EP2114708A2 - Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobile - Google Patents
Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobileInfo
- Publication number
- EP2114708A2 EP2114708A2 EP08762014A EP08762014A EP2114708A2 EP 2114708 A2 EP2114708 A2 EP 2114708A2 EP 08762014 A EP08762014 A EP 08762014A EP 08762014 A EP08762014 A EP 08762014A EP 2114708 A2 EP2114708 A2 EP 2114708A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- evaporator
- sterilization
- gases
- passenger compartment
- sterilization system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H3/00—Other air-treating devices
- B60H3/0085—Smell or pollution preventing arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00821—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
- B60H1/00828—Ventilators, e.g. speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H3/00—Other air-treating devices
- B60H3/0071—Electrically conditioning the air, e.g. by ionizing
- B60H3/0078—Electrically conditioning the air, e.g. by ionizing comprising electric purifying means
Definitions
- the present invention relates to the field of supplying and purifying air taken outside a motor vehicle and entering the passenger compartment.
- the invention relates to air supply devices comprising an air conditioning system.
- the air conditioning systems consist of a condenser in which the heat transfer fluid in the gaseous state condenses on contact with the outside air, and an evaporator in which the coolant in the liquid state evaporates in contact with the air. air to cool. Between the condenser and the evaporator are placed a compressor and a regulator that allow to change the temperature of the heat transfer fluid by changing its pressure.
- the evaporator is a heat exchanger between the heat transfer fluid which is the cold source and the air to be cooled which is the hot source.
- the air to be cooled is conveyed along the evaporator to promote heat exchange.
- part of the water vapor that it contains condenses in the form of droplets are formed mainly on the walls of the evaporator, where the temperature is lowest, and create a state of near constant humidity near the evaporator.
- the formation of such droplets has several disadvantages, including the appearance and proliferation of microorganisms that find a moist environment favorable to their development. These microorganisms are responsible for the generation of bad odors that can inconvenience the users of the air conditioning system, especially in a small space such as the passenger compartment of a motor vehicle.
- the patent application US 2005 0058582 describes an air conditioning system for a motor vehicle.
- the air conditioning system comprises a fan, an evaporator, at least one electrostatic filtration system and a catalytic plasma system comprising a plasma reactor.
- the plasma reactor operates continuously to destroy microorganisms and gaseous pollutants from outside air. Such a process therefore requires a high permanent electrical consumption and generates moreover, via the plasma reactor, toxic byproducts diffused inside the passenger compartment.
- the patent application US 2005 0169821 describes an air treatment system for a motor vehicle, comprising a fan, an evaporator and an oxidation device capable of decomposing the odors and / or pollutants contained in the air supplied.
- the oxidation device is an ozone generator used to sterilize the evaporator.
- the effectiveness, at temperatures of the order of 1 -2 0 C, of ozone to sterilize an evaporator is limited.
- the patent FR 2 848 500 describes a device for supplying air to the passenger compartment comprising a gas filter, a heater and a controlled valve adapted to allow a flow of gases from the passenger compartment through the heater and then through the filter. gas to regenerate said filter from the heated gases from the heater.
- the gases are heated to regenerate the gas filter and do not always pass through the evaporator which is likely to reduce their temperature.
- the invention proposes to remedy these disadvantages.
- the object of the invention is to improve the quality of the air in the passenger compartment, to limit the power consumption and / or to extend the period of effectiveness of the purification.
- the invention thus proposes a device for supplying air to a passenger compartment of a motor vehicle, comprising at least one evaporator and a sterilization system.
- the feeding device air also comprises a set of controlled valves capable of authorizing:
- the flow of gases allows a renewal of the air present in the cabin of the vehicle from air taken at least partly outside, and passing through different organs, such as the evaporator. .
- the flow of gases from the passenger compartment to the outside it allows to treat the impurities contained in the evaporator with appropriate gases and then to evacuate these gases outside the vehicle.
- the sterilization system is arranged upstream of the evaporator during sterilization operation of the evaporator, that is to say that the active species produced by the sterilization system are driven, in sterilization operation of the evaporator, to said evaporator by the flow of gases from the passenger compartment, and can then be evacuated outside the vehicle. This results in better air quality in the passenger compartment.
- the sterilization system comprises a first electrode and a second electrode separated by a dielectric material.
- the sterilization system can thus be a cold plasma reactor.
- sterilization system is meant here an apparatus for producing active species, and in particular free radicals, capable of destroying microorganisms.
- active species are ozone, or even air particles ionized by a discharge created between the electrodes.
- These active species can destroy the microorganisms present downstream of the sterilization system.
- the evaporator is mounted downstream of the sterilization system and the active species produced by the discharges can therefore destroy the microorganisms present in the evaporator.
- the air supply device thus makes it possible to sterilize the evaporator by eliminating the microorganisms that are present there, and to evacuate to the outside the gases comprising the residues of microorganisms and possibly toxic discharge products. .
- the purpose of the evaporator sterilization system is not to destroy bad odors but to destroy the cause of these unpleasant odors, namely microorganisms.
- the sterilization system comprises a photocatalytic material.
- the photocatalytic material can be activated by the radiation produced by the discharges. It is thus possible to generate active species by plasma-photocatalytic coupling.
- the air supply device may also include a filter system mounted upstream of the evaporator, in normal operation.
- the filter systems are designed to retain either solid particles or gaseous pollutants, or both.
- Gas filters, especially activated carbon are rapidly losing their effectiveness and need to be replaced frequently.
- the retention capacity of activated carbons depends strongly on their temperature and is reversible.
- a gas filter saturated at room temperature has the ability to be regenerated by subjecting it to a temperature higher than that of its normal operation.
- the filter system may comprise a particulate filter and / or a gas filter.
- the flow of gases from the passenger compartment to the outside can allow particles to be extracted and discharged to the outside by the filtering system. It can also be used to convey compounds produced by the sterilization system and which have a temperature above ambient temperature, to the filtering system in order to regenerate it, and allow the evacuation to the outside. regeneration residues.
- the invention can thus allow, at the same time as the sterilization of the evaporator, the regeneration of the filtering system.
- the device also comprises a heater mounted upstream of the evaporator, in sterilization operation of the evaporator.
- the term "heater” means a heat exchanger for heating a gas passing through it and for cooling a fluid, in particular the liquid of the cooling circuit of the internal combustion engine. It is thus possible to heat air which is taken from the passenger compartment and which is sent, after reheating, through the evaporator and, where appropriate, the filtering system, in order to allow, on the one hand, to increase the temperature of the evaporator and other to desorb gas stored in the filter system.
- the generally high temperature of the internal combustion engine coolant is used during operation of the internal combustion engine or, preferably, during a shutdown, to transfer heat energy to the gas, thereby regenerating a gas filter. and the temperature increase of the evaporator, energy which, without this use, would gradually dissipate after the engine has been stopped.
- the invention therefore makes it possible to use, in order to raise the temperature of the gas filter and of the evaporator, an energy which, in conventional systems, is today lost.
- the increase in temperature of the evaporator makes it possible in particular to increase the efficiency of the sterilization by the active species produced by the sterilization system.
- the heater can belong to a circulation circuit of a coolant of an internal combustion engine fitted to the motor vehicle.
- the circulation circuit can be equipped with a water pump, for example electric, able to circulate the coolant in the heater, including when stopping the internal combustion engine.
- the device may comprise an electronic control unit capable, upon stopping the internal combustion engine, of triggering the operation of the sterilization system and of controlling the controlled valves so as to allow a flow of gases from the passenger compartment. through the evaporator.
- the sterilization system has only effect in sterilization operation of the evaporator, and this mode of operation may take place, for example, at stopping the vehicle. This limits the power consumption of the evaporator sterilization system, and the accumulation of reactive species in the evaporator wet residue prolongs the sterilizing effect even after stopping the sterilization system.
- the device also comprises a system for regenerating the filtering system, the regeneration system being mounted upstream of the filtering system and downstream of the evaporator, in sterilization operation of the evaporator.
- the regeneration system may be a cold plasma reactor similar to that of the sterilization system.
- the use in the air supply device of a second cold plasma reactor makes it possible to increase the regeneration of the filtering system.
- the active species produced by the sterilization system have a limited life and are used primarily to sterilize the evaporator.
- the gases passing through the filter system, in sterilization operation can therefore have a proportion of weak active species and a temperature reduced by the evaporator.
- the cold plasma reactor of the regeneration system makes it possible to produce active species to specifically regenerate the filtering system. This gives a better regeneration of the filter system.
- the invention also relates to a method for sterilizing an evaporator of a vehicle cabin air supply device. According to the method, gases are passed from the passenger compartment of the vehicle into a sterilization system capable of forming active species, and then said gases containing the active species through the evaporator, and said gases are discharged to the outside.
- the gases from the passenger compartment of the vehicle are passed through a heater capable of increasing the temperature of said gases before passing them through the sterilization system.
- the motor vehicle comprises an internal combustion engine, and is expected to stop the internal combustion engine to pass the gas from the passenger compartment of the vehicle in the sterilization system.
- the air supply device 1 comprises an evaporator 2 forming part of an air conditioning system whose other elements have not been represented. , an air blower 3, a filter system 4, a sterilization system 5 and aeration outlets 6, 7, 8 to bring the gases to the passenger compartment.
- the blower 3 draws outside air into the air supply device 1, this air being intended to renew the air of the passenger compartment.
- the outside air thus enters the air supply device 1 through the opening 9 of an inlet duct 10 and then passes through the air blower 3.
- the blower 3 comprises, for example, a blower and a drive motor, and is chosen so as to allow a flow of gases from outside to the passenger compartment, but also from the passenger compartment to the outside. The gases leave the blower 3 and are conveyed by the pipe
- the filter system 4 comprises for example a particle filter and a gas filter used to retain certain particles or toxic gases contained in the outside air.
- the evaporator 2 consists, for example, of a metal structure allowing the passage of gases and having a large contact surface with the gases.
- the purpose of the evaporator 2 is to promote heat exchange between a coolant circulating in the evaporator and acting as a cold source, and the gases flowing outside the evaporator 2. During this heat exchange, the coolant can evaporate on heating, while the gases cool down. It is during this cooling of the gases that water is likely to condense on the surface of the evaporator, thus favoring the appearance of microorganisms.
- the gases from the evaporator 2 then pass through a sterilization system 5.
- the sterilization system 5 is capable of creating discharges in the gases passing through it, the products of the discharges allowing the destruction of microorganisms.
- the sterilization system 5 is more precisely a cold plasma reactor whose discharges are produced by two electrodes separated by a dielectric material.
- the sterilization system may comprise, for example, several electrodes surrounded by a dielectric material, placed near the evaporator 2. It is also possible to deposit a photocatalytic material inside the cold plasma reactor in order to generate active species by plasma-photocatalytic coupling.
- the high-voltage power supply (not shown) of the sterilization system 5 can be obtained for example by a sinusoidal alternating generator or by a symmetrical high-voltage pulsed generator which is less expensive and well suited for dielectric barrier discharges.
- the sterilization system 5 is not controlled to create discharges in the gases leaving the evaporator 2. Indeed, in normal operation, the sterilization system 5 is positioned downstream of the evaporator 2 in the direction of circulation of the gases, and the Discharge products capable of destroying microorganisms are therefore not carried to the evaporator 2.
- the pipe 10 opens onto a chamber January 1 comprising, for example, three openings to the first pipes 12, 13, 14 opening into the passenger compartment of the vehicle.
- the gases which have passed through the filter system 4, the evaporator 2 and the sterilization system 5 are then distributed in the chamber 11 between the different first pipes 12, 13, 14, in particular by three controlled valves 15, 16, 17 respectively determining the proportion of the gases flowing in the first three pipes 12, 13, 14.
- the air supply device 1 thus makes it possible to renew the air of the passenger compartment with gases coming from the outside air but purified by the filtering system and possibly cooled by the evaporator 2.
- the air blower 3 is also capable, particularly in sterilization operation of the evaporator, of circulating the gases in the air supply device 1 of the passenger compartment to the outside, as shown by the arrow shown in the attached figure.
- the chamber 1 1 thus comprises an opening towards a pipe
- the unit heater 19 can be used to heat the gases coming from the outside air and renewing the air of the cabin. It can also be used, as shown in the attached figure, to heat the gases from the passenger compartment and intended to purify the air supply device 1.
- an electronic control unit controls the valve 22 in the partial or full open position and the valves 15, 16 and 17 in the closed position.
- the air blower 3 circulates the gases in the device supply air 1 from the passenger compartment to the outside.
- a second air blower may be used, for example in line 20, so as to take air from the passenger compartment.
- the air taken from the passenger compartment is conveyed via the pipe 21 and then through the pipe 18 in which it passes through the heater unit.
- the heater unit 19 makes it possible to heat the gases coming from the passenger compartment, in particular in order to increase the Evaporator temperature 2 and increase the efficiency of sterilization.
- the heated gases then enter the chamber 1 1 and exit through the inlet line 10 which allows, in sterilization operation of the evaporator, to evacuate to the outside of the vehicle, gases from the passenger compartment.
- the heated gases thus pass through the inlet duct 10, the sterilization system 5, then the evaporator 2 which is mounted downstream of the sterilization system 5 during the sterilization operation of the evaporator, and then the filtering system 4 beforehand. to be routed to the outside.
- the sterilization system 5 can remain inactive as long as the evaporator
- the idle time of the sterilization system 5 thus depends on the operation of the evaporator 2 before the engagement of the sterilization procedure, and the temperature of the heater 19.
- the electronic control unit actuates the sterilization system 5 which generates active species created by plasma and entrained by the gases coming from the heater unit 19, towards the evaporator 2.
- the active species can destroy the microorganisms present in the evaporator 2.
- the temperature of the evaporator 2, which has been heated by the gases from the heater 19, makes it possible to increase the effectiveness of active species.
- the position of the sterilization system 5 next to the evaporator 2 also allows a better efficiency sterilization, since the active species produced by the sterilization system 5 are directly routed in the evaporator 2: therefore the reduction of active species due to parasitic reactions is limited.
- the gases are then conveyed to the filtering system 4.
- the temperature of the gases conveyed to the filtering system 4, as well as the active species that they contain, also make it possible to regenerate the filtering system 4.
- the temperature of the heated gases by the air heater 19 makes it possible to increase the temperature of a gas filter present in the filtering system 4, until it allows desorption of its pollutant gas absorption sites.
- the active species created by the plasma can also contribute to the regeneration of the gas filter. It is also possible, in a different embodiment, to add a cold plasma reactor between the evaporator 2 and the filtering system 4 in order to reinforce the regenerative capacity of the gases passing through the filtering system 4.
- the sterilization operation mode of the evaporator is preferably carried out when the vehicle is stopped, the coolant of the internal combustion engine being sufficiently hot for the heater unit to be able to transfer a substantial thermal energy to the gas flow. which crosses it. It is therefore possible to provide a triggering of the sterilization operating mode when several conditions are met:
- This last condition can be replaced by a condition of exceeding an operating time threshold since the last sterilization of the evaporator and / or regeneration of the filter system.
- a punctual operation of the sterilization system for a time limited to a few minutes after stopping the vehicle, makes it possible to limit the power consumption, to accumulate the reactive species in the wet residue contained in the evaporator, and to extract air enriched with active species on the outside of the vehicle.
- the accumulation of reactive species in the wet residue of the evaporator makes it possible to prolong the sterilizing effect even after stopping the sterilization system.
- the invention makes it possible, after a predetermined number of kilometers, to switch off the hot engine contact, to carry out a sterilization of the evaporator 2 and possibly a regeneration of the filtering system 4.
- the ECU controls the valves 6, 7 , 8 in the closed position, and the return valve 22 in the open position.
- An electric water pump connected to the heater unit 19 is actuated, then the blower 3 is operated for a given air flow and duration.
- the invention makes it possible to increase the service life of the evaporator 2, of the filtering system 4 and thus to limit the problems of air conditioning malfunction related to clogging of the filter.
- the airflow to the aerators is thus maintained and improves the thermal comfort of the passengers and the visibility by the windows of the vehicle. Controlled desorptions of the gas filter and the discharge outside the sterilization residues of the evaporator make it possible to improve the quality of the air in the passenger compartment.
- thermal energy of the cooling circuit is used to heat the evaporator and the filter system, energy that otherwise would be lost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Conditioning For Vehicles (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
L'invention concerne un dispositif d' alimentation d'air (1) pour habitacle de véhicule automobile, comprenant au moins un évaporateur (2) et un système de stérilisation (5). Le dispositif d' alimentation d' air 1 comprend également un ensemble de vannes pilotées (15, 16, 17, 22) aptes à autoriser : - un écoulement des gaz sortis de l' évaporateur (2) vers l' habitacle en fonctionnement normal, et - un écoulement des gaz de l' habitacle à travers l' évaporateur (2) en fonctionnement de stérilisation de l' évaporateur, le système de stérilisation (5) étant disposé en amont de l' évaporateur (2) en fonctionnement de stérilisation de l' évaporateur.
Description
Dispositif d'alimentation d'air et procédé de stérilisation d'un évaporateur pour habitacle de véhicule automobile
La présente invention concerne le domaine de l' alimentation et de la purification de l' air prélevé à l' extérieur d'un véhicule automobile et entrant dans l'habitacle. En particulier, l' invention concerne les dispositifs d' alimentation d' air comprenant un système de climatisation.
Les systèmes de climatisation sont constitués d'un condenseur dans lequel le fluide caloporteur à l' état gazeux se condense au contact de l' air extérieur, et un évaporateur dans lequel le fluide caloporteur à l' état liquide s'évapore au contact de l' air à refroidir. Entre le condenseur et l'évaporateur sont placés un compresseur et un détendeur qui permettent de changer la température du fluide caloporteur en changeant sa pression.
L'évaporateur est un échangeur thermique entre le fluide caloporteur qui est la source froide et l' air à refroidir qui est la source chaude. L' air à refroidir est acheminé le long de l' évaporateur afin de favoriser les échanges thermiques. Cependant, lorsque la température de l' air diminue, une partie de la vapeur d' eau qu'il contient se condense sous forme de gouttelettes. Ces gouttelettes se forment principalement sur les parois de l' évaporateur, là où la température est la plus faible, et créent un état d'humidité quasi-constant à proximité de l' évaporateur. La formation de telles gouttelettes entraîne plusieurs inconvénients, parmi lesquels l' apparition et la prolifération de microorganismes qui trouvent un milieu humide favorable à leur développement. Ces micro-organismes sont responsables de la génération de mauvaises odeurs pouvant incommoder les utilisateurs du système de climatisation, en particulier dans un espace restreint comme l'habitacle d'un véhicule automobile.
Les systèmes de climatisation classiques utilisent à cet effet des évaporateurs avec un revêtement de surface anti-microbien, des systèmes d' adjonction de parfum, ou bien encore des systèmes
permettant la destruction des mauvaises odeurs notamment par ionisation, ozonisation, etc.
La demande de brevet US 2005 0058582 décrit un système de climatisation pour véhicule automobile. Le système de climatisation comprend un ventilateur, un évaporateur, au moins un système de filtration électrostatique et un système plasma catalytique comportant un réacteur plasma. Le réacteur plasma fonctionne en continu pour détruire les micro-organismes et les polluants gazeux provenant de l' air extérieur. Un tel procédé nécessite donc une consommation électrique permanente élevée et génère de plus, via le réacteur plasma, des sous-produits toxiques diffusés à l' intérieur de l'habitacle.
La demande de brevet US 2005 0169821 décrit un système de traitement de l' air pour véhicule automobile, comprenant un ventilateur, un évaporateur et un dispositif d'oxydation capable de décomposer les odeurs et/ou polluants contenus dans l' air acheminé.
Le dispositif d' oxydation est un générateur d' ozone utilisé pour stériliser l'évaporateur. Cependant l' efficacité, à des températures de l' ordre de 1 -20C, de l' ozone pour stériliser un évaporateur est limitée.
Le brevet FR 2 848 500 décrit un dispositif d' alimentation d' air pour habitacle comprenant un filtre à gaz, un aérotherme et une vanne pilotée apte à autoriser un écoulement des gaz de l'habitacle à travers l' aérotherme puis à travers le filtre à gaz en vu de régénérer ledit filtre à partir des gaz réchauffés issus de l' aérotherme.
Cependant, les gaz sont réchauffés pour régénérer le filtre à gaz et ne passent pas toujours par l' évaporateur qui est susceptible de diminuer leur température.
L'invention propose de remédier à ces inconvénients.
Le but de l' invention est d' améliorer la qualité de l' air dans l'habitacle, de limiter la consommation électrique et/ou de prolonger la durée d' efficacité de la purification.
L' invention propose ainsi un dispositif d' alimentation d' air pour habitacle de véhicule automobile, comprenant au moins un évaporateur et un système de stérilisation. Le dispositif d' alimentation
d' air comprend également un ensemble de vannes pilotées aptes à autoriser :
- un écoulement des gaz sortis de l'évaporateur vers l'habitacle en fonctionnement normal, et - un écoulement des gaz de l'habitacle à travers l' évaporateur en fonctionnement de stérilisation de l' évaporateur.
En fonctionnement normal, l' écoulement des gaz permet un renouvellement de l' air présent dans l'habitacle du véhicule à partir d' air prélevé à l'extérieur, au moins en partie, et passant dans différents organes, tels que l' évaporateur. En fonctionnement de stérilisation, l' écoulement des gaz se fait de l'habitacle vers l' extérieur : il permet de traiter les impuretés contenues dans l' évaporateur avec des gaz appropriés puis d' évacuer ces gaz à l' extérieur du véhicule. Le système de stérilisation est disposé en amont de l' évaporateur en fonctionnement de stérilisation de l' évaporateur, c'est-à-dire que les espèces actives produites par le système de stérilisation sont entraînés, en fonctionnement de stérilisation de l' évaporateur, vers ledit évaporateur par l'écoulement des gaz issus de l'habitacle, et peuvent ensuite être évacuées à l' extérieur du véhicule. On obtient ainsi une meilleure qualité de l' air dans l'habitacle.
Préférentiellement, le système de stérilisation comprend une première électrode et une deuxième électrode séparées par un matériau diélectrique. Le système de stérilisation peut ainsi être un réacteur à plasma froid.
On entend ici par système de stérilisation un appareil permettant de produire des espèces actives, et en particulier des radicaux libres, susceptibles de détruire des micro-organismes. On peut citer comme exemples de telles espèces, l'ozone ou bien encore des particules d' air ionisées par une décharge créée entre les électrodes. Ces espèces actives permettent de détruire les microorganismes présents en aval du système de stérilisation. En particulier, en fonctionnement de stérilisation, l' évaporateur est monté en aval du système de stérilisation et les espèces actives produites par les
décharges peuvent donc détruire les micro-organismes présents dans l' évaporateur. Le dispositif d' alimentation d' air permet donc de stériliser l' évaporateur en éliminant les micro-organismes qui y sont présents, et d' évacuer vers l' extérieur les gaz comprenant les résidus de micro-organismes et éventuellement des produits de décharge toxiques.
On peut également noter que le but du système de stérilisation de l' évaporateur n' est pas de détruire les mauvaises odeurs mais de détruire la cause de ces mauvaises odeurs, à savoir les micro- organismes.
Selon un mode de réalisation, le système de stérilisation comprend un matériau photocatalytique.
Le matériau photocatalytique peut être activé par les rayonnements produits par les décharges. Il est ainsi possible de générer des espèces actives par un couplage plasma-photocatalyse.
Le dispositif d' alimentation d' air peut comprendre également un système filtrant monté en amont de l'évaporateur, en fonctionnement normal.
Les systèmes filtrants sont destinés à retenir soit les particules solides, soit les polluants gazeux, soit les deux. Les filtres à gaz, en particulier à charbon actif, perdent rapidement leur efficacité et doivent être remplacés fréquemment. Cependant, le pouvoir de rétention des charbons actifs dépend fortement de leur température et est réversible. Ainsi, un filtre à gaz saturé à la température ambiante a la faculté de pouvoir être régénéré en le soumettant à une température plus élevée que celle de son fonctionnement normal.
Le système filtrant peut comprendre un filtre à particules et/ou un filtre à gaz. En fonctionnement de stérilisation de l' évaporateur, l' écoulement des gaz de l'habitacle vers l' extérieur peut permettre d'extraire et d' évacuer vers l'extérieur des particules retenues par le système filtrant. Il peut également permettre d' acheminer des composés produits par le système de stérilisation et qui ont une température supérieure à la température ambiante, vers le système filtrant afin de le régénérer, et permettre d' évacuer à l' extérieur les
résidus de la régénération. L' invention peut ainsi permettre, en même temps que la stérilisation de l'évaporateur, la régénération du système filtrant.
Selon un mode de réalisation, le dispositif comprend également un aérotherme monté en amont de l' évaporateur, en fonctionnement de stérilisation de l'évaporateur.
On entend par aérotherme, un échangeur thermique permettant de réchauffer un gaz le traversant et de refroidir un fluide, en particulier le liquide du circuit de refroidissement du moteur à combustion interne. On parvient ainsi à réchauffer de l' air que l' on prélève dans l'habitacle et que l' on envoie, après réchauffage, traverser l'évaporateur et, le cas échéant, le système filtrant, afin de permettre d'une part d' augmenter la température de l' évaporateur et d' autre de part de désorber des gaz stockés dans le système filtrant. On se sert de la température en général élevée du liquide de refroidissement du moteur à combustion interne en cours de fonctionnement de ce dernier ou préférablement lors d'un arrêt, pour transférer une énergie thermique aux gaz, permettant la régénération d'un filtre à gaz et l' augmentation de température de l' évaporateur, énergie qui, sans cette utilisation, se dissiperait progressivement après l' arrêt du moteur thermique.
L'invention permet donc d'utiliser, pour élever en température le filtre à gaz et de l' évaporateur, une énergie qui, dans les systèmes classiques, est aujourd'hui perdue. L' augmentation de température de l' évaporateur permet notamment d' augmenter le rendement de la stérilisation par les espèces actives produites par le système de stérilisation.
L' aérotherme peut appartenir à un circuit de circulation d'un liquide de refroidissement d'un moteur à combustion interne équipant le véhicule automobile. Le circuit de circulation peut être équipé d'une pompe à eau, par exemple électrique, apte à faire circuler le liquide de refroidissement dans l' aérotherme, y compris lors de l' arrêt du moteur à combustion interne.
En particulier, le dispositif peut comprendre une unité de commande électronique capable, à l' arrêt du moteur à combustion interne, de déclencher le fonctionnement du système de stérilisation et de commander les vannes pilotées de manière à autoriser un écoulement des gaz de l'habitacle à travers l' évaporateur.
Ainsi, le système de stérilisation n' a d' effet qu' en fonctionnement de stérilisation de l' évaporateur, et ce mode de fonctionnement pourra avoir lieu, par exemple, à l' arrêt du véhicule. On limite ainsi la consommation électrique du système de stérilisation de l' évaporateur, et l' accumulation d'espèces réactives dans le résidu humide de l'évaporateur permet de prolonger l' effet stérilisant même après l' arrêt du fonctionnement du système de stérilisation.
Selon un mode de réalisation, le dispositif comprend également un système de régénération du système filtrant, le système de régénération étant monté en amont du système filtrant et en aval de l' évaporateur, en fonctionnement de stérilisation de l' évaporateur.
Le système de régénération peut être un réacteur à plasma froid analogue à celui du système de stérilisation. L'utilisation, dans le dispositif d' alimentation d' air, d'un deuxième réacteur à plasma froid permet d' augmenter la régénération du système filtrant. En effet, les espèces actives produites par le système de stérilisation ont une durée de vie limitée et sont utilisées en premier lieu pour stériliser l' évaporateur. Les gaz traversant le système filtrant, en fonctionnement de stérilisation, peuvent donc présenter une proportion d'espèces actives faibles et une température diminuée par l' évaporateur. Le réacteur à plasma froid du système de régénération permet de produire des espèces actives pour régénérer spécifiquement le système filtrant. On obtient ainsi une meilleure régénération du système filtrant. L'invention concerne également un procédé de stérilisation d'un évaporateur d'un dispositif d' alimentation d' air pour habitacle de véhicule. Selon le procédé, on fait passer des gaz en provenance de l'habitacle du véhicule dans un système de stérilisation apte à former des espèces actives, puis on fait passer lesdits gaz contenant les
espèces actives à travers l'évaporateur, et on évacue lesdits gaz à l'extérieur.
Préférentiellement, on fait passer les gaz en provenance de l'habitacle du véhicule dans un aérotherme apte à augmenter la température desdits gaz avant de les faire passer dans le système de stérilisation.
Préférablement, le véhicule automobile comprend un moteur à combustion interne, et on attend l' arrêt du moteur à combustion interne pour faire passer les gaz en provenance de l'habitacle du véhicule dans le système de stérilisation.
L'invention sera mieux comprise à l' étude de la description détaillée suivante d'un mode de réalisation et de mise en œuvre pris à titre d' exemples nullement limitatifs et illustrés par la figure annexée sur laquelle est représentée schématiquement un dispositif d' alimentation d' air selon l' invention.
Sur la figure annexée est représentée un dispositif d' alimentation d' air 1. Le dispositif d' alimentation d' air 1 comprend un évaporateur 2 faisant partie d'un système de conditionnement d' air dont les autres éléments n' ont pas été représentés, un pulseur d' air 3 , un système filtrant 4, un système de stérilisation 5 et des sorties d' aération 6, 7, 8 pour amener les gaz vers l'habitacle.
En fonctionnement normal, le pulseur 3 fait rentrer de l' air extérieur dans le dispositif d' alimentation d' air 1 , cet air étant destiné à renouveler l' air de l'habitacle. L' air extérieur entre ainsi dans le dispositif d' alimentation d' air 1 par l'ouverture 9 d'une conduite d'entrée 10 puis traverse le pulseur d' air 3. Le pulseur d' air 3 comprend par exemple une soufflante et un moteur d'entraînement, et est choisi de manière à permettre une circulation des gaz de l' extérieur vers l'habitacle, mais également de l'habitacle vers l' extérieur. Les gaz sortent du pulseur 3 et sont acheminés par la conduite
10 vers le système filtrant 4, l'évaporateur 2 et le système de stérilisation 5.
Le système filtrant 4 comprend par un exemple un filtre à particules et un filtre à gaz utilisés pour retenir certaines particules ou
gaz toxiques contenus dans l' air extérieur. Après avoir traversé le système filtrant, les gaz traversent l'évaporateur 2. L'évaporateur 2 est constitué par exemple d'une structure métallique permettant le passage des gaz et présentant une surface de contact importante avec les gaz. Le but de l' évaporateur 2 est de favoriser les échanges thermiques entre un fluide caloporteur circulant dans l' évaporateur et jouant le rôle de source froide, et les gaz circulant à l'extérieur de l' évaporateur 2. Durant cet échange de chaleur, le fluide caloporteur peut s 'évaporer en se réchauffant, tandis que les gaz se refroidissent. C' est durant ce refroidissement des gaz que de l' eau est susceptible de se condenser à la surface de l' évaporateur, favorisant ainsi l' apparition de microorganismes. Les gaz issus de l' évaporateur 2 traversent alors un système de stérilisation 5.
Le système de stérilisation 5 est capable de créer des décharges dans les gaz le traversant, les produits des décharges permettant la destruction de micro-organismes. Le système de stérilisation 5 est plus précisément un réacteur à plasma froid dont les décharges sont produites par deux électrodes séparées par un matériau diélectrique. Le système de stérilisation peut comprendre par exemple plusieurs électrodes entourées d'un matériau diélectrique, disposées à proximité de l' évaporateur 2. Il est également possible de déposer un matériau photocatalytique à l' intérieur du réacteur à plasma froid afin de générer des espèces actives par couplage plasma-photocatalyse. L' alimentation électrique à haute tension (non représentée) du système de stérilisation 5 peut être obtenue par exemple par un générateur alternatif sinusoïdal ou bien par un générateur impulsionnel à haute tension symétrique moins coûteux et bien adapté pour les décharges à barrière diélectrique.
Cependant, en fonctionnement normal, c' est-à-dire lorsque les gaz issus de l' air extérieur sont acheminés, après traitement, vers l'habitacle, le système de stérilisation 5 n'est pas commandé pour créer des décharges dans les gaz sortant de l' évaporateur 2. En effet, en fonctionnement normal, le système de stérilisation 5 est positionné en aval de l' évaporateur 2 dans le sens de circulation des gaz, et les
produits de décharges capables de détruire les micro-organismes ne sont donc pas entraînés vers l' évaporateur 2.
La conduite 10 débouche sur une chambre 1 1 comprenant, par exemple, trois ouvertures vers des premières conduites 12, 13, 14 débouchant dans l'habitacle du véhicule. Les gaz qui ont traversé le système filtrant 4, l'évaporateur 2 et le système de stérilisation 5 sont alors répartis, dans la chambre 11 , entre les différentes premières conduites 12, 13 , 14, notamment par trois vannes pilotées 15, 16, 17 déterminant respectivement la proportion des gaz circulant dans les trois premières conduites 12, 13, 14.
En fonctionnement normal, le dispositif d' alimentation d' air 1 permet donc de renouveler l' air de l'habitacle avec des gaz issus de l' air extérieur mais purifiés par le système filtrant et éventuellement refroidis par l' évaporateur 2. Cependant, le pulseur d' air 3 est également capable, notamment en fonctionnement de stérilisation de l'évaporateur, de faire circuler les gaz dans le dispositif d' alimentation d' air 1 de l'habitacle vers l' extérieur, comme le montre la flèche représentée sur la figure annexée. La chambre 1 1 comprend ainsi une ouverture vers une conduite
18 dans laquelle est monté un aérotherme 19 et débouchant sur une deuxième conduite 20. La deuxième conduite 20 comprend une sortie d' aération 21 de l'habitacle, ainsi qu'une vanne pilotée 22. L' aérotherme 19 permet de transférer de l'énergie calorifique du liquide de refroidissement du circuit de refroidissement, aux gaz qui le traversent. L' aérotherme 19 peut être utilisé pour chauffer les gaz issus de l' air extérieur et renouvelant l' air de l'habitacle. Il peut également être utilisé, comme représenté à la figure annexée, pour chauffer les gaz issus de l'habitacle et destinés à purifier le dispositif d' alimentation d' air 1.
En fonctionnement de stérilisation de l' évaporateur, une unité de commande électronique (UCE) commande la vanne 22 en position d'ouverture partielle ou totale et les vannes 15 , 16 et 17 en position fermées. Le pulseur d' air 3 fait circuler les gaz dans le dispositif
d' alimentation d' air 1 de l'habitacle vers le l'extérieur. Toutefois, dans un mode de réalisation différent, un deuxième pulseur d' air peut être utilisé, par exemple dans la conduite 20, de manière à prélever l' air de l'habitacle. L' air prélevé dans l'habitacle est acheminé par la conduite 21 , puis par la conduite 18 dans laquelle il traverse l' aérotherme 19. L' aérotherme 19 permet de chauffer les gaz issus de l'habitacle, notamment afin d' augmenter la température de l' évaporateur 2 et accroître l'efficacité de la stérilisation. Les gaz chauffés entrent alors dans la chambre 1 1 et en sortent par la conduite d' entrée 10 qui permet, en fonctionnement de stérilisation de l'évaporateur, d' évacuer vers l' extérieur du véhicule, des gaz issus de l'habitacle.
Les gaz chauffés traversent ainsi, dans la conduite d' entrée 10, le système de stérilisation 5 , puis l' évaporateur 2 qui est monté en aval du système de stérilisation 5 en fonctionnement de stérilisation de l' évaporateur, puis le système filtrant 4 avant d' être acheminés vers l' extérieur.
Au début du fonctionnement de stérilisation de l'évaporateur, le système de stérilisation 5 peut rester inactif tant que l' évaporateur
2, chauffé par les gaz issus de l' aérotherme 19, n' a pas atteint une température par exemple de 1O0C. Le temps d' inactivité du système de stérilisation 5 dépend donc du fonctionnement de l' évaporateur 2 avant l' enclenchement de la procédure de stérilisation, et de la température de l' aérotherme 19.
Lorsque l' évaporateur 2 a atteint la température fixée, l'unité de commande électronique (UCE) actionne le système de stérilisation 5 qui génère des espèces actives créées par plasma et entraînées par les gaz issus de l' aérotherme 19, vers l' évaporateur 2. Les espèces actives permettent de détruire les micro-organismes présents dans l' évaporateur 2. De plus, la température de l' évaporateur 2, qui a été chauffé par les gaz issus de l' aérotherme 19, permet d' augmenter l' efficacité des espèces actives. La position du système de stérilisation 5 à côté de l' évaporateur 2 permet également une meilleure efficacité
de la stérilisation, puisque les espèces actives produites par le système de stérilisation 5 sont directement acheminées dans l' évaporateur 2 : on limite donc la diminution d' espèces actives due à des réactions parasites. Les gaz sont ensuite acheminés vers le système filtrant 4. En particulier, la température des gaz acheminés vers le système filtrant 4, ainsi que les espèces actives qu' ils contiennent permettent également de régénérer le système filtrant 4. Ainsi, la température des gaz chauffés par l' aérotherme 19 permet d' augmenter la température d'un filtre à gaz présent dans le système filtrant 4, jusqu' à autoriser une désorption de ses sites d' absorption de gaz polluants. De plus, les espèces actives créées par le plasma peuvent également contribuer à la régénération du filtre à gaz. Il est aussi possible, dans un mode de réalisation différent, d' ajouter un réacteur à plasma froid entre l' évaporateur 2 et le système filtrant 4 afin de renforcer le pouvoir régénérant des gaz traversant le système filtrant 4.
Enfin, les gaz circulant à travers le système filtrant 4 dans le sens inverse de la circulation des gaz en fonctionnement normal, on peut également permettre un décolmatage d'un filtre à particules compris dans le système filtrant 4.
L'ensemble des résidus de stérilisation, des gaz désorbés et des particules décolmatées est ensuite acheminé par la conduite 10 vers l' ouverture 9 pour être évacués à l' extérieur du véhicule. On obtient ainsi une stérilisation de l' évaporateur 2 et une régénération optimale du système filtrant 4 sans introduire de résidus dans l'habitacle.
Le mode de fonctionnement de stérilisation de l' évaporateur est préférablement effectué à l' arrêt du véhicule, le liquide de refroidissement du moteur à combustion interne étant suffisamment chaud pour que l' aérotherme 19 puisse transférer une énergie thermique conséquente à l'écoulement de gaz qui le traverse. On peut donc prévoir un déclenchement du mode de fonctionnement de stérilisation lorsque plusieurs conditions sont réunies :
- circuit de refroidissement chaud,
- moteur arrêté,
- distance parcourue depuis la dernière stérilisation de l' évaporateur et/ou régénération du système filtrant supérieure à un seuil prédéterminé.
Cette dernière condition peut être remplacée par une condition de dépassement d'un seuil de durée de fonctionnement depuis la dernière stérilisation de l' évaporateur et/ou régénération du système filtrant.
On peut encore prévoir une condition de fermeture des portières du véhicule, après extinction du moteur, afin que le fonctionnement en stérilisation de l' évaporateur ne nuise pas à l' alimentation en air frais de l'habitacle du véhicule lorsque des personnes s 'y trouvent.
De plus, un fonctionnement ponctuel du système de stérilisation, pendant un temps limité à quelques minutes après l' arrêt du véhicule, permet de limiter la consommation électrique, d' accumuler les espèces réactives dans le résidu humide contenu dans l' évaporateur, et d' extraire l' air enrichi en espèces actives à l' extérieur du véhicule. En particulier, l' accumulation d'espèces réactives dans le résidu humide de l'évaporateur permet de prolonger l' effet stérilisant même après l' arrêt du système de stérilisation.
Ainsi, l'invention permet, après un nombre de kilomètres prédéterminé, à la coupure du contact, moteur chaud, de réaliser une stérilisation de l' évaporateur 2 et éventuellement une régénération du système filtrant 4. L'UCE commande les vannes 6, 7, 8 en position d'obturation, et la vanne de retour 22 en position ouverte. Une pompe à eau électrique connectée à l' aérotherme 19 est actionnée, puis le pulseur 3 est mis en fonctionnement pour un débit d' air et une durée donnés.
L'invention permet d' augmenter la durée de vie de l' évaporateur 2, du système filtrant 4 et donc de limiter les problèmes de mauvais fonctionnement de la climatisation liés au colmatage du filtre. Le débit d' air aux aérateurs est ainsi maintenu et permet d' améliorer le confort thermique des passagers et la visibilité par les vitrages du véhicule. Les désorptions contrôlées du filtre à gaz et le
rejet à l'extérieur des résidus de stérilisation de l'évaporateur permettent d' améliorer la qualité de l' air dans l'habitacle.
Enfin, on met à profit l' énergie thermique du circuit de refroidissement pour chauffer l'évaporateur et le système filtrant, énergie qui, sans cela, serait perdue.
Claims
1. Dispositif d' alimentation d' air ( 1) pour habitacle de véhicule automobile, comprenant au moins un évaporateur (2) et un système de stérilisation (5), caractérisé en ce que le dispositif d' alimentation d' air (1) comprend un ensemble de vannes pilotées ( 15 , 16, 17, 22) aptes à autoriser :
- un écoulement des gaz sortis de l'évaporateur (2) vers l'habitacle en fonctionnement normal, et - un écoulement des gaz de l'habitacle à travers l' évaporateur
(2) en fonctionnement de stérilisation de l' évaporateur, et en ce que le système de stérilisation (5) est disposé en amont de l' évaporateur (2) en fonctionnement de stérilisation de l'évaporateur.
2. Dispositif selon la revendication 1 dans lequel le système de stérilisation (5) comprend une première électrode et une deuxième électrode séparées par un matériau diélectrique.
3. Dispositif selon la revendication 1 ou 2 dans lequel le système de stérilisation (5) est un réacteur à plasma froid.
4. Dispositif selon l'une des revendications 1 à 3 dans lequel le système de stérilisation (5) comprend un matériau photocatalytique.
5. Dispositif selon l'une des revendications 1 à 4 comprenant en outre un système filtrant (4) monté en amont de l' évaporateur (5), en fonctionnement normal.
6. Dispositif selon l'une des revendications 1 à 5 comprenant également un aérotherme (19) monté en amont de l' évaporateur (2), en fonctionnement de stérilisation de l'évaporateur.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel le véhicule automobile comprend un moteur à combustion interne et dans lequel l' aérotherme (19) appartient à un circuit de circulation d'un liquide de refroidissement du moteur à combustion, ledit circuit de circulation étant équipé d'une pompe à eau apte à faire circuler le liquide de refroidissement dans l' aérotherme ( 19), y compris lors de l' arrêt du moteur à combustion interne.
8. Dispositif selon l'une des revendications 1 à 7, comprenant également une unité de commande électronique (UCE) capable, à l' arrêt du moteur à combustion interne, de déclencher le fonctionnement du système de stérilisation (5) et de commander les vannes pilotées ( 15 , 16, 17, 22) de manière à autoriser un écoulement des gaz de l'habitacle à travers l' évaporateur (2).
9. Procédé de stérilisation d'un évaporateur d'un dispositif d' alimentation d' air pour habitacle de véhicule automobile, dans lequel on fait passer des gaz en provenance de l'habitacle du véhicule dans un système de stérilisation (5) apte à former des espèces actives, puis on fait passer lesdits gaz contenant les espèces actives à travers l' évaporateur (2), et on évacue lesdits gaz à l'extérieur.
10. Procédé selon la revendication 9, dans lequel on fait passer les gaz en provenance de l'habitacle du véhicule dans un aérotherme ( 19) apte à augmenter la température desdits gaz avant de les faire passer dans le système de stérilisation (5).
11. Procédé selon la revendication 9 ou 10 dans lequel le véhicule automobile comprend un moteur à combustion interne, et dans lequel on attend l' arrêt du moteur à combustion interne pour faire passer les gaz en provenance de l'habitacle du véhicule dans le système de stérilisation (5).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0753013A FR2912086B1 (fr) | 2007-02-01 | 2007-02-01 | Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobile |
PCT/FR2008/050154 WO2008104664A2 (fr) | 2007-02-01 | 2008-01-30 | Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2114708A2 true EP2114708A2 (fr) | 2009-11-11 |
Family
ID=38461695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08762014A Withdrawn EP2114708A2 (fr) | 2007-02-01 | 2008-01-30 | Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2114708A2 (fr) |
FR (1) | FR2912086B1 (fr) |
WO (1) | WO2008104664A2 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2935301A1 (fr) * | 2008-09-02 | 2010-03-05 | Renault Sas | Dispositif de traitement de l'air entrant dans un habitacle de vehicule automobile. |
DE102008049280A1 (de) * | 2008-09-26 | 2010-04-01 | Behr Gmbh & Co. Kg | Ionisationsvorrichtung |
CN105034756A (zh) * | 2015-07-31 | 2015-11-11 | 叶棣航 | 空调公交车等离子净化器 |
CN105313644A (zh) * | 2015-10-01 | 2016-02-10 | 中山市蓝河光电照明科技有限公司 | 不等离子车用空气净化器 |
FR3073746A1 (fr) * | 2017-11-20 | 2019-05-24 | Compagnie Plastic Omnium | Dispositif de captation et de traitement de polluants emis dans l'air par un vehicule |
FR3111849B1 (fr) * | 2020-06-29 | 2022-11-04 | Psa Automobiles Sa | Système de climatisation/chauffage pour véhicule automobile et véhicule automobile comportant un tel dispositif |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050142047A1 (en) * | 2003-12-31 | 2005-06-30 | Hyundai Motor Company | Hybrid-type air purifier for an automobile |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0268213A (ja) * | 1988-09-02 | 1990-03-07 | Nippon Denso Co Ltd | 車両用空調装置 |
DE10047833A1 (de) * | 2000-09-27 | 2002-04-18 | Behr Gmbh & Co | Klimaanlage für ein Kraftfahrzeug |
DE10213195A1 (de) | 2002-03-25 | 2003-10-16 | Behr Gmbh & Co | Luftbehandlungsanlage für ein Fahrzeug |
FR2840564B1 (fr) * | 2002-06-06 | 2005-07-15 | Renault Sa | Dispositif de climatisation pour vehicule automobile et procede d'elimination des odeurs dans un tel dispositif de climatisation |
DE10230440A1 (de) * | 2002-07-06 | 2004-01-22 | Daimlerchrysler Ag | Klimaanlage |
ITTO20020920A1 (it) * | 2002-10-22 | 2004-04-23 | C F R Societa Consortile Per Azioni | Impianto di condizionamento e ventilazione di un abitacolo di un veicolo. |
FR2848500B1 (fr) | 2002-12-16 | 2006-09-29 | Renault Sa | Dispositif d'alimentation d'air et procede de regeneration d'un filtre a gaz pour habitacle de vehicule |
FR2859666B1 (fr) | 2003-09-12 | 2006-03-10 | Valeo Climatisation | Installation de chauffage/climatisation de vehicule automobile a flux d'air filtre |
-
2007
- 2007-02-01 FR FR0753013A patent/FR2912086B1/fr not_active Expired - Fee Related
-
2008
- 2008-01-30 EP EP08762014A patent/EP2114708A2/fr not_active Withdrawn
- 2008-01-30 WO PCT/FR2008/050154 patent/WO2008104664A2/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050142047A1 (en) * | 2003-12-31 | 2005-06-30 | Hyundai Motor Company | Hybrid-type air purifier for an automobile |
Also Published As
Publication number | Publication date |
---|---|
FR2912086A1 (fr) | 2008-08-08 |
WO2008104664A2 (fr) | 2008-09-04 |
WO2008104664A3 (fr) | 2008-10-30 |
FR2912086B1 (fr) | 2009-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007259713B2 (en) | Liquid treatment apparatus, air-conditioning system, and humidifier | |
EP2114708A2 (fr) | Dispositif d'alimentation d'air et procede de sterilisation d'un evaporateur pour habitacle de vehicule automobile | |
JP4347012B2 (ja) | 空気清浄化装置 | |
US7056476B2 (en) | Refrigerator and deodorizer producing ozone by high-voltage discharge | |
US20060024217A1 (en) | Air cleaner filter system capable of nano-confined catalytic oxidation | |
CN104990138B (zh) | 空气净化装置、家用电器以及空气净化方法 | |
JP2010273871A (ja) | 集塵空気調和システム | |
JPH11114374A (ja) | 活性炭循環バグフィルタで用いられた活性炭の再生方法 | |
EP2274179B1 (fr) | Dispositif de desinfection d'un systeme de climatisation pour vehicule automobile | |
KR20170005679A (ko) | 전기집진기와 오존 및 촉매를 이용한 일체형 수평식 악취제거장치 | |
JP2009295359A (ja) | イオン発生装置 | |
FR2933907A1 (fr) | Systeme de traitement d'air pour vehicule automobile | |
WO2009118836A1 (fr) | Appareil d'élimination des odeurs de tabac | |
FR2938796A1 (fr) | Systeme d'alimentation en air d'un habitacle de vehicule automobile, vehicule automobile en etant pourvu et procede de regeneration d'un epurateur de traitement d'air | |
KR20090022490A (ko) | 차량용 공기청정장치 | |
CN116857042B (zh) | 基于ntp溶液高效再生dpf的固碳系统与控制方法 | |
US11841143B2 (en) | Device for purifying exhaust gases from a fireplace | |
CN208032322U (zh) | 一种紫外光催化去除有机物设备 | |
FR2938795A1 (fr) | Systeme d'alimentation en air d'un habitacle de vehicule automobile, vehicule automobile en etant pourvu et procede de regeneration d'un epurateur de traitement d'air | |
JP2001070733A (ja) | 空気浄化装置、空気清浄機及び空気調和装置 | |
CN117146333A (zh) | 除异味装置、空调器及除异味控制方法 | |
CA3170523A1 (fr) | Regeneration de cuve de traitement au siloxane | |
CN117212960A (zh) | 一种空调器的控制方法、装置、空调器和存储介质 | |
KR20080007988A (ko) | 차량 공조장치용 클러스터 음/양이온 발생기의 제어방법 | |
FR2899672A1 (fr) | Systeme de climatisation comprenant un dispositif de purification d'air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090615 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091110 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110813 |