EP2115180A2 - Verfahren zum herstellen eines einlauffähigen spritzbelags - Google Patents

Verfahren zum herstellen eines einlauffähigen spritzbelags

Info

Publication number
EP2115180A2
EP2115180A2 EP08734314A EP08734314A EP2115180A2 EP 2115180 A2 EP2115180 A2 EP 2115180A2 EP 08734314 A EP08734314 A EP 08734314A EP 08734314 A EP08734314 A EP 08734314A EP 2115180 A2 EP2115180 A2 EP 2115180A2
Authority
EP
European Patent Office
Prior art keywords
spray coating
producing
sub
coating
coating according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08734314A
Other languages
English (en)
French (fr)
Other versions
EP2115180B1 (de
Inventor
Andreas Jakimov
Manuel Hertter
Andreas KÄHNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2115180A2 publication Critical patent/EP2115180A2/de
Application granted granted Critical
Publication of EP2115180B1 publication Critical patent/EP2115180B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/311Layer deposition by torch or flame spraying

Definitions

  • the invention relates to a method for producing a spray coating, in particular an injection-capable spray coating for components of a turbine engine, according to the preamble of claim 1. Furthermore, the invention relates to an apparatus for performing this method according to the preamble of claim 12.
  • the current compressor design aims to increase the pressure ratio. Furthermore, the requirement of a lightweight construction, which is possible for example by reducing the number of stages, leads to an increase in the pressure ratio between the compressor stages. A side effect of this development is the increase in backflow from the pressure side to the suction side of the compressor blades.
  • This sealing system which prevents the above-described backflow between the rotating compressor blades and the compressor housing, becomes more and more important.
  • This sealing system is an important component of the efficiency and significantly influences the so-called pump line and thus the stable operation of the engine.
  • the potential contact surfaces of the housing are provided with abradable coatings, so-called inlet linings.
  • the coating material In order for the blades to be able to work into the appropriate places on the compressor housing, the coating material must be relatively easy abradable, without damaging the blade tips. Furthermore, the coating must also have good resistance to particle erosion and other degradation at elevated temperatures.
  • US Pat. No. 5,434,210 proposes a thermal spray powder and a composite coating of this powder which has a matrix component, a dry lubricant component and a plastic component.
  • a corresponding powder for thermal spraying is available under the name SM2042 from Sulzer Metco.
  • Thermal spraying refers to a process for producing a sprayed layer on the surface of a substrate, wherein filler materials are conducted onto the surface of a substrate to be coated using a gas.
  • a method and a monitoring system for quality assurance of the sprayed layers is described in DE 102004041671 Al. This is a so-called PFI (Particle Flux Imaging) method.
  • EP 1 332 799 A1 describes a device and a method for thermal spraying, in which a filler material which has been melted or melted is conducted onto a surface of a substrate to be coated using a gas or gas mixture.
  • a filler material which has been melted or melted is conducted onto a surface of a substrate to be coated using a gas or gas mixture.
  • at least one of the quality of the spray-influencing feature of the thermal spraying process which is responsible for the formation of the layer and its properties, detected, evaluated, evaluated, and regulated.
  • This provides a means for online control and optimization of one or more parameters responsible for the formation of the sprayed coating.
  • the invention is therefore based on the object to avoid the above-mentioned technical problems of the prior art and to provide an improved method for producing an injectible spray coating, which allows monitoring of the injection process by means of predetermined parameters. Furthermore, an apparatus for carrying out the method is to be made available. This object is achieved according to the invention by a method having the features of patent claim 1 and a device having the features of claim 12. Advantageous embodiments and further developments of the invention are specified in the subclaims.
  • the invention avoids the technical problems of the prior art and provides an improved method and an improved apparatus for the process-reliable production of an incidentally sprayed coating.
  • the inventive method for producing a spray coating, in particular an injectable spray coating for components of a turbine engine by means of thermal spraying, wherein for controlling and regulating the thermal spraying an online process control system, in particular a PFI unit and / or a spectrometer is provided, is characterized characterized in that at least one process parameter according to the formula
  • An advantageous development of the method provides that the coating takes place with SM2042 powder. This powder is particularly suitable for axial turbomachinery applications.
  • a further advantageous development of the method provides that the calculation takes place after setting the desired parameter online or alternatively before and after each coating. As a result, the process parameter or parameters can then be adjusted automatically or manually under constant control, for example by means of actuators.
  • a further advantageous embodiment of the method provides that the spray coating is applied to the compressor housing.
  • an enema coating can now be produced reproducibly in a low hardness.
  • the constant parameters y and z relevant for the respective process parameter of a coating reflect the correlation between the process variable of the online process control system and the respective process parameter.
  • these are between 0 and 15, with the interval limits included.
  • y is between 2 and 5, more preferably 3, while z is preferably between 8 and 12 and most preferably 10.
  • the constant parameter n for each process parameter in the respective coating takes into account a component change, i. a transfer of a sprayed layer from one component to another component and is in particular between -10 and +10, in particular between -5 and +5, wherein in each case the interval limits are to be included.
  • the primary gas flow, the secondary gas flow but also the distance between the component and the burner come into consideration as process parameters to be monitored.
  • other process parameters not mentioned here are to be regulated by means of the method according to the invention in such a way that a reproducible result of the sprayed layer results.
  • the measured process variable of the online process control system ⁇ x it is possible to incorporate a currently measured process variable in the coating process.
  • a change in the process variable is used, which is configured in such a way that the corresponding process variable of the current coating is related to the respective process variable of the preceding coating of the last component.
  • the process variable ⁇ x can be determined from the luminance distribution of the plasma and / or particle beam, which is recorded in particular via the PFI unit or the spectrometer unit.
  • the determination of the semiaxes of the ellipses from the measurement of the PFI unit lends itself to the determination of the process parameter ⁇ x from the luminance distribution.
  • An apparatus according to the invention for carrying out the method according to the invention has, on the one hand, a PFI control system and / or an optical emission spectroscopy unit whose process control parameters are correlated in a computing unit, whereby a reproducible spray coating can be produced in the event of process deviations. Furthermore, actuators for automatic adjustment of the process parameters may also be provided here.
  • process control serves to prevent rework as well as the quality control and the documentation of a spraying process.
  • the properties of the plasma and the particles in the plasma jet are detected and correlated with the layer properties. If the measured properties deviate from a previously defined reference state, a remedial measure must be taken to prevent reworking.
  • the multifunction process monitoring system is equipped with an online Particle Flux Imaging (PFI) system, an optical spectrometer and a radiation pyrometer.
  • PFI Particle Flux Imaging
  • the spectrometer additionally enables quality monitoring during the spraying process.
  • the PFI records the luminance distributions of the plasma and particle beam characteristic of the coating process.
  • the elevations with the same luminous intensity are calculated from the images by an algorithm.
  • an ellipse for the plasma and particle beam are written.
  • the elliptical characteristics, such as the semi-axes a and b, the center of gravity of the ellipse and the angle of the semi-axis a with respect to the horizontal are used to describe the current spray condition.
  • the hardness of the layer to be applied can now be controlled or monitored via a process parameter and a process variable.
  • the control or calculation is influenced by the hardness of the previously prepared layer and the process parameter (s) or process variable as well as by the constant parameters.
  • the process parameter ⁇ x contains information from the values measured via the PFI unit, in particular the luminance distribution of the plasma and / or particle beam be used from the current and a previous coating process.
  • the change of the semiaxes of the measured ellipses from the current and a previous process is used. But it is also possible to use the center of gravity of the ellipses or the angle of the semi-axes.
  • the optical spectrometer detects the light emitted by the plasma and the particles via a measuring head and directs it via a fiber optic cable to a highly sensitive spectrograph.
  • the temporal tracking of the entire spectral Emission as well as of several characteristic measurement lines of the total spectrum makes it possible to detect and store intensity changes.
  • the radiation pyrometer is used for non-contact temperature measurement during the coating process. It ensures the recording and graphical output of measurement data from the entire coating process.
  • the present invention is not limited in its execution to the above-mentioned, preferred embodiment. Rather, a number of variants is conceivable, which makes use of the illustrated solution even with fundamentally different types of use.

Abstract

Verfahren zum Herstellen eines Spritzbelages, insbesondere eines einlauffähigen Spritzbelags für Bauteile eines Turbinentriebwerks mittels thermischen Spritzens, wobei zur Kontrolle und Regelung des thermischen Spritzens ein Online-Prozess- Kontrollsystem, insbesondere eine PFI-Einheit und/oder eine Spektrometereinheit, vorgesehen ist, wobei mindestens ein Prozessparameter nach der Formel P<SUB>B1</SUB> = P<SUB>B2</SUB> + H<SUB>B1</SUB> - H<SUB>B2</SUB> - (?x y)/z + n berechnet wird, wobei P<SUB>B1</SUB> der Prozessparameter des zu beschichtenden Bauteils, p<SUB>B2</SUB> der Prozessparameter einer vorangegangenen Beschichtung, H<SUB>B1</SUB> die Härte der zu beschichtenden Spritzschicht, H<SUB>B2</SUB> die Härte der vorangegangenen Spritzschicht und ?x eine Prozessgröße des Online-Prozess-Kontrollsystems ist und y, z, n konstante Parameter sind.

Description

VERFAHREN ZUM HERSTELLEN EINES EINLAUFFÄHIGEN
SPRITZBELAGS
Die Erfindung betrifft ein Verfahren zum Herstellen eines Spritzbelages, insbesondere eines einläuffähigen Spritzbelages für Bauteile eines Turbinentriebwerks, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Vorrichtung zur Durchführung dieses Verfahrens gemäß dem Oberbegriff des Anspruchs 12.
Um den Wirkungsgrad von Turbinentriebwerken, insbesondere für die Luftfahrt, zu steigern, zielt die derzeitige Verdichterentwicklung auf eine Steigerung des Druckverhältnisses ab. Ferner führt das Erfordernis einer leichten Konstruktion, die beispielsweise durch eine Reduzierung der Stufenzahl möglich ist, zu einer Erhöhung des Druckverhältnisses zwischen den Verdichterstufen. Ein Nebeneffekt dieser Entwicklung ist die Zunahme an Rückfluss von der Druckseite auf die Saugseite der Verdichterschaufeln.
Daher wird die Bedeutung des Dichtungssystems, welches den oben beschriebenen Rückfluss zwischen den rotierenden Verdichterschaufeln und dem Verdichtergehäuse verhindert, immer wichtiger. Dieses Dichtungssystem ist ein wichtiger Bestandteil des Wirkungsgrads und beeinflusst wesentlich die so genannte Pumplinie und damit den stabilen Betrieb des Triebwerks.
Um eine hohe Rückflussrate zu verhindern, ist es notwendig den Spalt zwischen den rotierenden Verdichterschaufeln und dem Verdichtergehäuse so weit wie möglich zu reduzieren. Wegen der unterschiedlichen Betriebszustände während des Betriebs eines Triebwerks, wie beispielsweise Beschleunigung, Leerlauf, stationärer Betrieb, etc., können die Spitzen der rotierenden Laufschaufeln die Innenwand des Verdichtergehäuses berühren oder soger in diese einlaufen. Ferner kann ein Einlaufen auch durch Exzentrizität des Rotors oder des Gehäuses auftreten, welche beispielsweise durch Flugmanöver verursacht werden kann.
Um beim Einlaufen der rotiernden Laufschaufeln in das Verdichtergehäuse größere Schäden zu verhindern, sind die potentiellen Kontaktflächen des Gehäuses mit abreibbaren Beschichtungen, so genannten Einlaufbelägen, versehen.
Damit sich die Schaufelblätter in die entsprechenden Stellen am Verdichtergehäuse einarbeiten können, muss das Beschichtungsmaterial relativ leicht abreibbar sein, ohne die Schaufelspitzen zu schädigen. Ferner muss die Beschichtung auch einen guten Widerstand gegen Partikelerosion und andere Degradation bei erhöhten Temperaturen aufweisen.
Für eine derartige Beschichtung wird in der US 5,434,210 ein thermisches Spritzpulver und eine Verbundbeschichtung aus diesem Pulver, welche eine Matrixkomponente, eine Trockenschmiermittel-Komponente und eine Kunststoffkomponente aufweist, vorgeschlagen. Ein entsprechendes Pulver zum thermischen Spritzen ist unter der Bezeichnung SM2042 bei der Firma Sulzer Metco erhältlich.
Unter thermischem Spritzen wird ein Verfahren zur Erzeugung einer Spritzschicht auf der Oberfläche eines Substrates bezeichnet, wobei Zusatzwerkstoffe unter Einsatz eines Gases auf die zu beschichtende Oberfläche eines Substrates geleitet werden. Ein derartiges Verfahren und ein Überwachungssystem zur Qualitätssicherung der gespritzten Schichten ist in der DE 102004041671 Al beschrieben. Dabei handelt es sich um ein so genanntes PFI (Particle-Flux-Imaging) Verfahren.
Bei dem in der DE 102004041671 Al beschriebenen PFI System wird ein Schwärm von die Qualität der Spritzschicht beeinflussenden Partikeln mit einer digitalen Kamera aufgenommen. Dieses Bild wird dann dargestellt oder durch rechnerische Auswertung weiter verarbeitet. Hierdurch wird die Diagnostik eines thermischen Spritzvorgangs ermöglicht.
Ferner beschreibt die EP 1 332 799 Al eine Vorrichtung und ein Verfahren zum thermischen Spritzen, bei dem ein an- oder aufgeschmolzener Zusatzwerkstoff unter Einsatz eines Gases oder Gasgemischs auf eine zu beschichtende Oberfläche eines Sustrats geleitet wird. Dabei wird mittels einer optischen Spektroskopieanordnung zumindest ein die Qualität der Spritzschicht beeinflussendes Merkmal des thermischen Spritzprozesses, welches für die Ausbildung der Schicht und ihre Eigenschaften verantwortlich ist, erfasst, ausgewertet, bewertet, und geregelt. Dadurch wird eine Möglichkeit zur Online-Regelung und Optimierung eines oder mehrerer Parameter, welche für die Ausbildung der Spritzbeschichtung verantwortlich sind, zur Verfügung gestellt.
Trotz der oben beschriebenen Verfahren zur Qualitätssicherung bei thermischen Spritzprozessen, ist es bisher nicht möglich, einen einlauffälligen Spritzbelag, insbesondere aus dem Pulver SM2042, aber auch aus anderen Materialien für Bauteile in einer niedrigen Härte reproduzierbar herzustellen. Dies liegt vor allem am sehr instabilen Spritzprozess. Insbesondere ist es derzeit nicht möglich, bei Prozessabweichungen einen spezifikationsgerechten Belag herzustellen. Derzeit kann die Härte des Belags nur im ausgebranntem Zustand gemessen werden, wodurch etwa ein Tag verloren geht, bevor der Spritzprozess fortgesetzt werden kann. Dabei können sich die Spritzbedingungen in der Wartezeit verändern. Ohne dieses Vorgehen kommt es jedoch zu sehr hohen Nacharbeitsraten bei den beschichteten Bauteilen.
Der Erfindung liegt daher die Aufgabe zugrunde, die oben genannten technischen Probleme des Standes der Technik zu vermeiden und ein verbessertes Verfahren zum Herstellen eines einlauffähigen Spritzbelags zur Verfügung zu stellen, welches eine Überwachung des Spritzprozesses mittels festgelegter Parameter ermöglicht. Ferner soll eine Vorrichtung zur Durchführung des Verfahrens zur Verfügung gestellt werden. Diese Aufgabe wird erfmdungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruch 12 gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Durch die Erfindung werden die technischen Probleme des Standes der Technik vermieden und ein verbessertes Verfahren und eine verbesserte Vorrichtung zum prozesssicheren Herstellen eines einlauffälligen Spritzbelags zur Verfügung gestellt.
Das erfmdungsgemäße Verfahren zum Herstellen eines Spritzbelags, insbesondere eines einlauffähigen Spritzbelags für Bauteile eines Turbinentriebwerks mittels thermischen Spritzens, wobei zur Kontrolle und Regelung des thermischen Spritzens ein Online- Prozess-Kontrollsystem, insbesondere eine PFI-Einheit und/oder eine Spektrometereinheit vorgesehen ist, ist dadurch gekennzeichnet, dass mindestens ein Prozessparameter nach der Formel
PBi = PB2 + HB1 - HB2 - (Δx y)/z + n berechnet wird, wobei PB1 der Prozessparameter der aktuell aufzubringenden Beschichtung, PB2 der entsprechende Prozessparameter einer vorangegangenen Beschichtung, d.h. eines der vorhergehenden Bauteile oder einer der vorhergehenden Proben, HB1 die Härte der aktuell aufzubringenden Spritzschicht, HB2 die Härte der vorangegangenen aufgebrachten Spritzschicht, Δx eine Prozessgröße des Online- Kontrollsystems ist und y, z, n konstante Parameter sind. Hierdurch kann auf Basis von vorher beschichteten Bauteilen und der Eigenschaften dieser Schichten ein prozesssicheres Spritzen von Einlaufbelägen ohne größere Verzögerung und damit verbundenen Änderungen der Randbedingungen erfolgen.
Eine vorteilhafte Weiterbildung des Verfahrens sieht vor, dass die Beschichtung mit SM2042-Pulver erfolgt. Dieses Pulver ist besonders für Anwendungen bei axialen Turbomaschinen geeignet. Eine weitere vorteilhafte Weiterbildung des Verfahrens sieht vor, dass die Berechnung nach Einstellung des gewünschten Parameters online oder alternativ hierzu vor und nach jeder Beschichtung erfolgt. Hierdurch kann der oder die Prozessparameter dann beispielsweise mittels Aktuatoren automatisch oder manuell unter ständiger Kontrolle eingestellt werden.
Eine weitere vorteilhafte Weiterbildung des Verfahrens sieht vor, dass der Spritzbelag auf Verdichtergehäuse aufgebracht wird. Durch das Verfahren kann ein Einlauf belag nun reproduzierbar in einer niedrigen Härte hergestellt werden.
Die für den jeweiligen Prozessparameter einer Beschichtung relevanten konstanten Parameter y und z geben die Korrelation zwischen der Prozessgröße des Online- Prozess-Kontrollsystems und des jeweiligen Prozessparameters wider. Vorteilhafterweise liegen diese zwischen 0 und 15, wobei die Intervallgrenzen eingeschlossen sind. Bevorzugt liegt y zwischen 2 und 5, insbesondere bevorzugt bei 3, während z bevorzugt zwischen 8 und 12 und insbesondere bevorzugt bei 10 liegt.
Der für jeden Prozessparameter bei der jeweiligen Beschichtung konstante Parameter n berücksichtigt einen Bauteilwechsel, d.h. ein Transfer von einer Spritzschicht von einem Bauteil auf ein anderes Bauteil und liegt insbesondere zwischen -10 und +10, insbesondere zwischen -5 und +5, wobei jeweils die Intervallgrenzen eingeschlossen sein sollen.
Als zu überwachende Prozessparameter kommen insbesondere der Primärgasfluss, der Sekundärgasfluss aber auch der Abstand zwischen dem Bauteil und dem Brenner in Betracht. Zusätzlich sind aber auch weitere hier nicht genannte Prozessparameter durchaus mittels des erfindungsgemäßen Verfahrens zu regulieren und zwar derart, dass sich ein reproduzierbares Ergebnis der Spritzschicht ergibt.
Bei der gemessenen Prozessgröße des Online-Prozesskontrollsystems Δx ist es möglich, eine aktuell gemessene Prozessgröße in den Beschichtungsprozess einfließen zu lassen. Bevorzugt wird aber eine Änderung der Prozessgröße verwendet, die derart ausgestaltet ist, dass die entsprechende Prozessgröße der aktuellen Beschichtung mit der jeweiligen Prozessgröße der vorhergehenden Beschichtung des letzten Bauteils in Relation gezogen wird.
Dabei kann die Prozessgröße Δx aus der Leuchtdichteverteilung des Plasma- und/oder Partikelstrahls ermittelt werden, die insbesondere über die PFI-Einheit oder die Spektrometereinheit aufgenommen wird.
Für die Ermittlung der Prozesskenngröße Δx aus der Leuchtdichteverteilung bietet sich insbesondere die Bestimmung der Halbachsen der Ellipsen aus der Messung der PFI- Einheit an.
Eine erfϊndungsgemäße Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist zur online Prozesskontrolle zum einen ein PFI Kontrollsystem und/oder eine optische Emissionsspektroskopieeinheit auf, deren Prozesskontrollkenngrößen in einer Recheneinheit korrelliert werden, wodurch bei Prozessabweichugen ein reproduzierbarer Spritzbelag herstellbar ist. Ferner können hier noch Aktuatoren zur automatischen Einstellung der Prozessparameter vorgesehen sein.
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung näher dargestellt.
Der Einsatz der Prozesskontrolle dient zur Verhinderung von Nacharbeiten sowie der Qualitätsüberwachung und der Dokumentation eines Spritz Vorgangs. Bei diesem Verfaliren werden die Eigenschaften des Plasmas sowie der Partikel im Plasmastrahl erfasst und mit den Schichteigenschaften korreliert. Weichen die gemessenen Eigenschaften von einem zuvor definierten Referenzzustand ab, ist zur Verhinderung von Nacharbeit eine Abhilfemaßnahme zu treffen. Zu diesem Zweck ist das Multifunktions-Prozessüberwachungssystem mit einem Online-Particle-Flux-Imaging (PFI) System, einem optischen Spektrometer und einem Strahlungspyrometer ausgestattet. Das PFI-System dient zur Überprüfung des Plasmastrahls vor und nach der Beschichtung des Bauteils. Das Spektrometer ermöglicht zusätzlich noch eine Qualitätsüberwachung während des Spritzvorgangs.
Das PFI erfasst mit Hilfe einer CCD-Kamera die für den Beschichtungsprozess charakteristischen Leuchtdichteverteilungen des Plasma- und Partikelstrahls. Aus den Aufnahmen werden durch einen Algorithmus die Höhenlinien mit gleicher Leuchtintensität berechnet. In diesen Höhenlinien werden je eine Ellipse für den Plasma- und Partikelstrahl eingeschrieben. Die Ellipsen-Kenngrößen, wie die Halbachsen a und b, der Schwerpunkt der Ellipse und der Winkel der Halbachse a gegenüber der Horizontalen dienen zur Beschreibung des aktuellen Spritzzustands.
Die Härte der aufzubringenden Schicht (gemessen in HR 15 Y) kann nun über einen Prozessparameter und eine Prozessgröße geregelt bzw. überwacht werden. Hierzu fließt in die Regelung bzw. Berechnung die Härte der zuvor hergestellten Schicht und die/der Prozessparameter bzw. die Prozessgröße sowie die konstanten Parameter ein. Für die Wahl des Abstands von Bauteil und Brenner als Prozessparameter werden für y = 3 und z = 10 gute Resultate erzielt, insbesondere wenn als Prozessgröße Δx Informationen aus der über die PFI-Einheit vermessenen Werte, insbesondere die Leuchtdichteverteilung des Plasma- und/oder Partikelstrahls aus dem aktuellen und einem vorangegangenen Beschichtungsprozess verwendet werden. Zum Einsatz kommen hier insbesondere die Änderung der Halbachsen der vermessenen Ellipsen aus dem aktuellen und einem vorangegangenen Prozess. Möglich ist aber auch die Verwendung des Schwerpunktes der Ellipsen oder der Winkel der Halbachsen.
Das optische Spektrometer erfasst über einen Messkopf das beim Spritzen vom Plasma und den Partikeln emittierte Licht und leitet dieses über ein Glasfaserkabel an einen hoch empfindlichen Spektrographen. Die zeitliche Verfolgung der gesamten spektralen Emission sowie von mehreren charakteristischen Messlinien des Gesamtspektrums gestattet es, Intensitätsveränderungen zu detektieren und zu speichern.
Ferner dient das Strahlungspyrometer der berührungslosen Temperaturmessung während des Beschichtungsvorgangs. Es gewährleistet die Aufzeichnung und grafische Ausgabe der Messdaten vom gesamten Beschichtungsprozess.
Auf den Messaufbau und die Einstellung des PFI und des optischen Spektrometers soll hier nicht im einzelnen eingegangen werden.
Die vorliegende Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene, bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines Spritzbelages, insbesondere eines einlauffähigen
Spritzbelags für Bauteile eines Turbinentriebwerks mittels thermischen Spritzens, wobei zur Kontrolle und Regelung des thermischen Spritzens ein Online-Prozess-
Kontrollsystem, insbesondere eine PFI-Einheit und/oder eine Spektrometereinheit, vorgesehen ist, dadurch gekennzeichnet, dass mindestens ein Prozessparameter nach der Formel pBi = PB2 + HB1 - HB2 - (Δx y)/z + n berechnet wird, wobei psi der Prozessparameter des zu beschichtenden Bauteils, pB2 der Prozessparameter einer vorangegangenen Beschichtung, HB1 die Härte der zu beschichtenden Spritzschicht, HB2 die Härte der vorangegangenen Spritzschicht und Δx eine Prozessgröße des Online-Prozess-Kontrollsystems ist und y, z, n konstante Parameter sind.
2. Verfahren zum Herstellen eines Spritzbelages nach Patentanspruch 1, dadurch gekennzeichnet, dass die Beschichtung mit SM2042 Pulver erfolgt.
3. Verfahren zum Herstellen eines Spritzbelages nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Berechnung zur Einstellung des gewünschten Prozessparameters online erfolgt.
4. Verfahren zum Herstellen eines Spritzbelages nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Berechnung zur Einstellung des Prozessparameters vor und nach der Beschichtung erfolgt.
5. Verfahren zum Herstellen eines Spritzbelages nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Spritzbelag auf Verdichtergehäuse aufgebracht wird.
6. Verfahren zum Herstellen eines Spritzbelages nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Parameter y und z zwischen 0 und 15 liegen.
7. Verfahren zum Herstellen eines Spritzbelages nach Anspruch 6, dadurch gekennzeichnet, dass der Parameter n einen Bauteilwechsel berücksichtigt und zwischen -10 und +10, insbesondere zwischen -5 und +5 liegt.
8. Verfahren zum Herstellen eines Spritzbelages nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Prozessparameter aus der Gruppe Primärgasfluss, Sekundärgasfluss oder Abstand zwischen Bauteil und Brenner gewählt wird.
9. Verfahren zum Herstellen eines Spritzbelages nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Prozessgröße Δx aus einer Relation einer vorangegangenen Beschichtung und der Beschichtung des zu beschichtenden Bauteils ermittelt wird.
10. Verfahren zum Herstellen eines Spritzbelages nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Prozessgröße Δx aus der Leuchtdichteverteilung des Plasma- und/oder Partikelstrahls ermittelt wird.
11. Verfahren zum Herstellen eines Spritzbelages nach Anspruch 9, dadurch gekennzeichnet, dass die Leuchtdichteverteilung durch Bestimmung der Halbachsen der Ellipsen ermittelt wird.
12. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Prozesskontrolle ein PFI Kontrollsystem und/oder eine optische Emissionsspektroskopieeinheit aufweist, deren Prozesskontrollkenngrößen in einer Recheneinheit korrelliert werden, wodurch bei Prozessabweichugen ein reproduzierbarer Spritzbelag herstellbar ist.
EP08734314.1A 2007-03-01 2008-02-25 Verfahren zum herstellen eines einlauffähigen spritzbelags Active EP2115180B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007010049A DE102007010049B4 (de) 2007-03-01 2007-03-01 Verfahren zum Herstellen eines einlauffähigen Spritzbelags
PCT/DE2008/000333 WO2008104162A2 (de) 2007-03-01 2008-02-25 Verfahren zum herstellen eines einlauffähigen spritzbelags

Publications (2)

Publication Number Publication Date
EP2115180A2 true EP2115180A2 (de) 2009-11-11
EP2115180B1 EP2115180B1 (de) 2019-04-10

Family

ID=39512790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08734314.1A Active EP2115180B1 (de) 2007-03-01 2008-02-25 Verfahren zum herstellen eines einlauffähigen spritzbelags

Country Status (5)

Country Link
US (1) US20100062172A1 (de)
EP (1) EP2115180B1 (de)
CA (1) CA2679651C (de)
DE (1) DE102007010049B4 (de)
WO (1) WO2008104162A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140094950A1 (en) * 2007-03-01 2014-04-03 MTU Aero Engines AG Method for the production of an abradable spray coating
DE102013223688A1 (de) * 2013-11-20 2015-05-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum automatisierten Aufbringen einer Spritzbeschichtung
US20200262735A1 (en) * 2017-08-29 2020-08-20 Sumitomo Electric Industries, Ltd. Method for producing glass particulate deposit, method for producing glass preform, and glass preform

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783341A (en) * 1987-05-04 1988-11-08 United Technologies Corporation Method and apparatus for measuring the density and hardness of porous plasma sprayed coatings
US5196471A (en) 1990-11-19 1993-03-23 Sulzer Plasma Technik, Inc. Thermal spray powders for abradable coatings, abradable coatings containing solid lubricants and methods of fabricating abradable coatings
DE19820195A1 (de) * 1998-05-06 1999-11-11 Linde Ag Qualitätssicherung beim thermischen Spritzen
DE10203884A1 (de) * 2002-01-31 2003-08-14 Flumesys Gmbh Fluidmes Und Sys Vorrichtung und Verfahren zum thermischen Spritzen
FR2836619B1 (fr) * 2002-02-28 2004-04-16 Snecma Services Instrument de projection thermique
DE10244037A1 (de) * 2002-09-21 2004-04-08 Mtu Aero Engines Gmbh Verfahren zur Beschichtung eines Werkstücks
DE10356953B4 (de) * 2003-12-05 2016-01-21 MTU Aero Engines AG Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
DE102004010782A1 (de) * 2004-03-05 2005-09-22 Mtu Aero Engines Gmbh Verfahren zur Beschichtung eines Werkstücks
DE102004041671A1 (de) 2004-08-27 2006-03-02 Linde Ag Überwachung von Spritzprozessen
DE102006053774A1 (de) * 2006-11-15 2008-05-21 Mtu Aero Engines Gmbh Vorrichtung zum thermischen Spritzen, Verfahren zum Überwachen eines Prozesses des thermischen Spritzen und Verfahren zum Beschichten und/oder Ausbessern von Turbinen- oder Triebwerksteilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008104162A2 *

Also Published As

Publication number Publication date
WO2008104162A3 (de) 2009-07-23
DE102007010049A1 (de) 2008-09-04
WO2008104162A2 (de) 2008-09-04
CA2679651A1 (en) 2008-09-04
DE102007010049B4 (de) 2011-01-13
EP2115180B1 (de) 2019-04-10
US20100062172A1 (en) 2010-03-11
CA2679651C (en) 2016-07-05

Similar Documents

Publication Publication Date Title
EP2798161B1 (de) Verfahren zur reparatur einer einlaufschicht eines verdichters einer gasturbine
EP2317078A2 (de) Abrasive einkristalline Turbinenschaufel
DE102006006025B3 (de) Komponente für eine Rotationsmaschine
EP1794342B1 (de) Herstellung einer gasdichten, kristallinen mullit schicht mit hilfe eines thermischen spritzverfahrens
EP2115180B1 (de) Verfahren zum herstellen eines einlauffähigen spritzbelags
EP1332799A1 (de) Vorrichtung und Verfahren zum thermischen Spritzen
WO2007033650A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht und bauteil mit einer schutzschicht
WO2009135814A1 (de) Temperaturmessung an teilen einer strömungsmaschine
DE10154284A1 (de) Verfahren zum automatischen Auftragen einer Oberflächenschicht
DE10337094A1 (de) Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
DE10356953B4 (de) Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
EP2915854A1 (de) Anti - Eis - Schicht für Verdichterschaufeln
EP3423752B1 (de) Strömungselement und verfahren zum beschichten eines strömungselements
EP1518039B1 (de) Verfahren zum betreiben einer gasturbinenanlage und gasturbinenanlage
EP2006409B1 (de) Verfahren und Vorrichtung zum Ermitteln des Anteils zumindest eines Zuschlagstoffes eines Multikomponentenpulvers zum thermischen Spritzen
EP4075117B1 (de) Verfahren und vorrichtung zur charakterisierung einer beschichtung
DE112018001695T5 (de) Wärmedämmschicht und turbinenelement
EP2494085B1 (de) Verfahren zum erzeugen eines einlaufbelags an einer strömungsmaschine
DE10231879B4 (de) Verfahren zur Beeinflussung und Kontrolle der Oxidschicht auf thermisch belasteten metallischen Bauteilen von CO2/H2O-Gasturbinenanlagen
US20140094950A1 (en) Method for the production of an abradable spray coating
DE102019000558A1 (de) Keramiküberzug, turbinenelement, gasturbine, verfahren zur herstellung von keramiküberzug, und verfahren zur reparatur von keramiküberzug
DE10244037A1 (de) Verfahren zur Beschichtung eines Werkstücks
DE102014213327A1 (de) Anti-fouling-Schicht für Verdichterschaufeln
EP1645874B1 (de) Diffusionssensor, Verfahren zu dessen Herstellung und Verfahren zum Überwachen des Fortschrittes eines Diffusionsprozesses
DE102014005946A1 (de) Verfahren zur Bereitstellung eines Bewegungsprofils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090819

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100222

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C23C0004000000

Ipc: F01D0011120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181130

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/12 20160101ALI20181119BHEP

Ipc: C23C 4/00 20160101ALI20181119BHEP

Ipc: F01D 11/12 20060101AFI20181119BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1118918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220221

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220221

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228