EP2108807B1 - Exhaust gas recirculation device for an internal combustion engine - Google Patents
Exhaust gas recirculation device for an internal combustion engine Download PDFInfo
- Publication number
- EP2108807B1 EP2108807B1 EP09151997A EP09151997A EP2108807B1 EP 2108807 B1 EP2108807 B1 EP 2108807B1 EP 09151997 A EP09151997 A EP 09151997A EP 09151997 A EP09151997 A EP 09151997A EP 2108807 B1 EP2108807 B1 EP 2108807B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- gas recirculation
- internal combustion
- turbine
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 25
- 239000007789 gas Substances 0.000 description 119
- 238000001816 cooling Methods 0.000 description 18
- 239000002826 coolant Substances 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/04—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/09—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
- F02M26/10—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/34—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/24—Layout, e.g. schematics with two or more coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/42—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
- F02M26/43—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
Definitions
- the invention relates to an exhaust gas recirculation system for an internal combustion engine with an exhaust gas recirculation valve, which is arranged in an exhaust gas recirculation line, a first exhaust gas cooler, which is arranged in the exhaust gas recirculation line and a turbine which is arranged in the flow direction of the exhaust gas behind the first exhaust gas cooler in the exhaust gas recirculation line.
- Exhaust gas recirculation systems for internal combustion engines in which in the exhaust gas recirculation line an exhaust gas cooler and an exhaust gas recirculation valve are arranged, are well known and are described in a variety of applications. Such cooled exhaust gas recirculation systems are used, in particular in turbocharged internal combustion engines. The cooling of the exhaust gas leads to significant advantages in terms of emissions and fuel consumption of the vehicle.
- Cooling of the exhaust gas is currently used in particular in low-pressure systems application, but are also known the dynamic working high-pressure systems in which after the cold start hot exhaust gas is recycled through the high-pressure line. For further emission and fuel consumption improvement, it would make sense to cool the exhaust gas lower than usual today and below the existing coolant temperatures. This can additionally reduce the tendency to knock in gasoline engines.
- a disadvantage of the known systems is that at high power of the exhaust gas cooler, they tend to strong sooting due to the low exhaust gas temperature.
- a turbo cooling unit which consists of a driven compressor an exhaust gas cooler and a compressor coupled to the turbine. While it is possible by the driven compressor to achieve a sufficient pressure drop for the return of the exhaust gas in the low pressure region, the turbine provides additional relaxation of the exhaust gas cooled in the exhaust gas, resulting in additional cooling of the exhaust gas optionally below the coolant temperature.
- a disadvantage of such a system is the necessary mechanical drive of the compressor, without which no sufficient pressure gradient is built up and the consequent additional energy loss of the entire system. Furthermore, such a system does not have sufficient dynamics.
- an exhaust gas recirculation system in which in a low-pressure exhaust gas recirculation line, a unit of a compressor, a radiator and a turbine is arranged, wherein the compressor and the turbine are mechanically driven. As a result, a sufficient pressure gradient to promote the exhaust gas is ensured.
- an exhaust gas recirculation is known in which behind two separate exhaust manifolds, a valve is arranged, via which the two manifolds are connected to each other. From one of the manifold branches off the exhaust gas recirculation line, in the downstream of a turbine, an exhaust gas cooler is arranged. A cooling of the exhaust gas to a temperature below the coolant temperature is not possible accordingly.
- the resulting turbine power can be dissipated in different ways.
- the control flap is arranged in the exhaust manifold between the individual exhaust pipes of the individual cylinders, so that when the control flap is closed, only the exhaust gas of the cylinder separated by the control flap reaches the exhaust gas recirculation line.
- Such an arrangement has the advantage that a sufficient amount of exhaust gas is always available to a downstream turbine in the exhaust gas system, since only the exhaust gas of individual cylinders is dammed up and thus the exhaust gas recirculation is available.
- An additional compressor in the exhaust gas recirculation line can be dispensed with, so that the drive of a compressor-turbine unit is eliminated in comparison with known designs. This leads to an additional improvement in fuel consumption.
- the turbine can be bypassed via a bypass channel, in which a second control flap is arranged.
- a bypass channel in which a second control flap is arranged.
- a turbo-cooling unit is arranged behind the first exhaust gas cooler, which has a turbine coupled to the compressor and a second exhaust gas cooler, wherein in the flow direction of the exhaust behind the first exhaust gas cooler first the compressor, then the second exhaust gas cooler and following the turbine arranged is.
- the compressor does not have to be driven in such an embodiment, but consumes only the power generated by the turbine.
- the use of such a turbo cooling unit increases the possibilities for further cooling of the exhaust gas in the exhaust gas recirculation line.
- the turbine is coupled to a generator or blower to which the turbine delivers its power.
- the energy balance of the internal combustion engine can be additionally improved.
- the turbo cooling unit is designed as a structural unit, so that the required space is further reduced.
- the exhaust gas recirculation line branches off from the exhaust line upstream of the turbine of a turbocharger and flows into the intake line of the internal combustion engine behind a charge air cooler.
- Such an exhaust gas recirculation system is thus suitable both for further lowering the exhaust gas temperature of the recirculated exhaust gas and for minimizing sooting of the exhaust gas cooler.
- a good controllability of the system is achieved both in terms of the recirculated exhaust gas quantity and the exhaust gas temperature.
- This system has a high dynamic, leads to lower fuel consumption and to an improvement of emissions, especially of nitrogen oxides.
- the figure shows an inventive exhaust gas recirculation system using the example of a turbocharged four-cylinder internal combustion engine with turbo cooling unit.
- the internal combustion engine consists of an intake pipe 1, via which fresh air is first sucked via a compressor 2 into the intake system of the internal combustion engine.
- the compressed air is passed via an intercooler 3 to an intake manifold 4.
- the enriched with exhaust gas fresh air reaches the cylinders 5, which is in the present embodiment, a four-cylinder internal combustion engine.
- the resulting exhaust gas is expelled into the exhaust manifold 6, from where the exhaust gas flows to a arranged in the exhaust line 7, coupled to the compressor 2 turbine 8. Behind the turbine 8, the exhaust gas enters the atmosphere.
- the exhaust manifold 4 is fluidly connected via an exhaust gas recirculation line 9 to the intake pipe 1 in the area behind the charge air cooler 3.
- an exhaust gas recirculation valve 10 is arranged in the exhaust gas recirculation line.
- an exhaust gas cooler 11 is arranged for temperature control of the exhaust gas.
- This exhaust gas cooler 11 includes a bypass line 12 through which the exhaust gas cooler 11 can be bypassed.
- a bypass valve 13 which is arranged in the present embodiment, seen in the flow direction in front of the exhaust gas cooler 11.
- the turbo cooling unit 14 in the present embodiment consists of a compressor 16, a second smaller exhaust gas cooler 17 and a turbine 18, which is coupled to the compressor 16.
- the compressor 16 is driven only by the output from the turbine power.
- the exhaust manifold 6 consists of four Einzelauslassrohren 19, which end in a manifold 20 of the exhaust manifold 6.
- a control valve 21 is arranged according to the invention, which separates one of the Einzelauslassrohre 19 of a cylinder 5 of the Einzelauslassrohren 19 of the other cylinder 5.
- Another control valve 22 is disposed in the bypass passage 15 to control the exhaust gas recirculation flow flowing through the bypass passage 15 or the turbo cooling unit 14.
- the gas coming from the fourth cylinder 5 flows completely into the exhaust gas recirculation line 9 to the exhaust gas recirculation valve 10, via which the recirculated exhaust gas quantity is controlled according to the position of the valve.
- the exhaust gas recirculation valve 10 is a pressure of, for example, 4.53 bar at a temperature of 823 K on. The valve reduces both the pressure to about 4.43 bar and the temperature to about 733 K.
- the bypass flap 13 is closed, the temperature of the exhaust gas in the exhaust gas cooler 11 decreases to, for example, 463 K at a pressure of 4.33 bar.
- the second control flap 22 is closed, the exhaust gas flows via the turbo cooling unit 14.
- the pressure of the exhaust gas in the compressor is first increased to about 5.2 bar, which at the same time raises the temperature to about 508K.
- This temperature is now lowered in the second exhaust gas cooler 17 to about 401 K, whereby a small pressure drop to about 5.1 bar follows.
- the turbine 18 in the turbo cooling unit 14 a significant reduction of both the pressure and the temperature by the relaxation takes place.
- the pressure drops, for example, to 2.5 bar, while the temperature can be lowered to 361 K, which is below the usual coolant temperature of an internal combustion engine.
- the pressure is still high enough so that exhaust gas can be returned to the intake passage 1.
- the invention is not limited to the given embodiment.
- the first control flap 21 may be arranged behind the exhaust manifold 6 in the exhaust gas line 7 in order to generate a sufficient pressure gradient.
- all the exhaust gas would have to be pushed out at an elevated pressure level, which could lead to increased fuel consumption.
- the system behaves like a conventional high-pressure exhaust gas recirculation system with open control valve 21 and open damper 22, it should be noted that in a closure of the bypass duct 15 and the control valve 21 is at least partially close, otherwise no Exhaust gas could be recycled in sufficient quantity.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Supercharger (AREA)
Description
Die Erfindung betrifft ein Abgasrückführsystem für eine Verbrennungskraftmaschine mit einem Abgasrückführventil, welches in einer Abgasrückführleitung angeordnet ist, einem ersten Abgaskühler, der in der Abgasrückführleitung angeordnet ist und einer Turbine, welche in Strömungsrichtung des Abgases hinter dem ersten Abgaskühler in der Abgasrückführleitung angeordnet ist.The invention relates to an exhaust gas recirculation system for an internal combustion engine with an exhaust gas recirculation valve, which is arranged in an exhaust gas recirculation line, a first exhaust gas cooler, which is arranged in the exhaust gas recirculation line and a turbine which is arranged in the flow direction of the exhaust gas behind the first exhaust gas cooler in the exhaust gas recirculation line.
Abgasrückführsysteme für Verbrennungskraftmaschinen, bei denen in der Abgasrückführleitung ein Abgaskühler und ein Abgasrückführventil angeordnet sind, sind allgemein bekannt und werden in einer Vielzahl von Anmeldungen beschrieben. Anwendung finden derartige gekühlte Abgasrückführsysteme insbesondere bei turboaufgeladenen Verbrennungskraftmaschinen. Die Kühlung des Abgases führt zu deutlichen Vorteilen bezüglich der Emissionen und des Kraftstoffverbrauches des Fahrzeugs.Exhaust gas recirculation systems for internal combustion engines, in which in the exhaust gas recirculation line an exhaust gas cooler and an exhaust gas recirculation valve are arranged, are well known and are described in a variety of applications. Such cooled exhaust gas recirculation systems are used, in particular in turbocharged internal combustion engines. The cooling of the exhaust gas leads to significant advantages in terms of emissions and fuel consumption of the vehicle.
Bekannt sind Systeme, bei denen im Hochdruckbereich das Abgas zurückgeführt wird, was bedeutet, dass das Abgas vor der Turbine dem Abgas und hinter dem Verdichter der Ansaugluft wieder zugeführt wird, als auch Niederdruckabgasrückführsysteme, bei denen das Abgas hinter der Turbine entnommen wird und der Ansaugluft vor dem Verdichter wieder zugeführt wird. Während mit Niederdruckabgasrückführsystemen höhere Abgasraten erreicht werden, besteht das Problem eines geringen Druckgefälles zwischen der Stelle der Abgasentnahme und der Stelle der Abgaszuführung in den Ansaugkanal, so dass zusätzlich Drosseln zur Erhöhung des Druckgefälles verwendet werden müssen. Ein weiterer Vorteil ist die Rückführung von sauberem Abgas, da dieses beispielsweise bei einer Diesel-Brennkraftmaschine hinter dem Dieselpartikelfilter entnommen werden kann. Ein Hochdruck-Abgasrückführsystem weist im Gegensatz hierzu eine deutlich höhere Dynamik auf, ist jedoch bezüglich der erreichbaren Rückführraten beschränkt, da andernfalls die Turbine nicht ausreichend mit Abgas versorgt würde.Systems are known in which the exhaust gas is recycled in the high pressure region, which means that the exhaust gas is supplied to the exhaust gas before the turbine and the intake air behind the compressor, as well as low pressure exhaust gas recirculation systems, in which the exhaust gas is removed behind the turbine and the intake air is fed back before the compressor. While higher exhaust gas rates are achieved with low pressure EGR systems, there is the problem of a small pressure differential between the exhaust sampling location and the location of the exhaust Exhaust gas feed into the intake duct, so that additional throttles must be used to increase the pressure gradient. Another advantage is the return of clean exhaust gas, as this can be removed, for example, in a diesel engine behind the diesel particulate filter. In contrast, a high-pressure exhaust gas recirculation system has a significantly higher dynamics, but is limited in terms of achievable recirculation rates, since otherwise the turbine would not be sufficiently supplied with exhaust gas.
Eine Kühlung des Abgases findet derzeit insbesondere in Niederdrucksystemen Anwendung, bekannt sind jedoch auch die dynamischer arbeitenden Hochdrucksysteme, bei denen nach dem Kaltstart heißes Abgas durch den Hochdruckstrang zurückgeführt wird. Zur weiteren Emissions- und Kraftstoffverbrauchsverbesserung wäre es sinnvoll, das Abgas tiefer als heute üblich und unter die vorhandenen Kühlmitteltemperaturen abzukühlen. Hierdurch kann bei Ottomotoren zusätzlich die Klopfneigung reduziert werden. Nachteilhaft an den bekannten Systemen ist, dass bei hoher Leistung der Abgaskühler, diese durch die geringe Abgastemperatur zu starker Versottung neigen.Cooling of the exhaust gas is currently used in particular in low-pressure systems application, but are also known the dynamic working high-pressure systems in which after the cold start hot exhaust gas is recycled through the high-pressure line. For further emission and fuel consumption improvement, it would make sense to cool the exhaust gas lower than usual today and below the existing coolant temperatures. This can additionally reduce the tendency to knock in gasoline engines. A disadvantage of the known systems is that at high power of the exhaust gas cooler, they tend to strong sooting due to the low exhaust gas temperature.
So wird in der
Des Weiteren ist aus der
Aus der
Es stellt sich daher die Aufgabe, ein Abgasrückführsystem bereitzustellen, mit dem Abgas gegebenenfalls unter die Kühlmitteltemperatur abgekühlt werden kann, eine Versottung des Abgaskühlers sowie die Größe des Abgaskühlers verringert und ohne Energieverlust Abgas mit hoher Dynamik zurückgeführt werden kann.It is therefore the object to provide an exhaust gas recirculation system, with the exhaust gas can optionally be cooled below the coolant temperature, a sooting of the exhaust gas cooler and the size of the exhaust gas cooler reduced and can be recycled without loss of energy exhaust gas with high dynamics.
Diese Aufgabe wird durch den kennzeichnenden Teil des Hauptanspruchs gelöst. Durch die Anordnung einer Regelklappe im Abgaskrümmer kann Abgas einzelner oder mehrerer Zylinder im Abgasstrang aufgestaut werden, so dass ein ausreichendes Druckgefälle zur Verfügung steht, um Abgas über die Abgasrückführleitung in den Ansaugbereich der Verbrennungskraftmaschine zurückzuführen. Durch die Turbine hinter dem Abgaskühler kann zusätzlich das Abgas unter die Kühlmitteltemperatur abgekühlt werden, ohne innerhalb des Abgaskühlers die Temperatur zu unterschreiten, die zu einer erhöhten Versottung führt. Eine derartige Rückführung kann im Bereich des Abgaskrümmers erfolgen, so dass durch die kurze Regelstrecke eine hohe Dynamik des Systems sichergestellt wird. Der Abgaskühler kann bei einem derartigen System kleiner ausgeführt werden, da zusätzliche Kühlerleistung durch die Entspannung in der Turbine übernommen wird. Die entstehende Turbinenleistung kann dabei auf unterschiedliche Weise abgeführt werden. Dabei ist die Regelklappe im Abgaskrümmer zwischen den Einzelauslassrohren der einzelnen Zylinder angeordnet, so dass bei geschlossener Regelklappe nur das Abgas der durch die Regelklappe abgetrennten Zylinder in die Abgasrückführleitung gelangt. Eine derartige Anordnung hat den Vorteil, dass einer nachfolgenden Turbine im Abgasstrang immer ausreichend Abgas zur Verfügung steht, da nur das Abgas einzelner Zylinder aufgestaut wird und somit der Abgasrückführung zur Verfügung steht. Zusätzlich ist es vorteilhaft, dass nur einige Zylinder gegen den gegebenenfalls durch die Kühlturbine erhöhten Abgasdruck ausschieben müssen. Auf einen zusätzlichen Verdichter in der Abgasrückführleitung kann verzichtet werden, so dass auch der Antrieb einer Verdichter-Turbinen-Einheit im Vergleich zu bekannten Ausführungen wegfällt. Dies führt zu einer zusätzlichen Verbesserung des Kraftstoffverbrauchs.This object is achieved by the characterizing part of the main claim. By arranging a control flap in the exhaust manifold exhaust gas of one or more cylinders can be dammed in the exhaust line, so that a sufficient pressure gradient is available to return exhaust gas via the exhaust gas recirculation line in the intake of the internal combustion engine. Through the turbine behind the Exhaust gas cooler, the exhaust gas can additionally be cooled below the coolant temperature without falling below the temperature within the exhaust gas cooler, which leads to an increased sooting. Such a return can take place in the region of the exhaust manifold, so that a high dynamics of the system is ensured by the short controlled system. The exhaust gas cooler can be made smaller in such a system, since additional cooling capacity is taken over by the relaxation in the turbine. The resulting turbine power can be dissipated in different ways. In this case, the control flap is arranged in the exhaust manifold between the individual exhaust pipes of the individual cylinders, so that when the control flap is closed, only the exhaust gas of the cylinder separated by the control flap reaches the exhaust gas recirculation line. Such an arrangement has the advantage that a sufficient amount of exhaust gas is always available to a downstream turbine in the exhaust gas system, since only the exhaust gas of individual cylinders is dammed up and thus the exhaust gas recirculation is available. In addition, it is advantageous that only a few cylinders have to push against the optionally increased by the cooling turbine exhaust pressure. An additional compressor in the exhaust gas recirculation line can be dispensed with, so that the drive of a compressor-turbine unit is eliminated in comparison with known designs. This leads to an additional improvement in fuel consumption.
In einer weiterführenden Ausführungsform ist die Turbine über einen Bypasskanal umgehbar, in dem eine zweite Regelklappe angeordnet ist. Hierdurch kann beispielsweise nach dem Kaltstart der Verbrennungskraftmaschine wärmeres Abgas zur schnelleren Aufheizung der Verbrennungskraftmaschine zurückgeführt werden, indem das Abgas über den Bypasskanal geführt wird.In a further embodiment, the turbine can be bypassed via a bypass channel, in which a second control flap is arranged. As a result, for example, after the cold start of the internal combustion engine warmer exhaust gas for faster heating of the internal combustion engine can be recycled by the exhaust gas is passed through the bypass channel.
In einer weiteren bevorzugten Ausführung ist hinter dem ersten Abgaskühler eine Turbokühleinheit angeordnet, welche einen mit der Turbine gekoppelten Verdichter sowie einen zweiten Abgaskühler aufweist, wobei in Strömungsrichtung des Abgases hinter dem ersten Abgaskühler zunächst der Verdichter, daran anschließend der zweite Abgaskühler und folgend die Turbine angeordnet ist. Der Verdichter muss bei einer derartigen Ausführung nicht angetrieben werden, sondern verbraucht lediglich die durch die Turbine erzeugte Leistung. Die Verwendung einer derartigen Turbokühleinheit erhöht die Möglichkeiten zur weiteren Abkühlung des Abgases in der Abgasrückführleitung.In a further preferred embodiment, a turbo-cooling unit is arranged behind the first exhaust gas cooler, which has a turbine coupled to the compressor and a second exhaust gas cooler, wherein in the flow direction of the exhaust behind the first exhaust gas cooler first the compressor, then the second exhaust gas cooler and following the turbine arranged is. The compressor does not have to be driven in such an embodiment, but consumes only the power generated by the turbine. The use of such a turbo cooling unit increases the possibilities for further cooling of the exhaust gas in the exhaust gas recirculation line.
In einer hierzu alternativen Ausführungsform ist die Turbine mit einem Generator oder einem Gebläse gekoppelt, an welche die Turbine ihre Leistung abgibt. Hierdurch kann die Energiebilanz der Verbrennungskraftmaschine zusätzlich verbessert werden.In an alternative embodiment, the turbine is coupled to a generator or blower to which the turbine delivers its power. As a result, the energy balance of the internal combustion engine can be additionally improved.
In einer bevorzugten Ausführungsform ist die Turbokühleinheit als Baueinheit ausgeführt, so dass der benötigte Bauraum weiter sinkt.In a preferred embodiment, the turbo cooling unit is designed as a structural unit, so that the required space is further reduced.
Zur Verbesserung der Dynamik des Abgasrückführsystems zweigt die Abgasrückführleitung vor der Turbine eines Turboladers aus dem Abgasstrang ab und mündet hinter einem Ladeluftkühler in die Ansaugleitung der Verbrennungskraftmaschine.To improve the dynamics of the exhaust gas recirculation system, the exhaust gas recirculation line branches off from the exhaust line upstream of the turbine of a turbocharger and flows into the intake line of the internal combustion engine behind a charge air cooler.
Ein derartiges Abgasrückführsystem eignet sich somit sowohl zur weiteren Absenkung der Abgastemperatur des zurückgeführten Abgases als auch zur Minimierung der Versottung des Abgaskühlers. Zusätzlich wird eine gute Regelbarkeit des Systems sowohl bezüglich der rückgeführten Abgasmenge als auch der Abgastemperatur erreicht. Dieses System weist eine hohe Dynamik auf, führt zu Absenkung des Kraftstoffverbrauchs und zu einer Verbesserung der Emissionen, insbesondere der Stickoxide.Such an exhaust gas recirculation system is thus suitable both for further lowering the exhaust gas temperature of the recirculated exhaust gas and for minimizing sooting of the exhaust gas cooler. In addition, a good controllability of the system is achieved both in terms of the recirculated exhaust gas quantity and the exhaust gas temperature. This system has a high dynamic, leads to lower fuel consumption and to an improvement of emissions, especially of nitrogen oxides.
Ein Ausführungsbeispiel ist in der Figur dargestellt und wird nachfolgend beschrieben.An embodiment is shown in the figure and will be described below.
Die Figur zeigt ein erfindungsgemäßes Abgasrückführsystem am Beispiel einer turboaufgeladenen vierzylindrigen Verbrennungskraftmaschine mit Turbokühleinheit.The figure shows an inventive exhaust gas recirculation system using the example of a turbocharged four-cylinder internal combustion engine with turbo cooling unit.
Die Verbrennungskraftmaschine besteht aus einer Ansaugleitung 1, über die Frischluft zunächst über einen Verdichter 2 in das Ansaugsystem der Verbrennungskraftmaschine gesaugt wird. Die verdichtete Luft wird über einen Ladeluftkühler 3 zu einem Ansaugkrümmer 4 geleitet. Vom Ansaugkrümmer 4 gelangt die mit Abgas angereicherte Frischluft zu den Zylindern 5, wobei es sich im vorliegenden Ausführungsbeispiel um eine vierzylindrige Verbrennungskraftmaschine handelt. Nach der Verbrennung in den Zylindern 5 wird das entstandene Abgas in den Abgaskrümmer 6 ausgestoßen, von wo aus das Abgas zu einer im Abgasstrang 7 angeordneten, mit dem Verdichter 2 gekoppelten Turbine 8 strömt. Hinter der Turbine 8 gelangt das Abgas ins Freie.The internal combustion engine consists of an
Der Abgaskrümmer 4 ist über eine Abgasrückführleitung 9 mit der Ansaugleitung 1 im Bereich hinter dem Ladeluftkühler 3 fluidisch verbunden. Zur Mengenregelung des zurückgeführten Abgasstroms ist in der Abgasrückführleitung 9 ein Abgasrückführventil 10 angeordnet. In Strömungsrichtung hinter dem Abgasrückführventil 10 ist ein Abgaskühler 11 zur Temperatursteuerung des Abgases angeordnet. Dieser Abgaskühler 11 enthält eine Bypassleitung 12, über die der Abgaskühler 11 umgangen werden kann. Zur Steuerung des Abgasflusses durch den Abgaskühler 11 oder die Bypassleitung 12 dient eine Bypassklappe 13, die in vorliegendem Ausführungsbeispiel in Strömungsrichtung gesehen vor dem Abgaskühler 11 angeordnet ist. Ein derartig aufgebautes System ist aus dem Stand der Technik bekannt.The
Hinter dem Abgaskühler 11 befindet sich eine Turbokühleinheit 14, welche über einen Bypasskanal 15 umgehbar ist. Die Turbokühleinheit 14 besteht in vorliegendem Ausführungsbeispiel aus einem Verdichter 16, einem zweiten kleineren Abgaskühler 17 sowie einer Turbine 18, die mit dem Verdichter 16 gekoppelt ist. Der Verdichter 16 wird dabei lediglich durch die von der Turbine abgegebene Leistung angetrieben.Behind the
Der Abgaskrümmer 6 besteht aus vier Einzelauslassrohren 19, welche in einem Sammelrohr 20 des Abgaskrümmers 6 enden. Im Sammelrohr 20 ist erfindungsgemäß eine Regelklappe 21 angeordnet, welche eines der Einzelauslassrohre 19 eines Zylinders 5 von den Einzelauslassrohren 19 der anderen Zylinder 5 trennt. Eine weitere Regelklappe 22 ist im Bypasskanal 15 angeordnet, um den durch den Bypasskanal 15 oder die Turbokühleinheit 14 fließenden Abgasrückführungsstrom zu steuern.The
Im Folgenden wird die Funktionsweise des Abgasrückführsystems mit beispielhaften Werten bezüglich des Drucks und der Temperatur beschrieben.The following describes the operation of the exhaust gas recirculation system with exemplary values in terms of pressure and temperature.
Bei geschlossener erster Regelklappe 21 im Abgaskrümmer 6 strömt das aus dem vierten Zylinder 5 kommende Gas vollständig in die Abgasrückführleitung 9 zum Abgasrückführventil 10, über welches die zurückgeführte Abgasmenge entsprechend der Stellung des Ventils gesteuert wird. Vor dem Abgasrückführventil 10 liegt ein Druck von beispielsweise 4,53 bar bei einer Temperatur von 823 K an. Über das Ventil verringert sich sowohl der Druck auf ca. 4,43 bar als auch die Temperatur auf circa 733 K. Bei geschlossener Bypassklappe 13 verringert sich die Temperatur des Abgases im Abgaskühler 11 auf beispielsweise 463 K bei einem Druck von 4,33 bar. Bei geschlossener zweiter Regelklappe 22 strömt das Abgas über die Turbokühleinheit 14. Dabei wird zunächst der Druck des Abgases im Verdichter auf circa 5,2 bar erhöht, was gleichzeitig eine Erhöhung der Temperatur auf circa 508 K zur Folge hat. Diese Temperatur wird nun im zweiten Abgaskühler 17 auf circa 401 K gesenkt, wodurch ein geringer Druckabfall auf circa 5,1 bar folgt. Durch den Einsatz der Turbine 18 in der Turbokühleinheit 14 erfolgt eine deutliche Absenkung sowohl des Druckes als auch der Temperatur durch die Entspannung. Der Druck sinkt hierdurch beispielsweise auf 2,5 bar ab, während die Temperatur auf 361 K abgesenkt werden kann, was unterhalb der üblichen Kühlmitteltemperatur eines Verbrennungsmotors liegt. Der Druck ist jedoch noch hoch genug, damit Abgas in die Ansaugleitung 1 zurückgeführt werden kann.When the
Ohne die Verwendung der Regelklappe 21 wäre der vorhandene Druck hinter der Turbine 18 nicht ausreichend, da bereits der Druck vor dem Abgasrückführventil 10 deutlich geringer wäre.Without the use of the
Es wird somit ein Abgasrückführsystem geschaffen, mit der das notwendige Druckniveau zum Erreichen ausreichender Abgasrückführraten sichergestellt wird. Gleichzeitig bleibt die Temperatur in den Abgaskühlern 11, 17 hoch genug, um eine größere Versottung durch zu kühles Abgas zu vermeiden. Das System ist sowohl bezüglich der Temperatur als auch des Druckes durch die beiden Regelklappen 21, 22 auf einfache Weise genau einstellbar und weist eine hohe Regeldynamik auf.There is thus provided an exhaust gas recirculation system, with which the necessary pressure level is ensured to achieve sufficient exhaust gas recirculation rates. At the same time the temperature in the
Selbstverständlich ist die Erfindung nicht auf das vorgegebene Ausführungsbeispiel beschränkt. So kann beispielsweise die erste Regelklappe 21 zur Erzeugung eines ausreichenden Druckgefälles hinter dem Abgaskrümmer 6 im Abgasstrang 7 angeordnet sein. Allerdings würde in diesem Fall das gesamte Abgas auf einem erhöhten Druckniveau ausgeschoben werden müssen, was zu einem erhöhten Kraftstoffverbrauch führen könnte.Of course, the invention is not limited to the given embodiment. For example, the
Auch ist es denkbar, mehr als nur einen Zylinder über die erste Regelklappe von dem übrigen Abgasstrang zu trennen. So könnte beispielsweise bei einer V-Verbrennungskraftmaschine eine einzelne Zylinderbank von der anderen durch eine derartige Regelklappe getrennt werden. Bei einer Verwendung der Turbokühleinheit in einem Niederdruckbereich einer Verbrennungskraftmaschine kann ebenfalls eine ausreichende Druckerhöhung durch eine Regelklappe im Abgasstrang erreicht werden, jedoch würde die Regeldynamik des Systems bei einer derartigen Anordnung verloren gehen.It is also conceivable to separate more than just one cylinder via the first control flap from the remaining exhaust gas line. For example, in a V-type internal combustion engine, a single cylinder bank could be separated from the other by such a butterfly valve. When using the turbo cooling unit in a low pressure region of an internal combustion engine, a sufficient pressure increase can be achieved by a control valve in the exhaust system, but the control dynamics of the system would be lost in such an arrangement.
Es sei noch erwähnt, dass sich das System bei geöffneter Regelklappe 21 und geöffneter Regelklappe 22 wie ein konventionelles Hochdruck-Abgasrückführsystem verhält, wobei zu beachten ist, dass bei einem Verschluss des Bypasskanals 15 auch die Regelklappe 21 zumindest teilweise zu verschließen ist, da sonst kein Abgas in ausreichender Menge zurückgeführt werden könnte.It should be noted that the system behaves like a conventional high-pressure exhaust gas recirculation system with
Claims (7)
- Exhaust gas recirculation system for an internal combustion engine, comprising:an exhaust gas recirculation valve (10) arranged in an exhaust gas recirculation duct (9),a first exhaust gas cooler (11) arranged in the exhaust gas recirculation duct (9), anda turbine (18) arranged in the exhaust gas recirculation duct (9) downstream of the first exhaust gas cooler (11), seen in the flow direction of the exhaust gas,characterized in thatin the region of the exhaust gas manifold (6), a control flap (21) is arranged, the flap being positioned in the exhaust gas manifold (6) between the individual outlet pipes (19) of the individual cylinders (5), so that,when the control flap (21) is closed, only the exhaust gas from the cylinders (5) separated by the control flap (21) reaches the exhaust gas recirculation duct (9).
- The exhaust gas recirculation system for an internal combustion engine of claim 1, characterized in that the turbine (18) can be bypassed via a bypass duct (15) in which a second control flap (22) is arranged.
- The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that a turbo cooler unit (14) is arranged downstream of the first exhaust gas cooler (11), said unit comprising a compressor (16) coupled with the turbine (18), as well as a second exhaust gas cooler (17), wherein downstream of the first exhaust gas cooler (11), seen in the exhaust gas flow direction, the compressor (16) is arranged first, followed by the second exhaust gas cooler (17) and, thereafter, the turbine (18).
- The exhaust gas recirculation system for an internal combustion engine of claim 3, characterized in that the turbo cooler unit (14) can be bypassed via the bypass duct in which the second control flap (22) is arranged.
- The exhaust gas recirculation system for an internal combustion engine of one of claims 1 to 2, characterized in that the turbine (18) is coupled to a generator or a fan to which the turbine (18) supplies its output.
- The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that the turbo cooler unit (14) is configured as a structural unit.
- The exhaust gas recirculation system for an internal combustion engine of one of the preceding claims, characterized in that the exhaust gas recirculation duct (9) branches from the exhaust gas line (7) before a turbine (8) of a turbocharger and terminates in the intake duct (1) of the internal combustion engine behind a charge air cooler (3).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008018583A DE102008018583A1 (en) | 2008-04-12 | 2008-04-12 | Exhaust gas recirculation system for an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2108807A1 EP2108807A1 (en) | 2009-10-14 |
EP2108807B1 true EP2108807B1 (en) | 2013-01-02 |
Family
ID=40863605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09151997A Active EP2108807B1 (en) | 2008-04-12 | 2009-02-04 | Exhaust gas recirculation device for an internal combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090255251A1 (en) |
EP (1) | EP2108807B1 (en) |
DE (1) | DE102008018583A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8176736B2 (en) * | 2008-03-21 | 2012-05-15 | Cummins Inc. | EGR apparatuses, systems, and methods |
US8640457B2 (en) * | 2009-10-13 | 2014-02-04 | General Electric Company | System and method for operating a turbocharged engine |
DE102010005803A1 (en) * | 2010-01-27 | 2011-07-28 | Audi Ag, 85057 | Car with an exhaust system |
US8915081B2 (en) * | 2011-04-13 | 2014-12-23 | GM Global Technology Operations LLC | Internal combustion engine |
US9494112B2 (en) * | 2013-05-10 | 2016-11-15 | Modine Manufacturing Company | Exhaust gas heat exchanger and method |
EP3017162A4 (en) | 2013-06-21 | 2017-01-18 | Eaton Corporation | Supercharger exhaust bypass |
US9556824B2 (en) | 2014-03-25 | 2017-01-31 | Hanon Systems | Integration of forced EGR/EGR-pump into EGR-cooler |
DE102015104179B4 (en) | 2014-03-25 | 2022-03-03 | Hanon Systems | Devices for recirculating exhaust gas from an internal combustion engine in a motor vehicle |
US9670823B2 (en) * | 2015-03-24 | 2017-06-06 | GM Global Technology Operations LLC | Engine with a turbocharger cooling module |
US9989020B2 (en) | 2015-05-15 | 2018-06-05 | Ford Global Technologies, Llc | Auto-ignition internal combustion engine with exhaust-gas turbocharging and exhaust-gas recirculation |
DE102015208957A1 (en) * | 2015-05-15 | 2016-11-17 | Ford Global Technologies, Llc | Self-igniting internal combustion engine with turbocharging and exhaust gas recirculation |
FR3053407B1 (en) * | 2016-06-30 | 2019-06-28 | Valeo Systemes De Controle Moteur | EXHAUST GAS CIRCULATION ASSEMBLY OF A THERMAL ENGINE |
DE102021100844B3 (en) | 2021-01-18 | 2022-02-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle with an internal combustion engine and a turbocharger and method for operating a motor vehicle |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2703561A (en) * | 1954-01-13 | 1955-03-08 | Nordberg Manufacturing Co | Inlet air cooling device and method for internal-combustion engines |
DE1003505B (en) * | 1954-09-10 | 1957-02-28 | Henschel & Sohn Gmbh | Supercharged internal combustion engine with an expansion turbine |
DE1214931B (en) * | 1962-02-26 | 1966-04-21 | Sulzer Ag | Control of the temperature of the combustion air in a dual-fuel internal combustion engine |
US5617726A (en) * | 1995-03-31 | 1997-04-08 | Cummins Engine Company, Inc. | Cooled exhaust gas recirculation system with load and ambient bypasses |
US6138649A (en) * | 1997-09-22 | 2000-10-31 | Southwest Research Institute | Fast acting exhaust gas recirculation system |
US6324846B1 (en) * | 1999-03-31 | 2001-12-04 | Caterpillar Inc. | Exhaust gas recirculation system for an internal combustion engine |
JP2002089375A (en) | 2000-09-11 | 2002-03-27 | Toyota Motor Corp | Egr device for internal combustion engine |
US7287378B2 (en) * | 2002-10-21 | 2007-10-30 | International Engine Intellectual Property Company, Llc | Divided exhaust manifold system and method |
DE102005021172A1 (en) * | 2005-05-06 | 2006-11-09 | Daimlerchrysler Ag | Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation |
US7788923B2 (en) | 2006-02-02 | 2010-09-07 | International Engine Intellectual Property Company, Llc | Constant EGR rate engine and method |
FR2913057B1 (en) * | 2007-02-27 | 2009-04-10 | Renault Sas | HEATING SYSTEM FOR A VEHICLE COUPLED WITH AN EXHAUST GAS RECIRCULATION SYSTEM |
-
2008
- 2008-04-12 DE DE102008018583A patent/DE102008018583A1/en not_active Withdrawn
-
2009
- 2009-02-04 EP EP09151997A patent/EP2108807B1/en active Active
- 2009-04-09 US US12/420,962 patent/US20090255251A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE102008018583A1 (en) | 2009-10-22 |
US20090255251A1 (en) | 2009-10-15 |
EP2108807A1 (en) | 2009-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2108807B1 (en) | Exhaust gas recirculation device for an internal combustion engine | |
DE102007011680B4 (en) | Internal combustion engine | |
EP2129888B1 (en) | Charging fluid suction module and internal combustion engine | |
EP2362083B1 (en) | Method and device for operating a combustion engine of a motor vehicle | |
DE102006011188B4 (en) | Two-stage turbocharger for an internal combustion engine | |
EP2503126B1 (en) | Internal combustion engine equipped with waste gate turbines and method to operate such an engine | |
DE102011078457B4 (en) | Method for operating an internal combustion engine with intercooler | |
DE2911727A1 (en) | PISTON COMBUSTION ENGINE WITH AT LEAST TWO EXHAUST GAS TURBOCHARGERS | |
DE102012223808B4 (en) | Internal combustion engine with turbocharging and exhaust gas recirculation and method for operating such an internal combustion engine | |
DE10204482A1 (en) | Internal combustion engine | |
DE102011078454B4 (en) | Internal combustion engine with charge air cooling | |
DE102019206448B4 (en) | Engine system | |
DE102013021259A1 (en) | Charging device for an internal combustion engine of a motor vehicle and method for operating such a charging device | |
DE102013206690A1 (en) | Internal combustion engine with intercooler and exhaust gas recirculation and method for producing such an internal combustion engine | |
DE102008030569A1 (en) | Two-stage exhaust-gas turbocharger for internal combustion engine of vehicle, has low-pressure compressor with bypass line connected to high-pressure compressors in gas conducting manner, and low-pressure turbine with another bypass line | |
DE102013215574A1 (en) | Charged internal combustion engine with exhaust aftertreatment and method for operating such an internal combustion engine | |
DE102015207539B4 (en) | Exhaust Turbo-charged internal combustion engine with partial shutdown and parallel turbines and method for operating such an internal combustion engine | |
DE102008048035A1 (en) | Internal combustion engine with exhaust gas recirculation | |
DE102009031845A1 (en) | Internal-combustion engine i.e. diesel engine, charge-air cooling method, involves guiding adjustable partial flow of charge air in bypass to expansion turbine depending on engine load, and directly diverting adjustable partial flow | |
DE102010003002B4 (en) | Exhaust gas turbocharger arrangement with exhaust gas recirculation device and exhaust gas compressor | |
DE102019206450B4 (en) | Engine system | |
DE102007019089A1 (en) | Exhaust gas heat exchanger, exhaust gas heat exchanger system, internal combustion engine and method for treating exhaust gases of an internal combustion engine | |
DE102008018324B4 (en) | Exhaust gas recirculation system | |
DE202015102241U1 (en) | Two-stage rechargeable internal combustion engine with exhaust aftertreatment | |
WO2018114027A1 (en) | Internal combustion engine having exhaust gas recirculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20091202 |
|
17Q | First examination report despatched |
Effective date: 20100122 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
R17C | First examination report despatched (corrected) |
Effective date: 20100211 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 591766 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009005862 Country of ref document: DE Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130413 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130402 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130403 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
BERE | Be: lapsed |
Owner name: PIERBURG G.M.B.H. Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20131003 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009005862 Country of ref document: DE Effective date: 20131003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130204 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170220 Year of fee payment: 9 Ref country code: SE Payment date: 20170221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170217 Year of fee payment: 9 Ref country code: GB Payment date: 20170221 Year of fee payment: 9 Ref country code: NL Payment date: 20170220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170217 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180301 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 591766 Country of ref document: AT Kind code of ref document: T Effective date: 20180204 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009005862 Country of ref document: DE Representative=s name: TERPATENT PARTGMBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502009005862 Country of ref document: DE Representative=s name: TERPATENT PATENTANWAELTE TER SMITTEN EBERLEIN-, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240216 Year of fee payment: 16 |