierbei können sie einen integralen Bestandteil eines. Dokumentes bilden, beispielsweise im Falle von Kartenaufbauten.Photonic crystals which can be used according to the invention can be formed as a film, layer or foil. Accordingly, they can be applied to a substrate using conventional coating processes or adhesion promoters. In doing so, they can be an integral part of a. Form document, for example in the case of card structures.

Erfindungsgemäße photonische Kristalle können ein sichtbares Muster, beispielsweise den Umriss eines Gegenstandes oder einer Person, oder eine Zeichenfolge aus Buchstaben und/oder Zahlen bilden. Auch Barcodes kommen als Muster in Frage. Dann erfolgt die Beschichtung mit entsprechenden Druckverfahren oder eine Folie wird entsprechend ausgeschnitten. Es versteht sich, dass ein photonischer Kristall auch makroskopisch isotrop, i.e. ohne Muster, gebildet sein kann.Photonic crystals according to the invention can form a visible pattern, for example the outline of an object or a person, or a sequence of characters made up of letters and / or numbers. Barcodes can also be used as samples. Then the coating takes place with the appropriate printing process or a film is cut out accordingly. It goes without saying that a photonic crystal is also macroscopically isotropic, i.e. without pattern, can be formed.

Für die Anordnung des Lumineszenzstoffes bestehen verschiedene Möglichkeiten. Der Lumineszenzstoff kann in den Partikeln des photonischen Kristalls angeordnet sein. Im Falle von Kern-Mantel-Partikel ist eine Anordnung im Kernmaterial und/oder im Mantelmaterial der Kern-Mantel-Partikel möglich. Hierzu wird im Falle von organischem Kernmaterial das betreffende Material vor der Verfestigung bzw. Polymerisation im Zuge der Herstellung der Partikel mit dem Lumineszenzstoff vorzugsweise homogen vermischt. Im Falle von anorganischem Kernmaterial kann eine die Lumineszenz erzeugende Dotierung, beispielsweise mit Seltenerd-Elementen, erfolgen, welche in das Wirtsgitter des Kernmaterials eingebaut sind. Dann kann der photonische Kristall ohne Beimischung von Lumineszenz-Partikeln erzeugt werden, wodurch Störungen der Ausbildung des photonischen Kristalls auf Grund der Anwesenheit interstitieller Lumineszenzpartikel sicher vermieden werden.There are various possibilities for the arrangement of the luminescent substance. The luminescent substance can be arranged in the particles of the photonic crystal. In the case of core-shell particles, an arrangement in the core material and / or in the shell material of the core-shell particles is possible. For this purpose, in the case of organic core material, the material in question is preferably mixed homogeneously with the luminescent substance prior to solidification or polymerization in the course of producing the particles. In the case of inorganic core material, the luminescence-generating doping, for example with rare earth elements, which are built into the host lattice of the core material, can take place. The photonic crystal can then be produced without admixing luminescent particles, as a result of which disturbances in the formation of the photonic crystal due to the presence of interstitial luminescent particles are reliably avoided.

Im Falle von polymeren Materialien für Kern- und/oder Mantelbereiche der Kern-Mantel-Partikel kann das jeweilige Polymer lumineszierende Monomerbausteine enthalten, und zwar regelmäßig, statisch, blockweise oder als Seitenketten (Pfropfcopolymere). Auch kann im Falle eines vernetzten Polymers das Vernetzungsmittel lumineszierend sein. Schließlich können Lumineszenzstoffe an die Polymerkette covalent, ionisch oder komplexiert gebunden sein.In the case of polymeric materials for core and / or shell areas of the core / shell particles, the respective polymer can contain luminescent monomer units, namely regularly, statically, in blocks or as side chains (graft copolymers). In the case of a crosslinked polymer, the crosslinking agent can also be luminescent. Finally, luminescent substances can be covalently, ionically or complexed bound to the polymer chain.

Der Lumineszenzstoff kann aber auch zwischen den Partikeln des photonischen Gitters angeordnet sein. Im Falle von Pigmenten wird es sich empfehlen, wenn das Verhältnis des Durchmessers Dp der Pigmentpartikel zum Durchmesser D (bzw. DÄ) der Partikel des photonischen Gitters Dp/D (bzw. Dp/DÄ) kleiner als 0,5, vorzugsweise kleiner als 0,1, höchstvorzugsweise kleiner als 0,02, ist. Dann lassen sich die Pigmentpartikel zwischen den Partikeln bzw. Sphären des photonischen Kristalls anordnen und eine Beschädigung der Partikel bzw. Sphären in Zuge einer Druckeinwirkung ist praktisch ausgeschlossen. Wenn der Lumineszenzstoff ein Lumineszenzfarbstoff ist, kann er sich ohnehin frei zwischen den Partikeln des photonischen Gitters verteilen, ohne diese bzw. deren Anordnung zu stören. In beiden Fällen erfolgt die Herstellung des photonischen Kristalls durch Mischung von Partikeln des photonischen Kristalls mit dem Lumineszenzstoff und anschließender Formung der Fernordnung zum Kristall, wie vorstehend beschrieben. Eine Variante hiervon ist, wenn der Lumineszenzstoff auf der Oberfläche der Partikel des photonischen Kristalls abgeschieden ist, beispielsweise durch Layer by Layer Absorption. Dadurch wird ein gleichmäßiges Aufwachsen auf den Partikeln des photonischen Kristalls erzielt mit der Folge der Einhaltung der engen Dichteverteilung. Vorteilhaft hierbei ist, dass die Partikel des photonischen Kristalls und der Lumineszenzstoff unabhängig voneinander gewählt und modifiziert werden können, was eine leichtere Anpassung an verschiedene Produkte des Wert- und Sicherheitsdruckes ermöglicht.The luminescent substance can, however, also be arranged between the particles of the photonic grating. In the case of pigments, it is advisable if the ratio of the diameter D p of the pigment particles to the diameter D (or D Ä ) of the particles of the photonic grating D p / D (or D p / D Ä ) is less than 0.5 , preferably less than 0.1, most preferably less than 0.02. The pigment particles can then be arranged between the particles or spheres of the photonic crystal and damage to the particles or spheres as a result of the action of pressure is practically impossible. If the luminescent substance is a luminescent dye, it can in any case be freely distributed between the particles of the photonic grating without disturbing them or their arrangement. In both cases, the photonic crystal is produced by mixing particles of the photonic crystal with the luminescent substance and then forming the long-range order to form the crystal, as described above. A variant of this is when the luminescent substance is deposited on the surface of the particles of the photonic crystal, for example by layer by layer Absorption. This results in a uniform growth on the particles of the photonic crystal, with the result that the narrow density distribution is maintained. The advantage here is that the particles of the photonic crystal and the luminescent substance can be selected and modified independently of one another, which enables easier adaptation to different products of the value and security printing.

Alternativ kann der photonische Kristall auch mit dem Lumineszenzstoff unterlegt sein. So kann beispielsweise mit einer Farbe oder Tinte, welche den Lumineszenzstoff enthält, das Substrat beschichtet, beispielsweise bedruckt, werden. Dann erfolgt die Applikation des photonischen Kristalls auf die Beschichtung, beispielsweise im einfachsten Fall als Folie. Diese Variante ist verfahrenstechnisch am einfachsten und erlaubt auch auf einfache Weise Modifikationen des Systems Lumineszenzstoff / photonischer Kristall, beispielsweise für verschiedene Arten oder Wertigkeiten von Sicherheits- und/oder Wertdokumenten.Alternatively, the photonic crystal can also be underlaid with the luminescent substance. For example, the substrate can be coated, for example printed, with a paint or ink which contains the luminescent substance. The photonic crystal is then applied to the coating, for example in the simplest case as a film. This variant is the simplest in terms of process engineering and also allows modifications of the luminescent substance / photonic crystal system in a simple manner, for example for different types or values of security and / or value documents.

Schließlich ist es möglich, dass im photonischen Kristall und oder in einer den Lumineszenzstoff enthaltenden Schicht zusätzliche nicht-lumineszente Farbmittel, wie Farbstoffe oder Pigmente, eingerichtet sind. Hierfür kommen alle im Bereich der Sicherheits- und/oder Wertdokumente üblichen Farbmittel, die dem Durchschnittsfachmann bekannt sind, in Frage. Ebenso können übliche forensische Merkmalsstoffe im photonischen Kristall oder einer anderen Schicht des Sicherheits- und/oder Wertdokumentes vorgesehen sein.Finally, it is possible for additional non-luminescent colorants, such as dyes or pigments, to be set up in the photonic crystal and / or in a layer containing the luminescent substance. For this purpose, all colorants customary in the field of security and / or value documents that are known to the average person skilled in the art can be used. Usual forensic feature substances can also be used in the photonic Crystal or another layer of the security and / or value document can be provided.

Die Erfindung betrifft des Weiteren ein Verfahren zur Herstellung eines erfindungsgemäßen Sicherheits- und/oder Wertdokumentes bzw. eines Sicherheitselementes hierfür, wobei ein Substrat auf einer Oberfläche oder Teiloberfläche mit einer Beschichtung enthaltend die Partikel des zu bildenden photonischen Kristalls versehen und diese Beschichtung unter gleichzeitiger Einwirkung von Wärme und Druck verdichtet wird, wobei wahlweise vor der Beschichtung mit den Partikeln eine Lumineszenzschicht enthaltend den Lumineszenzstoff auf das Substrat aufgebracht wird, und/oder wobei die Partikel den Lumineszenzstoff enthalten oder hiermit gemischt sind. In dieser Ausführungsform eines Herstellungsverfahrens erfolgt mit der Verdichtung die Ausbildung des photonischen Kristalls.The invention further relates to a method for producing a security and / or value document according to the invention or a security element therefor, wherein a substrate is provided on a surface or partial surface with a coating containing the particles of the photonic crystal to be formed and this coating is provided with the simultaneous action of Heat and pressure is compressed, optionally with a luminescent layer containing the luminescent substance being applied to the substrate prior to coating with the particles, and / or wherein the particles contain the luminescent substance or are mixed with it. In this embodiment of a production method, the compression is used to form the photonic crystal.

Vorzugsweise erfolgt die Einwirkung von Wärme mit einer Temperatur im Bereich von 60 - 260 °C, insbesondere von 70 - 190 °C, und für eine Dauer von 0,5 - 7200 s, vorzugsweise von 0,5 - 3600 s, höchstvorzugsweise von 1 - 10 s. Die Verdichtung kann mit einem Druck von 1 - 100 bar, vorzugsweise von 1 - 20 bar, erfolgen. Typischerweise erfolgt die Verdichtung mittels einer Presse, insbesondere einer Laminierpresse. Im Falle eines anorganischen Kernmaterials in Verbindung mit einem Polymer hoher Glastemperatur als Mantelmaterial, beispielsweise im Bereich von 80 - 250 °C, wird die Einwirkung von Wärme bei entsprechend höherer Temperatur, beispielsweise bei 140 - 250 °C, erfolgen.The action of heat preferably takes place at a temperature in the range of 60-260 ° C, in particular 70-190 ° C, and for a duration of 0.5-7200 s, preferably 0.5-3600 s, most preferably 1 - 10 s. The compression can take place at a pressure of 1-100 bar, preferably 1-20 bar. Typically, the compaction takes place by means of a press, in particular a laminating press. In the case of an inorganic core material in conjunction with a polymer of high glass transition temperature as the jacket material, for example in the range of 80-250 ° C, the action of heat is at correspondingly higher temperature, for example at 140-250 ° C.

Auf der Beschichtung mit Partikeln des photonischen Kristalls kann eine Trenn- und/oder Schutzschicht angeordnet werden. Die Schutzschicht kann im Zuge der Einwirkung von Wärme und Druck mit dem Substrat, ggf. der Lumineszenzschicht, und der Beschichtung mit Partikeln verschweisst bzw. zu einem Schichtenverbund laminiert wird. Die Schutzschicht sollte, bezogen auf die Emissionswellenlänge lambda, transparent sein.A separating and / or protective layer can be arranged on the coating with particles of the photonic crystal. In the course of the action of heat and pressure, the protective layer can be welded to the substrate, possibly the luminescent layer, and the coating with particles or laminated to form a layer composite. The protective layer should be transparent in relation to the emission wavelength lambda.

Alternativ zur vorstehenden Vorgehensweise kann ein erfindungsgemäßes Sicherheits- und/oder Wertdokument auch dadurch hergestellt werden, dass ein fertiger photonischer Kristall, insbesondere in Form einer Folie (Dicke z.B. 0,1 - 500 µm), auf das Substrat aufgebracht und hiermit verbunden wird, sei es durch Verkleben, sei es durch Einlaminieren. Auch dabei kann der Lumineszenzstoff bereits in dem photonischen Kristall vorhanden sein. Es ist aber auch hier möglich, dass zuvor das Substrat mit einer separaten Beschichtung, beispielsweise einer Druckschicht, enthaltend den Lumineszenzstoff, versehen wird.As an alternative to the above procedure, a security and / or value document according to the invention can also be produced by applying a finished photonic crystal, in particular in the form of a film (thickness, for example 0.1-500 μm ), to the substrate and connecting it to it, be it by gluing, be it by lamination. Here too, the luminescent substance can already be present in the photonic crystal. However, it is also possible here for the substrate to be provided beforehand with a separate coating, for example a printing layer containing the luminescent substance.

Die Erfindung betrifft des Weiteren ein Sicherheits- und/oder Wertdokument welches mit einem vorstehend genannten erfindungsgemäßen Verfahren erhältlich ist.The invention further relates to a security and / or value document which can be obtained using a method according to the invention mentioned above.

Schließlich betrifft die Erfindung ein Verfahren zur Verifizierung eines erfindungsgemäßen Sicherheits- und/oder Wertdokuments bzw. Sicherheitselementes, wobei der Lumineszenzstoff zur Emission einer Lumineszenzstrahlung angeregt wird, beispielsweise durch Exposition gegen UV-Strahlung, wobei die Intensität der Lumineszenzstrahlung in Abhängigkeit vom Winkel bezüglich der Oberfläche des Sicherheits- und/oder Wertdokumentes bestimmt wird, und wobei die bestimmte Winkelabhängigkeit der Lumineszenzstrahlung mit einer vorgegebenen Winkelabhängigkeit verglichen wird. Wird keine Winkelabhängigkeit bestimmt, oder stimmt die bestimmte Winkelabhängigkeit nicht mit der vorgegebenen Winkelabhängigkeit überein, so handelt es sich nicht um ein erfindungsgemäßes Sicherheits- und/oder Wertdokument und folglich um eine Nachbildung. Bei Übereinstimmung der bestimmten Winkelabhängigkeit mit der vorgegebenen Winkelabhängigkeit ist das Sicherheits- und/oder Wertdokument als erfindungsgemäß und folglich echt verifiziert. Die Bestimmung kann im einfachsten Fall mittels Inaugenscheinnahme erfolgen. Es ist aber auch möglich, die Winkelabhängigkeit maschinell zu bestimmen. Die Bestimmung wird im Falle verschiedener Lumineszenzstoffe jeweils für die betreffenden Emissionswellenlängen durchgeführt werden, für welche verschiedene Winkelabhängigkeiten vorgegeben sind.Finally, the invention relates to a method for verifying a security system according to the invention and / or value document or security element, the luminescent substance being stimulated to emit luminescent radiation, for example by exposure to UV radiation, the intensity of the luminescent radiation being determined as a function of the angle with respect to the surface of the security and / or value document, and wherein the specific angle dependence of the luminescence radiation is compared with a predetermined angle dependency. If no angle dependency is determined, or if the determined angle dependency does not match the predefined angle dependency, then this is not a security and / or valuable document according to the invention and consequently a replica. If the determined angle dependency corresponds to the predetermined angle dependency, the security and / or value document is verified as being according to the invention and consequently genuine. In the simplest case, the determination can be carried out by means of visual inspection. But it is also possible to determine the angle dependency by machine. In the case of different luminescent substances, the determination is carried out in each case for the relevant emission wavelengths for which different angle dependencies are specified.

Im Folgenden wird die Erfindung anhand von lediglich Ausführungsformen darstellenden Beispielen näher erläutert.

Beispiel 1:
verschiedene Aufbauformen eines erfindungsgemäßen Sicherheits- und/oder Wertdokumentes
In the following, the invention is explained in more detail on the basis of examples which merely represent embodiments.
Example 1:
different designs of a security and / or value document according to the invention

In der Figur 1 sind Querschnitte durch verschiedene Varianten erfindungsgemäßer Sicherheits- und/oder Wertdokumente dargestellt.In the Figure 1 cross-sections through different variants of security and / or value documents according to the invention are shown.

In der Figur 1a erkennt man ein Substrat 1, welches einschichtig oder mehrschichtig sein kann. Auf diesem Substrat ist unmittelbar eine Druckschicht 2 angebracht, wobei die Druckschicht 2 zwei verschiedene Fluoreszenzstoffe in gleichmäßiger Verteilung enthält. Ein erster Fluoreszenzstoff hat eine Emissionswellenlänge von 500 nm und ein zweiter Fluoreszenzstoff eine Emissionswellenlänge von 707 nm. In der Schichtfolge schließt sich ein als Folie ausgebildeter photonischer Kristall 3 an. Dieser photonische Kristall 3 ist aus Kern-Mantel-Partikeln gemäß der Literaturstelle WO 2003/025035 A2 gebildet. Die Kern-Mantel-Partikel weisen einen mittleren Durchmesser der Partikel von 354 nm auf. An den photonischen Kristall 3 schließt sich eine für sichtbares Licht transparente Schutzschicht 4 an, die ihrerseits einschichtig oder mehrschichtig sein kann. Es ist auch möglich, dass zwischen der Druckschicht 2 und dem photonischen Kristall 3 eine einschichtige oder mehrschichtige Zwischenschicht angeordnet ist, was der Übersichtlichkeit halber nicht dargestellt ist. Das Substrat 1 mit der Druckschicht 2, der photonische Kristall 3 und die Schutzschicht 4 sind miteinander verbunden durch Laminieren und bilden einen monolithischen Schichtenblock.In the Figure 1a one recognizes a substrate 1, which can be single-layer or multi-layer. A printing layer 2 is applied directly to this substrate, the printing layer 2 containing two different fluorescent substances in a uniform distribution. A first fluorescent substance has an emission wavelength of 500 nm and a second fluorescent substance has an emission wavelength of 707 nm. A photonic crystal 3 in the form of a film follows in the layer sequence. This photonic crystal 3 is made of core-shell particles according to the literature reference WO 2003/025035 A2 educated. The core / shell particles have a mean particle diameter of 354 nm. The photonic crystal 3 is followed by a protective layer 4 which is transparent to visible light and which in turn can be single-layer or multilayer. It is also possible for a single-layer or multi-layer intermediate layer to be arranged between the printing layer 2 and the photonic crystal 3, which is not shown for the sake of clarity. The substrate 1 with the printing layer 2, the photonic crystal 3 and the protective layer 4 are connected to one another by lamination and form a monolithic layer block.

In der Variante der Figur 1b sind die gleichen Fluoreszenzstoffe eingesetzt, wobei diese jedoch in dem photonischen Kristall 3 angeordnet sind. Dadurch kann die Druckschicht 2 entfallen. Die Fluoreszenzstoffe sind an der Oberfläche der Kern-Mantel-Partikel ab- bzw. adsorbiert, und zwar in gleichmäßiger Verteilung.

Beispiel 2:
Winkelabhängigkeit der Fluoreszenz des Gegenstandes des Beispiels 1
In the variant of the Figure 1b the same fluorescent substances are used, but these are arranged in the photonic crystal 3. This means that the printing layer 2 can be omitted. The fluorescent substances are absorbed or adsorbed on the surface of the core / shell particles, and in fact in a uniform distribution.
Example 2:
Angular dependence of the fluorescence of the article of Example 1

Bei der Abstimmung der Emissionswellenlängen mit dem Durchmesser der Partikel des photonischen Kristalls 3, und so letztendlich auch mit der Gitterkonstanten a sowie dem Netzebenenabstand d des photonischen Kristalls 3 ergibt sich, dass rot (707 nm) mit maximaler Intensität bei etwa 45° gegenüber der Oberflächennormalen des Sicherheits- und/oder Wertdokumentes emittiert wird, jedoch bei 0° und 90° die Intensität stark reduziert ist, typischer unter 90% der maximalen Intensität. Demgegenüber ist grün (500 nm) unter 45° mit nur 10% oder weniger der maximalen Intensität beobachtbar, jedoch bei 0° und 90° mit maximaler Intensität.When coordinating the emission wavelengths with the diameter of the particles of the photonic crystal 3, and ultimately also with the lattice constant a and the lattice plane spacing d of the photonic crystal 3, the result is that red (707 nm) with maximum intensity at around 45 ° relative to the surface normal of the security and / or value document is emitted, but at 0 ° and 90 ° the intensity is greatly reduced, more typically below 90% of the maximum intensity. In contrast, green (500 nm) can be observed at 45 ° with only 10% or less of the maximum intensity, but at 0 ° and 90 ° with maximum intensity.

Es ergibt sich die Darstellung der Figur 2a, wobei es sich um eine Projektion der in der Figur 2b perspektivisch gezeigten Hemisphäre in Richtung der Oberflächennormalen des Sicherheits- und/oder Wertdokumentes handelt. Man erkennt Bereiche R, die in ca. 45° rot erscheinen, während die Bereich G in ca. 90° und 0° grün erscheinen.The result is the representation of the Figure 2a , which is a projection of the one in the Figure 2b The hemisphere shown in perspective acts in the direction of the surface normal of the security and / or value document. Areas R can be seen that appear red in approx. 45 °, while areas G appear green in approx. 90 ° and 0 °.

Claims (15)

  1. A security and/or valuable document having a security element, wherein the security element has a photonic crystal arranged on a substrate and a luminescent substance,
    characterized in that
    the particles, by which the photonic crystal is formed, are adjusted with regard to an emission wavelength lambda of the luminescent substance such that an emission wavelength lambda of the luminescent substance complies with the formula lambda = m * 2 * d
    Figure imgb0010
    wherein d is a distance between two lattice planes of the photonic crystal and d and the grid constant a have the following relation: d = a / (h2 + k2 + l2)0.5, and m is a positive integer, such that the intensity of the luminescence radiation is different under different viewing angles.
  2. The security and/or valuable document according to claim 1, wherein the luminescent substance emits in the IR, visible, or UV range and/or
    wherein the luminescent substance comprises a luminescent dye and/or a luminescent pigment and/or wherein the luminescent dye is selected from the group comprising "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more such different substances", and/or wherein the luminescent pigment is selected from the group comprising "ZnS:Ag, Zn silicate, SiC, ZnS, CdS (activated with Cu or Mn), ZnS/CdS:Ag, ZnS:Cu,Al, Y2O2S: Eu, Y2O3: Eu, YVO4 : Eu, Zn2SiO4:Mn, CaVVO4, (Zn,Mg) F2:Mn, MgSiO3:Mn, ZnO:Zn, Gd2O2S:Tb, Y2O2S:Tb, La2O2S:Tb, BaFCl:Eu, LaOBr:Tb, Mg tungstenate, (Zn,Be) silicate:Mn, Cd borate:Mn, Ca10(PO4)6F, Cl:Sb, Mn, (SrMg)2P2O7: Eu, Sr2P2O7:Sn, Sr4Al14O25:Eu, Y2SiO5:Ce, Tb, Y(P,V)O4:Eu, BaMg2Al10O27: Eu, MaAl11O19: Ce, Tb, and mixtures of two or more such different substances" and/or
    wherein the luminescent substance is a fluorescent dye, which is selected from the group comprising "organic fluorescent dyes, naphthalimides, coumarins, xanthenes, thioxanthenes, naphtholactams, azlactones, methines, oxazines, thiazines, and mixtures of two or more such different substances".
  3. The security and/or valuable document according to one of claims 1 to 2, wherein the photonic crystal is formed by an fcc or hcc lattice with a grid constant a, and wherein d = a / n0.5 with n = 1 to 20, in particular 1 to 5, is, and wherein n is (h2 + k2 + l2) with h, k, and 1 as Miller indices and/or wherein the lattice points of the photonic crystal are configured by means of spheres or the centers thereof.
  4. The security and/or valuable document according to claim 3 second alternative, wherein the spheres are core-mantle particles, which are arranged in a close-packing of spheres and wherein optionally the mean diameter of the spheres is in the range from 270 to 5,000 nm, in particular from 270 to 2,500 nm, if the luminescent substance emits in the IR range (780 to 3,000 nm)or wherein the mean diameter of the spheres is in the range from 135 to 1,200 nm, in particular from 135 to 600 nm, if the luminescent substance emits in the visible range (380 to 780 nm) or wherein the mean diameter of the spheres is in the range from 35 to 600 nm, in particular from 35 to 300 nm, if the luminescent substance emits in the UV range (100 to 380 nm).
  5. The security and/or valuable document according to claim 4, wherein the core-mantle particles comprise a core of an organic or inorganic core material and a mantle of a polymeric organic mantle material, the mantle material being flowable at an increased temperature, however the core material not being flowable at the increased temperature.
  6. The security and/or valuable document according to claim 5, wherein the organic core material is selected from the group comprising "aliphatic, aliphatic/aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins, such as for instance formaldehyde condensates of melamine, urea or phenol, epoxide resins, acrylesters, such as methyl (meth)acrylate, butyl (meth)acrylate, isopropyl (meth)acrylate, polystyrene, PVC, polyacrylnitrile, random or block copolymerisates of one or several such homopolymers, and mixtures of two or more such different homopolymers or copolymers" or wherein the inorganic core material is selected from the group comprising "metals, semimetals, metal chalcogenides, in particular metal oxides, metal pnictides, in particular metal nitrides or metal phosphides, and mixtures of two or more such different substances, wherein the metal can be formed of an element of the first three main groups of the periodic table or of a metallic element of the side groups and wherein the semimetal may comprise Si, Ge, As, Sb, and Bi", is in particular selected from the group comprising "SiO2, TiO2, ZrO2, SnO2 and Al2O3".
  7. The security and/or valuable document according to claim 5 or 6, wherein the core material has a glass temperature in the range of more than 60 °C, preferably more than 80 °C, most preferably more than 90 °C, or wherein the core material has a glass temperature of more than 300 °C, and/or
    wherein the mantle material is selected from the group comprising "aliphatic, aliphatic/aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyurea, polyurethanes, aminoplast resins, phenoplast resins, as for instance formaldehyde condensates of melamine, urea or phenol, epoxide resins, polyepoxides, poly(meth)acrylate, such as polymethyl (meth)acrylate, polybutyl (meth)acrylate, polyisopropyl (meth)acrylate, polystyrene, PVC, polyacrylnitrile, polyethylene, polypropylene, polyethylene oxide, polybutadiene, polytetrafluorethylene, polyoxymethylene, caoutchouc, polyisoprene, random or block copolymerisates of one or several such homopolymers, and mixtures of two or more such different homopolymers or copolymers", and wherein the mantle material has a glass temperature in the range from 40 to 90 °C, in particular from 60 to 80 °C, or in the range from 80 to 250 °C.
  8. The security and/or valuable document according to one of claims 1 to 7, wherein the luminescent substance is arranged in the photonic crystal.
  9. The security and/or valuable document according to claim 8, wherein the luminescent substance is arranged in the particles of the photonic crystal, in particular in the core material and/or in the mantle material of the core-mantle particles and/or wherein the luminescent substance is arranged between the particles of the photonic crystal.
  10. The security and/or valuable document according to one of claims 1 to 9, wherein the photonic crystal is underlaid with the luminescent substance.
  11. A method for producing a security and/or valuable document or a security element according to one of claims 1 to 10, wherein the substrate is provided on a surface or partial surface with a coating comprising the particles of the photonic crystal to be formed, and this coating is condensed under simultaneous exposure to heat and pressure, wherein optionally before coating with the particles of the photonic crystal, a luminescent layer comprising the luminescent substance being applied to the substrate, and/or the particles of the photonic crystal comprising the luminescent substance or being mixed therewith.
  12. The method according to claim 11, wherein the exposure to heat takes place with a temperature in the range from 60 to 180°C, in particular from 70 to 130 °C, and for a time from 0.5 to 7,200 s, preferably from 0.5 to 3,600 s, most preferably from 1 to 10 s and/or wherein the condensation is performed with a pressure from 1 to 100 bars, preferably from 1 to 20 bars and/or wherein the condensation is achieved by means of a press, in particular a lamination press and/or wherein on the coating with particles of the photonic crystal, a separation and/or protection layer is arranged and/or wherein the protection layer is welded during the exposure to heat and pressure to the substrate, if applicable to the luminescent layer, and to the layer with particles of the photonic crystal or is laminated so to form a layer system, wherein the protection layer is optionally transparent, referred to the emission wavelength lambda.
  13. A security and/or valuable document or security element obtainable with a method according to one of claims 11 to 12.
  14. The security and/or valuable document according to one of claims 1 to 10 or 13 in the embodiment as an identity card, passport, ID card, access allowance card, visa, control symbol, ticket, driver license, vehicle document, banknote, cheque, postage stamp, credit card, chip card or adhesive label.
  15. A method for verifying a security and/or valuable document or a security element according to one of claims 1 to 10 or 13 to 14, wherein the luminescent substance is excited for emission of a luminescence radiation, wherein the intensity of the luminescence radiation being observed or determined in dependence on the angle with respect to the surface of the security and/or valuable document, and wherein the observed or determined angular dependency of the luminescence radiation is compared to a given angular dependency.
EP08715461.3A 2007-02-08 2008-02-06 Safety and/or valuable document having a photonic crystal Active EP2118855B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007007029A DE102007007029A1 (en) 2007-02-08 2007-02-08 Security and / or value document with photonic crystal
PCT/DE2008/000228 WO2008095481A2 (en) 2007-02-08 2008-02-06 Safety and/or valuable document having a photonic crystal

Publications (2)

Publication Number Publication Date
EP2118855A2 EP2118855A2 (en) 2009-11-18
EP2118855B1 true EP2118855B1 (en) 2020-09-23

Family

ID=39575538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08715461.3A Active EP2118855B1 (en) 2007-02-08 2008-02-06 Safety and/or valuable document having a photonic crystal

Country Status (6)

Country Link
EP (1) EP2118855B1 (en)
CN (1) CN101652800B (en)
AU (3) AU2008213463A1 (en)
CA (1) CA2677418C (en)
DE (1) DE102007007029A1 (en)
WO (1) WO2008095481A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012042A1 (en) 2007-03-13 2008-09-18 Giesecke & Devrient Gmbh security element
GB0720550D0 (en) 2007-10-19 2007-11-28 Rue De Int Ltd Photonic crystal security device multiple optical effects
CA2656506A1 (en) * 2009-02-27 2010-08-27 Bank Of Canada Security device
DE102011112696B4 (en) * 2011-08-31 2016-02-18 Martin-Luther-Universität Halle-Wittenberg Solar cell with film for back contact, process for its preparation and use of a film as back contact
ES2632808T3 (en) * 2014-09-04 2017-09-15 Nicox Science Ireland Carnosine compounds donors of nitric oxide
EP3109060B1 (en) 2015-06-23 2018-08-15 Hueck Folien Gesellschaft m.b.H. Safety element and method for manufacturing a safety element
WO2020192579A1 (en) * 2019-03-22 2020-10-01 苏州科技大学 Anti-counterfeiting mark and anti-counterfeiting paper

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391928A (en) 1981-09-04 1983-07-05 Nl Industries, Inc. Opacifying polymeric particle and uses
FR2554122B1 (en) 1983-11-02 1987-03-20 Rhone Poulenc Spec Chim NOVEL COMPOSITION FOR MARKING DOCUMENTS AND METHOD FOR VERIFYING THE AUTHENTICITY OF SUCH DOCUMENTS
JP2790381B2 (en) 1990-02-03 1998-08-27 三井化学株式会社 Cored multilayer emulsion particles
GB2258659B (en) 1991-08-14 1995-06-07 De La Rue Thomas & Co Ltd Luminescent materials and their use in security documents
DE19820302A1 (en) 1998-05-04 2000-02-24 Basf Ag Core / shell particles, their manufacture and use
US6576155B1 (en) 1998-11-10 2003-06-10 Biocrystal, Ltd. Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
CN1261470C (en) 2001-09-14 2006-06-28 默克专利有限公司 Moulded bodies made from core-shell particles
WO2003051643A1 (en) 2001-12-18 2003-06-26 Nanosolutions Gmbh Printing method with coded individual control of nozzles
DE10227071A1 (en) * 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
AT504587A1 (en) * 2004-02-16 2008-06-15 Hueck Folien Gmbh IMPACT-SAFE SAFETY FEATURE WITH COLOR TIP EFFECT
WO2006045567A2 (en) 2004-10-25 2006-05-04 Merck Patent Gmbh Use of moulding bodies made of core-shell particles
CN100378192C (en) * 2005-04-29 2008-04-02 中国科学院上海硅酸盐研究所 Luminescent material converted in nano level with yttrium oxide as matrix and preparation method
GB0615921D0 (en) * 2006-08-10 2006-09-20 Rue De Int Ltd Photonic crystal security device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2008213463A1 (en) 2008-08-14
EP2118855A2 (en) 2009-11-18
WO2008095481A2 (en) 2008-08-14
CA2677418A1 (en) 2008-08-14
WO2008095481A3 (en) 2008-12-11
CN101652800A (en) 2010-02-17
AU2016225899B2 (en) 2018-02-01
AU2014203815A1 (en) 2014-07-31
CA2677418C (en) 2016-09-20
CN101652800B (en) 2013-02-06
AU2016225899A1 (en) 2016-09-29
DE102007007029A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP2118855B1 (en) Safety and/or valuable document having a photonic crystal
EP2296911B1 (en) Method for producing a security and/or valuable product with a random pattern and a correlated identification character sequence
EP0435029B1 (en) Data carrier with a liquid crystal security element
EP1274585B2 (en) Method for producing laser-writable data carriers and data carrier produced according to this method
EP2296912B1 (en) Method for producing a security and/or valuable product with partial regions having a different luminescence emission
DE102006057507A1 (en) Optically variable security element
EP2906430B2 (en) Security feature with a colour progression structure for a value product and/or security product, and value document and/or security document having the security feature
EP3317114A1 (en) Security or value document comprising a luminescent feature and method for checking the authenticity of the security or value document
WO1994011203A1 (en) Document with doped optical safety mark, stratified composite paper for producing the same and device for checking the authenticity of the document
EP2734383B1 (en) Microcapsule and use thereof, security element having microcapsules and data carrier equipped therewith
EP2307206B1 (en) Gonioluminescent security element and method for producing it
DE102013200895A1 (en) Value or security product and method for producing a security feature on or in the value or security product
EP2055501A2 (en) Method of manufacturing a security medium and security medium
DE102009010770A1 (en) Improved process for making an optically variable security device
EP2928646B1 (en) Optically variable security element with optically variable coloured layer structure
DE102010015258A1 (en) Security element with a locally with respect to their light propagation properties modified photoconductive structure and method for producing such a security element
DE3121484C2 (en)
EP3107732B1 (en) Method for producing a polymer layer having at least one finely divided solid contained therein and method for producing a film body
EP3046777A1 (en) Method for producing a security feature of a value or security product and method for producing such a product
EP2644406A2 (en) Method for producing a data carrier and data carrier obtainable therefrom
EP2920001B1 (en) Set of a plurality of value and/or security products and method for producing a security feature
DE102016000428A1 (en) Disk with film security element
EP3109060B1 (en) Safety element and method for manufacturing a safety element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008017143

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G07D0007120000

Ipc: B42D0015000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G07D 7/12 20160101ALI20200527BHEP

Ipc: B42D 15/00 20060101AFI20200527BHEP

INTG Intention to grant announced

Effective date: 20200616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017143

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008017143

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1316017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080206

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230221

Year of fee payment: 16

Ref country code: DE

Payment date: 20230216

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526