EP2112798A1 - Dienstkontrolle in einem Dienste bereitstellenden System - Google Patents
Dienstkontrolle in einem Dienste bereitstellenden System Download PDFInfo
- Publication number
- EP2112798A1 EP2112798A1 EP09005706A EP09005706A EP2112798A1 EP 2112798 A1 EP2112798 A1 EP 2112798A1 EP 09005706 A EP09005706 A EP 09005706A EP 09005706 A EP09005706 A EP 09005706A EP 2112798 A1 EP2112798 A1 EP 2112798A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- service
- sip
- message
- user terminal
- messages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004044 response Effects 0.000 claims abstract description 72
- 230000009471 action Effects 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000000977 initiatory effect Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 12
- 230000001276 controlling effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- IVEWTWUIQFOXHV-UHFFFAOYSA-N 1-(4-methoxybutylamino)-3-phenoxybutan-2-ol Chemical compound COCCCCNCC(O)C(C)OC1=CC=CC=C1 IVEWTWUIQFOXHV-UHFFFAOYSA-N 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 241000700605 Viruses Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1063—Application servers providing network services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1016—IP multimedia subsystem [IMS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1101—Session protocols
- H04L65/1104—Session initiation protocol [SIP]
Definitions
- the invention relates to controlling a service in a service provisioning system, and, in particular, though not necessarily, to a method and a system for controlling a service in service provisioning system, wherein a user terminal connected to the service provisioning system comprises one or more services.
- IP Multimedia Subsystem As developed by the Third Generation Partnership Project (3GPP), are designed to provide IP Multimedia over mobile communication networks (3GPP TS 22.228, TS 23.218, TS 23.228, TS 24.228, TS 24.229, TS 29.228, TS 29.229, TS 29.328 and TS 29.329).
- 3GPP Third Generation Partnership Project
- TS 22.228, TS 23.218, TS 23.228, TS 24.228, TS 24.229, TS 29.228, TS 29.229, TS 29.328 and TS 29.329) For fixed broadband services, such as Voice over IP (VoIP), the ETSI TISPAN working group is further developing IMS (TS 29.229: IP Multimedia Call Control Protocol based on SIP and SDP).
- IMS which makes use of the Session Initiation Protocol (SIP) to set up and control client-to-client call services and client-to-server call services, provides the delivery of reliable VoIP services which meet the requirements regarding Quality of Services (QoS) and the regulatory demands for routing, privacy, security and legal interception.
- SIP Session Initiation Protocol
- IMS enables a large amount of multimedia services, it also has disadvantages, especially within the context of VoIP.
- VoIP is only described in combination with the use of application servers in the network to maintain call state and offer the voice service features.
- the application servers hosting the VoIP services require user-specific configuration data for each service.
- Conventional IMS application servers are required to be involved in the call session for the complete duration of the call to maintain call state and will cause a substantial amount of SIP messaging to be exchanged between the various clients and servers involved.
- the capacity of an application server is dependent on the number of subscribers to the services, while the capacity of the IMS system scales with the volume of data traffic. Hence, the dimensioning of the network resources in such conventional IMS system is complex and based on forecasts of the VoIP service behaviour of the users is needed.
- IMS-based call handling architecture wherein a predetermined number of the VoIP call services, which normally reside in the network, are located in the user terminals connected to the IMS.
- VoIP call services which normally reside in the network
- Such architecture which hereafter will be referred to as the "flat" IMS architecture, is described in European patent application no. 080053937 , which is hereby incorporated by reference into this application.
- the initial Filter Criteria (iFC) in the user service profile of the Home Subscriber Server (HSS) may comprise information which determines whether or not a SIP message should be routed to a service located in a particular application server.
- the iFC may be defined according to the standard in paragraph B.2.2 of document TS 129 228, which is hereby incorporated by reference in this application.
- An iFC may comprise a Trigger Point, i.e. a Boolean flag determined by a set of conditions and the SIP URI of an application server the SIP request should be routed to in case of a received SIP message fulfils the condition(s) set by the Trigger point (Trigger point is TRUE). In case the Trigger point is FALSE, the SIP message will not be routed to the application server comprising the service identified in the iFC.
- the iFC may be defined in such a way that a user terminal may be prevented from registering to services located in the application servers of the IMS which correspond to the call services present in the user terminal. This may be realized by setting the Trigger Point in the iFCs associated with the VoIP call services corresponding to the call services in the UE to FALSE. Hence, after registration, the iFCs in the service profile may determine the S-CSCF to route SIP messages via one or more application servers only when these application servers host services which are not present or active in the user terminal.
- Fig. 1 depicts an exemplary flow diagram 100 of a VoIP call session in a flat IMS architecture, which includes the activation of a Call Forwarding service.
- the core of the IMS may be formed by the conventional Call/Session Control Functions (CSCF) comprising amongst others a Proxy-CSCF (P-CSCF), an Interrogating-CSCF (I-CSCF) and a Serving-CSCF (S-CSCF).
- CSCF Call/Session Control Functions
- P-CSCF Proxy-CSCF
- I-CSCF Interrogating-CSCF
- S-CSCF Serving-CSCF
- a first user terminal UE-A 102, a second user terminal UE-B 104 and a third user terminal UE-C 106 may comprise a predetermined number of originating VoIP services (OS) and/or terminating VoIP services (TS) (108,110,112) connected to a SIP client.
- OS originating VoIP services
- TS terminating VoIP services
- Each user terminal may be registered with the flat IMS.
- the user profile associated with each user terminal may instruct its serving S-CSCF not to route SIP messages via application servers for all services or at least one or more services which are already present in the user terminal. For each of these services the Trigger Point in its associated iFC may be set to FALSE.
- the call session depicted in Fig. 1 starts with the first terminal UE-A 102 receiving a request for a call.
- a request for a call may be initiated e.g. by the user dialing a local number 3434343 of the second user terminal UE-B.
- the request triggers a service 108 residing in UE-A, e.g. a VoIP number normalization service.
- This service generates a normalized number of the user terminal UE-B, which is subsequently inserted as a R-URI in the header of the SIP INVITE message 114 generated by the SIP client of UE-A.
- the SIP message is then routed via a Session border Controller (SBC) and the P-CSCF to the S-CSCF 116 serving the first user terminal UE-A.
- SBC Session border Controller
- the S-CSCF may directly forward the SIP message to the I-CSCF of user terminal UE-B using ENUM and DNS. No routing to an VoIP application server takes place.
- the S-CSCF 120 of the second user terminal UE-B 104 may directly route the SIP INVITE message to the SIP client of user terminal UE-B without addressing the one or more application servers connected to the IMS comprising the call services in the second user terminal UE-B.
- a Call Forward service 110 located in the user terminal UE-B may be executed.
- the SIP client of UE-B thereafter sends the SIP INVITE message with the R-URI identifying the third user terminal UE-C (in this case a telephone number +31201234567) to the S-CSCF 122 serving UE-B.
- the S-CSCF 122 serving UE-B may identify the I-CSCF of the third user terminal UE-C using ENUM and DNS and directly forwards the SIP INVITE message via the I-CSCF to the S-CSCF serving UE-C 124, which subsequently forwards the SIP INVITE message on the basis of the user profile of UE-C to the SIP client of UE-C 106.
- User terminal UE-C may confirm the establishment of a call session between UE-C and UE-B by sending a SIP response message, typically a SIP 200 OK message, back to UE-B and UE-B may confirm the establishment of the call session between UE-A and UE-B by sending a SIP 200 OK message back to UE-A (not shown in Fig. 1 ). In this way, a call session between UE-A and UE-C is established wherein the voice data are communicated over the connection using e.g. the RTP protocol.
- a SIP response message typically a SIP 200 OK message
- service provisioning in the flat IMS architecture results in a significant signaling load reduction in the network, especially with regard to the IMS core and the application servers. It thus allows a very low cost solution of VoIP services. Within the flat IMS architecture however certain problems regarding service control may still be present.
- the SIP client of UE-A inserts the identity of user terminal A in the FROM field of the SIP message header.
- the receiving SIP client of UE-B may present this identity as a Calling Line Identity to the called user of UE-B.
- the called user may trust this identity as being controlled by the logic of a VoIP application server of the serving telecom operator.
- a VoIP application server in the network that performs the forwarding actions to a further user terminal UE-C.
- the VoIP service assumes separate call legs.
- the first call leg is defined by the call between UE-A and UE-B and the second call leg is defined by the call between UE-B and UE-C, wherein the user of UE-A typically pays for the first call leg and the user of UE-B pays for the second call leg.
- a (VoIP) application server in the network that maintains the call state of the call between UE-A and UE-B and, between UE-B and UE-C.
- UE-B may reject an incoming call with a SIP response message, e.g. a SIP 302 Moved Temporarily message.
- a SIP INVITE 214 is sent by the SIP agent of user terminal UE-A 202 to the SIP agent of user terminal UE-B 206.
- a SIP 302 Moved Temporarily message 216 is sent by the SIP agent of user terminal UE-A .
- the SIP 302 response message instructs the UE-A to set-up a direct call session 218 between UE-A and UE-C.
- This redirection is out of the control of the user of UE-A and may lead to the situation that the user of UE-A is billed for the call to the forwarded call to user terminal UE-C. This may lead to unwanted payments, especially when the user terminal UE-C is a highly priced 900-number.
- user terminal UE-B may return an error response code whereby user terminal UE-A becomes uncontrollable for its user.
- the invention may relate to a method of controlling a service in a service provisioning network wherein the method may comprise the steps of: a serving network node associated with a user terminal receiving a registration message, said user terminal comprising one or more of services, preferably VoIP services; and/or the serving network node retrieving in response to the registration message service routing information associated with the first user terminal, the service routing information being arranged to route one or more service messages associated with said first user terminal via a call stateless application server, wherein said call stateless application server is adapted to perform one or more control actions on said service messages.
- the invention may further relate to a method of handling integrity of a service in a service provisioning network, such as an IP Multimedia Subsystem (IMS).
- the method may comprise the steps of: a serving network node associated with a user terminal, e.g. a S-CSCF serving a user terminal, receiving a registration message such as a SIP register message, said user terminal comprising a one or more services, such as call services VoIP services; and, said a serving network node retrieving in response to the registration message a user service profile associated with the first user terminal, the user service profile comprising one or more initial Filter Criteria (iFC) arranged to route one or more service messages, such as SIP messages, via a call stateless application server, wherein the server is configured managing the integrity of the service messages and/or controlling the service messages during the establishment of a service session, e.g. a call session.
- iFC initial Filter Criteria
- the stateless application server does not require registration of user-specific configuration data for each service and thus provides simple service controlling operation, similar to P-CSCF standardized behaviour. Further, the inclusion of a stateless application server in a flat IMS architecture will not introduce scaling problems, as the capacity of a stateless application server only depends on traffic volumes and is not dependent on the number of subscribers to the IMS.
- the user service profile further may comprise one or more initial Filter Criteria (iFC) arranged to prevent registration of the user terminal to one or more application servers connected to the service provisioning network, wherein said application servers comprise one or more services corresponding to one or more services in the terminal.
- iFC initial Filter Criteria
- Configuring the iFCs of the user terminal according to the services present in the user terminal results in a significant signaling load reduction in the network, especially with regard to the IMS core and the application servers.
- IMS-based call handling architecture thus allows a very low cost solution of VoIP services.
- each initial Filter Criteria may comprise one or more Trigger Points and wherein the Trigger Point of an iFC associated with a service corresponding to one of the services in the user terminal is set to FALSE.
- the user service profile may further comprise one or more initial Filter Criteria (iFC) arranged to route all SIP messages for establishing a session associated with a service, e.g. a call session, via the stateless application server.
- iFC initial Filter Criteria
- the routing of said SIP messages may be terminated if the S-CSCF has received a SIP response, preferably a SIP 200 OK message, acknowledging the establishment of the call session.
- the control actions of the stateless application server may only be required during the establishment of a session associated with a requested service. Once the called party acknowledges the establishment of a session, e.g. with a SIP 200 OK response, there is no further need for the stateless application server to be involved in the session. As a result resource utilization will be far more efficient when compared to the use of a conventional VoIP application server.
- the stateless application server may initiate a control action in response to the receipt of a SIP message from a predefined group of SIP messages.
- the stateless application server may be triggered to perform a control action if a service message received by the stateless application server matches a service message listed in a predefined list of service messages.
- said list may be stored in a memory of said stateless application server.
- said list may be stored in a database connected to said stateless application server.
- said list of service messages may comprise one or more SIP response messages, preferably one or more redirection messages and/or one or more error messages, more preferably one or more SIP response messages from the SIP response code class 3xx and/or from the SIP response code class 5xx.
- the stateless application server may only triggered by one of the SIP messages of a predefined group of SIP messages and it does not require information about the state the session is in nor the state of a call transported in said session.
- the control action is implemented in simple trigger-response model which can be easily modified by changing the "triggers", i.e. the group of SIP messages, to which the server should respond to.
- said control action may comprise the step of checking whether said service message comprises an allowable destination. In another embodiment said control action comprises the step of checking whether the destination in said service message is listed in a whitelist or a blacklist stored in the memory of said stateless application server or stored in a database connected to said stateless application server. In yet another embodiment said control action may further comprise the step of initiating a session by a SIP Request message, preferably a SIP INVITE message, in response to a received SIP redirect message. In another embodiment said control action may further comprise the step of replacing SIP redirect message by a SIP response message from the response code class 4xx.
- control action may further comprise the step of the SAS acting as a Back-To-Back (B2BUA) user agent.
- B2BUA Back-To-Back
- the B2BUA may act as an endpoint for the communication session associated with a SIP redirection message and may initiate a new session to the redirection target and mediates all SIP signaling between both ends of the call.
- the SAS may efficiently prevent redirection to highly priced 900-numbers and/or other unauthorized services and terminate the call session in a controlled way.
- control action may comprise the step of the stateless application server checking in response a SIP request message the caller identity of the originating call by comparing the FROM field with P-Asserted-Identity field in the header of the SIP message.
- stateless application server may use the contents of the P-Asserted-Identity header field to be copied in the FROM header field.
- the P-Asserted-Identity header field is inserted by the P-CSCF into the header of SIP messages.
- the P-Asserted-Identity is used among trusted SIP entities to carry the identity of the user sending a SIP message as it was verified by authentication thus serving as a reliable and trustable information for checking the identity of the caller.
- control action may comprise the step of the stateless application server preventing in response to a SIP response message, preferably a SIP 302 Moved Temporarily message, the SIP response message from being routed to the user terminal.
- a SIP response message preferably a SIP 302 Moved Temporarily message
- Blocking SIP response messages, e.g. a SIP 302 Moved Temporarily response message, from a called user terminal may prevent the establishment of unwanted call session, which is out of the control of the calling user terminal and which may lead to unwanted billing of the call.
- the stateless application server may send a SIP request, preferably a SIP INVITE message, to a further user terminal identified in the SIP response message.
- a SIP INVITE to the user terminal to which the call is forwarded to
- the stateless application server is capable of maintaining the integrity of the separate call legs between the calling user terminal and the called/forwarding user terminal and between the called/forwarding user terminal and the user terminal to which the call is forwarded. This way unwanted billing may be avoided.
- the invention may relate to a stateless application server for use in an IP Multimedia Subsystem (IMS).
- the application server may be configured to manage the integrity of SIP messages and/or control the service messages during the establishment of a call session, the server comprising: means for receiving a SIP message from a S-CSCF serving a user terminal, the user terminal comprising a predetermined number of call services, preferably VoIP services; and, means for initiating a control action in response to the receipt of a SIP message from a predefined group of SIP messages, preferably the group comprising at least a SIP INVITE message and/or a SIP 302 Moved Temporarily message.
- IMS IP Multimedia Subsystem
- the stateless server may comprise means for checking whether a service message comprises an allowable destination.
- said control action may further comprise the means for initiating a session by a SIP Request message, preferably a SIP INVITE message, in response to a received SIP redirect message.
- the server may comprise means for replacing a SIP redirect message by a SIP response message from the response code class 4xx, such as a SIP 480 message.
- the stateless application server may further comprise: means for checking the caller identity of the originating call by comparing the FROM field with P-Asserted-Identity field in the header of the SIP message; and, means for copying the contents of the P-Asserted-Identity in the FROM field.
- the stateless application server may further comprise: means for preventing a SIP response message, preferably a SIP 302 Moved Temporarily message, from being routed to the user terminal; and, means for sending a SIP request, preferably a SIP INVITE message, to a further user terminal identified by the URL in said response message.
- the may invention relate to a system for controlling service messages in a service provisioning network, preferably comprising an IP Multimedia Subsystem (IMS), wherein the service provisioning network may be connected to at least one user terminal, wherein the user terminal may comprise one or more services, preferably VoIP services and wherein said service provisioning network may be further connected to a stateless application server as described in the embodiments above.
- IMS IP Multimedia Subsystem
- the invention may also relate to a computer program product for controlling service messages in a service provisioning network, preferably comprising an IP Multimedia Subsystem (IMS), the computer program product comprising software code portions configured for, when run on one or more network nodes in said service provisioning network, executing the method steps as described in the embodiments above.
- IMS IP Multimedia Subsystem
- a first user terminal (EU) 302 may comprise a SIP client 306 (also referred as a SIP User Agent or SIP UA) and functional unit 304, comprising one or more number of originating, intermediate and/or terminating services, preferably VoIP specific services, e.g. number normalization, Caller ID Blocking, Call Forwarding (conditional, no answer, busy), Calling Line Identification Presentation (CLIP), VoiceMail, Call Return Busy Destination, Call Waiting, Conferencing, Call Hold, etc.
- the services may be multimedia services, such as (interactive) television, Content on Demand or videophone services.
- the invention may apply to all services that may be made available to users through application servers. Other types of services include virus scanning, parental control functionality and/or firewall or proxy services.
- These services may be implemented in the terminal as one or more software programs executed by a processor in the memory of the terminal, as hardware (e.g. one or more chipsets providing the desired service) or a combination of hardware and software.
- the user terminal may be an IP telephone or, alternatively, the user terminal may be "soft" IP phone, i.e. a computer program executed on a personal computer, a personal digital assistant (PDA) or a smart phone providing the functionality of the telephone.
- the user terminal may be a device capable of providing multimedia services to the user, such as television, a combination of a television and a set-top box or a home gateway.
- the terminal may comprise an Operating System (OS) for managing the resources of the terminal, e.g. one or more Central Processing Units (CPUs), memory for storing program instructions and data and Input/Output (I/O) devices such as a radio module for providing wireless access to the network.
- OS Operating System
- the OS may comprise Application Programming Interfaces (AIPs) through which one or more application programs may access services offered by the OS.
- AIPs Application Programming Interfaces
- the OS may comprise AIPs for setting up wired and/or wireless connections to a communications network, such as an IMS network.
- Fig.3 schematically depicts a registration process of the user terminal UE to a flat IMS system, which is capable of managing the integrity of the SIP messages during the establishment of a call session.
- the registration process may be started by the user terminal UE sending a registration messages, e.g. a SIP REGISTRATION message, via the SBC and the P-CSCF to the I-CSCF 308 (step 1).
- the I-CSCF selects on the basis of the information provided by the HSS 310 a suitable S-CSCF (step 2).
- the registration message may then be forwarded to the S-CSCF 312 serving UE for authenticating the user (steps 3 and 4).
- the S-CSCF may inform the HSS that the user has been successfully registered.
- the HSS may provide the S-CSCF with service routing information which may be contained in or associated with the service profile of the user (step 5).
- the S-CSCF may register the user with one or more services in the one or more application servers by sending a register message (such as a SIP REGISTER message) to the application servers identified in the service routing information.
- the services may be identified by a set of initial filter criteria (iFC) in or associated with the user service profile.
- An iFC may be generally regarded as service routing rules comprising a filter part and a decision part, wherein the filter part comprises so-called Trigger Points, defining one or more filter criteria which are applied to the incoming service message.
- the decision part specifies the action(s) to be taken when the incoming message matches with the filter criteria of the rule.
- the iFC thus comprised information for determining whether or not a SIP message should be routed to a service located in a particular application server.
- the iFCs are defined in the standard in paragraph B.2.2 of document TS 129 228, which is hereby incorporated by reference in this application.
- An iFC may comprise one or more Trigger Points, i.e.
- the scripts in the iFCs of the user service profile of UE may instruct the S-CSCF to route messages to a stateless application server 314 which manages the control of the SIP messages during the establishment of a call session (step 6).
- this may be achieved by setting the Trigger Point in the iFCs associated with the stateless application server to TRUE.
- the stateless application server is adapted to perform one or more control actions on service messages (i.e. messages, such as SIP messages, associated with a service session) it receives.
- service messages i.e. messages, such as SIP messages, associated with a service session
- the SAS may be configured to take action upon service messages which may result in undesired situations such as redirection messages leading to undesired call sessions and/or error messages which cause a user terminal to become uncontrollable.
- Such messages may include SIP messages from the SIP response code class 3xx regarding redirection of a request to another location and SIP response code class 5xx defining error messages indicating that a request was not completed due to error in recipient and that a request is to be tried at another location.
- the SAS may comprise a pre-configured list or table comprising service messages.
- Such service message table may be stored in a memory of the SAS.
- the service message table may be stored in a database connected to the SAS. If a received service message matches a service message in the table, the SAS may trigger a control action.
- the SAS does not require information about the state the call is in.
- the SAS treats each SIP message it receives as a SIP message which is independent of subsequent messages or earlier received messages.
- the SAS can be session aware but does not rely on the maintenance of state (i.e., information about the state of the end-to-end communication, which is the responsibility of end nodes such as UE and an application server), thereby adhering to RFC 1958.
- the SAS may initiate a control action. For example for integrity control, it may replace and/or amend certain fields in the header field of the SIP message.
- the SAS in response to the trigger, may act as a Back-To-Back (B2BUA) user agent, by acting as endpoint for the communication session associated with a SIP redirection message and initiating a new session to the redirection target and mediates all SIP signaling between both ends of the call.
- B2BUA Back-To-Back
- the SAS may disconnect itself from the S-CSCF serving a user terminal.
- the SAS allows simple implementation of control actions in the service provisioning network, such as an integrity control action and/or a call leg control action, by amending information in the service message and/or by initiating a B2BUA (e.g. a B2BUA as defined in RFC3261).
- control actions are implemented in a simple trigger-response model, which may be easily modified by changing the "triggers", i.e. the group of SIP messages, to which the server should respond to.
- the advantages of the use of such stateless server will be become more apparent from the examples as described hereunder with reference to Fig. 4 and 5 .
- step 6 in the process as described in Fig. 3 may further include service routing information, for example in the form of one or more scripts in the iFCs of the user service profile, instructing the S-CSCF to only register with the application servers hosting the services which are not present and/or active in the user terminal UE.
- prevention of registration of these services may be achieved by setting the Trigger Point in the iFCs associated with the services corresponding to the services in the UE (e.g. VoiP or multimedia services) to FALSE.
- the service routing information may determine the S-CSCF to route SIP messages via the SAS and, optionally, via one or more application servers which host services which are not present and/or active in the user terminal UE..
- Fig. 4 depicts a flow diagram 400 of a further embodiment of the invention.
- the process may be started by the UE 402 sending a SIP INVITE 414 to another user terminal in order to establish a call session.
- the FROM field comprises a URI identifying the user terminal.
- the URI may be inserted in the FROM field by the SIP agent in the user terminal UE and may be used by the called user terminal to identify the caller.
- the SIP INVITE message may be sent via the P-CSCF to the S-CSCF serving user terminal UE.
- the P-CSCF which authenticates the user terminal UE, may subsequently insert a P-Asserted-Identity header field into the SIP INVITE message 418.
- the P-Asserted-Identity header field is used among trusted SIP entities, such as two or more user terminals registered to an IMS, to carry the identity of the user sending a SIP message as it was verified by authentication.
- trusted SIP entities such as two or more user terminals registered to an IMS
- the P-Asserted-Identity header field is described in more detail in IETF Specs RFC 3325, which are hereby incorporated by reference into the application.
- the SIP INVITE is sent to the S-CSCF, which forwards the INVITE message on the basis of the iFCs to a stateless application server 420 which is configured to take action upon reception of a SIP INVITE message.
- the SIP INVITE message triggers the stateless application server 420 and - in response - the stateless application server 420 copies the contents of the P-Asserted-Identity header field into the FROM field 422 thereby providing guarantee to the called party about the identity of the party making the VoIP call.
- the stateless application server may perform a simple control action, in particular an integrity control action, by copying the P-Asserted-Identity in the FROM field.
- Fig. 5 depicts a flow diagram 500 of a further embodiment of the invention.
- the flow diagram is similar to the one described in relation with Fig. 2 .
- the S-CSCF 508 serving user terminal EU-A may now be connected to SAS 514, which is capable of performing one or more control actions on SIP messages received by the SAS during the establishment of a call session as described with reference to Fig. 3 and 4 .
- the control action of the SAS is triggered by a SIP 302 redirect message (i.e. a SIP response message).
- the SIP 302 message 512 originating from user terminal EU-B is sent to the S-CSCF serving user terminal EU-A 508, which forwards the SIP 302 message on the basis of the iFCs to the SAS.
- the SIP 302 Moved Temporarily message triggers the SAS 514 to perform a control action.
- the SAS may initiate the control action by checking whether the contents of the destination field (i.e. the Contact C field) of the SIP redirect message is listed in a white list, i.e. a list of allowable destinations.
- the SAS may check whether destination field of the SIP redirect message is listed in a blacklist, i.e. a list of not allowable destinations.
- the lists of allowable and/or non-allowable destinations may be stored in the memory of the SAS or, alternatively, in a database connected to the SAS.
- the SAS may continue the control action by acting as a Back-To-Back (B2BUA) user agent.
- B2BUA Back-To-Back
- the B2BUA may act as an endpoint for the communication session associated with a SIP redirection message and may initiate a new session to the redirection target and mediates all SIP signaling between both ends of the call
- the SAS may act as a B2BUA agent 514 which acts as a terminating network node for the SIP UE of the B-party 512 and an originating network node for the SIP UE of the C-party 504.
- the B2BUA may send a SIP INVITE 516 to user terminal UE-C as identified by the URL in the SIP 302 response message, thereby establishing a direct call leg between user terminal UE-A and user terminal UE-C, so that the users involved in the call session are correctly billed.
- the SAS may continue the control action by replacing a first SIP response message, preferably the SIP redirect message (e.g. the SIP 302 message), by a second SIP response message, preferably a SIP response message from the response code class 4xx regarding client failure responses (e.g. a SIP 480 Temporarily Unavailable message) and subsequently returning the second SIP message to user terminal UE-A on the basis of information in the header of the first SIP message (e.g. the URL of user terminal UE-A identified in the FROM header in the SIP 302 message).
- the SAS may efficiently prevent redirection to highly priced 900-numbers and/or other unauthorized services and terminate the call session in a controlled way.
- the stateless server 514 may be triggered by a SIP 200 OK response message.
- SIP 200 OK response message indicates that a call session between an originating party and a termination party is successfully established.
- the SAS may be further involved in the call session so that the SAS may be disconnected from the S-CSCF serving user terminal UE-A until a new call session is initiated.
- resource utilization will be reduced when compared to the situation wherein a conventional VoIP application server is used to perform control actions.
- the third user terminal UE-C in Fig. 5 may be a conventional user terminal having a serving S-CSCF which routes the SIP messages via one or more services (e.g. VoIP and/or multimedia services) located in one or more application servers connected to the IMS core.
- services e.g. VoIP and/or multimedia services
- variants include methods and systems wherein the number and/or type of services in the one or more user terminals may different, as it is the user profile associated with each user terminal which determines whether or not a specific service is included in the routing of the SIP messages.
- the invention is not limited to IMS but may also be implemented in a 3GPP Long Term Evolution (LTE) or 3GPP Service Architecture Evolution (SAE) networks.
- LTE Long Term Evolution
- SAE 3GPP Service Architecture Evolution
- the invention is not limited to the embodiments described above, which may be varied within the scope of the accompanying claims.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Telephonic Communication Services (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09005706.8A EP2112798B1 (de) | 2008-04-25 | 2009-04-23 | Dienstkontrolle in einem Dienste bereitstellenden System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08007994A EP2112799A1 (de) | 2008-04-25 | 2008-04-25 | Dienstintegrität in einem IMS-basierten System |
EP09005706.8A EP2112798B1 (de) | 2008-04-25 | 2009-04-23 | Dienstkontrolle in einem Dienste bereitstellenden System |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2112798A1 true EP2112798A1 (de) | 2009-10-28 |
EP2112798B1 EP2112798B1 (de) | 2015-09-16 |
Family
ID=39745399
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08007994A Withdrawn EP2112799A1 (de) | 2008-04-25 | 2008-04-25 | Dienstintegrität in einem IMS-basierten System |
EP09005706.8A Active EP2112798B1 (de) | 2008-04-25 | 2009-04-23 | Dienstkontrolle in einem Dienste bereitstellenden System |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08007994A Withdrawn EP2112799A1 (de) | 2008-04-25 | 2008-04-25 | Dienstintegrität in einem IMS-basierten System |
Country Status (2)
Country | Link |
---|---|
US (2) | US8553680B2 (de) |
EP (2) | EP2112799A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2566127A4 (de) * | 2010-04-30 | 2017-11-08 | ZTE Corporation | Verfahren und system zum ersetzen von ersatzparametern |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080086700A1 (en) * | 2006-10-06 | 2008-04-10 | Rodriguez Robert A | Systems and Methods for Isolating On-Screen Textual Data |
EP2165505B1 (de) * | 2007-07-10 | 2016-06-01 | Telefonaktiebolaget LM Ericsson (publ) | Verfahren zum entdecken von vom betreiber bereitgestellten netzdiensten unter verwendung des ims |
US9137377B2 (en) * | 2007-08-22 | 2015-09-15 | Citrix Systems, Inc. | Systems and methods for at least partially releasing an appliance from a private branch exchange |
US8315362B2 (en) * | 2007-08-22 | 2012-11-20 | Citrix Systems, Inc. | Systems and methods for voicemail avoidance |
US8750490B2 (en) * | 2007-08-22 | 2014-06-10 | Citrix Systems, Inc. | Systems and methods for establishing a communication session among end-points |
US20090183110A1 (en) * | 2007-12-21 | 2009-07-16 | Richard Leo Murtagh | Systems and Methods for Efficient Processing of Data Displayed by a Window |
US8612614B2 (en) * | 2008-07-17 | 2013-12-17 | Citrix Systems, Inc. | Method and system for establishing a dedicated session for a member of a common frame buffer group |
WO2010133251A1 (en) * | 2009-05-19 | 2010-11-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Establishing a communication session |
US8239705B2 (en) * | 2009-06-30 | 2012-08-07 | At&T Intellectual Property I, L.P. | Method and apparatus for managing communication services for user endpoint devices |
US9277382B2 (en) * | 2009-11-16 | 2016-03-01 | Nokia Solutions And Networks Oy | Emergency service in communication system |
JP5717857B2 (ja) * | 2010-08-31 | 2015-05-13 | アルカテル−ルーセント | コール転送の宛先の監視 |
US8605589B2 (en) | 2010-09-01 | 2013-12-10 | Sonus Networks, Inc. | Dynamic classification and grouping of network traffic for service application |
US8352630B2 (en) | 2010-09-01 | 2013-01-08 | Sonus Networks, Inc. | Dynamic classification and grouping of network traffic for service application across multiple nodes |
US8619547B2 (en) * | 2010-11-10 | 2013-12-31 | At&T Intellectual Property I, L.P. | Communication system with failover communication services |
US10298696B2 (en) * | 2012-01-13 | 2019-05-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatus for configuring and implementing announcements for IP multimedia subsystem supplementary services |
US10325032B2 (en) * | 2014-02-19 | 2019-06-18 | Snowflake Inc. | Resource provisioning systems and methods |
CN111917895B (zh) * | 2017-07-17 | 2022-01-11 | 华为技术有限公司 | 一种别名管理方法及设备 |
US11902890B2 (en) * | 2018-02-03 | 2024-02-13 | Nokia Technologies Oy | Application based routing of data packets in multi-access communication networks |
US11848861B2 (en) * | 2021-01-04 | 2023-12-19 | Saudi Arabian Oil Company | Multiprotocol label switching (MPLS) traffic engineering design for IP multimedia subsystem-based voice over Internet protocol |
CN113709190B (zh) * | 2021-10-27 | 2022-03-01 | 中兴通讯股份有限公司 | 业务设置方法和装置、存储介质及电子设备 |
US11785057B1 (en) * | 2022-05-06 | 2023-10-10 | Microsoft Technology Licensing, Llc | Increase service reliability by reusing session-stateful service instances within a single long-lived session |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005027459A1 (en) * | 2003-09-12 | 2005-03-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Ims subscriber access control |
US20060291484A1 (en) * | 2005-06-24 | 2006-12-28 | Naqvi Shamim A | Method of avoiding or minimizing cost of stateful connections between application servers and S-CSCF nodes in an IMS network with multiple domains |
US20070088836A1 (en) * | 2005-07-29 | 2007-04-19 | Verizon Business Financial Management Corp. | Application service invocation based on filter criteria |
GB2432748A (en) * | 2005-11-25 | 2007-05-30 | Ericsson Telefon Ab L M | SIP messaging in an IP Multimedia Subsystem wherein a local user identity is added to message header as a basis for application server processing |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7801953B1 (en) * | 2001-02-12 | 2010-09-21 | Nortel Networks Limited | Push-to-talk wireless telecommunications system utilizing an voice-over-IP network |
US7738440B2 (en) * | 2003-06-12 | 2010-06-15 | Camiant, Inc. | PCMM application manager |
US20050190772A1 (en) * | 2004-02-26 | 2005-09-01 | Shang-Chih Tsai | Method of triggering application service using filter criteria and IP multimedia subsystem using the same |
ES2270307T3 (es) * | 2004-06-07 | 2007-04-01 | Alcatel | Metodo y dispositivo para prevenir ataques a un servidor de llamadas. |
US7809381B2 (en) * | 2004-07-16 | 2010-10-05 | Bridgeport Networks, Inc. | Presence detection for cellular and internet protocol telephony |
US20060105766A1 (en) * | 2004-10-26 | 2006-05-18 | Azada Maria R | Method for delivering a call to a dual-mode mobile unit using a single number |
US7643626B2 (en) | 2004-12-27 | 2010-01-05 | Alcatel-Lucent Usa Inc. | Method for deploying, provisioning and storing initial filter criteria |
US20060176876A1 (en) * | 2005-02-04 | 2006-08-10 | Aborn Justin A | Telephone system |
US20060268781A1 (en) * | 2005-05-02 | 2006-11-30 | Telefonaktiebolaget Lm Ericsson (Publ) | System and method for call handoff from packet data wireless network to circuit switched wireless network |
US20070071200A1 (en) * | 2005-07-05 | 2007-03-29 | Sander Brouwer | Communication protection system |
WO2007010010A1 (en) * | 2005-07-19 | 2007-01-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for allocating a server in an ims network |
EP1879337B1 (de) * | 2005-10-21 | 2012-08-29 | Huawei Technologies Co., Ltd. | Ein verfahren zur verarbeitung von einschreibemeldungen in das ims-netzwerk entsprechend der ursprünglichen filterregeln |
US8194642B2 (en) * | 2006-02-07 | 2012-06-05 | Cisco Technology, Inc. | System and method for providing multimedia services |
CN101405713A (zh) * | 2006-03-14 | 2009-04-08 | 摩托罗拉公司 | 用于管理网络中的通信会话的方法和系统 |
US20080002710A1 (en) * | 2006-06-29 | 2008-01-03 | Motorola, Inc. | System and method for routing communications to mobile stations |
JP4804244B2 (ja) * | 2006-07-03 | 2011-11-02 | 株式会社日立製作所 | アプリケーションをフィルタリングする装置、システム及び方法 |
US20080076425A1 (en) * | 2006-09-22 | 2008-03-27 | Amit Khetawat | Method and apparatus for resource management |
US8837704B2 (en) * | 2006-08-31 | 2014-09-16 | Microsoft Corporation | Client controlled dynamic call forwarding |
CN101163139B (zh) * | 2006-10-11 | 2010-12-15 | 国际商业机器公司 | 拒绝冗余重传的sip消息的方法和设备 |
US8213394B2 (en) * | 2006-10-16 | 2012-07-03 | Motorola Mobility, Inc. | Method and apparatus for management of inactive connections for service continuity in an agnostic access internet protocol multimedia communication |
CN101563904A (zh) | 2006-12-19 | 2009-10-21 | 艾利森电话股份有限公司 | 在服务供应网络中提供服务的技术 |
US8068469B2 (en) * | 2007-02-14 | 2011-11-29 | Alcatel Lucent | Surrogate registration in internet protocol multimedia subsystem for users indirectly coupled via an end point |
EP2122968B1 (de) * | 2007-02-22 | 2011-11-23 | Telefonaktiebolaget LM Ericsson (publ) | Gruppenzugang zu einem IP-Multimedia-Subsystem-Dienst |
US9379914B2 (en) * | 2007-05-11 | 2016-06-28 | At&T Intellectual Property I, L.P. | Method and system for implementing aggregate endpoints on IMS networks |
US7936683B2 (en) * | 2007-06-20 | 2011-05-03 | At&T Intellectual Property I, L.P. | System and method of monitoring network performance |
US20090191873A1 (en) * | 2008-01-24 | 2009-07-30 | At&T Labs | System and method of registering users at devices in an ip multimedia subsystem (ims) using a network-based device |
US8606901B2 (en) * | 2008-01-30 | 2013-12-10 | At&T Intellectual Property I, L. P. | Facilitating deployment of new application services in a next generation network |
EP2104305A1 (de) * | 2008-03-21 | 2009-09-23 | Koninklijke KPN N.V. | Anrufdienstabwicklung in einem IMS-basierten System |
EP2332311B1 (de) * | 2008-10-06 | 2016-08-24 | NEC Corporation | Schutz vor unerwünschten berichten für ims |
US20100113016A1 (en) * | 2008-10-31 | 2010-05-06 | Ruth Schaefer Gayde | Methods for routing a call to a mobile unit that has been ported |
-
2008
- 2008-04-25 EP EP08007994A patent/EP2112799A1/de not_active Withdrawn
-
2009
- 2009-04-23 US US12/428,897 patent/US8553680B2/en active Active
- 2009-04-23 EP EP09005706.8A patent/EP2112798B1/de active Active
-
2013
- 2013-09-05 US US14/018,560 patent/US9094260B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005027459A1 (en) * | 2003-09-12 | 2005-03-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Ims subscriber access control |
US20060291484A1 (en) * | 2005-06-24 | 2006-12-28 | Naqvi Shamim A | Method of avoiding or minimizing cost of stateful connections between application servers and S-CSCF nodes in an IMS network with multiple domains |
US20070088836A1 (en) * | 2005-07-29 | 2007-04-19 | Verizon Business Financial Management Corp. | Application service invocation based on filter criteria |
GB2432748A (en) * | 2005-11-25 | 2007-05-30 | Ericsson Telefon Ab L M | SIP messaging in an IP Multimedia Subsystem wherein a local user identity is added to message header as a basis for application server processing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2566127A4 (de) * | 2010-04-30 | 2017-11-08 | ZTE Corporation | Verfahren und system zum ersetzen von ersatzparametern |
Also Published As
Publication number | Publication date |
---|---|
EP2112798B1 (de) | 2015-09-16 |
US8553680B2 (en) | 2013-10-08 |
EP2112799A1 (de) | 2009-10-28 |
US20140003420A1 (en) | 2014-01-02 |
US20090268720A1 (en) | 2009-10-29 |
US9094260B2 (en) | 2015-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9094260B2 (en) | Service controlling in a service provisioning system | |
US8380189B2 (en) | Preventing registration of a terminal to services in a service providing network | |
EP2323332A1 (de) | Steuerung einer Sitzung in einem Dienstbereitstellungssystem | |
JP4700105B2 (ja) | Ipマルチメディアサブシステム(ims)おける呼転送 | |
US7586903B2 (en) | System and method for VoIP call transfer using instant message service in an IP multimedia subsystem | |
US8325707B2 (en) | Session initiation from application servers in an IP multimedia subsystem | |
JP4955694B2 (ja) | Ipマルチメディアサブシステムにおけるメッセージハンドリング | |
EP3054644A1 (de) | Sprachsitzungsabschluss für Nachrichtenübermittlungsclients in IMS | |
EP2224664A1 (de) | Verfahren und System zum Steuern der Anrufannahme in IMS | |
WO2013044649A1 (zh) | 电信网络向互联网提供会话服务的方法及系统 | |
EP1665722A1 (de) | Austauschprotokoll für kombinatorische multimedia-dienste | |
US9276970B2 (en) | Method and equipment for forwarding a SIP request message having alerting information associated therewith to a receiving subscriber in a SIP based communications network | |
EP2938041B1 (de) | Verfahren und system zur auswahl in einem szenario mit mehreren vorrichtungen | |
KR20100042270A (ko) | 호 전달 서비스 제공 방법, 호 전달 서비스 제공 장치 및 호 전달 서비스 제공 시스템 | |
US8732321B2 (en) | Control entity and method for setting up a session in a communications network, subscriber database and communications network | |
US11418635B2 (en) | Method of dynamic selection, by a caller, from a plurality of terminals of a callee | |
US10212193B2 (en) | Service support for suspended and inactive subscribers | |
US20180375901A1 (en) | Method of communication between a calling terminal and a plurality of called terminals | |
CN110089097B (zh) | 通信网络中的呼叫碰撞解决 | |
WO2013185795A1 (en) | Call barring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20100428 |
|
17Q | First examination report despatched |
Effective date: 20100618 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009033619 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04L0029060000 Ipc: H04L0012857000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 12/857 20130101AFI20150217BHEP Ipc: H04L 29/06 20060101ALI20150217BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150305 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150601 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 750561 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009033619 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 750561 Country of ref document: AT Kind code of ref document: T Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160116 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009033619 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200428 Year of fee payment: 12 Ref country code: SE Payment date: 20200427 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009033619 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04L0012857000 Ipc: H04L0047249100 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200423 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240418 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240418 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240426 Year of fee payment: 16 |