EP2114746B1 - Anticollision control system for a vehicle - Google Patents

Anticollision control system for a vehicle Download PDF

Info

Publication number
EP2114746B1
EP2114746B1 EP07730934A EP07730934A EP2114746B1 EP 2114746 B1 EP2114746 B1 EP 2114746B1 EP 07730934 A EP07730934 A EP 07730934A EP 07730934 A EP07730934 A EP 07730934A EP 2114746 B1 EP2114746 B1 EP 2114746B1
Authority
EP
European Patent Office
Prior art keywords
cbtc
aws
vehicle
control unit
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07730934A
Other languages
German (de)
French (fr)
Other versions
EP2114746A1 (en
Inventor
Regis Degouge
Laurent Pinori
Stephane Callet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG Oesterreich
Siemens Transportation Systems SAS
Original Assignee
Siemens Transportation Systems GmbH and Co KG
Siemens Transportation Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Transportation Systems GmbH and Co KG, Siemens Transportation Systems SAS filed Critical Siemens Transportation Systems GmbH and Co KG
Priority to PL07730934T priority Critical patent/PL2114746T3/en
Publication of EP2114746A1 publication Critical patent/EP2114746A1/en
Application granted granted Critical
Publication of EP2114746B1 publication Critical patent/EP2114746B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/08Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only
    • B61L23/14Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/30Trackside multiple control systems, e.g. switch-over between different systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/204Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]

Definitions

  • the present invention relates to an anti-collision control system for a vehicle according to the preamble of claim 1.
  • the invention is particularly adapted to a vehicle, for which it is implied that various types of locomotion means are concerned, more particularly in the field of passenger transport and / or goods.
  • rail transport such as a train and its cars or railcars, a tramway, but also a train on tire, with or without rail, a trolleybus or a bus to at least one compartment are examples of the scope of the invention.
  • some of these vehicles may comprise control or control means, commonly known as controllers, which make it possible to generate or execute control applications, for example for assisted guidance of the vehicle, or even the autoguiding of the vehicle. if it does not have a driver or can get rid of it.
  • this first vehicle of an autopilot circulates on portions of lane for which a signaling control unit, hereafter called AWS type controls signals on the ground on a section of lane with one-way traffic, denominated by the AWS TS or AWS TS.
  • AWS type controls signals on the ground on a section of lane with one-way traffic, denominated by the AWS TS or AWS TS.
  • These signals may be signal lights, controlled by electrical or mechanical relays, etc., as a rule used for vehicles driven manually by a driver.
  • AWS TS sections there is a first default command mode in which the AWS signaling control unit imposes a one-way movement on each vehicle moving on the AWS TS one-way traffic channel section (the single direction is commanded by the AWS signaling control unit).
  • the AWS signaling control unit imposes a control priority on the CBTC automated traffic control unit, particularly so as to avoid a collision of the first vehicle with another vehicle without autopilot and yet moving on the same track as the first train.
  • This control priority can also be used to force the first vehicle equipped to respond to an order (braking, blocking, etc.) that moves on a portion of track in autopilot mode.
  • the figure 1 represents a track (railway) on which move two first self-guided vehicles AT1, AT2 and two other vehicles MT1, MT2 guided manually, via at least one AWS-type signaling control unit comprising "manual" type signals S1, S2 , S22, S3, S4, S5 (eg green / red blocking lights).
  • the first two AT1, MT1 vehicles of different types - automatic and manual - are on an AWS TS1 channel section (AWS TS type) which itself may be controllable by an automated CBTC traffic control unit (no shown) on the same portion of CBTC TS1 (CBTC TS type) in one direction or another.
  • AWS TS type AWS TS1 channel section
  • the control priority of the AWS signaling control unit predominates over the automated traffic control unit CBTC, so as to maintain a strictly monodirectional circulation for the two vehicles MT1, AT1 even if the self-driving AT1 vehicle has the ability to drive in opposite directions on the track.
  • the initially autoguidable AT1 vehicle is fully controlled by the AWS signaling control unit.
  • a second AWS TS2 channel section controlled by an AWS-type signaling control unit is juxtaposed with the previous AWS TS1 portion of the same AWS type, however through a TR12 transit zone only under the control of the AWS TS2.
  • the transit zone TR12 comprises according to the figure 1 a self-driving AT2 vehicle traveling to the second AWS TS2 channel section, on which a manually controlled MT2 vehicle is controlled by an AWS-type signaling control unit.
  • AWS TS12 does not have any link to any CBTC automated traffic control unit, so the same autoguidable AT2 vehicle remains under control of the AWS-type signaling control unit it is traveling on.
  • a CBTC channel portion TS2 is also provided for a self-driving train at the second AWS TS2 channel section controlled by an AWS type of signaling control unit.
  • the self-driving vehicle AT2 is approaching the second section of AWS channel TS2 which also comprises a second MT2 vehicles of manual type and flowing in a defined direction. If this direction is the reverse of that of the first AT2 autoguibile vehicle then entering the second AWS TS2 channel section, the priority control of the AWS-type signaling control unit predominates over an autoguiding of the first autotravable vehicle AT2. If this is not the case, the signaling is permissive and allows entry and movement on the AWS AWS second AWS portion.
  • an automated traffic control unit CBTC can in no way change the direction of movement of the AT2 self-steering vehicle, because it is imposed by the defined direction of the MT2 manual vehicle, which ensures that the vehicle autoguidable AT2 can not collide with the MT2 manual vehicle.
  • Figure 2 now represents an example whose channel distribution is similar to that of the figure 1 .
  • four self-propelled vehicles AT1, AT2, AT3, AT4 are present and circulate on each on the first portion CBTC TS1, the transit area TR12 and the second portion CBTC TS2.
  • the first and second portions of CBTC TS1, CBTC TS2 channel are no longer under the priority control of a signaling control unit of AWS type.
  • all self-guided vehicles can be self-guided in opposite directions without risk of collision under the control of the automated traffic control unit CBTC which guarantees all vehicles against a risk of collision.
  • All the signals (for example of the visual type) S1, S2, S22, S3 are then inhibited / extinguished on these sections, so as not to induce a vehicle in error, contrary to the instructions of the automated traffic control unit CBTC.
  • the signals S4, S5 are here out of CBTC type section: they are therefore still activatable by the AWS signaling control unit. If, however, a one-way manual-steering vehicle were to approach or enter a self-steering section, the AWS ground signage should be re-enabled to re-establish a one-way stop or one-way trip in the direction of the vehicle to the self-steering vehicles. manual steering. This anti-collision safety measure therefore imposes a restriction on the flexibility of movements to self-steering vehicles.
  • One of the main aims of the present invention is to provide a highly flexible anti-collision control system for at least a first vehicle equipped with an on-board automatic pilot.
  • the automated ground traffic control unit is generally a network (or / and subnets) having access points (for example of the WLAN type) distributed along the portable channel ( radio frequency) with the vehicle by means of an on-board router which receives the motion instructions which are physically executed by means of an on-board controller.
  • a first advantage of the invention is that a second control mode is activatable, according to which a displacement of the steering vehicle in opposite directions on at least a portion of the initially monodirectional flow-through track section can be initiated by means of a control priority request request from the automated traffic control unit CBTC and addressed to the AWS signaling control unit which returns a permission signal RESP (or refusal) to the request.
  • the default control mode is punctually and temporarily switchable and gives its control priority to the automated traffic control unit CBTC, if no risk of accident with a manually controllable element remains.
  • a self-driving vehicle can be exceptionally self-guided, while on an AWS-type section, resulting in a significant improvement in the flexibility of its bidirectional movements on an initially one-way track while ensuring a reliable collision avoidance system.
  • the AWS signaling control unit After sending an allowed response to the request, the AWS signaling control unit provides a command to prohibit an entry of MT type vehicles (not CBTC-controllable) on the CBTC TS type channel.
  • the request from the CBTC automated traffic control unit and sent to the AWS signaling control unit is transmitted only under a secure guarantee of the absence of any non-controllable vehicle by the CBTC automated traffic control on or near AWS TS unidirectional traffic lane section.
  • vehicle not controllable by the automated traffic control unit CBTC it is a so-called MT type vehicle, incompatible with a control of the automated traffic control unit CBTC or without automatic piloting. because it is completely manually driven, such as one of the MT1, MT2 vehicles of the figure 1 .
  • the mode switching request according to the invention is preceded by an authorization specific to the automated traffic control unit CBTC or an ancillary control station, other than the AWS signaling control unit which is mainly "blind" in front of self-propelled vehicles.
  • the security guarantee mentioned above is carried out (before sending the request) by an operator who controls a presence or a forecast of the "manual" type of traffic under the track section dedicated to the next changeover to the mode.
  • automatic control because the automated traffic is already self-controlled by the CBTC automated traffic control unit.
  • the operator knows from the condition of sensors to the channels or other presence detectors (commonly referred to as "Track or VCT”) indicating the presence of a "manual" MT-type vehicle on the intended track section.
  • a set of subclaims also has advantages of the invention.
  • Figure 3 describes a first architecture of the collision avoidance system according to the invention for two situations respectively represented upstream and downstream of a channel V1.
  • a first self-driving AT1 vehicle can move on an AWS TS1 channel portion initially controlled by an AWS signaling control unit (managing the light signals S1, S2, S3, S4 represented on the ground at track V1).
  • the AT1 vehicle therefore circulates monodirectionally from left to right under the default command mode from the AWS signaling control unit.
  • a second control mode is then activatable, according to which its displacement in opposite directions on at least a part (for example here the CBTC portion TS0 and / or the CBTC portion TS1) of the AWS section TS1 of initially unidirectional traffic channel AWS TS1 is initiated by a CBTC Only command priority request request from an automated traffic control unit CBTC, ATC, and addressed to the AWS signaling control unit that returns a RESP authorization or denial signal to the request.
  • a CBTC Only command priority request request from an automated traffic control unit CBTC, ATC, and addressed to the AWS signaling control unit that returns a RESP authorization or denial signal to the request.
  • the automated traffic control unit CBTC, ATC transmits at least one instruction relating to the authorized movement to the vehicle AT1 via a RAD radio link.
  • the signals S1, S2, S22, S3, S4, S5 controlled by the AWS signaling control unit can then also be turned off / inhibited so as not to mislead a driver of the vehicle AT1.
  • the control mode has then completely switched according to the invention on at least one of CBTC portions TS0, CBTC TS1 bidirectional circulation.
  • a transit zone TRANS which allows a connection between the channel V1 and an additional channel V2, of the same type as the channel V1.
  • two operating signals S3, S4 that is to say, controllable by the AWS signaling control unit ensure the beginning or the end of the two-way flow portion of to avoid a collision between vehicles crossing from one lane to another or exiting each AWS TS1, AWS TS2 section to the TRANS transit section.
  • a self-guided AT2 vehicle and a manually driven MT3 vehicle travel on a portion of AWS TS2 one-way (left to right) and under the default control mode of the AWS signaling control.
  • the invention then makes it possible, under the sending of a request as described above, to request the introduction of CBTC sections TS2, CBTC TS3 of the initial portion AWS TS2, so as to isolate over safety distances against any collision.
  • the first vehicle AT2 is therefore allowed to flow bidirectionally and on the second CBTC section TS3, the second vehicle MT3 will circulate only one-way, if it has no onboard autopilot can be activated under the command mode of the CBTC automated traffic control unit.
  • the AWS signaling control unit centrally controls ground signals distributed along the tracks, and manages the maneuvers of all flying vehicles in "manual" mode. It is actually this control unit that receives, interprets the CBTC Only request and generates the RESP authorization or refusal response to an ATC control / management platform of the CBTC automated traffic control unit that allows the communication interface with potentially bi-directional vehicles.
  • this control unit receives, interprets the CBTC Only request and generates the RESP authorization or refusal response to an ATC control / management platform of the CBTC automated traffic control unit that allows the communication interface with potentially bi-directional vehicles.
  • the references of the portions of lanes allowing a circulation of the mono- or bidirectional vehicles will be implicitly designated by sections of the AWS TS and CBTC TS type. A list of abbreviations at the end of the description may also be consulted to guide the reader.
  • the CBTC Only request and the authorization signal RESP may advantageously be very simple, such as in the form of binary type signals adapted for at least one predefined portion CBTC TS of the unidirectional flow section AWS TS.
  • it is possible to define ground-based electrical relays that predefine AWS TS-type channel sub-portions and switch the AWS TS type from one mode to another ( to the other type CBTC TS) thanks to the changeover. of control mode according to the invention, particularly if it is certain or foreseeable that a "manual" driving vehicle will not circulate or circulate on a sub-portion of type CBTC TS.
  • a logic calculator can be included in the signaling control unit and thus ensure a simple processing of the CBTC Only request as well as deliver a positive or negative response on the activation of a new control mode of a vehicle on a sub-portion of track (via an electrical relay).
  • the CBTC Only request may also include instantaneous and predictable information on the movement (location, destination, etc.) of the autopilot or non-autopilot vehicle (AT, MT type).
  • AT, MT type the autopilot or non-autopilot vehicle
  • the authorization signal RESP can therefore have a validity of predetermined duration by the AWS signaling control unit and remains permanently deactivatable by inhibition.
  • the automated traffic control unit CBTC controls at least one CBTC TS bidirectional traffic section, provided that the control unit of AWS continues to ensure that no other MT-type vehicle with manual steering is, does not enter, does not circulate or is authorized to operate on the authorized two-way CBTC TS section or, at worst, is not in the risk approach phase of the authorized CBTC TS section.
  • Figure 4 discloses a second architecture of the collision avoidance system according to the invention, particularly well adapted for a change of lane (also called temporary service, for example from the front-station) realized by a vehicle of type MT with "manual" steering from here d a first channel V1 to a second channel V2 via a transit section TRANS, such as a switch controlled by electrical signals (here via the signaling control unit of the AWS type, but if the type of vehicle control was automatic, the CBTC automated traffic control unit could switch to priority control mode).
  • a transit section TRANS such as a switch controlled by electrical signals (here via the signaling control unit of the AWS type, but if the type of vehicle control was automatic, the CBTC automated traffic control unit could switch to priority control mode).
  • the two opposite directions of possible circulation are referenced as the even direction PAI or odd direction IMP.
  • a self-propelled vehicle is listed as an AT type and a vehicle that is not autopilot-controlled or whose autopilot is inactive or defective or with which the CBTC automated traffic control unit is temporarily disconnected is listed as type MT.
  • type MT a vehicle that is not autopilot-controlled or whose autopilot is inactive or defective or with which the CBTC automated traffic control unit is temporarily disconnected.
  • the MT type vehicle concerned is only represented on a portion of track T7 in position MT2. However, it should be understood that the same vehicle travels along the path shown by the dashed arrows comprising various main positions MT0, MT1, MT2, MT3 of said vehicle.
  • an MT type vehicle moves on the first evenly initial V1 track from a T2 section to a T4 section, both of the AWS TS type, whose T2 section is connected to the T4 section.
  • Section T4 may include a Q1 pier for passengers in front of which the vehicle MT stops (position MT1) before starting towards the section T2 to enter the transit zone TRANS.
  • a ground signal S21 authorizes or blocks the MT vehicle at the transit transit area, so that the MT type vehicle can engage without risk of collision on a new section T7 of the second track V2 (position MT2).
  • the signal S21 blocks the first vehicle MT in position MT1.
  • the vehicle initially at the wharf passes through the transit zone and rejoins the T7 section of the second V2 lane.
  • blocking signals S8, S32 and S1, S3 are arranged upstream and downstream of the final transit section T5, so as to ensure the stopping of other vehicles.
  • MT type sufficiently far from the MT type vehicle arriving on section T7.
  • the signaling control unit is in control mode.
  • the figure 4 has a first advantage that is to have CBTC section TS at section T3 (Q2 dock). Therefore, and according to the invention, since a switch of the control mode on the automated traffic control unit is provided on the T3 section, no AT type vehicle will be able to cause a collision with the first vehicle at or on the quay.
  • a precaution comes from the provision of a section T1, which may be of AWS TS type, between the CBTC TS type T0 section and the T3 (Q2 platform) also type CBTC TS. This has the effect of allowing a stopping distance of any MT-type vehicle by the signaling at the T1 section as the approach area of the Q2 platform on which a vehicle enters or is parked.
  • the AWS signaling control unit can activate braking, blocking or compulsory one-way traffic of this AT vehicle at the periphery (section T1) of the T3 section authorized for CBTC two-way traffic.
  • the T1 section of AWS TS type thus ensures a control on vehicles exempt from an autopilot or forced to be controlled manually.
  • the present collision avoidance system is not limited to a single CBTC automated traffic control unit.
  • the AWS signaling control unit includes an interoperability adapter to evaluate the priority of several requests (under previous security guarantees) from a plurality of CBTC automated traffic control units, which may have in particular different control protocols.
  • the terminology "AWS signaling control unit” means a signaling network and / or signaling subnetworks (associated with ground signals) controlled by at least one AWS signaling control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)
  • Air Bags (AREA)
  • Emergency Alarm Devices (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An anti-collision control system for one or more vehicles fitted with an onboard automatic pilot (self-guiding) allowing for bi-directional movements on a single track under the control of a ground-based automated traffic control unit of the CBTC (Communication Based Train Control) type. The system includes: a signaling control unit of the AWS (Auxiliary Wayside System) type for controlling ground signals on a section of a single-direction circulation lane; a first default control means based on which the signaling control unit imposes a single-direction movement to the vehicle running on the section of a single-direction circulation lane in order to avoid any collision with another vehicle controlled solely by the signaling control unit of the AWS type, i.e. independently from the ground-based automated traffic control unit.

Description

La présente invention concerne un système de contrôle anti-collision pour un véhicule selon le préambule de la revendication 1.The present invention relates to an anti-collision control system for a vehicle according to the preamble of claim 1.

L'invention est adaptée en particulier à un véhicule, pour lequel il est sous-entendu que divers type de moyens de locomotion sont concernés, plus particulièrement dans le domaine des transports de passagers ou/et de marchandises. Ainsi, un transport ferroviaire tel qu'un train et ses voitures ou wagons sur rail, un tramway, mais aussi un train sur pneu, avec ou sans rail, un trolleybus ou un autobus à au moins un compartiment rentrent à titre d'exemples dans le cadre de l'invention. En particulier, certains de ces véhicules peuvent comprendre des moyens de contrôle ou de commande, communément aussi appelés contrôleurs, qui permettent de générer ou d'exécuter des applications de commande, par exemple pour un guidage assisté du véhicule, voire l'autoguidage du véhicule si celui-ci n'a pas de conducteur ou peut s'en affranchir.The invention is particularly adapted to a vehicle, for which it is implied that various types of locomotion means are concerned, more particularly in the field of passenger transport and / or goods. Thus, rail transport such as a train and its cars or railcars, a tramway, but also a train on tire, with or without rail, a trolleybus or a bus to at least one compartment are examples of the scope of the invention. In particular, some of these vehicles may comprise control or control means, commonly known as controllers, which make it possible to generate or execute control applications, for example for assisted guidance of the vehicle, or even the autoguiding of the vehicle. if it does not have a driver or can get rid of it.

Pour des raisons de clarté, l'invention sera explicitée sur un exemple de véhicule, tel qu'un premier véhicule guidé sur une voie ferroviaire. Un système de contrôle anticollision pour au moins ce premier véhicule est aujourd'hui connu, si le véhicule est muni d'un pilotage automatique embarqué, permettant des mouvements bidirectionnels sur une unique voie sous la commande d'une unité de contrôle de trafic automatisé, dite dans la suite de l'invention de type ATC ou CBTC au sol. En l'occurrence, ce système de guidage est particulièrement bien adapté à un train ou une navette sans conducteur qui peut effectuer des allers et retours sur une même voie ou un demi-tour en changeant de voie de type monodirectionnel. Toutefois, ce premier véhicule d'un pilotage automatique, circule sur des portions de voie pour lesquelles une unité de contrôle de signalisation, dite par la suite de type AWS commande des signaux au sol sur une section de voie à circulation monodirectionnelle, dénommée par la suite AWS TS ou de type AWS TS. Ces signaux peuvent être des feux de signalisations, commandés par des relais électriques ou mécaniques, etc., en règle générale utilisés pour des véhicules manuellement pilotés par un conducteur. Sur de telles sections AWS TS, il existe un premier mode de commande par défaut selon lequel l'unité de contrôle de signalisation AWS impose un mouvement monodirectionnel à chaque véhicule se déplaçant sur la section de voie à circulation monodirectionnelle AWS TS (la direction unique est commandée par le unité de contrôle de signalisation AWS). En bref, l'unité de contrôle de signalisation AWS impose une priorité de commande sur l'unité de contrôle de trafic automatisé CBTC, en particulier de façon à éviter une collision du premier véhicule avec un autre véhicule exempt de pilotage automatique et pourtant se déplaçant sur la même voie que le premier train. Cette priorité de commande peut également servir à obliger le premier véhicule équipé de répondre à un ordre (freinage, blocage, etc.) qui se déplace sur une portion de voie en mode autopiloté.For the sake of clarity, the invention will be explained on an example of a vehicle, such as a first vehicle guided on a railway track. An anti-collision control system for at least this first vehicle is now known, if the vehicle is equipped with an onboard automatic control, allowing bidirectional movements on a single lane under the control of an automated traffic control unit, said in the rest of the invention type ATC or CBTC ground. In this case, this guidance system is particularly well suited to a train or a shuttle without driver who can make trips back and forth on the same track or a half-turn by changing the way of monodirectional type. However, this first vehicle of an autopilot, circulates on portions of lane for which a signaling control unit, hereafter called AWS type controls signals on the ground on a section of lane with one-way traffic, denominated by the AWS TS or AWS TS. These signals may be signal lights, controlled by electrical or mechanical relays, etc., as a rule used for vehicles driven manually by a driver. On such AWS TS sections, there is a first default command mode in which the AWS signaling control unit imposes a one-way movement on each vehicle moving on the AWS TS one-way traffic channel section (the single direction is commanded by the AWS signaling control unit). In short, the AWS signaling control unit imposes a control priority on the CBTC automated traffic control unit, particularly so as to avoid a collision of the first vehicle with another vehicle without autopilot and yet moving on the same track as the first train. This control priority can also be used to force the first vehicle equipped to respond to an order (braking, blocking, etc.) that moves on a portion of track in autopilot mode.

Ainsi, du fait de la priorité de commande du l'unité de contrôle de signalisation AWS sur le véhicule autoguidé, un premier système anticollision est connu, de façon à limiter des trajets en sens opposés du véhicule autoguidé qui pourraient mettre en péril des autres véhicules s'en rapprochant. Cette priorité de commande à effet sécuritaire restreint toutefois la faculté de déplacements bidirectionnels du premier véhicule autoguidé.Thus, because of the control priority of the AWS signaling control unit on the self-guided vehicle, a first collision avoidance system is known, so as to limit trips in opposite directions of the self-guided vehicle that could endanger other vehicles. getting closer. This safety effect control priority, however, restricts the bi-directional movement of the first self-guided vehicle.

Deux exemples connus et illustrant la commande de priorité sont alors donnés par les figures suivantes :

Figure 1 :
un système anticollision adapté pour des véhicules à pilotage automatique et des véhicules à pilotage manuels,
Figure 2 :
un système anticollision adapté pour des véhicules à pilotage automatique.
Two known examples illustrating the priority control are then given by the following figures:
Figure 1 :
an anti-collision system suitable for self-propelled vehicles and manual steering vehicles,
Figure 2:
an anti-collision system adapted for autopilot vehicles.

La figure 1 représente une voie (ferroviaire) sur laquelle se déplacent deux premiers véhicules autoguidés AT1, AT2 et deux autres véhicules MT1, MT2 guidés manuellement, via au moins une unité de contrôle de signalisation de type AWS comprenant des signaux de type « manuels » S1, S2, S22, S3, S4, S5 (par exemple des feux verts/rouges de blocage). Les deux premiers véhicules AT1, MT1 de différents types - automatique et manuel - se trouvent sur une section de voie AWS TS1 (de type AWS TS) qui, elle-même peut-être commandable par une unité de contrôle de trafic automatisé CBTC (non représentée) sur une même portion de voie CBTC TS1 (de type CBTC TS) selon une direction ou une autre. A cause de la présence des deux véhicules AT1, MT1 sur cette portion commune AWS TS1, CBTC TS1, la priorité de commande de l'unité de contrôle de signalisation AWS (non représentée) prédomine sur l'unité de contrôle de trafic automatisé CBTC, de façon à maintenir une circulation strictement monodirectionnelle pour les deux véhicules MT1, AT1 même si le véhicule AT1 autoguidable a la faculté de circuler dans des directions opposées sur la voie. Ainsi, le véhicule AT1 initialement autoguidable est entièrement commandé par l'unité de contrôle de signalisation AWS.
Une deuxième section de voie AWS TS2 contrôlée par une unité de contrôle de signalisation de type AWS est juxtaposée à la précédente portion AWS TS1 de même type AWS, toutefois par l'intermédiaire d'une zone de transit TR12 uniquement sous le contrôle de l'unité de contrôle de signalisation AWS ou d'un autre réseau analogue. La zone de transit TR12 comprend selon la figure 1 un véhicule AT2 de type autoguidable et se déplaçant vers la seconde section de voie AWS TS2, sur laquelle un véhicule MT2 à pilotage manuel est contrôlé par une unité de contrôle de signalisation de type AWS. La zone de voirie AWS TS12 ne comporte aucune liaison avec une quelconque unité contrôle de trafic automatisé CBTC, c'est pourquoi le véhicule AT2 même autoguidable reste sous commande de l'unité de contrôle de signalisation de type AWS sur lequel il se déplace. Dans la figure 1 et analoguement à la première section de voie, une portion de voie CBTC TS2 est aussi prévue pour un train autoguidable au niveau de la deuxième section de voie AWS TS2 commandée par une unité de contrôle de signalisation de type AWS. En particulier, le véhicule autoguidable AT2 est en approche de la deuxième section de voie AWS TS2 qui également comprend un deuxième véhicules MT2 de type manuel et circulant dans une direction définie. Si cette direction est inverse à celle du premier véhicule autoguidable AT2 alors en entrée sur la deuxième section de voie AWS TS2, la commande de priorité de l'unité de contrôle de signalisation de type AWS prédomine sur un autoguidage du premier véhicule autoguidable AT2. Si cela n'est pas le cas, la signalisation est permissive et autorise une entrée et un déplacement sur la deuxième portion AWS TS2 de type AWS. Toutefois, sur cette dernière portion, une unité contrôle de trafic automatisé CBTC ne pourra en aucun cas modifier la direction de déplacement du véhicule autoguidable AT2, car celle-ci est imposée par la direction définie du véhicule manuel MT2, ce qui assure que le véhicule autoguidable AT2 ne puisse entrer en collision avec le véhicule manuel MT2.
The figure 1 represents a track (railway) on which move two first self-guided vehicles AT1, AT2 and two other vehicles MT1, MT2 guided manually, via at least one AWS-type signaling control unit comprising "manual" type signals S1, S2 , S22, S3, S4, S5 (eg green / red blocking lights). The first two AT1, MT1 vehicles of different types - automatic and manual - are on an AWS TS1 channel section (AWS TS type) which itself may be controllable by an automated CBTC traffic control unit (no shown) on the same portion of CBTC TS1 (CBTC TS type) in one direction or another. Due to the presence of the two vehicles AT1, MT1 on this shared portion AWS TS1, CBTC TS1, the control priority of the AWS signaling control unit (not shown) predominates over the automated traffic control unit CBTC, so as to maintain a strictly monodirectional circulation for the two vehicles MT1, AT1 even if the self-driving AT1 vehicle has the ability to drive in opposite directions on the track. Thus, the initially autoguidable AT1 vehicle is fully controlled by the AWS signaling control unit.
A second AWS TS2 channel section controlled by an AWS-type signaling control unit is juxtaposed with the previous AWS TS1 portion of the same AWS type, however through a TR12 transit zone only under the control of the AWS TS2. AWS signaling control unit or a other similar network. The transit zone TR12 comprises according to the figure 1 a self-driving AT2 vehicle traveling to the second AWS TS2 channel section, on which a manually controlled MT2 vehicle is controlled by an AWS-type signaling control unit. AWS TS12 does not have any link to any CBTC automated traffic control unit, so the same autoguidable AT2 vehicle remains under control of the AWS-type signaling control unit it is traveling on. In the figure 1 and analogously to the first channel section, a CBTC channel portion TS2 is also provided for a self-driving train at the second AWS TS2 channel section controlled by an AWS type of signaling control unit. In particular, the self-driving vehicle AT2 is approaching the second section of AWS channel TS2 which also comprises a second MT2 vehicles of manual type and flowing in a defined direction. If this direction is the reverse of that of the first AT2 autoguibile vehicle then entering the second AWS TS2 channel section, the priority control of the AWS-type signaling control unit predominates over an autoguiding of the first autotravable vehicle AT2. If this is not the case, the signaling is permissive and allows entry and movement on the AWS AWS second AWS portion. However, on this latter portion, an automated traffic control unit CBTC can in no way change the direction of movement of the AT2 self-steering vehicle, because it is imposed by the defined direction of the MT2 manual vehicle, which ensures that the vehicle autoguidable AT2 can not collide with the MT2 manual vehicle.

Figure 2 représente maintenant un exemple dont la répartition des voies est analogue à celle de la figure 1. En revanche, quatre véhicules autoguidables AT1, AT2, AT3, AT4 sont présents et circulent sur chacune sur la première portion CBTC TS1, la zone de transit TR12 et la deuxième portion CBTC TS2. Du fait de l'absence de véhicules de type manuel et outre la présence de signalisation au sol, la première et la deuxième portions de voie CBTC TS1, CBTC TS2 ne sont plus sous la commande de priorité d'une unité de contrôle de signalisation de type AWS. En d'autres termes, sur ces mêmes sections de voies CBTC TS1, CBTC TS2, tous les véhicules autoguidés peuvent y être autoguidés dans des sens opposés sans risque de collision sous la commande de l'unité contrôle de trafic automatisé CBTC qui garantit tous les véhicules contre un risque de collision. Tous les signaux (par exemple de type visuels) S1, S2, S22, S3 sont alors inhibés/éteints sur ces sections, de façon à ne pas induire un véhicule en erreur, antagonistement aux instructions de l'unité contrôle de trafic automatisé CBTC. Les signaux S4, S5 sont ici hors section de type CBTC : ils sont donc encore activable par l'unité de contrôle de signalisation AWS. Si cependant, un véhicule à pilotage manuel monodirectionnel devait approcher ou pénétrer sur une section à pilotage autoguidable, la signalisation au sol de type AWS devrait être réactivée, de façon à réimposer aux véhicules autoguidables un arrêt ou un déplacement monodirectionnel dans la direction du véhicule à pilotage manuel. Cette mesure de sécurité anticollision impose donc une restriction de flexibilité de déplacements aux véhicules autoguidables. Figure 2 now represents an example whose channel distribution is similar to that of the figure 1 . However, four self-propelled vehicles AT1, AT2, AT3, AT4 are present and circulate on each on the first portion CBTC TS1, the transit area TR12 and the second portion CBTC TS2. Due to the absence of manual type vehicles and in addition to the presence of ground signaling, the first and second portions of CBTC TS1, CBTC TS2 channel are no longer under the priority control of a signaling control unit of AWS type. In other words, on these same sections of CBTC TS1, CBTC TS2, all self-guided vehicles can be self-guided in opposite directions without risk of collision under the control of the automated traffic control unit CBTC which guarantees all vehicles against a risk of collision. All the signals (for example of the visual type) S1, S2, S22, S3 are then inhibited / extinguished on these sections, so as not to induce a vehicle in error, contrary to the instructions of the automated traffic control unit CBTC. The signals S4, S5 are here out of CBTC type section: they are therefore still activatable by the AWS signaling control unit. If, however, a one-way manual-steering vehicle were to approach or enter a self-steering section, the AWS ground signage should be re-enabled to re-establish a one-way stop or one-way trip in the direction of the vehicle to the self-steering vehicles. manual steering. This anti-collision safety measure therefore imposes a restriction on the flexibility of movements to self-steering vehicles.

Un des principaux buts de la présente invention est de proposer un système de contrôle anticollision à haute flexibilité pour au moins un premier véhicule muni d'un pilotage automatique embarqué.One of the main aims of the present invention is to provide a highly flexible anti-collision control system for at least a first vehicle equipped with an on-board automatic pilot.

L'invention décrit ainsi un système de contrôle anticollision pour au moins un premier véhicule muni d'un pilotage automatique embarqué (= autoguidable), permettant des mouvements bidirectionnels sur une unique voie sous la commande d'une unité de contrôle de trafic automatisé au sol, dite de type CBTC. L'unité de contrôle de trafic automatisé au sol est en règle générale un réseau (ou/et des sous-réseaux) comportant des points d'accès (par exemple de type WLAN) distribués le long de la voie pouvant être mis en communication (radiofréquence) avec le véhicule au moyen d'un routeur embarqué qui reçoit les instructions de mouvement qui sont exécutées physiquement au moyen d'un contrôleur embarqué.The invention thus describes an anti-collision control system for at least a first vehicle equipped with an onboard autopilot (= self-steering), allowing bidirectional movements on a single lane under the control of an automated ground traffic control unit. , called type CBTC. The automated ground traffic control unit is generally a network (or / and subnets) having access points (for example of the WLAN type) distributed along the portable channel ( radio frequency) with the vehicle by means of an on-board router which receives the motion instructions which are physically executed by means of an on-board controller.

En particulier, le dit système comprend :

  • une unité de contrôle de signalisation de type AWS commandant des signaux au sol sur une section de voie à circulation monodirectionnelle,
  • un premier mode de commande par défaut selon lequel l'unité de contrôle de signalisation impose un mouvement monodirectionnel au véhicule se déplaçant sur la section de voie à circulation monodirectionnelle, de façon à éviter toute collision avec un autre véhicule commandé uniquement par l'unité de contrôle de signalisation de type AWS, c'est-à-dire indépendamment de l'unité de contrôle de trafic automatisé au sol.
In particular, said system comprises:
  • an AWS-type signaling control unit controlling ground signals on a section of a one-way traffic lane,
  • a first default control mode in which the signaling control unit imposes one-way movement on the vehicle traveling on the one-way traffic section of the track, so as to avoid any collision with another vehicle controlled solely by the traffic control unit. AWS-type signaling control, ie independent of the automated ground traffic control unit.

Un premier avantage de l'invention est qu'un deuxième mode de commande est activable, selon lequel un déplacement du véhicule à pilotage dans des sens opposés sur au moins une partie de la section de voie à circulation initialement monodirectionnelle peut être initié au moyen d'une requête de demande de priorité de commande issue de l'unité de contrôle de trafic automatisé CBTC et adressée à l'unité de contrôle de signalisation AWS qui retourne un signal d'autorisation RESP (ou de refus) à la requête. En d'autres termes, le mode de commande par défaut est ponctuellement et temporairement basculable et octroie sa priorité de commande à l'unité de contrôle de trafic automatisé CBTC, si aucun risque d'accident avec un élément manuellement commandable ne subsiste. De cette façon, un véhicule autoguidable peut être exceptionnellement autoguidé, alors qu'il se trouve sur une section de type AWS, d'où une amélioration significative de la flexibilité de ses mouvements bidirectionnels sur une voie initialement à sens unique tout en garantissant un système anticollision fiable. Après envoi d'une réponse autorisée à la requête, l'unité de contrôle de signalisation AWS assure une commande d'interdiction d'une entrée des véhicules de type MT (non commandables par le CBTC) sur la voie de type CBTC TS.A first advantage of the invention is that a second control mode is activatable, according to which a displacement of the steering vehicle in opposite directions on at least a portion of the initially monodirectional flow-through track section can be initiated by means of a control priority request request from the automated traffic control unit CBTC and addressed to the AWS signaling control unit which returns a permission signal RESP (or refusal) to the request. In other words, the default control mode is punctually and temporarily switchable and gives its control priority to the automated traffic control unit CBTC, if no risk of accident with a manually controllable element remains. In this way, a self-driving vehicle can be exceptionally self-guided, while on an AWS-type section, resulting in a significant improvement in the flexibility of its bidirectional movements on an initially one-way track while ensuring a reliable collision avoidance system. After sending an allowed response to the request, the AWS signaling control unit provides a command to prohibit an entry of MT type vehicles (not CBTC-controllable) on the CBTC TS type channel.

Il est à noter que la requête issue de l'unité de contrôle de trafic automatisé CBTC et adressée à l'unité de contrôle de signalisation AWS est transmise seulement sous garantie sécuritaire d'une absence de tout véhicule non-commandable par l'unité de contrôle de trafic automatisé CBTC qui se trouverait sur la section de voie à circulation initialement monodirectionnelle AWS TS ou à sa proximité. Comme type de véhicule non-commandable par l'unité de contrôle de trafic automatisé CBTC, il s'agit d'un véhicule dit de type MT, incompatible à une commande de l'unité de contrôle de trafic automatisé CBTC ou exempt de pilotage automatique, car complètement piloté manuellement tel qu'un des véhicules MT1, MT2 de la figure 1. Ainsi, la requête de basculement de mode selon l'invention est précédé d'une autorisation propre à l'unité de contrôle de trafic automatisé CBTC ou d'un poste de contrôle annexe, autre que l'unité de contrôle de signalisation AWS qui est principalement « aveugle » devant les véhicule à pilotage automatique.
En pratique, la garantie sécuritaire mentionnée ci-dessus est effectuée (avant l'envoi de la requête) par un opérateur qui contrôle une présence ou une prévision du trafic de type « manuel » sous la section de voie vouée au prochain basculement sur le mode de commande automatique (car le trafic automatisé est déjà auto-contrôlé par l'unité de contrôle de trafic automatisé CBTC). En particulier, l'opérateur a connaissance de l'état de capteurs aux voies ou autres détecteurs de présence (appelés communément « Circuit de Voie ou CDV ») indiquant la présence d'un véhicule à pilotage « manuel » de type MT sur la section de voie visée.
It should be noted that the request from the CBTC automated traffic control unit and sent to the AWS signaling control unit is transmitted only under a secure guarantee of the absence of any non-controllable vehicle by the CBTC automated traffic control on or near AWS TS unidirectional traffic lane section. As a type of vehicle not controllable by the automated traffic control unit CBTC, it is a so-called MT type vehicle, incompatible with a control of the automated traffic control unit CBTC or without automatic piloting. because it is completely manually driven, such as one of the MT1, MT2 vehicles of the figure 1 . Thus, the mode switching request according to the invention is preceded by an authorization specific to the automated traffic control unit CBTC or an ancillary control station, other than the AWS signaling control unit which is mainly "blind" in front of self-propelled vehicles.
In practice, the security guarantee mentioned above is carried out (before sending the request) by an operator who controls a presence or a forecast of the "manual" type of traffic under the track section dedicated to the next changeover to the mode. automatic control (because the automated traffic is already self-controlled by the CBTC automated traffic control unit). In particular, the operator knows from the condition of sensors to the channels or other presence detectors (commonly referred to as "Track or VCT") indicating the presence of a "manual" MT-type vehicle on the intended track section.

Un ensemble de sous-revendications présente également des avantages de l'invention.A set of subclaims also has advantages of the invention.

Des exemples de réalisation et d'application sont fournis à l'aide de figures décrites :

Figure 3 :
une première architecture du système anticollision,
Figure 4 :
une deuxième architecture du système anticollision.
Examples of implementation and application are provided using the figures described:
Figure 3:
a first architecture of the anti-collision system,
Figure 4:
a second architecture of the anti-collision system.

Figure 3 décrit une première architecture du système anticollision selon l'invention pour deux situations respectivement représentées en amont et en aval d'une voie V1. En amont de la voie V1, un premier véhicule AT1 autoguidable peut se déplacer sur une portion de voie AWS TS1 initialement commandée par une unité de contrôle de signalisation AWS (gérant les signaux lumineux S1, S2, S3, S4 représentés au sol au niveau de la voie V1). Sur cette portion de voie AWS TS1, le véhicule AT1 circule donc monodirectionnellement de la gauche vers la droite sous le mode de commande par défaut issu de l'unité de contrôle de signalisation AWS. Figure 3 describes a first architecture of the collision avoidance system according to the invention for two situations respectively represented upstream and downstream of a channel V1. Upstream of the V1 channel, a first self-driving AT1 vehicle can move on an AWS TS1 channel portion initially controlled by an AWS signaling control unit (managing the light signals S1, S2, S3, S4 represented on the ground at track V1). On this portion of AWS TS1 channel, the AT1 vehicle therefore circulates monodirectionally from left to right under the default command mode from the AWS signaling control unit.

Pour le premier véhicule AT1, un deuxième mode de commande est alors activable, selon lequel son déplacement dans des sens opposés sur au moins une partie (par exemple ici la portion CBTC TS0 ou/et la portion CBTC TS1) de la section AWS TS1 de voie à circulation initialement monodirectionnelle AWS TS1 est initié par une requête CBTC Only de demande de priorité de commande issue d'une unité de contrôle de trafic automatisé CBTC, ATC et adressée à l'unité de contrôle de signalisation AWS qui retourne un signal d'autorisation ou de refus RESP à la requête. En cas d'autorisation acceptée (réponse RESP positive, car aucun risque de collision avec un véhicule à pilotage manuel sur les parties CBTC TS0, CBTC TS1), l'unité de contrôle de trafic automatisé CBTC, ATC transmet au moins une instruction relatives au déplacement autorisé au véhicule AT1 via une liaison radio RAD. Les signaux S1, S2, S22, S3, S4, S5 commandés par l'unité de contrôle de signalisation AWS peuvent alors également être éteints/inhibés pour ne pas induire en erreur un conducteur du véhicule AT1. Le mode de commande a alors complètement basculé selon l'invention sur au moins une des portions CBTC TS0, CBTC TS1 à circulation bidirectionnelle.For the first vehicle AT1, a second control mode is then activatable, according to which its displacement in opposite directions on at least a part (for example here the CBTC portion TS0 and / or the CBTC portion TS1) of the AWS section TS1 of initially unidirectional traffic channel AWS TS1 is initiated by a CBTC Only command priority request request from an automated traffic control unit CBTC, ATC, and addressed to the AWS signaling control unit that returns a RESP authorization or denial signal to the request. If an authorization is accepted (positive RESP response, because no risk of collision with a manually operated vehicle on CBTC parts TS0, CBTC TS1), the automated traffic control unit CBTC, ATC transmits at least one instruction relating to the authorized movement to the vehicle AT1 via a RAD radio link. The signals S1, S2, S22, S3, S4, S5 controlled by the AWS signaling control unit can then also be turned off / inhibited so as not to mislead a driver of the vehicle AT1. The control mode has then completely switched according to the invention on at least one of CBTC portions TS0, CBTC TS1 bidirectional circulation.

Entre les deux parties en amont et en aval de la voie V1 se trouve une zone de transit TRANS qui permet une connection entre la voie V1 et une voie supplémentaire V2, du même type que la voie V1. Autour de cette zone de transit TRANS sur la première voie V1, deux signaux de manoeuvre S3, S4 (c'est-à-dire commandables par l'unité de contrôle de signalisation AWS assurent le début ou la fin de portion à circulation bidirectionnelle de façon à éviter une collision entre des véhicules traversant d'une voie à l'autre ou sortant de chaque section AWS TS1, AWS TS2 vers la section de transit TRANS.Between the two parts upstream and downstream of the channel V1 is a transit zone TRANS which allows a connection between the channel V1 and an additional channel V2, of the same type as the channel V1. Around this transit zone TRANS on the first channel V1, two operating signals S3, S4 (that is to say, controllable by the AWS signaling control unit ensure the beginning or the end of the two-way flow portion of to avoid a collision between vehicles crossing from one lane to another or exiting each AWS TS1, AWS TS2 section to the TRANS transit section.

En aval de la voie V1, un véhicule AT2 à pilotage autoguidé et un véhicule MT3 à pilotage manuel circulent sur une portion de voie AWS TS2 à circulation monodirectionnelle (gauche vers la droite) et sous le mode de commande par défaut de l'unité de contrôle de signalisation AWS. Avantageusement, l'invention permet alors sous l'envoi d'une requête telle que décrite ci-dessus de demander une instauration des sections CBTC TS2, CBTC TS3 de la portion initiale AWS TS2, de façon à isoler sur des distances de sécurité contre toute collision.Downstream of track V1, a self-guided AT2 vehicle and a manually driven MT3 vehicle travel on a portion of AWS TS2 one-way (left to right) and under the default control mode of the AWS signaling control. Advantageously, the invention then makes it possible, under the sending of a request as described above, to request the introduction of CBTC sections TS2, CBTC TS3 of the initial portion AWS TS2, so as to isolate over safety distances against any collision.

Sur la première section CBTC TS2, le premier véhicule AT2 est donc autorisé à circuler bidirectionnellement et sur la deuxième section CBTC TS3, le deuxième véhicule MT3 ne circulera que monodirectionnellement, si il ne possède aucun pilote automatique embarqué pouvant être activé sous le mode de commande de l'unité de contrôle de trafic automatisé CBTC.On the first section CBTC TS2, the first vehicle AT2 is therefore allowed to flow bidirectionally and on the second CBTC section TS3, the second vehicle MT3 will circulate only one-way, if it has no onboard autopilot can be activated under the command mode of the CBTC automated traffic control unit.

Il est à noter que l'unité de contrôle de signalisation AWS commande de façon centrale des signaux au sol distribués le long des voies, et gèrent les manoeuvres de tous les véhicules à pilotage en mode « manuel ». C'est en fait cette unité de contrôle qui reçoit, interprète la requête CBTC Only et génère la réponse d'autorisation ou de refus RESP à une plate-forme de commande/gestion ATC de l'unité de contrôle de trafic automatisé CBTC qui permet l'interface de communication avec les véhicules à pilotage potentiellement bidirectionnel. Pour la suite de l'invention et pour des raisons de clarté, seuls les types AWS et CBTC seront toutefois utilisés. De même, les références des portions de voies permettant une circulation des véhicules mono- ou bidirectionnelles seront implicitement désignées par des sections de type AWS TS et CBTC TS. Une liste d'abréviations à la fin de la description pourra aussi être consultée pour guider le lecteur.It should be noted that the AWS signaling control unit centrally controls ground signals distributed along the tracks, and manages the maneuvers of all flying vehicles in "manual" mode. It is actually this control unit that receives, interprets the CBTC Only request and generates the RESP authorization or refusal response to an ATC control / management platform of the CBTC automated traffic control unit that allows the communication interface with potentially bi-directional vehicles. For the rest of the invention and for the sake of clarity, only the AWS and CBTC types will however be used. Likewise, the references of the portions of lanes allowing a circulation of the mono- or bidirectional vehicles will be implicitly designated by sections of the AWS TS and CBTC TS type. A list of abbreviations at the end of the description may also be consulted to guide the reader.

La requête CBTC Only et le signal d'autorisation RESP peuvent être avantageusement très simples, telles que sous la forme de signaux de type binaire adaptés pour au moins une portion prédéfinie CBTC TS de la section à circulation monodirectionnelle AWS TS. Ainsi est-il possible de définir des relais électriques au sol prédéfinissant des sous-portions de voie de type AWS TS et basculant le type AWS TS d'un mode à l'autre (= vers l'autre type CBTC TS) grâce au changement de mode de commande selon l'invention, en particulier si il est assuré ou prévisible qu'un véhicule à pilotage « manuel » ne circule ou circulera pas sur une sous-portion de type CBTC TS.The CBTC Only request and the authorization signal RESP may advantageously be very simple, such as in the form of binary type signals adapted for at least one predefined portion CBTC TS of the unidirectional flow section AWS TS. Thus, it is possible to define ground-based electrical relays that predefine AWS TS-type channel sub-portions and switch the AWS TS type from one mode to another (= to the other type CBTC TS) thanks to the changeover. of control mode according to the invention, particularly if it is certain or foreseeable that a "manual" driving vehicle will not circulate or circulate on a sub-portion of type CBTC TS.

Bien entendu, un calculateur logique peut être compris dans l'unité de contrôle de signalisation et ainsi assurer un traitement simple de la requête CBTC Only ainsi que délivrer une réponse positive ou négative sur l'activation d'un nouveau mode de commande d'un véhicule sur une sous-portion de voie (via un relais électrique).Of course, a logic calculator can be included in the signaling control unit and thus ensure a simple processing of the CBTC Only request as well as deliver a positive or negative response on the activation of a new control mode of a vehicle on a sub-portion of track (via an electrical relay).

Requête à caractère sécuritaire assurée par un opérateur ou : La requête CBTC Only peut aussi comprendre des informations instantanées et prévisibles sur le mouvement (localisation, destination, etc.) du véhicule à pilotage automatique ou non (de type AT, MT). Ceci implique que l'unité de contrôle de signalisation AWS peut établir une analyse plus complexe de la requête. Pour des situations à caractère provisoire, la requête et la réponse peuvent être reformulées périodiquement, de façon à prévenir d'une approche voire une entrée inattendue de véhicule de type manuel sur une portion de voie CBTC TS, auquel cas l'unité de contrôle de signalisation AWS reprend le mode de commande. Le signal d'autorisation RESP peut donc avoir une validité à durée prédéterminée par l'unité de contrôle de signalisation AWS et reste en permanence désactivable par inhibition. Ainsi, l'invention assure une flexibilité haute tout en garantissant une sécurité absolue en cas de malfonction d'un quelconque élément du système anticollision.Request of a secure nature by an operator or: The CBTC Only request may also include instantaneous and predictable information on the movement (location, destination, etc.) of the autopilot or non-autopilot vehicle (AT, MT type). This implies that the AWS signaling control unit can establish a more complex analysis of the query. For temporary situations, the request and the response can be reformulated periodically, so as to prevent an approach or even an unexpected entry of a manual type vehicle on a CBTC TS track portion, in which case the control unit of AWS signaling resumes the command mode. The authorization signal RESP can therefore have a validity of predetermined duration by the AWS signaling control unit and remains permanently deactivatable by inhibition. Thus, the invention provides high flexibility while ensuring absolute safety in case of malfunction of any element of the collision avoidance system.

En résumé, il est important que dans le cas d'un signal d'autorisation RESP acceptée, l'unité de contrôle de trafic automatisé CBTC commande au moins une section autorisée à circulation bidirectionnelle CBTC TS, sous réserve que l'unité de contrôle de signalisation AWS continue à garantir qu'aucun autre véhicule de type MT avec un pilotage manuel ne se trouve, ne pénètre, ne circule ou ne soit autorisé à circuler sur la section autorisée à circulation bidirectionnelle CBTC TS ou, au pire, ne soit en phase d'approche à risque de la dite section autorisée CBTC TS.In summary, it is important that in the case of an accepted RESP authorization signal, the automated traffic control unit CBTC controls at least one CBTC TS bidirectional traffic section, provided that the control unit of AWS continues to ensure that no other MT-type vehicle with manual steering is, does not enter, does not circulate or is authorized to operate on the authorized two-way CBTC TS section or, at worst, is not in the risk approach phase of the authorized CBTC TS section.

Figure 4 décrit une deuxième architecture du système anticollision selon l'invention, particulièrement bien adaptée pour un changement de voie (dit aussi service provisoire, par exemple d'avant-gare) réalisé par un véhicule de type MT à pilotage « manuel » à partir ici d'une première voie V1 vers une deuxième voie V2 via une section de transit TRANS, telle qu'un aiguillage commandé par des signaux électriques (ici via l'unité de contrôle de signalisation de type AWS, mais si le type de pilotage de véhicule était automatique, l'unité de contrôle de trafic automatisé CBTC pourrait passer en mode de commande prioritaire). Selon la figure 4, les deux sens opposés de circulation possible sont référenciés comme sens pair PAI ou sens impair IMP. De plus, un véhicule à pilotage automatique est répertorié comme de type AT et un véhicule exempt de pilotage automatique ou dont le pilotage automatique est inactif voire défectueux ou avec lequel l'unité de commande de trafic automatisé CBTC est provisoirement déconnectée, est répertorié comme de type MT. Le véhicule de type MT concerné est pour des raisons de clarté seulement représenté sur une portion de voie T7 en position MT2. Toutefois, il faut comprendre que ce même véhicule circule suivant le parcours matérialisé par les flèches en pointillé comprenant diverses positions principales MT0, MT1, MT2, MT3 du dit véhicule. Figure 4 discloses a second architecture of the collision avoidance system according to the invention, particularly well adapted for a change of lane (also called temporary service, for example from the front-station) realized by a vehicle of type MT with "manual" steering from here d a first channel V1 to a second channel V2 via a transit section TRANS, such as a switch controlled by electrical signals (here via the signaling control unit of the AWS type, but if the type of vehicle control was automatic, the CBTC automated traffic control unit could switch to priority control mode). According to figure 4 , the two opposite directions of possible circulation are referenced as the even direction PAI or odd direction IMP. In addition, a self-propelled vehicle is listed as an AT type and a vehicle that is not autopilot-controlled or whose autopilot is inactive or defective or with which the CBTC automated traffic control unit is temporarily disconnected is listed as type MT. For the sake of clarity, the MT type vehicle concerned is only represented on a portion of track T7 in position MT2. However, it should be understood that the same vehicle travels along the path shown by the dashed arrows comprising various main positions MT0, MT1, MT2, MT3 of said vehicle.

Dans cet exemple, un véhicule de type MT (position MT0) se déplace sur la première voie V1 à circulation initiale paire depuis une section T2 vers une section T4, toutes deux de type AWS TS, dont la section T2 est reliée à la section de transit TRANS aboutissant à la deuxième voie V2 sur une section T5. La section T4 peut comprendre un quai Q1 pour passagers devant lequel le véhicule MT s'arrête (position MT1) avant de repartir en direction de la section T2 pour s'introduire sur la zone de transit TRANS. Un signal au sol S21 autorise ou bloque le véhicule MT au niveau de la zone de transit TRANS, de façon à ce que le véhicule de type MT puisse s'engager sans risque de collision sur une nouvelle section T7 de la deuxième voie V2 (position MT2). Si un second véhicule devait être ou s'approcher irrémédiablement dans le sens pair de la deuxième voie V2 à partir d'une section T8 de la section T7, le signal S21 bloque le premier véhicule MT en position MT1. Dans le cas inverse, le véhicule initialement à quai traverse la zone de transit et rejoint la section T7 de la deuxième voie V2.In this example, an MT type vehicle (MT0 position) moves on the first evenly initial V1 track from a T2 section to a T4 section, both of the AWS TS type, whose T2 section is connected to the T4 section. transit TRANS leading to the second channel V2 on a section T5. Section T4 may include a Q1 pier for passengers in front of which the vehicle MT stops (position MT1) before starting towards the section T2 to enter the transit zone TRANS. A ground signal S21 authorizes or blocks the MT vehicle at the transit transit area, so that the MT type vehicle can engage without risk of collision on a new section T7 of the second track V2 (position MT2). If a second vehicle had to be or irreparably approach in the even direction of the second channel V2 from a section T8 of section T7, the signal S21 blocks the first vehicle MT in position MT1. In the opposite case, the vehicle initially at the wharf passes through the transit zone and rejoins the T7 section of the second V2 lane.

Si le véhicule de type MT est en zone de transit TRANS, des signaux de blocage S8, S32 et S1, S3 sont disposés en amont et en aval de la section finale T5 de transit, de façon à assurer l'arrêt d'autres véhicules de type MT, suffisamment loin du véhicule de type MT arrivant sur la section T7. Ainsi, dans en cas de risque de collision entre ces véhicules de type MT, l'unité de contrôle de signalisation est en mode de commande.If the MT type vehicle is in transit zone TRANS, blocking signals S8, S32 and S1, S3 are arranged upstream and downstream of the final transit section T5, so as to ensure the stopping of other vehicles. MT type, sufficiently far from the MT type vehicle arriving on section T7. Thus, in case of risk of collision between these vehicles type MT, the signaling control unit is in control mode.

Si cependant, alors que le véhicule de type MT est en zone de transit TRANS en vue d'arriver sur la section T7, des autres véhicules de type AT sur la deuxième voie V2 (et commandés selon l'invention par le nouveau mode de commande via une unité de contrôle de trafic automatisé CBTC) doivent être adéquatement bloqués pour éviter toutes collisions. Bien entendu, il est possible d'annuler le mode de commande de type CBTC afin de gérer la situation avec l'unique signalisation pour les véhicules de type AT et MT, cependant l'invention permet une gestion du trafic plus flexible en accordant aux véhicules de type AT de circuler librement de façon automatisée (sans signalisation) dans une zone délimitée T8 suivant la section T7 (à signalisation) dans le sens pair. Sur cette zone délimitée T8, un véhicule de type AT sera automatiquement bloqué sous commande de l'unité de contrôle de trafic automatisé CBTC et donc n'accostera pas la section T7 d'arrivée du premier véhicule MT issu de la zone de transit TRANS.If, however, while the MT type vehicle is in transit zone TRANS to arrive at the section T7, other AT type vehicles on the second channel V2 (and controlled according to the invention by the new control mode via an automated traffic control unit CBTC) must be properly blocked to avoid collisions. Of course, it is possible to cancel the CBTC type control mode to manage the situation with the single signaling for AT and MT type vehicles, however the invention allows a more flexible traffic management by granting vehicles of type AT to circulate freely in an automated way (without signaling) in a delimited zone T8 following section T7 (signaling) in the even direction. On this zone delimited T8, an AT type vehicle will automatically be locked under control of the automated traffic control unit CBTC and therefore will not dock the arrival section T7 of the first vehicle MT from the transit area TRANS.

Après arrivée du premier véhicule MT sur la section T7, son sens de circulation sur la deuxième voie V2 peut être défini comme pair, dans le but d'atteindre un nouveau quai Q2 pour passagers situé sur une section T3, séparée de la section T7 par la zone de fin de transit TRANS, T5 qui devrait être sécurisée quant à une nouvelle arrivée de véhicule de la première voie V1.After arrival of the first MT vehicle on section T7, its direction of traffic on the second lane V2 can be defined as even, with the aim of reaching a new passenger quay Q2 located on a section T3, separated from section T7 by the transit end zone TRANS, T5 which should be secured as to a new vehicle arrival of the first channel V1.

Deux cas de figures peuvent alors se poser :

  • afin de bloquer tout autre véhicule de type MT de circuler dans le sens impair en direction du premier véhicule de type MT issu de sa position MT2 dans le sens pair ou à l'arrêt en section T3 (au niveau du quai Q2), l'unité de contrôle de signalisation de type AWS rétablit un sens monodirectionnel de circulation sur la deuxième voie V2 dans la sens pair. Ceci sous-entend dans cet exemple, qu'un signal de blocage S1 de véhicule déjà lancé dans le sens impair (à désactiver car le sens pair est choisi) doit être placé suffisamment loin du quai Q2, afin de prendre en compte la distance de freinage (zone de glissement) du véhicule à arrêter. Cette opération est complètement faisable au moyen de l'unité de contrôle de signalisation AWS.
  • afin de bloquer toutefois tout autre véhicule maintenant de type AT de circuler dans le sens impair en direction du premier véhicule de type MT issu de sa position MT2 dans le sens pair ou à l'arrêt en section T3 (au niveau du quai Q2), l'invention permet d'arrêter le véhicule de type AT automatiquement avant le quai Q2 (le mode de commande par l'unité de contrôle de signalisation est alors inopérant). Ainsi, il n'y a pas d'effet surprise pour un conducteur de véhicule de type AT, à l'inverse de celui d'un véhicule de type MT qui sur sa lancée en sens impair (non souhaitée) traverse le signal de blocage S1 et devra brutalement freiner pour s'arrêter avant le quai Q2.
    L'invention peut donc être avantageusement utilisée à une fin de blocage sécurisé du véhicule de type AT, en ce sens l'unité de contrôle de trafic automatisé CBTC interdit au premier véhicule AT la circulation ou l'accès sur une portion T3 de section autorisée à circulation bidirectionnelle CBTC TS si le premier véhicule AT et le deuxième véhicule MT (se destinant vers le quai Q2) sont en approche mutuelle, en particulier si le deuxième véhicule MT atteint la portion T3 avant le premier véhicule AT.
Two cases can then arise:
  • in order to block any other MT type vehicle from traveling in the odd direction towards the first MT type vehicle coming from its position MT2 in the even direction or at the stop in section T3 (at the level of the platform Q2), the AWS-type signaling control unit restores a one-way traffic direction on the second V2 path in the even direction. This implies in this example that a vehicle blocking signal S1 already launched in the odd direction (to be deactivated because the even direction is chosen) must be placed sufficiently far from the platform Q2, in order to take into account the distance of braking (sliding zone) of the vehicle to be stopped. This operation is completely feasible using the AWS signaling control unit.
  • in order, however, to block any other vehicle now of type AT from traveling in the odd direction towards the first vehicle of type MT coming from its position MT2 in the even or stationary direction in section T3 (at the level of the platform Q2), the invention makes it possible to stop the AT type vehicle automatically before the platform Q2 (the control mode by the control unit of signaling is then inoperative). Thus, there is no surprise effect for an AT-type vehicle driver, unlike that of an MT-type vehicle which, in its odd (undesired) direction, passes through the blocking signal. S1 and will have to braked hard to stop before Q2.
    The invention can therefore be advantageously used for a secure locking end of the AT type vehicle, in this sense the automated traffic control unit CBTC prohibits the first vehicle AT traffic or access to a portion T3 of authorized section bidirectional CBTC TS if the first vehicle AT and the second vehicle MT (destined for the Q2 platform) are in mutual approach, especially if the second MT vehicle reaches the T3 portion before the first AT vehicle.

Afin de permettre une mixité de ces deux cas de figures, la figure 4 présente un premier avantage qui consiste à disposer une section CBTC TS au niveau de la section T3 (quai Q2). De ce fait, et selon l'invention, vu qu'un basculement du mode de commande sur l'unité de contrôle de trafic automatisé est assuré sur la section T3, aucun véhicule de type AT ne pourra y provoquer une collision avec le premier véhicule à quai ou y parvenant. D'autre part, une précaution provient de la disposition d'une section T1, pouvant être de type AWS TS, entre la section T0 de type CBTC TS et la section T3 (quai Q2) également de type CBTC TS. Ceci a pour effet de permettre une distance d'arrêt de tout véhicule de type MT par la signalisation au niveau de la section T1 en tant la zone d'approche du quai Q2 sur laquelle un véhicule entre ou est stationné.In order to allow a mix of these two cases, the figure 4 has a first advantage that is to have CBTC section TS at section T3 (Q2 dock). Therefore, and according to the invention, since a switch of the control mode on the automated traffic control unit is provided on the T3 section, no AT type vehicle will be able to cause a collision with the first vehicle at or on the quay. On the other hand, a precaution comes from the provision of a section T1, which may be of AWS TS type, between the CBTC TS type T0 section and the T3 (Q2 platform) also type CBTC TS. This has the effect of allowing a stopping distance of any MT-type vehicle by the signaling at the T1 section as the approach area of the Q2 platform on which a vehicle enters or is parked.

Ceci assure aussi qu'un véhicule de type AT en sens impair ne pourra atteindre la section intermédiaire T3 protégée selon l'invention. En résumé, il est possible de juxtaposer des portion de type CBTC TS, AWS TS à l'approche d'une zone de collision avec un véhicule, afin de pouvoir assurer une anticollision de ce véhicule avec une mixité de types AT, MT d'autres véhicules.This also ensures that an AT type vehicle in odd direction can not reach the intermediate section T3 protected according to the invention. In summary, it is possible to juxtapose portions of the CBTC TS, AWS TS type when approaching a collision zone with a vehicle, in order to be able to ensure collision avoidance of this vehicle with a mix of AT, MT types. other vehicles.

Ainsi, par introduction de sections de type CBTC TS pour un réseau mixte AWS/CBTC, une première hausse de flexibilité du trafic est atteinte, car les véhicules de type AT peuvent jouir de leur bidirectionnalité sans recours à une signalisation au sol qui les en empêcheraient sur des portions sécurisées de façon conventionnelle. Cet aspect permet ainsi de pouvoir adapter un réseau de contrôle de trafic automatisé CBTC plus flexiblement à une unité de contrôle de signalisation AWS déjà existant. Des véhicules de type MT ne sont de plus pas mis en danger par des véhicules à pilotage automatique.Thus, by introducing CBTC TS sections for an AWS / CBTC mixed network, a first increase in traffic flexibility is achieved, because AT-type vehicles can enjoy their bidirectionality without the need for ground signaling that would prevent them from being used. on portions that are secured in a conventional way. This aspect makes it possible to adapt a more flexible CBTC automated traffic control network to an already existing AWS signaling control unit. MT vehicles are also not endangered by autopilot vehicles.

En cas de défaillance d'un pilotage embarqué dans un véhicule de type AT (donc le véhicule est subitement assimilable à un véhicule de type MT), l'unité de contrôle de signalisation AWS peut activer des éléments ou signaux de freinage, blocage ou de circulation obligatoire monodirectionnelle de ce véhicule AT en périphérie (section T1) de la section T3 autorisée à circulation bidirectionnelle de type CBTC TS. La section T1 de type AWS TS assure ainsi un contrôle sur des véhicules exempts d'un pilotage automatique ou forcés à être commandés manuellement.In the event of a failure of an on-board control unit in an AT-type vehicle (ie the vehicle is suddenly comparable to an MT-type vehicle), the AWS signaling control unit can activate braking, blocking or compulsory one-way traffic of this AT vehicle at the periphery (section T1) of the T3 section authorized for CBTC two-way traffic. The T1 section of AWS TS type thus ensures a control on vehicles exempt from an autopilot or forced to be controlled manually.

Il est également sous-entendu que le présent système anticollision ne se limite pas à une seule unité de contrôle de trafic automatisé CBTC. L'unité de contrôle de signalisation AWS comprend un adaptateur d'interopérabilité pour évaluer la priorité de plusieurs requêtes (sous des garanties sécuritaires antérieures) provenant d'une pluralité d'unités de contrôle de trafic automatisé CBTC, celles-ci pouvant avoir en particulier différents protocoles de commande. De même, la terminologie « unité de contrôle de signalisation AWS » sous-entend un réseau de signalisation ou/et des sous réseaux de signalisation (associés à des signaux au sol) commandé par au moins une unité de contrôle de signalisation AWS.It is also understood that the present collision avoidance system is not limited to a single CBTC automated traffic control unit. The AWS signaling control unit includes an interoperability adapter to evaluate the priority of several requests (under previous security guarantees) from a plurality of CBTC automated traffic control units, which may have in particular different control protocols. Similarly, the terminology "AWS signaling control unit" means a signaling network and / or signaling subnetworks (associated with ground signals) controlled by at least one AWS signaling control unit.

Liste d'abréviationsList of abbreviations

ATAT
véhicule à pilotage automatique ("Automatic Train")self-propelled vehicle ("Automatic Train")
ATCATC
contrôleur de trafic automatisé ("Automatic Train Control")Automated Traffic Control ("Automatic Train Control")
AWSAWS
unité de contrôle de signalisation ("Auxiliary Wayside System" aussi dénommée « Interlocking »)signaling control unit ("Auxiliary Wayside System" also known as "Interlocking")
AWS TSAWS TS
section de trafic commandé par AWS ou IXL ("Traffic Section handled by AWS")traffic section controlled by AWS or IXL ("Traffic Section handled by AWS")
CBTCCBTC
unité de contrôle de trafic automatisé ("Communication Based Train Control")Automated Traffic Control Unit ("Communication Based Train Control")
CBTC TSCBTC TS
section de trafic commandé par CBTC ("Traffic Section handled by CBTC")traffic section controlled by CBTC ("Traffic Section handled by CBTC")
MT --- TSMT --- TS
véhicule à pilotage manuel (« Manual train ») section de trafic ou portion de voie ("Traffic Section"'Manual train' means a traffic section or portion of a lane ("Traffic Section")

Les indices ajoutés aux abréviations de base ci-dessus, tels que pour AT1, AT2 ou MT1, MT2 ou AWS TS1, AWS TS2 ou CBTC TS1, CBTC TS2, etc., indiquent qu'un élément fait partie de la catégorie désignée par l'abréviation de base.Indices added to the abovementioned basic abbreviations, such as for AT1, AT2 or MT1, MT2 or AWS TS1, AWS TS2 or CBTC TS1, CBTC TS2, etc., indicate that an element falls within the category designated by the basic abbreviation.

Claims (13)

  1. Anti-collision control system for at least a first vehicle (AT) equipped with on-board automatic vehicle operation, allowing bidirectional movements on a single track under the control of a ground-based automated traffic control unit (ATC, CBTC),
    said system comprising:
    - a signalling control unit (AWS) controlling ground-based signals (S1, S12, ...) on a track section with monodirectional running (AWS TS),
    - a first default control mode according to which the signalling control unit (AWS) imposes a monodirectional movement on the vehicle moving on the monodirectional running track section (AWS TS),
    characterised in that
    a second control mode can be activated, according to which a movement of the vehicle (AT) in opposite directions on at least one part (CBTC TS) of the track section of an initially monodirectional running nature (AWS TS) is initiated by a request (CBTC Only) for control priority coming from the automated traffic control unit (CBTC) and sent to the signalling control unit (AWS) which returns an authorisation signal (RESP) to the request.
  2. System according to claim 1, for which the request (CBTC Only) and the authorisation signal (RESP) are binary-type signals appropriate for at least a predefined portion of the monodirectional running section (AWS TS).
  3. System according to claim 1 or 2, for which the request (CBTC Only) is initiated under the safety guarantee of an absence of a vehicle (MT) from the track section of an initially monodirectional running nature (AWS TS) or from its neighbourhood, and if said vehicle (MT) is incompatible with a control of the automated traffic control unit (CBTC).
  4. System according to one of claims 1 to 3, for which the response (RESP) is delivered by a relay or a logic calculator of the signalling control unit (AWS).
  5. System according to one of claims 1 to 4, for which, in the case of an authorisation signal (RESP) granted, the automated traffic control unit (CBTC) controls at least a bidirectional working authorised section (CBTC TS), provided the signalling control unit (AWS) guarantees that no other vehicle (MT) with manual vehicle operation is running or is being allowed to run on the bidirectional working authorised section (CBTC TS).
  6. System according to claim 5, according to which the automated traffic unit control (CBTC) forbids the first vehicle (AT) from running on or accessing a part (T3) of bidirectional working authorized section (CBTC TS) if the first vehicle (AT) and the second vehicle (MT) are on mutual approach, in particular if the second vehicle (MT) reaches the part (T3) before the first vehicle (AT).
  7. System according to one of claims 5 to 6, according to which the second vehicle (MT) with manual vehicle operation is either without on-board automatic vehicle operation, or is equipped with on-board automatic vehicle operation which may be deactivated or faulty, or from which the automated traffic control unit (CBTC) is temporarily disconnected.
  8. System according to one of claims 4 to 7, according to which the signalling control unit (AWS) controls active elements or visual signals for the braking or blocking of the second vehicle (MT) on or in the periphery of an authorised section (T3) of bidirectional working nature (CBTC TS).
  9. System according to one of claims 4 to 8, according to which the signalling control unit (AWS) activates elements or signals of braking, of blocking or of mandatory monodirectional running of the first vehicle (AT) in the periphery (T1) of an authorised section (T3) of bidirectional working nature (CBTC TS).
  10. System according to one of claims 4 to 9, according to which the signalling control unit (AWS) comprises an interoperability adaptor to evaluate the priority of several requests coming from a plurality of automated traffic control units (CBTC), it being possible in particular for these to have different control protocols.
  11. System according to one of the preceding claims, for which the authorisation signal (RESP) has a validity with a duration predetermined by the signalling control unit (AWS) and remains permanently able to be deactivated by inhibition.
  12. System according to one of the preceding claims, for which the vehicles are mass transit vehicles, such as guided buses, tramways, trolleybuses, trains or other rail units.
  13. System according to one of the preceding claims, for which pairs of juxtaposed sections (AWS TS, CBTC TS) are inserted in a zone of collision risk initially controlled by the signalling control unit (AWS) or by the automated traffic control unit (CBTC).
EP07730934A 2007-02-07 2007-02-07 Anticollision control system for a vehicle Active EP2114746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07730934T PL2114746T3 (en) 2007-02-07 2007-02-07 Anticollision control system for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2007/000218 WO2008096048A1 (en) 2007-02-07 2007-02-07 Anticollision control system for a vehicle

Publications (2)

Publication Number Publication Date
EP2114746A1 EP2114746A1 (en) 2009-11-11
EP2114746B1 true EP2114746B1 (en) 2010-06-23

Family

ID=38175815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730934A Active EP2114746B1 (en) 2007-02-07 2007-02-07 Anticollision control system for a vehicle

Country Status (12)

Country Link
US (1) US8321079B2 (en)
EP (1) EP2114746B1 (en)
KR (1) KR101087407B1 (en)
CN (1) CN101626937B (en)
AT (1) ATE471859T1 (en)
BR (1) BRPI0721194B1 (en)
CA (1) CA2677348A1 (en)
DE (1) DE602007007366D1 (en)
DK (1) DK2114746T3 (en)
ES (1) ES2347713T3 (en)
PL (1) PL2114746T3 (en)
WO (1) WO2008096048A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007252A1 (en) * 2010-02-09 2011-08-11 Bayerische Motoren Werke Aktiengesellschaft, 80809 Method for automatic braking of a vehicle for collision avoidance or collision following reduction
FR2958248B1 (en) * 2010-04-01 2012-06-15 Alstom Transport Sa METHOD FOR MANAGING THE MOVEMENT OF VEHICLES ON A RAILWAY NETWORK AND ASSOCIATED SYSTEM
KR100977727B1 (en) * 2010-04-12 2010-08-24 대아티아이(주) Train collision alert unit and method using ldts data
CN101913370B (en) * 2010-07-27 2012-08-29 北京全路通信信号研究设计院有限公司 Travelling permit generating method and system based on access
CN104640069A (en) * 2010-07-30 2015-05-20 三洋电机株式会社 Radio apparatus
WO2012076206A1 (en) * 2010-12-09 2012-06-14 Siemens S.A.S. Method for communicating information between an on-board control unit and a public transport network
CN102358304B (en) * 2011-08-16 2013-10-30 陈朝亮 Anti-collision train
BR112014004808A2 (en) * 2011-08-29 2017-05-30 Crow Equipment Corp system method and vehicle
KR101269860B1 (en) * 2011-10-21 2013-06-07 주식회사 범한 Collision prevention system and method for monorail car on monorail with curved rail
US9478142B2 (en) * 2012-01-25 2016-10-25 Carnegie Mellon University Railway transport management
GB201206465D0 (en) * 2012-04-12 2012-05-30 Westinghouse Brake & Signal Interlocking systems
US11760396B2 (en) * 2014-04-25 2023-09-19 Nabil N. Ghaly Method and apparatus for an auxiliary train control system
CN104401329B (en) * 2014-10-30 2016-11-30 北京交控科技股份有限公司 Bifilar road automatic recurving control method and device before a kind of station
US10525993B2 (en) 2015-11-25 2020-01-07 Coordem Transport Tech. Co., Ltd. Railway turnout control method and system
DE102016203695A1 (en) * 2016-03-07 2017-09-07 Siemens Aktiengesellschaft Railway installation and method for operating a railway installation
FR3049556B1 (en) 2016-04-01 2019-07-05 Alstom Transport Technologies METHOD FOR MANAGING THE CIRCULATION OF A RAILWAY VEHICLE WITH LATERAL ANTICOLLISION PROTECTION
JP6568830B2 (en) * 2016-08-22 2019-08-28 株式会社日立製作所 Signal security system
JP6712545B2 (en) 2016-12-19 2020-06-24 日立オートモティブシステムズ株式会社 Electronic control device, electronic control system, and electronic control method
CN106672024B (en) * 2016-12-29 2019-03-05 北京交通大学 Train control system mobile authorization safety protecting method based on spatial alternation
GB201707347D0 (en) * 2017-05-08 2017-06-21 Apollo Train Control Ltd A system and apparatus for decentralised continuous train control
CN107472300B (en) * 2017-08-10 2019-10-01 湖南中车时代通信信号有限公司 A kind of mobile authorization calculating method
DE102019204135A1 (en) 2019-03-26 2020-10-01 Siemens Mobility GmbH Method for the mixed operation of a track-bound route section with a switch as well as a route section and a switch
CN111435567B (en) * 2020-02-05 2021-01-26 珠海大横琴科技发展有限公司 Control method and device for road patrol car on customs road
CN111361422B (en) * 2020-03-24 2021-07-16 江铃汽车股份有限公司 Automobile rear collision power-off protection method and system
CN114655280B (en) * 2020-12-24 2022-12-09 比亚迪股份有限公司 Train reversing control method and device and train
CH718463A2 (en) * 2021-03-19 2022-09-30 Stadler Rail Ag Procedure for setting routes and CBTC system.
CN117579406A (en) * 2024-01-15 2024-02-20 中铁一局集团电务工程有限公司 Trolley bus, communication method and system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817344A (en) * 1971-09-23 1974-06-18 Mitsubishi Electric Corp Apparatus for controlling vehicular speed and interspacing
US4791871A (en) * 1986-06-20 1988-12-20 Mowll Jack U Dual-mode transportation system
CH682738A5 (en) * 1991-12-06 1993-11-15 Von Roll Ag Means for securely automatically controlling the mutual distance of vehicles.
CN1124858A (en) * 1994-12-12 1996-06-19 黄金富 Positioning, auto-navigating and collision preventing system for moving device in running
KR970010506A (en) * 1995-08-21 1997-03-27 이희종 How to generate automatic speed control code
DE102004001818B3 (en) * 2004-01-07 2005-08-25 Siemens Ag Operating system for rail transport
CN1641712A (en) * 2004-01-15 2005-07-20 于君 Vehicle positioning system and its special vehicular device and road side facility
DE502004000665D1 (en) * 2004-07-06 2006-07-06 Alcatel Sa Method for switching from a first to a second train control system
DE102004042979A1 (en) * 2004-08-31 2006-03-16 Siemens Ag System for the safe operation of track-bound trains on tracks

Also Published As

Publication number Publication date
US20100090069A1 (en) 2010-04-15
US8321079B2 (en) 2012-11-27
EP2114746A1 (en) 2009-11-11
ATE471859T1 (en) 2010-07-15
ES2347713T3 (en) 2010-11-03
CA2677348A1 (en) 2008-08-14
BRPI0721194B1 (en) 2018-05-22
WO2008096048A1 (en) 2008-08-14
BRPI0721194A2 (en) 2012-12-25
CN101626937A (en) 2010-01-13
KR101087407B1 (en) 2011-11-30
DE602007007366D1 (en) 2010-08-05
CN101626937B (en) 2012-06-20
DK2114746T3 (en) 2010-10-11
KR20100004950A (en) 2010-01-13
PL2114746T3 (en) 2010-11-30

Similar Documents

Publication Publication Date Title
EP2114746B1 (en) Anticollision control system for a vehicle
US20220147043A1 (en) Autonomous vehicle mode regulator
KR101834854B1 (en) train-centric electronic interlocking system for connected train based autonomous train control system and the method thereof
EP2648960B1 (en) Method for communicating information between an on-board control unit and a public transport network
WO2014103102A1 (en) Train control system and train control method
JP2018504309A (en) Architecture for driving assistance systems with conditional automation
JP7289184B2 (en) Automatic train operation system
CN113650657B (en) Full-automatic train reverse operation protection control method
CA3015773A1 (en) Traffic control process for vehicles in a network
CN105555631A (en) Method for controlling platform doors and platform-door control device
JP2016085525A (en) Control system
CN112874577A (en) Train management method and system
EP2300301B1 (en) Communication method and system for route secured control
AU2020289779B8 (en) Communication system
JP6453065B2 (en) On-board device and signal security system
CA2962887A1 (en) Traffic management process for a railway vehicle with lateral anticollision protection
US20220080839A1 (en) Train control system, on-board device and train control method
WO2018003520A1 (en) On-board device, train, and signaling safety system
JP2018184013A (en) Device and method for interlocking
CN115848448A (en) Train regression protection system and method
CN113970921A (en) Control method and system for unmanned driving of locomotive in factory

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007007366

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100402073

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2347713

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SAS

Free format text: SIEMENS TRANSPORTATION SYSTEMS S.A.S.#150 AVENUE DE LA REPUBLIQUE#92320 CHATILLON (FR) -TRANSFER TO- SIEMENS SAS#9 BOULEVARD FINOT#93200 ST. DENIS (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110127 AND 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20110216

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS SAS

Effective date: 20110602

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010359

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007007366

Country of ref document: DE

Owner name: SIEMENS S.A.S., SAINT-DENIS, FR

Free format text: FORMER OWNER: SIEMENS TRANSPORTATION SYSTEM S.A.S., CHATILLION, FR

Effective date: 20110503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007007366

Country of ref document: DE

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20120416

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20130201

Year of fee payment: 7

Ref country code: DK

Payment date: 20130218

Year of fee payment: 7

Ref country code: GB

Payment date: 20130213

Year of fee payment: 7

Ref country code: BG

Payment date: 20130213

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130225

Year of fee payment: 7

Ref country code: NL

Payment date: 20130204

Year of fee payment: 7

Ref country code: PL

Payment date: 20130129

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130108

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130510

Year of fee payment: 7

Ref country code: DE

Payment date: 20130419

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140311

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007007366

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471859

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140207

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20100402073

Country of ref document: GR

Effective date: 20140903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140903

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007007366

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: SIEMENS MOBILITY SAS

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS MOBILITY S.A.S.

Effective date: 20210423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230526

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 18