EP2108807B1 - Exhaust gas recirculation device for an internal combustion engine - Google Patents

Exhaust gas recirculation device for an internal combustion engine Download PDF

Info

Publication number
EP2108807B1
EP2108807B1 EP09151997A EP09151997A EP2108807B1 EP 2108807 B1 EP2108807 B1 EP 2108807B1 EP 09151997 A EP09151997 A EP 09151997A EP 09151997 A EP09151997 A EP 09151997A EP 2108807 B1 EP2108807 B1 EP 2108807B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas recirculation
internal combustion
turbine
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09151997A
Other languages
German (de)
French (fr)
Other versions
EP2108807A1 (en
Inventor
Holger Paffrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP2108807A1 publication Critical patent/EP2108807A1/en
Application granted granted Critical
Publication of EP2108807B1 publication Critical patent/EP2108807B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine

Definitions

  • the invention relates to an exhaust gas recirculation system for an internal combustion engine with an exhaust gas recirculation valve, which is arranged in an exhaust gas recirculation line, a first exhaust gas cooler, which is arranged in the exhaust gas recirculation line and a turbine which is arranged in the flow direction of the exhaust gas behind the first exhaust gas cooler in the exhaust gas recirculation line.
  • Exhaust gas recirculation systems for internal combustion engines in which in the exhaust gas recirculation line an exhaust gas cooler and an exhaust gas recirculation valve are arranged, are well known and are described in a variety of applications. Such cooled exhaust gas recirculation systems are used, in particular in turbocharged internal combustion engines. The cooling of the exhaust gas leads to significant advantages in terms of emissions and fuel consumption of the vehicle.
  • Cooling of the exhaust gas is currently used in particular in low-pressure systems application, but are also known the dynamic working high-pressure systems in which after the cold start hot exhaust gas is recycled through the high-pressure line. For further emission and fuel consumption improvement, it would make sense to cool the exhaust gas lower than usual today and below the existing coolant temperatures. This can additionally reduce the tendency to knock in gasoline engines.
  • a disadvantage of the known systems is that at high power of the exhaust gas cooler, they tend to strong sooting due to the low exhaust gas temperature.
  • a turbo cooling unit which consists of a driven compressor an exhaust gas cooler and a compressor coupled to the turbine. While it is possible by the driven compressor to achieve a sufficient pressure drop for the return of the exhaust gas in the low pressure region, the turbine provides additional relaxation of the exhaust gas cooled in the exhaust gas, resulting in additional cooling of the exhaust gas optionally below the coolant temperature.
  • a disadvantage of such a system is the necessary mechanical drive of the compressor, without which no sufficient pressure gradient is built up and the consequent additional energy loss of the entire system. Furthermore, such a system does not have sufficient dynamics.
  • an exhaust gas recirculation system in which in a low-pressure exhaust gas recirculation line, a unit of a compressor, a radiator and a turbine is arranged, wherein the compressor and the turbine are mechanically driven. As a result, a sufficient pressure gradient to promote the exhaust gas is ensured.
  • an exhaust gas recirculation is known in which behind two separate exhaust manifolds, a valve is arranged, via which the two manifolds are connected to each other. From one of the manifold branches off the exhaust gas recirculation line, in the downstream of a turbine, an exhaust gas cooler is arranged. A cooling of the exhaust gas to a temperature below the coolant temperature is not possible accordingly.
  • the resulting turbine power can be dissipated in different ways.
  • the control flap is arranged in the exhaust manifold between the individual exhaust pipes of the individual cylinders, so that when the control flap is closed, only the exhaust gas of the cylinder separated by the control flap reaches the exhaust gas recirculation line.
  • Such an arrangement has the advantage that a sufficient amount of exhaust gas is always available to a downstream turbine in the exhaust gas system, since only the exhaust gas of individual cylinders is dammed up and thus the exhaust gas recirculation is available.
  • An additional compressor in the exhaust gas recirculation line can be dispensed with, so that the drive of a compressor-turbine unit is eliminated in comparison with known designs. This leads to an additional improvement in fuel consumption.
  • the turbine can be bypassed via a bypass channel, in which a second control flap is arranged.
  • a bypass channel in which a second control flap is arranged.
  • a turbo-cooling unit is arranged behind the first exhaust gas cooler, which has a turbine coupled to the compressor and a second exhaust gas cooler, wherein in the flow direction of the exhaust behind the first exhaust gas cooler first the compressor, then the second exhaust gas cooler and following the turbine arranged is.
  • the compressor does not have to be driven in such an embodiment, but consumes only the power generated by the turbine.
  • the use of such a turbo cooling unit increases the possibilities for further cooling of the exhaust gas in the exhaust gas recirculation line.
  • the turbine is coupled to a generator or blower to which the turbine delivers its power.
  • the energy balance of the internal combustion engine can be additionally improved.
  • the turbo cooling unit is designed as a structural unit, so that the required space is further reduced.
  • the exhaust gas recirculation line branches off from the exhaust line upstream of the turbine of a turbocharger and flows into the intake line of the internal combustion engine behind a charge air cooler.
  • Such an exhaust gas recirculation system is thus suitable both for further lowering the exhaust gas temperature of the recirculated exhaust gas and for minimizing sooting of the exhaust gas cooler.
  • a good controllability of the system is achieved both in terms of the recirculated exhaust gas quantity and the exhaust gas temperature.
  • This system has a high dynamic, leads to lower fuel consumption and to an improvement of emissions, especially of nitrogen oxides.
  • the figure shows an inventive exhaust gas recirculation system using the example of a turbocharged four-cylinder internal combustion engine with turbo cooling unit.
  • the internal combustion engine consists of an intake pipe 1, via which fresh air is first sucked via a compressor 2 into the intake system of the internal combustion engine.
  • the compressed air is passed via an intercooler 3 to an intake manifold 4.
  • the enriched with exhaust gas fresh air reaches the cylinders 5, which is in the present embodiment, a four-cylinder internal combustion engine.
  • the resulting exhaust gas is expelled into the exhaust manifold 6, from where the exhaust gas flows to a arranged in the exhaust line 7, coupled to the compressor 2 turbine 8. Behind the turbine 8, the exhaust gas enters the atmosphere.
  • the exhaust manifold 4 is fluidly connected via an exhaust gas recirculation line 9 to the intake pipe 1 in the area behind the charge air cooler 3.
  • an exhaust gas recirculation valve 10 is arranged in the exhaust gas recirculation line.
  • an exhaust gas cooler 11 is arranged for temperature control of the exhaust gas.
  • This exhaust gas cooler 11 includes a bypass line 12 through which the exhaust gas cooler 11 can be bypassed.
  • a bypass valve 13 which is arranged in the present embodiment, seen in the flow direction in front of the exhaust gas cooler 11.
  • the turbo cooling unit 14 in the present embodiment consists of a compressor 16, a second smaller exhaust gas cooler 17 and a turbine 18, which is coupled to the compressor 16.
  • the compressor 16 is driven only by the output from the turbine power.
  • the exhaust manifold 6 consists of four Einzelauslassrohren 19, which end in a manifold 20 of the exhaust manifold 6.
  • a control valve 21 is arranged according to the invention, which separates one of the Einzelauslassrohre 19 of a cylinder 5 of the Einzelauslassrohren 19 of the other cylinder 5.
  • Another control valve 22 is disposed in the bypass passage 15 to control the exhaust gas recirculation flow flowing through the bypass passage 15 or the turbo cooling unit 14.
  • the gas coming from the fourth cylinder 5 flows completely into the exhaust gas recirculation line 9 to the exhaust gas recirculation valve 10, via which the recirculated exhaust gas quantity is controlled according to the position of the valve.
  • the exhaust gas recirculation valve 10 is a pressure of, for example, 4.53 bar at a temperature of 823 K on. The valve reduces both the pressure to about 4.43 bar and the temperature to about 733 K.
  • the bypass flap 13 is closed, the temperature of the exhaust gas in the exhaust gas cooler 11 decreases to, for example, 463 K at a pressure of 4.33 bar.
  • the second control flap 22 is closed, the exhaust gas flows via the turbo cooling unit 14.
  • the pressure of the exhaust gas in the compressor is first increased to about 5.2 bar, which at the same time raises the temperature to about 508K.
  • This temperature is now lowered in the second exhaust gas cooler 17 to about 401 K, whereby a small pressure drop to about 5.1 bar follows.
  • the turbine 18 in the turbo cooling unit 14 a significant reduction of both the pressure and the temperature by the relaxation takes place.
  • the pressure drops, for example, to 2.5 bar, while the temperature can be lowered to 361 K, which is below the usual coolant temperature of an internal combustion engine.
  • the pressure is still high enough so that exhaust gas can be returned to the intake passage 1.
  • the invention is not limited to the given embodiment.
  • the first control flap 21 may be arranged behind the exhaust manifold 6 in the exhaust gas line 7 in order to generate a sufficient pressure gradient.
  • all the exhaust gas would have to be pushed out at an elevated pressure level, which could lead to increased fuel consumption.
  • the system behaves like a conventional high-pressure exhaust gas recirculation system with open control valve 21 and open damper 22, it should be noted that in a closure of the bypass duct 15 and the control valve 21 is at least partially close, otherwise no Exhaust gas could be recycled in sufficient quantity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Description

Die Erfindung betrifft ein Abgasrückführsystem für eine Verbrennungskraftmaschine mit einem Abgasrückführventil, welches in einer Abgasrückführleitung angeordnet ist, einem ersten Abgaskühler, der in der Abgasrückführleitung angeordnet ist und einer Turbine, welche in Strömungsrichtung des Abgases hinter dem ersten Abgaskühler in der Abgasrückführleitung angeordnet ist.The invention relates to an exhaust gas recirculation system for an internal combustion engine with an exhaust gas recirculation valve, which is arranged in an exhaust gas recirculation line, a first exhaust gas cooler, which is arranged in the exhaust gas recirculation line and a turbine which is arranged in the flow direction of the exhaust gas behind the first exhaust gas cooler in the exhaust gas recirculation line.

Abgasrückführsysteme für Verbrennungskraftmaschinen, bei denen in der Abgasrückführleitung ein Abgaskühler und ein Abgasrückführventil angeordnet sind, sind allgemein bekannt und werden in einer Vielzahl von Anmeldungen beschrieben. Anwendung finden derartige gekühlte Abgasrückführsysteme insbesondere bei turboaufgeladenen Verbrennungskraftmaschinen. Die Kühlung des Abgases führt zu deutlichen Vorteilen bezüglich der Emissionen und des Kraftstoffverbrauches des Fahrzeugs.Exhaust gas recirculation systems for internal combustion engines, in which in the exhaust gas recirculation line an exhaust gas cooler and an exhaust gas recirculation valve are arranged, are well known and are described in a variety of applications. Such cooled exhaust gas recirculation systems are used, in particular in turbocharged internal combustion engines. The cooling of the exhaust gas leads to significant advantages in terms of emissions and fuel consumption of the vehicle.

Bekannt sind Systeme, bei denen im Hochdruckbereich das Abgas zurückgeführt wird, was bedeutet, dass das Abgas vor der Turbine dem Abgas und hinter dem Verdichter der Ansaugluft wieder zugeführt wird, als auch Niederdruckabgasrückführsysteme, bei denen das Abgas hinter der Turbine entnommen wird und der Ansaugluft vor dem Verdichter wieder zugeführt wird. Während mit Niederdruckabgasrückführsystemen höhere Abgasraten erreicht werden, besteht das Problem eines geringen Druckgefälles zwischen der Stelle der Abgasentnahme und der Stelle der Abgaszuführung in den Ansaugkanal, so dass zusätzlich Drosseln zur Erhöhung des Druckgefälles verwendet werden müssen. Ein weiterer Vorteil ist die Rückführung von sauberem Abgas, da dieses beispielsweise bei einer Diesel-Brennkraftmaschine hinter dem Dieselpartikelfilter entnommen werden kann. Ein Hochdruck-Abgasrückführsystem weist im Gegensatz hierzu eine deutlich höhere Dynamik auf, ist jedoch bezüglich der erreichbaren Rückführraten beschränkt, da andernfalls die Turbine nicht ausreichend mit Abgas versorgt würde.Systems are known in which the exhaust gas is recycled in the high pressure region, which means that the exhaust gas is supplied to the exhaust gas before the turbine and the intake air behind the compressor, as well as low pressure exhaust gas recirculation systems, in which the exhaust gas is removed behind the turbine and the intake air is fed back before the compressor. While higher exhaust gas rates are achieved with low pressure EGR systems, there is the problem of a small pressure differential between the exhaust sampling location and the location of the exhaust Exhaust gas feed into the intake duct, so that additional throttles must be used to increase the pressure gradient. Another advantage is the return of clean exhaust gas, as this can be removed, for example, in a diesel engine behind the diesel particulate filter. In contrast, a high-pressure exhaust gas recirculation system has a significantly higher dynamics, but is limited in terms of achievable recirculation rates, since otherwise the turbine would not be sufficiently supplied with exhaust gas.

Eine Kühlung des Abgases findet derzeit insbesondere in Niederdrucksystemen Anwendung, bekannt sind jedoch auch die dynamischer arbeitenden Hochdrucksysteme, bei denen nach dem Kaltstart heißes Abgas durch den Hochdruckstrang zurückgeführt wird. Zur weiteren Emissions- und Kraftstoffverbrauchsverbesserung wäre es sinnvoll, das Abgas tiefer als heute üblich und unter die vorhandenen Kühlmitteltemperaturen abzukühlen. Hierdurch kann bei Ottomotoren zusätzlich die Klopfneigung reduziert werden. Nachteilhaft an den bekannten Systemen ist, dass bei hoher Leistung der Abgaskühler, diese durch die geringe Abgastemperatur zu starker Versottung neigen.Cooling of the exhaust gas is currently used in particular in low-pressure systems application, but are also known the dynamic working high-pressure systems in which after the cold start hot exhaust gas is recycled through the high-pressure line. For further emission and fuel consumption improvement, it would make sense to cool the exhaust gas lower than usual today and below the existing coolant temperatures. This can additionally reduce the tendency to knock in gasoline engines. A disadvantage of the known systems is that at high power of the exhaust gas cooler, they tend to strong sooting due to the low exhaust gas temperature.

So wird in der EP 1 186 767 A2 ein Abgasrückführsystem vorgeschlagen, bei dem im Niederdruckbereich eine Turbokühleinheit angeordnet ist, welche aus einem angetriebenen Verdichter einem Abgaskühler sowie einer mit dem Verdichter gekoppelten Turbine besteht. Während es durch den angetriebenen Verdichter möglich ist, ein ausreichendes Druckgefälle zur Rückführung des Abgases im Niederdruckbereich zu erreichen, sorgt die Turbine für eine zusätzliche Entspannung des im Abgaskühler gekühlten Abgases, was zu einer zusätzlichen Kühlung des Abgases gegebenenfalls unter die Kühlmitteltemperatur führt. Nachteilhaft an einem derartigen System ist jedoch der notwendige mechanische Antrieb des Verdichters, ohne den kein ausreichendes Druckgefälle aufgebaut werden kann, sowie der daraus folgende zusätzliche Energieverlust des Gesamtsystems. Des Weiteren weist ein derartiges System eine nicht ausreichende Dynamik auf.So will in the EP 1 186 767 A2 an exhaust gas recirculation system proposed in which in the low pressure region, a turbo cooling unit is arranged, which consists of a driven compressor an exhaust gas cooler and a compressor coupled to the turbine. While it is possible by the driven compressor to achieve a sufficient pressure drop for the return of the exhaust gas in the low pressure region, the turbine provides additional relaxation of the exhaust gas cooled in the exhaust gas, resulting in additional cooling of the exhaust gas optionally below the coolant temperature. However, a disadvantage of such a system is the necessary mechanical drive of the compressor, without which no sufficient pressure gradient is built up and the consequent additional energy loss of the entire system. Furthermore, such a system does not have sufficient dynamics.

Des Weiteren ist aus der EP 1 186 767 A2 ein Abgasrückführsystem bekannt, bei dem in einer Niederdruckabgasrückführleitung eine Einheit aus einem Kompressor einem Kühler und einer Turbine angeordnet ist, wobei der Kompressor und die Turbine mechanisch angetrieben werden. Hierdurch wird ein ausreichendes Druckgefälle zur Förderung des Abgases sichergestellt.Furthermore, from the EP 1 186 767 A2 an exhaust gas recirculation system is known in which in a low-pressure exhaust gas recirculation line, a unit of a compressor, a radiator and a turbine is arranged, wherein the compressor and the turbine are mechanically driven. As a result, a sufficient pressure gradient to promote the exhaust gas is ensured.

Aus der US 2007/0175215 A1 ist eine Abgasrückführung bekannt, bei der hinter zwei getrennten Abgaskrümmern ein Ventil angeordnet ist, über die die beiden Krümmer miteinander verbindbar sind. Von einem der Krümmer zweigt die Abgasrückführleitung ab, in der stromabwärts einer Turbine ein Abgaskühler angeordnet ist. Eine Kühlung des Abgases auf eine Temperatur unterhalb der Kühlmitteltemperatur ist entsprechend nicht möglich.From the US 2007/0175215 A1 an exhaust gas recirculation is known in which behind two separate exhaust manifolds, a valve is arranged, via which the two manifolds are connected to each other. From one of the manifold branches off the exhaust gas recirculation line, in the downstream of a turbine, an exhaust gas cooler is arranged. A cooling of the exhaust gas to a temperature below the coolant temperature is not possible accordingly.

Es stellt sich daher die Aufgabe, ein Abgasrückführsystem bereitzustellen, mit dem Abgas gegebenenfalls unter die Kühlmitteltemperatur abgekühlt werden kann, eine Versottung des Abgaskühlers sowie die Größe des Abgaskühlers verringert und ohne Energieverlust Abgas mit hoher Dynamik zurückgeführt werden kann.It is therefore the object to provide an exhaust gas recirculation system, with the exhaust gas can optionally be cooled below the coolant temperature, a sooting of the exhaust gas cooler and the size of the exhaust gas cooler reduced and can be recycled without loss of energy exhaust gas with high dynamics.

Diese Aufgabe wird durch den kennzeichnenden Teil des Hauptanspruchs gelöst. Durch die Anordnung einer Regelklappe im Abgaskrümmer kann Abgas einzelner oder mehrerer Zylinder im Abgasstrang aufgestaut werden, so dass ein ausreichendes Druckgefälle zur Verfügung steht, um Abgas über die Abgasrückführleitung in den Ansaugbereich der Verbrennungskraftmaschine zurückzuführen. Durch die Turbine hinter dem Abgaskühler kann zusätzlich das Abgas unter die Kühlmitteltemperatur abgekühlt werden, ohne innerhalb des Abgaskühlers die Temperatur zu unterschreiten, die zu einer erhöhten Versottung führt. Eine derartige Rückführung kann im Bereich des Abgaskrümmers erfolgen, so dass durch die kurze Regelstrecke eine hohe Dynamik des Systems sichergestellt wird. Der Abgaskühler kann bei einem derartigen System kleiner ausgeführt werden, da zusätzliche Kühlerleistung durch die Entspannung in der Turbine übernommen wird. Die entstehende Turbinenleistung kann dabei auf unterschiedliche Weise abgeführt werden. Dabei ist die Regelklappe im Abgaskrümmer zwischen den Einzelauslassrohren der einzelnen Zylinder angeordnet, so dass bei geschlossener Regelklappe nur das Abgas der durch die Regelklappe abgetrennten Zylinder in die Abgasrückführleitung gelangt. Eine derartige Anordnung hat den Vorteil, dass einer nachfolgenden Turbine im Abgasstrang immer ausreichend Abgas zur Verfügung steht, da nur das Abgas einzelner Zylinder aufgestaut wird und somit der Abgasrückführung zur Verfügung steht. Zusätzlich ist es vorteilhaft, dass nur einige Zylinder gegen den gegebenenfalls durch die Kühlturbine erhöhten Abgasdruck ausschieben müssen. Auf einen zusätzlichen Verdichter in der Abgasrückführleitung kann verzichtet werden, so dass auch der Antrieb einer Verdichter-Turbinen-Einheit im Vergleich zu bekannten Ausführungen wegfällt. Dies führt zu einer zusätzlichen Verbesserung des Kraftstoffverbrauchs.This object is achieved by the characterizing part of the main claim. By arranging a control flap in the exhaust manifold exhaust gas of one or more cylinders can be dammed in the exhaust line, so that a sufficient pressure gradient is available to return exhaust gas via the exhaust gas recirculation line in the intake of the internal combustion engine. Through the turbine behind the Exhaust gas cooler, the exhaust gas can additionally be cooled below the coolant temperature without falling below the temperature within the exhaust gas cooler, which leads to an increased sooting. Such a return can take place in the region of the exhaust manifold, so that a high dynamics of the system is ensured by the short controlled system. The exhaust gas cooler can be made smaller in such a system, since additional cooling capacity is taken over by the relaxation in the turbine. The resulting turbine power can be dissipated in different ways. In this case, the control flap is arranged in the exhaust manifold between the individual exhaust pipes of the individual cylinders, so that when the control flap is closed, only the exhaust gas of the cylinder separated by the control flap reaches the exhaust gas recirculation line. Such an arrangement has the advantage that a sufficient amount of exhaust gas is always available to a downstream turbine in the exhaust gas system, since only the exhaust gas of individual cylinders is dammed up and thus the exhaust gas recirculation is available. In addition, it is advantageous that only a few cylinders have to push against the optionally increased by the cooling turbine exhaust pressure. An additional compressor in the exhaust gas recirculation line can be dispensed with, so that the drive of a compressor-turbine unit is eliminated in comparison with known designs. This leads to an additional improvement in fuel consumption.

In einer weiterführenden Ausführungsform ist die Turbine über einen Bypasskanal umgehbar, in dem eine zweite Regelklappe angeordnet ist. Hierdurch kann beispielsweise nach dem Kaltstart der Verbrennungskraftmaschine wärmeres Abgas zur schnelleren Aufheizung der Verbrennungskraftmaschine zurückgeführt werden, indem das Abgas über den Bypasskanal geführt wird.In a further embodiment, the turbine can be bypassed via a bypass channel, in which a second control flap is arranged. As a result, for example, after the cold start of the internal combustion engine warmer exhaust gas for faster heating of the internal combustion engine can be recycled by the exhaust gas is passed through the bypass channel.

In einer weiteren bevorzugten Ausführung ist hinter dem ersten Abgaskühler eine Turbokühleinheit angeordnet, welche einen mit der Turbine gekoppelten Verdichter sowie einen zweiten Abgaskühler aufweist, wobei in Strömungsrichtung des Abgases hinter dem ersten Abgaskühler zunächst der Verdichter, daran anschließend der zweite Abgaskühler und folgend die Turbine angeordnet ist. Der Verdichter muss bei einer derartigen Ausführung nicht angetrieben werden, sondern verbraucht lediglich die durch die Turbine erzeugte Leistung. Die Verwendung einer derartigen Turbokühleinheit erhöht die Möglichkeiten zur weiteren Abkühlung des Abgases in der Abgasrückführleitung.In a further preferred embodiment, a turbo-cooling unit is arranged behind the first exhaust gas cooler, which has a turbine coupled to the compressor and a second exhaust gas cooler, wherein in the flow direction of the exhaust behind the first exhaust gas cooler first the compressor, then the second exhaust gas cooler and following the turbine arranged is. The compressor does not have to be driven in such an embodiment, but consumes only the power generated by the turbine. The use of such a turbo cooling unit increases the possibilities for further cooling of the exhaust gas in the exhaust gas recirculation line.

In einer hierzu alternativen Ausführungsform ist die Turbine mit einem Generator oder einem Gebläse gekoppelt, an welche die Turbine ihre Leistung abgibt. Hierdurch kann die Energiebilanz der Verbrennungskraftmaschine zusätzlich verbessert werden.In an alternative embodiment, the turbine is coupled to a generator or blower to which the turbine delivers its power. As a result, the energy balance of the internal combustion engine can be additionally improved.

In einer bevorzugten Ausführungsform ist die Turbokühleinheit als Baueinheit ausgeführt, so dass der benötigte Bauraum weiter sinkt.In a preferred embodiment, the turbo cooling unit is designed as a structural unit, so that the required space is further reduced.

Zur Verbesserung der Dynamik des Abgasrückführsystems zweigt die Abgasrückführleitung vor der Turbine eines Turboladers aus dem Abgasstrang ab und mündet hinter einem Ladeluftkühler in die Ansaugleitung der Verbrennungskraftmaschine.To improve the dynamics of the exhaust gas recirculation system, the exhaust gas recirculation line branches off from the exhaust line upstream of the turbine of a turbocharger and flows into the intake line of the internal combustion engine behind a charge air cooler.

Ein derartiges Abgasrückführsystem eignet sich somit sowohl zur weiteren Absenkung der Abgastemperatur des zurückgeführten Abgases als auch zur Minimierung der Versottung des Abgaskühlers. Zusätzlich wird eine gute Regelbarkeit des Systems sowohl bezüglich der rückgeführten Abgasmenge als auch der Abgastemperatur erreicht. Dieses System weist eine hohe Dynamik auf, führt zu Absenkung des Kraftstoffverbrauchs und zu einer Verbesserung der Emissionen, insbesondere der Stickoxide.Such an exhaust gas recirculation system is thus suitable both for further lowering the exhaust gas temperature of the recirculated exhaust gas and for minimizing sooting of the exhaust gas cooler. In addition, a good controllability of the system is achieved both in terms of the recirculated exhaust gas quantity and the exhaust gas temperature. This system has a high dynamic, leads to lower fuel consumption and to an improvement of emissions, especially of nitrogen oxides.

Ein Ausführungsbeispiel ist in der Figur dargestellt und wird nachfolgend beschrieben.An embodiment is shown in the figure and will be described below.

Die Figur zeigt ein erfindungsgemäßes Abgasrückführsystem am Beispiel einer turboaufgeladenen vierzylindrigen Verbrennungskraftmaschine mit Turbokühleinheit.The figure shows an inventive exhaust gas recirculation system using the example of a turbocharged four-cylinder internal combustion engine with turbo cooling unit.

Die Verbrennungskraftmaschine besteht aus einer Ansaugleitung 1, über die Frischluft zunächst über einen Verdichter 2 in das Ansaugsystem der Verbrennungskraftmaschine gesaugt wird. Die verdichtete Luft wird über einen Ladeluftkühler 3 zu einem Ansaugkrümmer 4 geleitet. Vom Ansaugkrümmer 4 gelangt die mit Abgas angereicherte Frischluft zu den Zylindern 5, wobei es sich im vorliegenden Ausführungsbeispiel um eine vierzylindrige Verbrennungskraftmaschine handelt. Nach der Verbrennung in den Zylindern 5 wird das entstandene Abgas in den Abgaskrümmer 6 ausgestoßen, von wo aus das Abgas zu einer im Abgasstrang 7 angeordneten, mit dem Verdichter 2 gekoppelten Turbine 8 strömt. Hinter der Turbine 8 gelangt das Abgas ins Freie.The internal combustion engine consists of an intake pipe 1, via which fresh air is first sucked via a compressor 2 into the intake system of the internal combustion engine. The compressed air is passed via an intercooler 3 to an intake manifold 4. From the intake manifold 4, the enriched with exhaust gas fresh air reaches the cylinders 5, which is in the present embodiment, a four-cylinder internal combustion engine. After combustion in the cylinders 5, the resulting exhaust gas is expelled into the exhaust manifold 6, from where the exhaust gas flows to a arranged in the exhaust line 7, coupled to the compressor 2 turbine 8. Behind the turbine 8, the exhaust gas enters the atmosphere.

Der Abgaskrümmer 4 ist über eine Abgasrückführleitung 9 mit der Ansaugleitung 1 im Bereich hinter dem Ladeluftkühler 3 fluidisch verbunden. Zur Mengenregelung des zurückgeführten Abgasstroms ist in der Abgasrückführleitung 9 ein Abgasrückführventil 10 angeordnet. In Strömungsrichtung hinter dem Abgasrückführventil 10 ist ein Abgaskühler 11 zur Temperatursteuerung des Abgases angeordnet. Dieser Abgaskühler 11 enthält eine Bypassleitung 12, über die der Abgaskühler 11 umgangen werden kann. Zur Steuerung des Abgasflusses durch den Abgaskühler 11 oder die Bypassleitung 12 dient eine Bypassklappe 13, die in vorliegendem Ausführungsbeispiel in Strömungsrichtung gesehen vor dem Abgaskühler 11 angeordnet ist. Ein derartig aufgebautes System ist aus dem Stand der Technik bekannt.The exhaust manifold 4 is fluidly connected via an exhaust gas recirculation line 9 to the intake pipe 1 in the area behind the charge air cooler 3. For volume control of the recirculated exhaust gas flow 9, an exhaust gas recirculation valve 10 is arranged in the exhaust gas recirculation line. In the flow direction behind the exhaust gas recirculation valve 10, an exhaust gas cooler 11 is arranged for temperature control of the exhaust gas. This exhaust gas cooler 11 includes a bypass line 12 through which the exhaust gas cooler 11 can be bypassed. To control the flow of exhaust gas through the exhaust gas cooler 11 or the bypass line 12 is a bypass valve 13, which is arranged in the present embodiment, seen in the flow direction in front of the exhaust gas cooler 11. Such a constructed system is known from the prior art.

Hinter dem Abgaskühler 11 befindet sich eine Turbokühleinheit 14, welche über einen Bypasskanal 15 umgehbar ist. Die Turbokühleinheit 14 besteht in vorliegendem Ausführungsbeispiel aus einem Verdichter 16, einem zweiten kleineren Abgaskühler 17 sowie einer Turbine 18, die mit dem Verdichter 16 gekoppelt ist. Der Verdichter 16 wird dabei lediglich durch die von der Turbine abgegebene Leistung angetrieben.Behind the exhaust gas cooler 11 is a turbo cooling unit 14, which can be bypassed via a bypass channel 15. The turbo cooling unit 14 in the present embodiment consists of a compressor 16, a second smaller exhaust gas cooler 17 and a turbine 18, which is coupled to the compressor 16. The compressor 16 is driven only by the output from the turbine power.

Der Abgaskrümmer 6 besteht aus vier Einzelauslassrohren 19, welche in einem Sammelrohr 20 des Abgaskrümmers 6 enden. Im Sammelrohr 20 ist erfindungsgemäß eine Regelklappe 21 angeordnet, welche eines der Einzelauslassrohre 19 eines Zylinders 5 von den Einzelauslassrohren 19 der anderen Zylinder 5 trennt. Eine weitere Regelklappe 22 ist im Bypasskanal 15 angeordnet, um den durch den Bypasskanal 15 oder die Turbokühleinheit 14 fließenden Abgasrückführungsstrom zu steuern.The exhaust manifold 6 consists of four Einzelauslassrohren 19, which end in a manifold 20 of the exhaust manifold 6. In the manifold 20, a control valve 21 is arranged according to the invention, which separates one of the Einzelauslassrohre 19 of a cylinder 5 of the Einzelauslassrohren 19 of the other cylinder 5. Another control valve 22 is disposed in the bypass passage 15 to control the exhaust gas recirculation flow flowing through the bypass passage 15 or the turbo cooling unit 14.

Im Folgenden wird die Funktionsweise des Abgasrückführsystems mit beispielhaften Werten bezüglich des Drucks und der Temperatur beschrieben.The following describes the operation of the exhaust gas recirculation system with exemplary values in terms of pressure and temperature.

Bei geschlossener erster Regelklappe 21 im Abgaskrümmer 6 strömt das aus dem vierten Zylinder 5 kommende Gas vollständig in die Abgasrückführleitung 9 zum Abgasrückführventil 10, über welches die zurückgeführte Abgasmenge entsprechend der Stellung des Ventils gesteuert wird. Vor dem Abgasrückführventil 10 liegt ein Druck von beispielsweise 4,53 bar bei einer Temperatur von 823 K an. Über das Ventil verringert sich sowohl der Druck auf ca. 4,43 bar als auch die Temperatur auf circa 733 K. Bei geschlossener Bypassklappe 13 verringert sich die Temperatur des Abgases im Abgaskühler 11 auf beispielsweise 463 K bei einem Druck von 4,33 bar. Bei geschlossener zweiter Regelklappe 22 strömt das Abgas über die Turbokühleinheit 14. Dabei wird zunächst der Druck des Abgases im Verdichter auf circa 5,2 bar erhöht, was gleichzeitig eine Erhöhung der Temperatur auf circa 508 K zur Folge hat. Diese Temperatur wird nun im zweiten Abgaskühler 17 auf circa 401 K gesenkt, wodurch ein geringer Druckabfall auf circa 5,1 bar folgt. Durch den Einsatz der Turbine 18 in der Turbokühleinheit 14 erfolgt eine deutliche Absenkung sowohl des Druckes als auch der Temperatur durch die Entspannung. Der Druck sinkt hierdurch beispielsweise auf 2,5 bar ab, während die Temperatur auf 361 K abgesenkt werden kann, was unterhalb der üblichen Kühlmitteltemperatur eines Verbrennungsmotors liegt. Der Druck ist jedoch noch hoch genug, damit Abgas in die Ansaugleitung 1 zurückgeführt werden kann.When the first control flap 21 in the exhaust manifold 6 is closed, the gas coming from the fourth cylinder 5 flows completely into the exhaust gas recirculation line 9 to the exhaust gas recirculation valve 10, via which the recirculated exhaust gas quantity is controlled according to the position of the valve. Before the exhaust gas recirculation valve 10 is a pressure of, for example, 4.53 bar at a temperature of 823 K on. The valve reduces both the pressure to about 4.43 bar and the temperature to about 733 K. When the bypass flap 13 is closed, the temperature of the exhaust gas in the exhaust gas cooler 11 decreases to, for example, 463 K at a pressure of 4.33 bar. When the second control flap 22 is closed, the exhaust gas flows via the turbo cooling unit 14. The pressure of the exhaust gas in the compressor is first increased to about 5.2 bar, which at the same time raises the temperature to about 508K. This temperature is now lowered in the second exhaust gas cooler 17 to about 401 K, whereby a small pressure drop to about 5.1 bar follows. By using the turbine 18 in the turbo cooling unit 14, a significant reduction of both the pressure and the temperature by the relaxation takes place. As a result, the pressure drops, for example, to 2.5 bar, while the temperature can be lowered to 361 K, which is below the usual coolant temperature of an internal combustion engine. However, the pressure is still high enough so that exhaust gas can be returned to the intake passage 1.

Ohne die Verwendung der Regelklappe 21 wäre der vorhandene Druck hinter der Turbine 18 nicht ausreichend, da bereits der Druck vor dem Abgasrückführventil 10 deutlich geringer wäre.Without the use of the control valve 21, the existing pressure behind the turbine 18 would not be sufficient, since even the pressure before the exhaust gas recirculation valve 10 would be significantly lower.

Es wird somit ein Abgasrückführsystem geschaffen, mit der das notwendige Druckniveau zum Erreichen ausreichender Abgasrückführraten sichergestellt wird. Gleichzeitig bleibt die Temperatur in den Abgaskühlern 11, 17 hoch genug, um eine größere Versottung durch zu kühles Abgas zu vermeiden. Das System ist sowohl bezüglich der Temperatur als auch des Druckes durch die beiden Regelklappen 21, 22 auf einfache Weise genau einstellbar und weist eine hohe Regeldynamik auf.There is thus provided an exhaust gas recirculation system, with which the necessary pressure level is ensured to achieve sufficient exhaust gas recirculation rates. At the same time the temperature in the exhaust gas coolers 11, 17 remains high enough to avoid a larger sooting by too cool exhaust gas. The system is both in terms of temperature and pressure by the two control valves 21, 22 easily adjustable precisely and has a high control dynamics.

Selbstverständlich ist die Erfindung nicht auf das vorgegebene Ausführungsbeispiel beschränkt. So kann beispielsweise die erste Regelklappe 21 zur Erzeugung eines ausreichenden Druckgefälles hinter dem Abgaskrümmer 6 im Abgasstrang 7 angeordnet sein. Allerdings würde in diesem Fall das gesamte Abgas auf einem erhöhten Druckniveau ausgeschoben werden müssen, was zu einem erhöhten Kraftstoffverbrauch führen könnte.Of course, the invention is not limited to the given embodiment. For example, the first control flap 21 may be arranged behind the exhaust manifold 6 in the exhaust gas line 7 in order to generate a sufficient pressure gradient. However, in this case all the exhaust gas would have to be pushed out at an elevated pressure level, which could lead to increased fuel consumption.

Auch ist es denkbar, mehr als nur einen Zylinder über die erste Regelklappe von dem übrigen Abgasstrang zu trennen. So könnte beispielsweise bei einer V-Verbrennungskraftmaschine eine einzelne Zylinderbank von der anderen durch eine derartige Regelklappe getrennt werden. Bei einer Verwendung der Turbokühleinheit in einem Niederdruckbereich einer Verbrennungskraftmaschine kann ebenfalls eine ausreichende Druckerhöhung durch eine Regelklappe im Abgasstrang erreicht werden, jedoch würde die Regeldynamik des Systems bei einer derartigen Anordnung verloren gehen.It is also conceivable to separate more than just one cylinder via the first control flap from the remaining exhaust gas line. For example, in a V-type internal combustion engine, a single cylinder bank could be separated from the other by such a butterfly valve. When using the turbo cooling unit in a low pressure region of an internal combustion engine, a sufficient pressure increase can be achieved by a control valve in the exhaust system, but the control dynamics of the system would be lost in such an arrangement.

Es sei noch erwähnt, dass sich das System bei geöffneter Regelklappe 21 und geöffneter Regelklappe 22 wie ein konventionelles Hochdruck-Abgasrückführsystem verhält, wobei zu beachten ist, dass bei einem Verschluss des Bypasskanals 15 auch die Regelklappe 21 zumindest teilweise zu verschließen ist, da sonst kein Abgas in ausreichender Menge zurückgeführt werden könnte.It should be noted that the system behaves like a conventional high-pressure exhaust gas recirculation system with open control valve 21 and open damper 22, it should be noted that in a closure of the bypass duct 15 and the control valve 21 is at least partially close, otherwise no Exhaust gas could be recycled in sufficient quantity.

Claims (7)

  1. Exhaust gas recirculation system for an internal combustion engine, comprising:
    an exhaust gas recirculation valve (10) arranged in an exhaust gas recirculation duct (9),
    a first exhaust gas cooler (11) arranged in the exhaust gas recirculation duct (9), and
    a turbine (18) arranged in the exhaust gas recirculation duct (9) downstream of the first exhaust gas cooler (11), seen in the flow direction of the exhaust gas,
    characterized in that
    in the region of the exhaust gas manifold (6), a control flap (21) is arranged, the flap being positioned in the exhaust gas manifold (6) between the individual outlet pipes (19) of the individual cylinders (5), so that,
    when the control flap (21) is closed, only the exhaust gas from the cylinders (5) separated by the control flap (21) reaches the exhaust gas recirculation duct (9).
  2. The exhaust gas recirculation system for an internal combustion engine of claim 1, characterized in that the turbine (18) can be bypassed via a bypass duct (15) in which a second control flap (22) is arranged.
  3. The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that a turbo cooler unit (14) is arranged downstream of the first exhaust gas cooler (11), said unit comprising a compressor (16) coupled with the turbine (18), as well as a second exhaust gas cooler (17), wherein downstream of the first exhaust gas cooler (11), seen in the exhaust gas flow direction, the compressor (16) is arranged first, followed by the second exhaust gas cooler (17) and, thereafter, the turbine (18).
  4. The exhaust gas recirculation system for an internal combustion engine of claim 3, characterized in that the turbo cooler unit (14) can be bypassed via the bypass duct in which the second control flap (22) is arranged.
  5. The exhaust gas recirculation system for an internal combustion engine of one of claims 1 to 2, characterized in that the turbine (18) is coupled to a generator or a fan to which the turbine (18) supplies its output.
  6. The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that the turbo cooler unit (14) is configured as a structural unit.
  7. The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that the exhaust gas recirculation duct (9) branches from the exhaust gas line (7) before a turbine (8) of a turbocharger and terminates in the intake duct (1) of the internal combustion engine behind a charge air cooler (3).
EP09151997A 2008-04-12 2009-02-04 Exhaust gas recirculation device for an internal combustion engine Active EP2108807B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008018583A DE102008018583A1 (en) 2008-04-12 2008-04-12 Exhaust gas recirculation system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2108807A1 EP2108807A1 (en) 2009-10-14
EP2108807B1 true EP2108807B1 (en) 2013-01-02

Family

ID=40863605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09151997A Active EP2108807B1 (en) 2008-04-12 2009-02-04 Exhaust gas recirculation device for an internal combustion engine

Country Status (3)

Country Link
US (1) US20090255251A1 (en)
EP (1) EP2108807B1 (en)
DE (1) DE102008018583A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8176736B2 (en) * 2008-03-21 2012-05-15 Cummins Inc. EGR apparatuses, systems, and methods
US8640457B2 (en) * 2009-10-13 2014-02-04 General Electric Company System and method for operating a turbocharged engine
DE102010005803A1 (en) * 2010-01-27 2011-07-28 Audi Ag, 85057 Car with an exhaust system
US8915081B2 (en) * 2011-04-13 2014-12-23 GM Global Technology Operations LLC Internal combustion engine
US9494112B2 (en) * 2013-05-10 2016-11-15 Modine Manufacturing Company Exhaust gas heat exchanger and method
EP3017162A4 (en) 2013-06-21 2017-01-18 Eaton Corporation Supercharger exhaust bypass
US9556824B2 (en) 2014-03-25 2017-01-31 Hanon Systems Integration of forced EGR/EGR-pump into EGR-cooler
DE102015104179B4 (en) 2014-03-25 2022-03-03 Hanon Systems Devices for recirculating exhaust gas from an internal combustion engine in a motor vehicle
US9670823B2 (en) * 2015-03-24 2017-06-06 GM Global Technology Operations LLC Engine with a turbocharger cooling module
US9989020B2 (en) 2015-05-15 2018-06-05 Ford Global Technologies, Llc Auto-ignition internal combustion engine with exhaust-gas turbocharging and exhaust-gas recirculation
DE102015208957A1 (en) * 2015-05-15 2016-11-17 Ford Global Technologies, Llc Self-igniting internal combustion engine with turbocharging and exhaust gas recirculation
FR3053407B1 (en) * 2016-06-30 2019-06-28 Valeo Systemes De Controle Moteur EXHAUST GAS CIRCULATION ASSEMBLY OF A THERMAL ENGINE
DE102021100844B3 (en) 2021-01-18 2022-02-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle with an internal combustion engine and a turbocharger and method for operating a motor vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703561A (en) * 1954-01-13 1955-03-08 Nordberg Manufacturing Co Inlet air cooling device and method for internal-combustion engines
DE1003505B (en) * 1954-09-10 1957-02-28 Henschel & Sohn Gmbh Supercharged internal combustion engine with an expansion turbine
DE1214931B (en) * 1962-02-26 1966-04-21 Sulzer Ag Control of the temperature of the combustion air in a dual-fuel internal combustion engine
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US6138649A (en) * 1997-09-22 2000-10-31 Southwest Research Institute Fast acting exhaust gas recirculation system
US6324846B1 (en) * 1999-03-31 2001-12-04 Caterpillar Inc. Exhaust gas recirculation system for an internal combustion engine
JP2002089375A (en) 2000-09-11 2002-03-27 Toyota Motor Corp Egr device for internal combustion engine
US7287378B2 (en) * 2002-10-21 2007-10-30 International Engine Intellectual Property Company, Llc Divided exhaust manifold system and method
DE102005021172A1 (en) * 2005-05-06 2006-11-09 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation
US7788923B2 (en) 2006-02-02 2010-09-07 International Engine Intellectual Property Company, Llc Constant EGR rate engine and method
FR2913057B1 (en) * 2007-02-27 2009-04-10 Renault Sas HEATING SYSTEM FOR A VEHICLE COUPLED WITH AN EXHAUST GAS RECIRCULATION SYSTEM

Also Published As

Publication number Publication date
DE102008018583A1 (en) 2009-10-22
US20090255251A1 (en) 2009-10-15
EP2108807A1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
EP2108807B1 (en) Exhaust gas recirculation device for an internal combustion engine
DE102007011680B4 (en) Internal combustion engine
EP2129888B1 (en) Charging fluid suction module and internal combustion engine
EP2362083B1 (en) Method and device for operating a combustion engine of a motor vehicle
DE102006011188B4 (en) Two-stage turbocharger for an internal combustion engine
EP2503126B1 (en) Internal combustion engine equipped with waste gate turbines and method to operate such an engine
DE102011078457B4 (en) Method for operating an internal combustion engine with intercooler
DE2911727A1 (en) PISTON COMBUSTION ENGINE WITH AT LEAST TWO EXHAUST GAS TURBOCHARGERS
DE102012223808B4 (en) Internal combustion engine with turbocharging and exhaust gas recirculation and method for operating such an internal combustion engine
DE10204482A1 (en) Internal combustion engine
DE102011078454B4 (en) Internal combustion engine with charge air cooling
DE102019206448B4 (en) Engine system
DE102013021259A1 (en) Charging device for an internal combustion engine of a motor vehicle and method for operating such a charging device
DE102013206690A1 (en) Internal combustion engine with intercooler and exhaust gas recirculation and method for producing such an internal combustion engine
DE102008030569A1 (en) Two-stage exhaust-gas turbocharger for internal combustion engine of vehicle, has low-pressure compressor with bypass line connected to high-pressure compressors in gas conducting manner, and low-pressure turbine with another bypass line
DE102013215574A1 (en) Charged internal combustion engine with exhaust aftertreatment and method for operating such an internal combustion engine
DE102015207539B4 (en) Exhaust Turbo-charged internal combustion engine with partial shutdown and parallel turbines and method for operating such an internal combustion engine
DE102008048035A1 (en) Internal combustion engine with exhaust gas recirculation
DE102009031845A1 (en) Internal-combustion engine i.e. diesel engine, charge-air cooling method, involves guiding adjustable partial flow of charge air in bypass to expansion turbine depending on engine load, and directly diverting adjustable partial flow
DE102010003002B4 (en) Exhaust gas turbocharger arrangement with exhaust gas recirculation device and exhaust gas compressor
DE102019206450B4 (en) Engine system
DE102007019089A1 (en) Exhaust gas heat exchanger, exhaust gas heat exchanger system, internal combustion engine and method for treating exhaust gases of an internal combustion engine
DE102008018324B4 (en) Exhaust gas recirculation system
DE202015102241U1 (en) Two-stage rechargeable internal combustion engine with exhaust aftertreatment
WO2018114027A1 (en) Internal combustion engine having exhaust gas recirculation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20091202

17Q First examination report despatched

Effective date: 20100122

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

R17C First examination report despatched (corrected)

Effective date: 20100211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 591766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005862

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130413

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

BERE Be: lapsed

Owner name: PIERBURG G.M.B.H.

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20131003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005862

Country of ref document: DE

Effective date: 20131003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130204

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170220

Year of fee payment: 9

Ref country code: SE

Payment date: 20170221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170217

Year of fee payment: 9

Ref country code: GB

Payment date: 20170221

Year of fee payment: 9

Ref country code: NL

Payment date: 20170220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170217

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 591766

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180204

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009005862

Country of ref document: DE

Representative=s name: TERPATENT PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009005862

Country of ref document: DE

Representative=s name: TERPATENT PATENTANWAELTE TER SMITTEN EBERLEIN-, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 16