EP2103711A1 - Highly corrosion-resistant members and processes for production thereof - Google Patents

Highly corrosion-resistant members and processes for production thereof Download PDF

Info

Publication number
EP2103711A1
EP2103711A1 EP07831553A EP07831553A EP2103711A1 EP 2103711 A1 EP2103711 A1 EP 2103711A1 EP 07831553 A EP07831553 A EP 07831553A EP 07831553 A EP07831553 A EP 07831553A EP 2103711 A1 EP2103711 A1 EP 2103711A1
Authority
EP
European Patent Office
Prior art keywords
film
substrate
highly corrosion
resistant member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07831553A
Other languages
German (de)
French (fr)
Other versions
EP2103711A4 (en
Inventor
Toshiyuki Saito
Masahiro Suzuki
Hiroyuki Hashitomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
JTEKT Coating Corp
Original Assignee
CNK Co Ltd Japan
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNK Co Ltd Japan, JTEKT Corp filed Critical CNK Co Ltd Japan
Publication of EP2103711A1 publication Critical patent/EP2103711A1/en
Publication of EP2103711A4 publication Critical patent/EP2103711A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/16Sliding surface consisting mainly of graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/14Hardening, e.g. carburizing, carbo-nitriding with nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/60Coating surfaces by vapour deposition, e.g. PVD, CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a highly corrosion-resistant member that exhibits high corrosion resistance even when being employed in circumstances where corrosion is likely to occur, and to a manufacturing process for the same.
  • Amorphous carbon (diamond-like carbon: DLC) having an amorphous structure is good in terms of mechanical characteristics, such as wear resistance and solid lubricating property, and possesses corrosion resistance, insulating property, visible light/infrared light transmissivity, oxygen barrier property, and the like, simultaneously. Accordingly, it has been often the case that an amorphous carbon film is coated onto a substrate's surface and is then used as a protective film.
  • a water-lubrication bearing is disclosed, water-lubrication bearing which moves slidably while adapting water into a lubricant liquid.
  • the water-lubrication bearing is equipped with a rotary-side member being fixed to a rotary side, and a fixed-side member being fixed to a fixed side and facing to and contacting slidably with the rotary-side member.
  • the fixed-side member's substrate is made of stainless steel, and a DLC film is formed on its surface.
  • a DLC film which is formed directly on a surface of substrate that is made of stainless steel as aforementioned, exhibits low adhesiveness to the substrate.
  • the adhesiveness between the DLC film and the substrate is low, it exerts adverse influences not only to the corrosion resistance but also to the sliding property.
  • the adhesiveness has been secured heretofore by subjecting a substrate's superficial-layer portion to nitriding treatment and then forming a DLC film onto its surface.
  • Patent Literature No. 1 Japanese Unexamined Patent Publication (KOKAI) Gazette No. 10-184,692
  • Fig. 3 is a cross-sectional diagram for schematically illustrating a conventional coated member whose surface is coated with an amorphous carbon film.
  • the nitriding treatment, and the forming of the DLC film are carried out at 500 °C, or at a temperature that is higher than that.
  • the factors of corrosion occurrence on the conventional coated member it is possible to think of the following two factors.
  • the present inventors focused their attention on one of the aforementioned factors, the sensitization of stainless steel that results from the processing temperatures. Specifically, the present inventors arrived at thinking of making it possible to retain the corrosion resistance of stainless steel by not letting the temperature of a substrate being made of stainless steel go beyond a predetermined temperature during the time period from preparing the substrate to forming an amorphous carbon film thereon.
  • a highly corrosion-resistant member according to the present invention is equipped with: a substrate made of stainless steel; an intermediate layer coated on at least a part of a surface of the substrate; and an amorphous carbon film coated on at least a part of a surface of the intermediate layer; and is characterized in that:
  • another highly corrosion-resistant member according to the present invention is equipped with: a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment; and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion; and is characterized in that:
  • Another manufacturing process for highly corrosion-resistant member according to the present invention is characterized in that it comprises:
  • the surface of the substrate made of stainless steel is not exposed to high temperatures (> 450 °C). Consequently, the corrosion resistance of the substrate is kept equivalent to the corrosion resistance of the original stainless steel that has not been exposed to any high temperature.
  • the highly corrosion-resistant members according to the present invention are good in terms of corrosion resistance. Note that, since an inner temperature of the substrate usually becomes lower than the surface temperature of the substrate, highly corrosion-resistant members having desirable corrosion resistance are obtainable in the present invention unless at least the surface of the substrate is exposed to the high temperatures.
  • the substrate is not exposed under the high temperatures, and additionally the generation of internal stress at the surface of the substrate is reduced. Consequently, the corrosion resistance of the substrate is kept equivalent to the corrosion resistance of the original stainless steel. This is because the nitriding treatment is carried out at the low temperatures and thereby the internal stress, which is generated by nitrogen atoms that diffuse and then infiltrate, becomes small.
  • FIG. 1 and Fig. 2 are cross-sectional diagrams for schematically illustrating the highly corrosion-resistant members according to the present invention.
  • a highly corrosion-resistant member according to the present invention is equipped with a substrate made of stainless steel, an intermediate layer coated on at least a part of a surface of the substrate, and an amorphous carbon film coated on at least a part of a surface of the intermediate layer ( Fig. 1 ).
  • another highly corrosion-resistant member according to the present invention is equipped with a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment, and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion ( Fig. 2 ).
  • the substrate is not limited particularly in its shape and size, as far as it is made of stainless steel.
  • the type of stainless steel is not limited particularly, and it is allowable to select it from general martensite-system, ferrite-system or austenite-system stainless steels, two-phase stainless steels, and the like, depending on applications.
  • a surface roughness of the substrate is not limited inparticular.
  • thehighlycorrosion-resistantmembers are employed as a sliding component part, it is allowable that its ten-point average surface roughness Rz (JIS) can be 0.4-6.3 ⁇ m, from the viewpoint of the adhesiveness between the substrate and the intermediate layer or amorphous carbon film, and from that of the sliding property.
  • the superficial-layer portion can be subjected to nitriding treatment.
  • the nitriding treatment is carried out at a low temperature of 450 °C or less.
  • an extent of the nitriding treatment is not limited particularly, it is allowable that a nitrided depth can be 10 ⁇ m or more, further 20-30 ⁇ m.
  • the amorphous carbon film to be formed on the surface is prevented from coming off effectively, because nitriding is done fully onto the entire surface of the substrate to which nitriding is needed.
  • the intermediate layer that is coated on at least a part of the surface of the substrate improves the adhesiveness between the substrate and the amorphous carbon film (DLC film). It is allowable that the intermediate layer can be a hard coated film whose adhesiveness to the substrate and DLC film is high.
  • metallic coated films such as chromium (Cr) films, titanium (Ti) films, silicon (Si) films and tungsten (W) films; or carbide films, nitride films or carbonitride films that include at least one member of Cr, Ti, Si and W.
  • carbide films As specific examples of the carbide films, nitride films and carbonitride films, it is possible to name WC films, SiC films, SiC/CrN films, CrN films, TiN films, TiN/CrN films, TiCrN films, and so forth.
  • a thickness of the intermediate layer is not limited particularly, it can preferably be 50 nm or more, further preferably 50-200 nm. When being 50 nm or more, the adhesiveness between the substrate and the DLC film is secured.
  • the amorphous carbon film is coated on at least a part of the surface of the intermediate layer, or on at least a part of the surface of the substrate's superficial-layer portion that has been subjected to nitriding treatment.
  • the DLC film fulfils a role as a protective layer for improving the corrosion resistance.
  • the DLC film is not limited particularly as far as it comprises carbon (C) primarily and has an amorphous structure, and it is even allowable to include elements that are less likely to be corroded, such as molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), silicon (Si), boron (B), titanium (Ti), chromium (Cr) and nitrogen (N), in addition to hydrogen (H).
  • Mo molybdenum
  • tungsten tungsten
  • Ta tantalum
  • Nb niobium
  • Si silicon
  • B boron
  • Ti titanium
  • Cr chromium
  • N nitrogen
  • a DLC-Si film that includes Si exhibits not only corrosion resistance but also low friction coefficient and high wear resistance.
  • the highly corrosion-resistant members according to the present invention are suitable for sliding component part in which a surface of the DLC-Si film is adapted into a sliding surface.
  • a thickness of the DLC film is not limited particularly, it can preferably be 500 nm or more, further preferably 500-3, 000 nm. When being 500 nm or more, it naturally exhibits not only corrosion resistance as a protective film but also sufficient sliding property as a sliding layer.
  • the highly corrosion-resistant members according to the present invention have good corrosion resistance, it is feasible to employ them as constituent component parts of various apparatuses that are used in environments where corrosion is likely to occur.
  • the highly corrosion-resistant members according to the present invention are suitable for constituent component parts that are employed in the presence of liquid including water.
  • the highly corrosion-resistant members according to the present invention have the DLC film that exhibits good sliding characteristics, they can preferably be sliding component parts in which a surface of the DLC film contacts slidably with a mating material.
  • the sliding component parts are employed in the presence of liquid including water, and slide while making a lubricant liquid of the liquid including water.
  • the liquid including water can be a coolant that is used for cooling internal combustion engine. The coolant is usually employed after diluting a coolant stock solution with water.
  • driving shafts As a specific example of the sliding component parts, it is possible to name driving shafts, bearings, pistons, cylinders, valves, and the like.
  • bearing-structured sections of water pump for transporting water or liquid (coolant, for instance) including water are available.
  • a water pump is mounted onto an automobile as a cooling means for internal combustion engine to use, for instance.
  • a bearing-structured section of the water pump is equipped with a rotary shaft on which a pulley is fixed at one of the opposite ends and an impeller is fixed at the other one of the opposite ends, and a bearing member for supporting the rotary shaft rotatably.
  • the bearing-structured section is disposed in a housing for accommodating the other opposite-end side of the rotary shaft.
  • the housing is equipped with an accommodation space for accommodating the other opposite-end side of the rotary shaft, and a through hole which is communicated with the accommodation space and into which the rotary shaft is fitted; and the bearing member is fixed on a peripheral-wall portion of the through hole.
  • the bearing member can preferably be a slide bearing, it is allowed to be various bearing devices, such as ball bearings and roller bearings.
  • the rotary shaft and/or the bearing member can comprise one of the highly corrosion-resistant members according to the present invention, and it is allowable to place a surface of the aforementioned DLC film in at least one of an outer peripheral surface of the rotary shaft and a bearing surface of the bearing member, outer peripheral surface and bearing surface which contact slidably with each other.
  • they make a bearing-structured section of water pump as for the stainless steel to be used for the substrate, it is allowable to use SUS304, SUS630, SUS440C, SUS303, SUS316, and so forth, (JIS).
  • the intermediate layer, and the DLC film are formed at such a low temperature that a temperature of the surface of the substrate is 450 °C or less ( Fig. 1 ).
  • the nitriding treatment, and the formation of the DLC film are carried out at such a low temperature that a temperature of the surface of the substrate is 450 °C or less ( Fig. 2 ).
  • the formations of the intermediate layer and DLC film, and the nitriding treatment will be detailed in the section of (Manufacturing Processes for Highly Corrosion-resistant Member).
  • the substrate is made of stainless steel.
  • stainless steel is sensitized by being retained at high temperatures.
  • the sensitization temperature is said to be 500-800 °C
  • the sensitization temperature differs depending on the amounts of additive elements included in the stainless steel, for instance, depending on the C content.
  • a temperature of a surface of the substrate is set at 450 °C or less, desirably at 250 °C or less, further desirably at 200 °C or less, and then the nitriding treatment or the formations of the intermediate layer and DLC film are carried out, it is believed that the sensitization is suppressed in most of stainless steels.
  • the sensitization of the stainless steel is suppressed even if the substrate is heated for a time required for the nitriding treatment or the formations of the intermediate film and DLC film (30-180 minutes). Note that, in the highly corrosion-resistant members according to the present invention, highly corrosion-resistant members having desired corrosion resistance are obtainable when the nitriding treatment or the formations of the intermediate film and DLC film are carried out for 30-180 minutes in any one of them, though depending on the processing methods or film-forming methods.
  • the manufacturing processes for highly corrosion-resistant member according to the present invention are manufacturing processes for the highly corrosion-resistant members according to the present invention that have been explained so far.
  • One of the manufacturing processes for high corrosion-resistant member according to the present invention comprises an intermediate-film forming step, and an amorphous-carbon-film forming step.
  • the intermediate-layer forming step is a step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and forming an intermediate layer onto at least a part of the surface of the substrate.
  • it is allowable to set a temperature of some of the surface of the substrate which is required to be corrosion resistance to 450 °C or less. Note that, since the influence of heat is less inside the substrate compared with that in the surface of the substrate as far as being ordinary processing, the temperature does not go beyond 450 °C even at any part of the substrate when the temperature of the surface of the substrate is 450 °C or less. From here on, the temperature of the surface of the substrate may be set forth as a "film-forming temperature” or "processing temperature.”
  • the method of forming an intermediate layer is not limited in particular as far as being a method that makes it possible to form an intermediate layer so as not to let the temperature of the surface of the substrate go beyond 450 °C, and accordingly it is allowable to select it depending on the type of intermediate layers. Moreover, it is preferable to form a film of the intermediate layer at 70 °C or more from the viewpoint of adhesiveness. In general, the formation of coated films is feasible at lower temperatures by physical vapor deposition methods (PVD methods) than by chemical vapor deposition methods (CVD methods). Consequently, it is desirable to form the intermediate layer using a PVD method.
  • PVD methods physical vapor deposition methods
  • CVD methods chemical vapor deposition methods
  • an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form dense coated films.
  • a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the intermediate layer.
  • it can desirably be a hot-cathode PIG plasma CVD method (PIG: penning ionization gauge), because it is possible to form the intermediate layer in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • PIG penning ionization gauge
  • the amorphous-carbon-film forming step is a step of setting the temperature of the surface of the substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of the intermediate layer.
  • the temperature of the surface of the substrate does not go beyond 450 °C so that the stainless steel is not sensitized at all.
  • the method of forming a DLC film is not limited in particular as far as being a method that makes it possible to form a DLC film so as not to let the temperature of the surface of the substrate go beyond 450 °C.
  • a DLC film at 150 °C or more from the viewpoint of adhesiveness.
  • PVD methods physical vapor deposition methods
  • CVD methods chemical vapor deposition methods
  • vacuum deposition by means of electron beam, laser abrasion, or the like; sputtering such as magnetron sputtering; ion plating, and the like, can be named.
  • an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form DLC films that are not only dense but also exhibit high protective effect, it is a suitable method as the manufacturing processes for highly corrosion-resistant member according to the present invention.
  • a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the DLC film.
  • it can desirably be the above-described hot-cathode PIG plasma CVD method, because it is possible to form the DLC film in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • Another one of the manufacturing processes for high corrosion-resistant member according to the present invention comprises a low-temperature nitriding-treatment step, and an amorphous-carbon-film forming step.
  • the low-temperature nitriding-treatment step is a step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and subjecting a superficial-layer portion of the substrate to nitriding treatment. At the low-temperature nitriding-treatment step, it is allowable to subject the substrate to nitriding treatment at a processing temperature of 450 °C or less. As far as the temperature of the surface of the substrate to be subjected to nitriding treatment is 450 °C or less, the superficial-layer portion is also kept at 450 °C or less.
  • gas nitriding methods As for a method of the nitriding treatment, gas nitriding methods, salt-bath nitriding methods, ion nitriding methods, and the like, are available.
  • the gas nitriding methods are not appropriate for another one of the manufacturing processes for high corrosion-resistant member according to the present invention, because they are carried out by heating the substrate to 500-600 °C in ammonia gas.
  • the salt-bath nitriding methods it is feasible for the salt-bath nitriding methods to set a temperature of the superficial-layer portion of the substrate to 450 °C or less and then do nitriding treatment depending on the type of molten salts, because they are carried out by immersing the substrate into a molten salt that includes cyanide.
  • ion nitriding methods by means of ion implantation is desirable, because it is carried out by retaining the substrate in nitrogen plasma in which nitrogen-containing gas is ionized so that nitriding becomes feasible at low temperatures of 450 °C or less.
  • liquid nitriding methods using ammonia water is desirable because processing at around room temperature is also feasible, though the nitriding rate is slow compared with those of the other methods.
  • the liquid nitriding methods at 20-80 °C are desirable, because the internal stress that generates in the stainless steel is reduced.
  • a processing temperature for nitriding can desirably be from room temperature or more to 450 °C or less, further desirably be from 300 °C or less to 450 °C or less. When being 300 °C or more, nitrided layers with sufficient depths are formed in a short period of time.
  • the amorphous-carbon-film forming step is a step of setting the temperature of the surface of the substrate to 450 °C or less and forming a DLC film onto at least a part of a surface of the superficial-layer portion that has been subjected to the nitriding treatment.
  • the method of forming a DLC film is not limited in particular as far as being a method that makes it possible to form a DLC film so as not to let the temperature of the surface of the substrate, namely, the temperature of the surface of the superficial-layer portion that has been subjected to the nitriding treatment, go beyond 450 °C.
  • PVD methods physical vapor deposition methods
  • CVD methods chemical vapor deposition methods
  • vacuum deposition by means of electron beam, laser abrasion, or the like; sputtering such as magnetron sputtering; ion plating, and the like can be named.
  • an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form DLC films that are not only dense but also exhibit high protective effect, it is a suitable method as the manufacturing processes for highly corrosion-resistant member according to the present invention.
  • the DLC film when being a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the DLC film.
  • it can desirably be the above-described hot-cathode PIG plasma CVD method, because it is possible to form the DLC film in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • the present invention is not one which is limited to the aforementioned embodiment modes. They can be conducted in various modes to which modifications, improvements, and the like, which one of ordinary skill in the art can carry out, are performed, within a range not departing from the scope of the present invention. For example, it is allowable as well to carry out a process for roughening the surface of the substrate or a process for cleaning the surface of the substrate, and so forth.
  • a driving shaft in a bearing-structured section of water pump was made.
  • the bearing-structured section of water pump is illustrated in Fig. 4 .
  • the bearing-structured section of water pump is equipped with a pump shaft 10 (i.e., a driving shaft), and bearing metals 20 and 30 that support the pump shaft 10 rotatably.
  • a pump shaft 10 i.e., a driving shaft
  • bearing metals 20 and 30 that support the pump shaft 10 rotatably.
  • the pump shaft 10 possesses: a disk-shaped flange portion 11 that extends in the axially central direction; a first major-diameter portion 12 that neighbors the flange portion 11; and a second maj or-diameter portion 13 that is placed with an intervening space between itself and the first major-diameter portion 12; in this order from the output side.
  • Both of the bearing metals 20 and 30 are shaped cylindrically, and the major-diameter portion 12 and second major-diameter portion 13 of the pump shaft 10 are fitted into the cylinders, respectively.
  • one of the opposite surfaces of the bearing metal 20, an end surface 21p comes in contact with a flat surface 11p that is placed on the input side of the flange portion 11.
  • journal bearing portion 21 in which an outer peripheral surface 12p of the first major-diameter portion 12 of the pump shaft 10 contacts with an inner peripheral surface 22p of the bearing metal 20 slidably; and a thrust bearing portion 22 in which the flat surface 11p of the flange portion 11 contacts with the end surface 21p of the bearing metal 20 slidably; are constituted of the pump shaft 10 and bearing metal 20.
  • a journal bearing portion 31 in which an outer peripheral surface 13p of the second major-diameter portion 13 of the pump shaft 10 contacts with an inner peripheral surface 33p of the bearing metal 30 slidably is constituted of the pump shaft 10 and bearing metal 30.
  • the pump shaft 10 comprised a substrate that was made of stainless steel (SUS304), and was completed by forming an intermediate layer or nitrided layer, and a DLC film onto the substrate's outer peripheral surface.
  • a surface roughness of the outer peripheral surface of the substrate of the pump shaft 10 was Rz 1.6 ⁇ m.
  • the bearing metals 20 and 30 comprised a substrate of stainless (SUS304), and that none of the intermediate layer, nitrided layer and DLC film were formed.
  • a titanium film (intermediate layer) and a DLC film were formed onto the outer peripheral surface of the substrate by the following procedures, thereby making the pump shaft 10 shown in Fig. 4 .
  • PIG-type plasma CVD apparatus that was produced by SHINKOH SEIKI Co., Ltd. (“APIG-1060D,” hereinafter abbreviated to as "PIG") was used.
  • the PIG apparatus had a plasma source that comprised a hot-cathode filament and an anode.
  • a raw-material gas that was introduced into the apparatus was decomposed and then dissociated by means of plasma that was generated at the plasma source, and was thereby turned into a film onto a substrate's surface (i.e., a hot-cathode PIG plasma CVD method).
  • a sputtering cathode that was connected with a direct-current electric source is disposed within this PIG apparatus, a film forming by means of direct-current sputtering method was feasible.
  • the substrate's surface temperature was measured by means of a thermocouple that was put in place adjacent to the substrate.
  • a substrate was put in place within the PIG apparatus's chamber, and the inside of the chamber was depressurized to a predetermined pressure.
  • electricity was supplied to the plasma source, and additionally an argon gas was introduced into the chamber, thereby forming plasma within the chamber.
  • the substrate's surface was subjected to ion-bombarding processing (20 minutes).
  • Step I After the ion-bombarding processing, direct-current electricity was supplied to the sputtering cathode on which a target material comprising Ti was placed. Bymeans of 40-minute film forming, a titanium film with 100-nm film thickness was formed on the substrate's outer peripheral surface (i.e., Step I).
  • TMS tetramethylsilane
  • processing temperature for the ion-bombarding processing was 300 °C, and that the temperature of the substrate's surface was 200 °C at Step I and Step II.
  • a substrate was subjected to nitriding treatment and thereafter a DLC film was formed by the following procedures, thereby making the pump shaft 10 shown in Fig. 4 .
  • PCVD direct-current plasma CVD apparatus
  • a substrate was put in place within the PCVD apparatus' s chamber, and the inside of the chamber was depressurized to a predetermined pressure. Thereafter, a direct-current voltage was applied between the substrate and an anode plate that was laid on the chamber's inner side, thereby starting electric discharge. And, a temperature rise was carried out by means of ion bombardment until the substrate's surface became a nitriding-treatment temperature (500 °C). Next, a nitrogen gas, and a hydrogen gas were introduced into the chamber, thereby carrying out plasma-nitriding treatment (60 minutes). Upon observing the thus obtained substrate' s cross-sectional structure, the nitrided depth was about 20 ⁇ m (i.e., Step I).
  • a DLC film including Si was formed onto the substrate' s outer peripheral surface by means of 50-minute film forming (i.e., Step II).
  • the formations of the intermediate layer and DLC film, and the nitriding treatment were not carried onto a substrate at all. That is, the resultant driving shaft was an unprocessed substrate.
  • a corrosion test was carried out.
  • the bearing-structured sections of water pump that comprised the pump shafts 10 (i.e., driving shafts) being made as above and the bearing metals 20 and 30 were left as they were in 80 °C water for 24 hours, and then their evaluations were carried out by visually observing the presence or absence of subsequent corrosion on them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

A highly corrosion-resistant member that is equipped with: a substrate made of stainless steel; an intermediate layer coated on at least a part of a surface of the substrate; and an amorphous carbon film coated on at least a part of a surface of the intermediate layer is completed by forming the intermediate layer and amorphous carbon film at such a low temperature that a temperature of the surface of the substrate is 450 °C or less. Another highly corrosion-resistant member that is equipped with: a substrate made of stainless steel, substrate whose superficial-layer portion is subj ected to nitriding treatment; and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion is completed by carrying out the nitriding treatment and a formation of the amorphous carbon film at such a low temperature that a temperature of a surface of said substrate is 450 °C or less.
In the aforementioned highly corrosion-resistant members, the surface of the substrate that is made of stainless steel is not exposed to high temperatures (> 450 °C). Consequently, the corrosion resistance of the substrate is kept equivalent to the corrosion resistance of the original stainless steel that has not been exposed to any high temperature.

Description

    TECHNICAL FIELD
  • The present invention relates to a highly corrosion-resistant member that exhibits high corrosion resistance even when being employed in circumstances where corrosion is likely to occur, and to a manufacturing process for the same.
  • BACKGROUND ART
  • Amorphous carbon (diamond-like carbon: DLC) having an amorphous structure is good in terms of mechanical characteristics, such as wear resistance and solid lubricating property, and possesses corrosion resistance, insulating property, visible light/infrared light transmissivity, oxygen barrier property, and the like, simultaneously. Accordingly, it has been often the case that an amorphous carbon film is coated onto a substrate's surface and is then used as a protective film. For example, in Patent Literature No. 1, a water-lubrication bearing is disclosed, water-lubrication bearing which moves slidably while adapting water into a lubricant liquid. The water-lubrication bearing is equipped with a rotary-side member being fixed to a rotary side, and a fixed-side member being fixed to a fixed side and facing to and contacting slidably with the rotary-side member. According to Embodiment No. 4 of Patent Literature No. 1, the fixed-side member's substrate is made of stainless steel, and a DLC film is formed on its surface.
  • However, it has been known that a DLC film, which is formed directly on a surface of substrate that is made of stainless steel as aforementioned, exhibits low adhesiveness to the substrate. When the adhesiveness between the DLC film and the substrate is low, it exerts adverse influences not only to the corrosion resistance but also to the sliding property. Hence, the adhesiveness has been secured heretofore by subjecting a substrate's superficial-layer portion to nitriding treatment and then forming a DLC film onto its surface. When employing such a conventional coated member in environments where corrosion is likely to occur, it has been found out that the reliability as a sliding member improves by means of the secured adhesiveness between the substrate and the DLC film; meanwhile the corrosion resistance lowers remarkably though the substrate being made of stainless steel is coated with the DLC film. Especially, in a water pump being cooling means that is annexed to internal combustion engine, although a coolant that is prepared to exhibit a pH of 9-10 approximately has been used, the coolant comes to take on acidity by means of service for a long period of time. Therefore, when the conventional coated member is employed for the water pump's constituent component parts, there might be a fear of not being endurable to long-time service.
    Patent Literature No. 1: Japanese Unexamined Patent Publication (KOKAI) Gazette No. 10-184,692
  • DISCLOSURE OF THE INVENTION Assignment to be Solved by the Invention
  • As a result of examining the aforementioned phenomena in detail, the present inventors focused their attention on the fact that the corrosion resistance of stainless steel proper has been impaired by subjecting the substrate to nitriding treatment. Fig. 3 is a cross-sectional diagram for schematically illustrating a conventional coated member whose surface is coated with an amorphous carbon film. In general, in the conventional coated member, the nitriding treatment, and the forming of the DLC film are carried out at 500 °C, or at a temperature that is higher than that. As the factors of corrosion occurrence on the conventional coated member, it is possible to think of the following two factors.
  • One of them is internal stress that generates in stainless steel by means of nitriding. When performing nitriding treatment onto stainless steel, nitrogen atoms diffuse through the surface of the stainless steel and then infiltrate into it, thereby generating strain (internal stress) in the crystals. In general, in metallic materials, corrosion becomes likely to occur under the conditions that bending stresses or tensile stresses are applied to them. Therefore, the surface of substrate also has a tendency to be likely to corrode because of the cause that the internal stress generates in the superficial-layer portion of stainless steel by means of nitriding.
  • It is the processing temperatures that exert greater influences than the internal stress does. When stainless steel is held at high temperature, chromium (Cr), an additive element being included in the stainless steel, combines with carbon (C) and the like, the additive elements thereof similarly, to form carbide and so forth, and thereby Cr deficiency layers with less Cr contents are formed around them. In the vicinities where the Cr deficiency layers are formed, since the Cr concentrations lower more than that of the original stainless steel, the stable passivation film becomes less likely to be formed, and accordingly the corrosion resistance of the stainless steel lowers locally. As a result, the stainless steel becomes likely to corrode (i.e., sensitization).
  • In view of the aforementioned problematic issues, it is an object for the present invention to provide a highly corrosion-resistant member that is good in terms of corrosion resistance, and a manufacturing process for the same.
  • Means for Solving the Assignment
  • The present inventors focused their attention on one of the aforementioned factors, the sensitization of stainless steel that results from the processing temperatures. Specifically, the present inventors arrived at thinking of making it possible to retain the corrosion resistance of stainless steel by not letting the temperature of a substrate being made of stainless steel go beyond a predetermined temperature during the time period from preparing the substrate to forming an amorphous carbon film thereon.
  • Specifically, a highly corrosion-resistant member according to the present invention is equipped with: a substrate made of stainless steel; an intermediate layer coated on at least a part of a surface of the substrate; and an amorphous carbon film coated on at least a part of a surface of the intermediate layer; and is characterized in that:
    • said intermediate layer, and said amorphous carbon film are formed at such a low temperature that a temperature of the surface of said substrate is 450 °C or less.
  • Moreover, another highly corrosion-resistant member according to the present invention is equipped with: a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment; and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion; and is characterized in that:
    • said nitriding treatment, and a formation of said amorphous carbon film are carried out at such a low temperature that a temperature of a surface of said substrate is 450 °C or less.
  • A manufacturing process for highly corrosion-resistant member according to the present invention is characterized in that it comprises:
    • an intermediate-layer forming step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and forming an intermediate layer onto at least a part of the surface of the substrate; and
    • an amorphous-carbon-film forming step of setting the temperature of the surface of said substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of said intermediate layer.
  • Moreover, another manufacturing process for highly corrosion-resistant member according to the present invention is characterized in that it comprises:
    • a low-temperature nitriding-treatment step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and subjecting a superficial-layer portion of the substrate to nitriding treatment; and
    • an amorphous-carbon-film forming step of setting the temperature of the surface of said substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of said superficial-layer portion that has been subjected to the nitriding treatment.
    Effect of the Invention
  • In accordance with the highly corrosion-resistant members according to the present invention and the manufacturing processes for the same, the surface of the substrate made of stainless steel is not exposed to high temperatures (> 450 °C). Consequently, the corrosion resistance of the substrate is kept equivalent to the corrosion resistance of the original stainless steel that has not been exposed to any high temperature. Specifically, the highly corrosion-resistant members according to the present invention are good in terms of corrosion resistance. Note that, since an inner temperature of the substrate usually becomes lower than the surface temperature of the substrate, highly corrosion-resistant members having desirable corrosion resistance are obtainable in the present invention unless at least the surface of the substrate is exposed to the high temperatures.
  • It is possible to secure the adhesiveness between the substrate and the amorphous carbon film by forming the intermediate layer on at least a part of the surface of the substrate, without ever performing any nitriding treatment to the substrate. In a substrate which is not subjected to any nitriding treatment, nitrogen atoms do not diffuse/infiltrate so that no internal stress generates in the superficial-layer portion, and thereby the lowering in the corrosion resistance of the substrate is suppressed.
  • Moreover, by means of performing nitriding treatment onto the substrate at low temperatures (450 °C or less), the substrate is not exposed under the high temperatures, and additionally the generation of internal stress at the surface of the substrate is reduced. Consequently, the corrosion resistance of the substrate is kept equivalent to the corrosion resistance of the original stainless steel. This is because the nitriding treatment is carried out at the low temperatures and thereby the internal stress, which is generated by nitrogen atoms that diffuse and then infiltrate, becomes small.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 is a cross-sectional diagram for schematically illustrating a highly corrosion-resistance member according to the present invention;
    • Fig. 2 is a cross-sectional diagram for schematically illustrating another highly corrosion-resistance member according to the present invention;
    • Fig. 3 is a cross-sectional diagram for schematically illustrating a conventional coated member whose surface is coated with an amorphous carbon film; and
    • Fig. 4 is a cross-sectional diagram for schematically illustrating the bearing-structured section of water pump.
    Explanation on Reference Numerals
    • 10: Pump Shaft (Driving Shaft);
    • 20, 30: Bearing Metals (Bearings);
    • 21, 31: Journal-bearing Sections; and
    • 22: Thrust-bearing Section
    Best Mode for Carrying Out the Invention
  • Hereinafter, highly corrosion-resistant members according to the present invention, and manufacturing processes for the same will be explained in detail. Note that Fig. 1 and Fig. 2 are cross-sectional diagrams for schematically illustrating the highly corrosion-resistant members according to the present invention.
  • (Highly Corrosion-resistant Members)
  • A highly corrosion-resistant member according to the present invention is equipped with a substrate made of stainless steel, an intermediate layer coated on at least a part of a surface of the substrate, and an amorphous carbon film coated on at least a part of a surface of the intermediate layer (Fig. 1). Alternatively, another highly corrosion-resistant member according to the present invention is equipped with a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment, and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion (Fig. 2).
  • The substrate is not limited particularly in its shape and size, as far as it is made of stainless steel. Moreover, the type of stainless steel is not limited particularly, and it is allowable to select it from general martensite-system, ferrite-system or austenite-system stainless steels, two-phase stainless steels, and the like, depending on applications.
  • Moreover, a surface roughness of the substrate is not limited inparticular. However, whenthehighlycorrosion-resistantmembers are employed as a sliding component part, it is allowable that its ten-point average surface roughness Rz (JIS) can be 0.4-6.3 µm, from the viewpoint of the adhesiveness between the substrate and the intermediate layer or amorphous carbon film, and from that of the sliding property.
  • In the substrate, it is even allowable that the superficial-layer portion can be subjected to nitriding treatment. As will be detailed later, the nitriding treatment is carried out at a low temperature of 450 °C or less. Although an extent of the nitriding treatment is not limited particularly, it is allowable that a nitrided depth can be 10 µm or more, further 20-30 µm. When being 10 µm or more, the amorphous carbon film to be formed on the surface is prevented from coming off effectively, because nitriding is done fully onto the entire surface of the substrate to which nitriding is needed.
  • The intermediate layer that is coated on at least a part of the surface of the substrate improves the adhesiveness between the substrate and the amorphous carbon film (DLC film). It is allowable that the intermediate layer can be a hard coated film whose adhesiveness to the substrate and DLC film is high. For example, it is possible to name metallic coated films, such as chromium (Cr) films, titanium (Ti) films, silicon (Si) films and tungsten (W) films; or carbide films, nitride films or carbonitride films that include at least one member of Cr, Ti, Si and W. As specific examples of the carbide films, nitride films and carbonitride films, it is possible to name WC films, SiC films, SiC/CrN films, CrN films, TiN films, TiN/CrN films, TiCrN films, and so forth.
  • Although a thickness of the intermediate layer is not limited particularly, it can preferably be 50 nm or more, further preferably 50-200 nm. When being 50 nm or more, the adhesiveness between the substrate and the DLC film is secured.
  • The amorphous carbon film (DLC film) is coated on at least a part of the surface of the intermediate layer, or on at least a part of the surface of the substrate's superficial-layer portion that has been subjected to nitriding treatment.
  • The DLC film fulfils a role as a protective layer for improving the corrosion resistance. The DLC film is not limited particularly as far as it comprises carbon (C) primarily and has an amorphous structure, and it is even allowable to include elements that are less likely to be corroded, such as molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), silicon (Si), boron (B), titanium (Ti), chromium (Cr) and nitrogen (N), in addition to hydrogen (H). In particular, a DLC-Si film that includes Si exhibits not only corrosion resistance but also low friction coefficient and high wear resistance. Further, since its aggressiveness to mating member is low, the highly corrosion-resistant members according to the present invention, highly corrosion-resistant members which are equipped with a DLC-Si film, are suitable for sliding component part in which a surface of the DLC-Si film is adapted into a sliding surface.
  • Although a thickness of the DLC film is not limited particularly, it can preferably be 500 nm or more, further preferably 500-3, 000 nm. When being 500 nm or more, it naturally exhibits not only corrosion resistance as a protective film but also sufficient sliding property as a sliding layer.
  • Since the highly corrosion-resistant members according to the present invention have good corrosion resistance, it is feasible to employ them as constituent component parts of various apparatuses that are used in environments where corrosion is likely to occur. For example, the highly corrosion-resistant members according to the present invention are suitable for constituent component parts that are employed in the presence of liquid including water. In particular, since the highly corrosion-resistant members according to the present invention have the DLC film that exhibits good sliding characteristics, they can preferably be sliding component parts in which a surface of the DLC film contacts slidably with a mating material. On this occasion, the sliding component parts are employed in the presence of liquid including water, and slide while making a lubricant liquid of the liquid including water. It is even allowable that the liquid including water can be a coolant that is used for cooling internal combustion engine. The coolant is usually employed after diluting a coolant stock solution with water.
  • As a specific example of the sliding component parts, it is possible to name driving shafts, bearings, pistons, cylinders, valves, and the like. As for a driving shaft and bearing that are used in environments where corrosion is likely to occur, bearing-structured sections of water pump for transporting water or liquid (coolant, for instance) including water are available. A water pump is mounted onto an automobile as a cooling means for internal combustion engine to use, for instance. A bearing-structured section of the water pump is equipped with a rotary shaft on which a pulley is fixed at one of the opposite ends and an impeller is fixed at the other one of the opposite ends, and a bearing member for supporting the rotary shaft rotatably. Usually, the bearing-structured section is disposed in a housing for accommodating the other opposite-end side of the rotary shaft. Specifically, the housing is equipped with an accommodation space for accommodating the other opposite-end side of the rotary shaft, and a through hole which is communicated with the accommodation space and into which the rotary shaft is fitted; and the bearing member is fixed on a peripheral-wall portion of the through hole. Although the bearing member can preferably be a slide bearing, it is allowed to be various bearing devices, such as ball bearings and roller bearings. When the bearing member is a slide bearing, it is preferable that the rotary shaft and/or the bearing member can comprise one of the highly corrosion-resistant members according to the present invention, and it is allowable to place a surface of the aforementioned DLC film in at least one of an outer peripheral surface of the rotary shaft and a bearing surface of the bearing member, outer peripheral surface and bearing surface which contact slidably with each other. When they make a bearing-structured section of water pump, as for the stainless steel to be used for the substrate, it is allowable to use SUS304, SUS630, SUS440C, SUS303, SUS316, and so forth, (JIS).
  • And, the intermediate layer, and the DLC film are formed at such a low temperature that a temperature of the surface of the substrate is 450 °C or less (Fig. 1). Likewise, the nitriding treatment, and the formation of the DLC film are carried out at such a low temperature that a temperature of the surface of the substrate is 450 °C or less (Fig. 2). The formations of the intermediate layer and DLC film, and the nitriding treatment will be detailed in the section of (Manufacturing Processes for Highly Corrosion-resistant Member).
  • In the highly corrosion-resistant members according to the present invention, the substrate is made of stainless steel. As described above, stainless steel is sensitized by being retained at high temperatures. For example, in the case of SUS304, although the sensitization temperature is said to be 500-800 °C, the sensitization temperature differs depending on the amounts of additive elements included in the stainless steel, for instance, depending on the C content. When a temperature of a surface of the substrate is set at 450 °C or less, desirably at 250 °C or less, further desirably at 200 °C or less, and then the nitriding treatment or the formations of the intermediate layer and DLC film are carried out, it is believed that the sensitization is suppressed in most of stainless steels. When the temperature of the surface of the substrate does not go beyond 450 °C, the sensitization of the stainless steel is suppressed even if the substrate is heated for a time required for the nitriding treatment or the formations of the intermediate film and DLC film (30-180 minutes). Note that, in the highly corrosion-resistant members according to the present invention, highly corrosion-resistant members having desired corrosion resistance are obtainable when the nitriding treatment or the formations of the intermediate film and DLC film are carried out for 30-180 minutes in any one of them, though depending on the processing methods or film-forming methods.
  • (Manufacturing Processes for Highly Corrosion-resistant Member)
  • The manufacturing processes for highly corrosion-resistant member according to the present invention are manufacturing processes for the highly corrosion-resistant members according to the present invention that have been explained so far.
  • One of the manufacturing processes for high corrosion-resistant member according to the present invention comprises an intermediate-film forming step, and an amorphous-carbon-film forming step.
  • The intermediate-layer forming step is a step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and forming an intermediate layer onto at least a part of the surface of the substrate. In the intermediate-layer forming step, it is allowable to set a temperature of some of the surface of the substrate which is required to be corrosion resistance to 450 °C or less. Note that, since the influence of heat is less inside the substrate compared with that in the surface of the substrate as far as being ordinary processing, the temperature does not go beyond 450 °C even at any part of the substrate when the temperature of the surface of the substrate is 450 °C or less. From here on, the temperature of the surface of the substrate may be set forth as a "film-forming temperature" or "processing temperature."
  • The method of forming an intermediate layer is not limited in particular as far as being a method that makes it possible to form an intermediate layer so as not to let the temperature of the surface of the substrate go beyond 450 °C, and accordingly it is allowable to select it depending on the type of intermediate layers. Moreover, it is preferable to form a film of the intermediate layer at 70 °C or more from the viewpoint of adhesiveness. In general, the formation of coated films is feasible at lower temperatures by physical vapor deposition methods (PVD methods) than by chemical vapor deposition methods (CVD methods). Consequently, it is desirable to form the intermediate layer using a PVD method. To be concrete, vacuum deposition by means of electron beam, laser abrasion, or the like; sputtering such as magnetron sputtering; ion plating, and the like, can be named. In particular, an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form dense coated films. Moreover, when being a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the intermediate layer. For example, it can desirably be a hot-cathode PIG plasma CVD method (PIG: penning ionization gauge), because it is possible to form the intermediate layer in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • The amorphous-carbon-film forming step is a step of setting the temperature of the surface of the substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of the intermediate layer. In this instance, when setting a temperature of the surface of the intermediate layer to 450 °C or less and forming a DLC film, the temperature of the surface of the substrate does not go beyond 450 °C so that the stainless steel is not sensitized at all. The method of forming a DLC film is not limited in particular as far as being a method that makes it possible to form a DLC film so as not to let the temperature of the surface of the substrate go beyond 450 °C. Moreover, it is preferable to form a DLC film at 150 °C or more from the viewpoint of adhesiveness. As described above, the formation of coated films is generally feasible at lower temperatures by physical vapor deposition methods (PVD methods) than by chemical vapor deposition methods (CVD methods). Consequently, it is desirable to form the DLC film, too, using a PVD method. To be concrete, vacuum deposition by means of electron beam, laser abrasion, or the like; sputtering such as magnetron sputtering; ion plating, and the like, can be named. In particular, since an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form DLC films that are not only dense but also exhibit high protective effect, it is a suitable method as the manufacturing processes for highly corrosion-resistant member according to the present invention. Moreover, when being a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the DLC film. For example, it can desirably be the above-described hot-cathode PIG plasma CVD method, because it is possible to form the DLC film in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • Another one of the manufacturing processes for high corrosion-resistant member according to the present invention comprises a low-temperature nitriding-treatment step, and an amorphous-carbon-film forming step.
  • The low-temperature nitriding-treatment step is a step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and subjecting a superficial-layer portion of the substrate to nitriding treatment. At the low-temperature nitriding-treatment step, it is allowable to subject the substrate to nitriding treatment at a processing temperature of 450 °C or less. As far as the temperature of the surface of the substrate to be subjected to nitriding treatment is 450 °C or less, the superficial-layer portion is also kept at 450 °C or less.
  • As for a method of the nitriding treatment, gas nitriding methods, salt-bath nitriding methods, ion nitriding methods, and the like, are available. Of these, the gas nitriding methods are not appropriate for another one of the manufacturing processes for high corrosion-resistant member according to the present invention, because they are carried out by heating the substrate to 500-600 °C in ammonia gas. On the contrary, it is feasible for the salt-bath nitriding methods to set a temperature of the superficial-layer portion of the substrate to 450 °C or less and then do nitriding treatment depending on the type of molten salts, because they are carried out by immersing the substrate into a molten salt that includes cyanide. Moreover, ion nitriding methods by means of ion implantation is desirable, because it is carried out by retaining the substrate in nitrogen plasma in which nitrogen-containing gas is ionized so that nitriding becomes feasible at low temperatures of 450 °C or less. In addition, liquid nitriding methods using ammonia water is desirable because processing at around room temperature is also feasible, though the nitriding rate is slow compared with those of the other methods. The liquid nitriding methods at 20-80 °C are desirable, because the internal stress that generates in the stainless steel is reduced. A processing temperature for nitriding can desirably be from room temperature or more to 450 °C or less, further desirably be from 300 °C or less to 450 °C or less. When being 300 °C or more, nitrided layers with sufficient depths are formed in a short period of time.
  • The amorphous-carbon-film forming step is a step of setting the temperature of the surface of the substrate to 450 °C or less and forming a DLC film onto at least a part of a surface of the superficial-layer portion that has been subjected to the nitriding treatment. The method of forming a DLC film is not limited in particular as far as being a method that makes it possible to form a DLC film so as not to let the temperature of the surface of the substrate, namely, the temperature of the surface of the superficial-layer portion that has been subjected to the nitriding treatment, go beyond 450 °C. Moreover, it is preferable to form a DLC film at 150 °C or more from the viewpoint of adhesiveness. As described above, the formation of coated films is generally feasible at lower temperatures by physical vapor deposition methods (PVD methods) than by chemical vapor deposition methods (CVD methods). Consequently, it is desirable to form the DLC film, too, using a PVD method. To be concrete, vacuum deposition by means of electron beam, laser abrasion, or the like; sputtering such as magnetron sputtering; ion plating, and the like, can be named. In particular, since an unbalanced magnetron sputtering method is a film-forming method that makes it possible to form DLC films that are not only dense but also exhibit high protective effect, it is a suitable method as the manufacturing processes for highly corrosion-resistant member according to the present invention. Moreover, when being a CVD method by which low-temperature film forming is feasible, it is possible to use it as a method of forming the DLC film. For example, it can desirably be the above-described hot-cathode PIG plasma CVD method, because it is possible to form the DLC film in such a range that the temperature of the surface of the substrate is 170-300 °C.
  • So far, the embodiment modes of the highly heat-resistant members according to the present invention and the manufacturing processes for the same have been explained, however, the present invention is not one which is limited to the aforementioned embodiment modes. They can be conducted in various modes to which modifications, improvements, and the like, which one of ordinary skill in the art can carry out, are performed, within a range not departing from the scope of the present invention. For example, it is allowable as well to carry out a process for roughening the surface of the substrate or a process for cleaning the surface of the substrate, and so forth.
  • EMBODIMENT
  • Next, the present invention will be explained in more detail while naming a specific embodiment.
  • In an embodiment and a comparative example that will be explained hereinafter, a driving shaft in a bearing-structured section of water pump was made. The bearing-structured section of water pump is illustrated in Fig. 4.
  • The bearing-structured section of water pump is equipped with a pump shaft 10 (i.e., a driving shaft), and bearing metals 20 and 30 that support the pump shaft 10 rotatably.
  • The pump shaft 10 possesses: a disk-shaped flange portion 11 that extends in the axially central direction; a first major-diameter portion 12 that neighbors the flange portion 11; and a second maj or-diameter portion 13 that is placed with an intervening space between itself and the first major-diameter portion 12; in this order from the output side. Both of the bearing metals 20 and 30 are shaped cylindrically, and the major-diameter portion 12 and second major-diameter portion 13 of the pump shaft 10 are fitted into the cylinders, respectively. On this occasion, one of the opposite surfaces of the bearing metal 20, an end surface 21p, comes in contact with a flat surface 11p that is placed on the input side of the flange portion 11. Therefore, a journal bearing portion 21 in which an outer peripheral surface 12p of the first major-diameter portion 12 of the pump shaft 10 contacts with an inner peripheral surface 22p of the bearing metal 20 slidably; and a thrust bearing portion 22 in which the flat surface 11p of the flange portion 11 contacts with the end surface 21p of the bearing metal 20 slidably; are constituted of the pump shaft 10 and bearing metal 20. Moreover, a journal bearing portion 31 in which an outer peripheral surface 13p of the second major-diameter portion 13 of the pump shaft 10 contacts with an inner peripheral surface 33p of the bearing metal 30 slidably is constituted of the pump shaft 10 and bearing metal 30.
  • The pump shaft 10 comprised a substrate that was made of stainless steel (SUS304), and was completed by forming an intermediate layer or nitrided layer, and a DLC film onto the substrate's outer peripheral surface. A surface roughness of the outer peripheral surface of the substrate of the pump shaft 10 was Rz 1.6 µm. Note that the bearing metals 20 and 30 comprised a substrate of stainless (SUS304), and that none of the intermediate layer, nitrided layer and DLC film were formed.
  • (Embodiment No. 1)
  • In the present embodiment, a titanium film (intermediate layer) and a DLC film were formed onto the outer peripheral surface of the substrate by the following procedures, thereby making the pump shaft 10 shown in Fig. 4.
  • Note that, for the formations of the titanium film and DLC film, a PIG-type plasma CVD apparatus that was produced by SHINKOH SEIKI Co., Ltd. ("APIG-1060D," hereinafter abbreviated to as "PIG") was used. The PIG apparatus had a plasma source that comprised a hot-cathode filament and an anode. A raw-material gas that was introduced into the apparatus was decomposed and then dissociated by means of plasma that was generated at the plasma source, and was thereby turned into a film onto a substrate's surface (i.e., a hot-cathode PIG plasma CVD method). Moreover, since a sputtering cathode that was connected with a direct-current electric source is disposed within this PIG apparatus, a film forming by means of direct-current sputtering method was feasible. The substrate's surface temperature was measured by means of a thermocouple that was put in place adjacent to the substrate.
  • First of all, a substrate was put in place within the PIG apparatus's chamber, and the inside of the chamber was depressurized to a predetermined pressure. Next, electricity was supplied to the plasma source, and additionally an argon gas was introduced into the chamber, thereby forming plasma within the chamber. Under the circumstances, the substrate's surface was subjected to ion-bombarding processing (20 minutes).
  • After the ion-bombarding processing, direct-current electricity was supplied to the sputtering cathode on which a target material comprising Ti was placed. Bymeans of 40-minute film forming, a titanium film with 100-nm film thickness was formed on the substrate's outer peripheral surface (i.e., Step I).
  • After the titanium film was formed to the desired film thickness, the supply of direct-current electricity was stopped. Thereafter, a tetramethylsilane (TMS) gas was introduced into the chamber. The introduced TMS gas was decomposed and then dissociated by means of plasma that was generated at the plasma source to which electricity was supplied, and thereby a DLC film including Si (DLC-Si film: 3, 000-nm film thickness) was formed onto the substrate' s outer peripheral surface by means of 70-minute film forming (i.e., Step II).
  • Note that the processing temperature for the ion-bombarding processing was 300 °C, and that the temperature of the substrate's surface was 200 °C at Step I and Step II.
  • (Comparative Example No. 1)
  • In the present comparative example, a substrate was subjected to nitriding treatment and thereafter a DLC film was formed by the following procedures, thereby making the pump shaft 10 shown in Fig. 4.
  • Notethat, for the nitriding treatment and DLC-film formation, a direct-current plasma CVD apparatus that was produced by CNK Co. , Ltd. ("JPC-3000S," hereinafter abbreviated to as "PCVD") was used. The substrate's surface temperature was measured by means of a radiation thermometer.
  • First of all, a substrate was put in place within the PCVD apparatus' s chamber, and the inside of the chamber was depressurized to a predetermined pressure. Thereafter, a direct-current voltage was applied between the substrate and an anode plate that was laid on the chamber's inner side, thereby starting electric discharge. And, a temperature rise was carried out by means of ion bombardment until the substrate's surface became a nitriding-treatment temperature (500 °C). Next, a nitrogen gas, and a hydrogen gas were introduced into the chamber, thereby carrying out plasma-nitriding treatment (60 minutes). Upon observing the thus obtained substrate' s cross-sectional structure, the nitrided depth was about 20 µm (i.e., Step I).
  • After finishing the plasma-nitriding treatment, the supply of the nitrogen gas was stopped, and then a TMS gas and a hydrogen gas were supplied into the chamber. A DLC film including Si (DLC-Si film: 3, 000-nm film thickness) was formed onto the substrate' s outer peripheral surface by means of 50-minute film forming (i.e., Step II).
  • (Comparative Example No. 2)
  • In the present comparative example, the formations of the intermediate layer and DLC film, and the nitriding treatment were not carried onto a substrate at all. That is, the resultant driving shaft was an unprocessed substrate.
  • (Evaluation)
  • In order to evaluate the driving shafts according to embodiments and comparative examples, a corrosion test was carried out. In the corrosion test, the bearing-structured sections of water pump that comprised the pump shafts 10 (i.e., driving shafts) being made as above and the bearing metals 20 and 30 were left as they were in 80 °C water for 24 hours, and then their evaluations were carried out by visually observing the presence or absence of subsequent corrosion on them.
  • The evaluation results are given Table 1. Note that, in Table 1, "absence" indicates those in which no change was appreciated between the start of the corrosion test and 24 hours later; and "presence" indicates those in which discolorations were confirmed on the bearing-structured sections' surface and in water after 24 hours.
  • (TABLE 1)
    Embodiment No. 1 Comp. Ex. No. 1 Comp. Ex. No. 2
    Substrate SUS304 SUS304 SUS304
    Step I Type of Processing Formation of Intermediate Layer Nitriding Treatment -
    Type of Coated Film Titanium Film (Nitrided Layer) -
    Thickness of Coated Film (nm) 100 (2000)* -
    Processing Temp (°C) 2CO 500 -
    Step II Type of Processing Formation of DLC Film Formation of DLC Film -
    Type of Coated Film DLC-Si Film DLC-Si Film -
    Thickness of Coated Film (nm) 3000 3000 -
    Processing Temp. (°C) 200 500 -
    Employed Apparatus PIG PCVD -
    Evaluation (Presence or Absence of Corrosion) Absence Presence Absence
    *: Being a depth of nitriding from the substrate's surface
  • In the bearing-structured section according to Embodiment No. 1 in which the processing temperatures were 200 °C at Step I and Step II, no corrosion was confirmed. Moreover, in the unprocessed bearing-structured section (Comparative Example No. 2) as well, no corrosion was confirmed. On the contrary, in the bearing-structured section according to Comparative Example in which the processing temperatures were 500 °C at Step I and Step II, rust was confirmed on its surface, and additionally the color of water discolored. That is, it was understood that the substrate' s corrosion resistance can be kept by setting the processing temperatures to 450 °C or less at Step I and Step II.

Claims (17)

  1. A highly corrosion-resistant member being equipped with: a substrate made of stainless steel; an intermediate layer coated on at least a part of a surface of the substrate; and an amorphous carbon film coated on at least a part of a surface of the intermediate layer; the highly corrosion-resistant member being characterized in that:
    said intermediate layer, and said amorphous carbon film are formed at such a low temperature that a temperature of the surface of said substrate is 450 °C or less.
  2. A highly corrosion-resistant member being equipped with: a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment; and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion; the highly corrosion-resistant member being characterized in that:
    said nitriding treatment, and a formation of said amorphous carbon film are carried out at such a low temperature that a temperature of a surface of said substrate is 450 °C or less.
  3. The highly corrosion-resistant member as set forth in claim 1 or 2 being a sliding component part, which is employed in the presence of liquid including water and in which a surface of said amorphous carbon film contacts slidably with a mating material.
  4. The highly corrosion-resistant member as set forth in claim 3, wherein said liquid is a coolant that is diluted with water.
  5. The highly corrosion-resistant member as set forth in claim 3, wherein said sliding component part is a driving shaft and/or a bearing.
  6. The highly corrosion-resistant member as set forth in claim 5, wherein said driving shaft, and said bearing are a bearing-structured section of water pump for transporting said liquid.
  7. The highly corrosion-resistant member as set forth in claim 1, wherein said intermediate film is a chromium (Cr) film, a titanium (Ti) film, a silicon (Si) film, a tungsten (W) film, or a carbide film, nitride film or carbonitride film that includes at least one member of Cr, Ti, Si and W.
  8. A manufacturing process for highly corrosion-resistant member, the manufacturing process being characterized in that it comprises:
    an intermediate-layer forming step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and forming an intermediate layer onto at least a part of the surface of the substrate; and
    an amorphous-carbon-film forming step of setting the temperature of the surface of said substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of said intermediate layer.
  9. A manufacturing process for highly corrosion-resistant member, the manufacturing process being characterized in that it comprises:
    a low-temperature nitriding-treatment step of setting a temperature of a surface of a substrate made of stainless steel to 450 °C or less and subjecting a superficial-layer portion of the substrate to nitriding treatment; and
    an amorphous-carbon-film forming step of setting the temperature of the surface of said substrate to 450 °C or less and forming an amorphous carbon film onto at least a part of a surface of said superficial-layer portion that has been subjected to the nitriding treatment.
  10. The manufacturing process for highly corrosion-resistant member as set forth in claim 8, wherein said intermediate-layer forming step is a step of forming said intermediate layer by means of physical vapor deposition method.
  11. The manufacturing process for highly corrosion-resistant member as set forth in claim 9, wherein said low-temperature nitriding-treatment step is a step of carrying out the nitriding treatment by means of ion nitriding method by means of ion implantation, or by means of liquid nitriding method using ammonia water.
  12. The manufacturing process for highly corrosion-resistant member as set forth in claim 8 or 9, wherein said amorphous-carbon-film forming step is a step of forming said amorphous carbon film by means of physical vapor deposition method.
  13. The manufacturing process for highly corrosion-resistant member as set forth in claim 8 or 9, wherein said highly-corrosion resistant member is a sliding component part, which is employed in the presence of liquid including water and in which a surface of said amorphous carbon film contacts slidably with a mating material.
  14. The manufacturing process for highly corrosion-resistant member as set forth in claim 13, wherein said liquid is a coolant that is diluted with water.
  15. The manufacturing process for highly corrosion-resistant member as set forth in claim 13, wherein said sliding component part is a driving shaft and/or a bearing.
  16. The manufacturing process for highly corrosion-resistant member as set forth in claim 15, wherein said driving shaft, and said bearing are a bearing-structured section of water pump for transporting said liquid.
  17. The manufacturing process for highly corrosion-resistant member as set forth in claim 8, wherein said intermediate film is a chromium (Cr) film, a titanium (Ti) film, a silicon (Si) film, a tungsten (W) film, or a carbide film, nitride film or carbonitride film that includes at least one member of Cr, Ti, Si and W.
EP07831553A 2006-12-28 2007-11-09 Highly corrosion-resistant members and processes for production thereof Withdrawn EP2103711A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006356507A JP2008163430A (en) 2006-12-28 2006-12-28 High corrosion-resistant member and its manufacturing method
PCT/JP2007/071822 WO2008081650A1 (en) 2006-12-28 2007-11-09 Highly corrosion-resistant members and processes for production thereof

Publications (2)

Publication Number Publication Date
EP2103711A1 true EP2103711A1 (en) 2009-09-23
EP2103711A4 EP2103711A4 (en) 2011-07-20

Family

ID=39588334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07831553A Withdrawn EP2103711A4 (en) 2006-12-28 2007-11-09 Highly corrosion-resistant members and processes for production thereof

Country Status (5)

Country Link
US (1) US20100314005A1 (en)
EP (1) EP2103711A4 (en)
JP (1) JP2008163430A (en)
CN (1) CN101578389A (en)
WO (1) WO2008081650A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209184A1 (en) * 2009-01-14 2010-07-21 Grundfos Management A/S Magnetic rotor
DE102012013576A1 (en) * 2012-07-11 2014-01-16 Oerlikon Trading Ag, Trübbach DLC coatings with increased corrosion resistance
WO2019025627A1 (en) * 2017-08-04 2019-02-07 Oerlikon Surface Solutions Ag, Pfäffikon Coated valve components with corrosion resistand sliding surfaces
WO2019166041A1 (en) * 2018-02-28 2019-09-06 Schaeffler Technologies AG & Co. KG Fluid bearing and wet rotor pump comprising such a bearing
FR3082526A1 (en) * 2018-06-18 2019-12-20 H.E.F. PART COATED WITH A HYDROGEN AMORPHOUS CARBON COATING ON A SUB-LAYER COMPRISING CHROME, CARBON AND SILICON
FR3082527A1 (en) * 2018-06-18 2019-12-20 H.E.F. PART COATED WITH A NON-HYDROGEN AMORPHOUS CARBON COATING ON A SUB-LAYER COMPRISING CHROME, CARBON AND SILICON
RU2788796C2 (en) * 2018-06-18 2023-01-24 Идромеканик Э Фроттман Part provided with coating of hydrated amorphous carbon on sublayer containing chrome, carbon and silicon

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007007960C5 (en) * 2007-02-17 2015-08-27 Federal-Mogul Burscheid Gmbh piston ring
DE102007007961C5 (en) * 2007-02-17 2015-08-13 Federal-Mogul Burscheid Gmbh piston ring
JP5131078B2 (en) * 2008-07-30 2013-01-30 株式会社豊田中央研究所 Hard amorphous carbon-coated member and method for producing the same
MX2010002570A (en) * 2008-09-26 2010-05-27 Ngk Insulators Ltd Film forming apparatus.
JP4567081B2 (en) * 2008-09-29 2010-10-20 株式会社豊田中央研究所 Fluid pump
JP5150861B2 (en) * 2008-12-29 2013-02-27 日本アイ・ティ・エフ株式会社 Hard carbon film and method for forming the same
JP5741891B2 (en) 2009-06-19 2015-07-01 株式会社ジェイテクト DLC film forming method
WO2011007770A1 (en) * 2009-07-15 2011-01-20 日立ツール株式会社 Coated-surface sliding part having excellent coating adhesion and method for producing the same
JP2011026660A (en) * 2009-07-24 2011-02-10 Jtekt Corp Sliding member and method for producing the same
JP2011084722A (en) * 2009-09-15 2011-04-28 Idemitsu Kosan Co Ltd Lubricating oil composition and sliding mechanism using the same
TWI472632B (en) * 2011-01-14 2015-02-11 Hon Hai Prec Ind Co Ltd Coated article and method for making the same
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
WO2012118036A1 (en) * 2011-02-28 2012-09-07 日本ピストンリング株式会社 Piston ring
KR101328314B1 (en) * 2011-05-26 2013-11-11 (주)제이 앤 엘 테크 Gravure Printing Engraving Roll and Manufacturing Method thereof
WO2012166851A1 (en) 2011-06-02 2012-12-06 Aktiebolaget Skf Carbo-nitriding process for martensitic stainless steel and stainless steel article having improved corrosion resistance
CN102286723A (en) * 2011-07-21 2011-12-21 中国第一汽车股份有限公司 Surface wear-resistance coating applied to automobile high-alloy steel movement friction pair
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
CN103050712A (en) * 2012-12-28 2013-04-17 大连海事大学 Method for improving corrosion resistance of chromium carbide plated stainless steel bipolar plate
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
JP6201125B2 (en) * 2013-04-18 2017-09-27 日本アイ・ティ・エフ株式会社 Ball joint and manufacturing method thereof
CN104250722A (en) * 2013-06-27 2014-12-31 深圳富泰宏精密工业有限公司 Coated member and manufacturing method
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
DE102014217507A1 (en) 2014-09-02 2016-03-03 Robert Bosch Gmbh Valve and method of manufacturing a valve
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
CN107208264B (en) 2015-01-29 2020-01-24 株式会社捷太格特 Method for producing low-friction coating film and sliding method
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10350734B1 (en) 2015-04-21 2019-07-16 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same
US20160362782A1 (en) * 2015-06-15 2016-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Gas dispenser and deposition apparatus using the same
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
JP2017044308A (en) * 2015-08-28 2017-03-02 株式会社クボタ Slide member and pump
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
JP2018031334A (en) * 2016-08-26 2018-03-01 三菱重工コンプレッサ株式会社 Laminate structure and machine component including laminate structure
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) * 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
CA3086540C (en) * 2018-01-23 2022-11-01 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (en) 2018-02-28 2021-01-21 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
DE102018131021A1 (en) 2018-12-05 2020-06-10 Schaeffler Technologies AG & Co. KG Spherical bearings
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
CN114962460A (en) 2021-02-25 2022-08-30 斯凯孚公司 Heat treated roller bearing ring
US11708859B2 (en) 2021-12-15 2023-07-25 Schaeffler Technologies AG & Co. KG Bearing element having polymeric coating and method of application of polymeric coating to bearing element for electrical insulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067211A1 (en) * 1999-07-08 2001-01-10 Sumitomo Electric Industries, Ltd. Hard coating and coated member
WO2005015065A2 (en) * 2002-12-18 2005-02-17 Masco Corporation Of Indiana Valve component with multiple surface layers
EP1657323A1 (en) * 2004-11-12 2006-05-17 Kabushiki Kaisha Kobe Seiko Sho Sliding member with excellent wear resistance in water-based environments

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791760A3 (en) 1996-02-20 1997-09-10 Ebara Corporation Water lubricated bearing or water lubricated seal
JP2980058B2 (en) * 1997-04-30 1999-11-22 住友電気工業株式会社 Columnar metal part, method for manufacturing the same, and apparatus for manufacturing the same
JPH11181552A (en) * 1997-12-18 1999-07-06 Sanyo Special Steel Co Ltd Austenitic stainless steel for nitriding
JP2000120869A (en) * 1998-10-15 2000-04-28 Teikoku Piston Ring Co Ltd Sliding member and its manufacture
DE10018143C5 (en) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
JP3326425B2 (en) * 2000-12-11 2002-09-24 エア・ウォーター株式会社 Method of nitriding stainless steel products
US6656293B2 (en) * 2001-12-10 2003-12-02 Caterpillar Inc Surface treatment for ferrous components
JP3988531B2 (en) * 2002-05-22 2007-10-10 株式会社ジェイテクト pump
EP1598441B1 (en) * 2003-02-26 2018-09-26 Sumitomo Electric Industries, Ltd. Amorphous carbon film and process for producing the same
JP2006134855A (en) * 2004-03-11 2006-05-25 Nissan Motor Co Ltd Separator for fuel cell, fuel cell stack, fuel cell vehicle, and manufacturing method of separator for fuel cell
JP2005314758A (en) * 2004-04-30 2005-11-10 Japan Science & Technology Agency Metallic member coated with diamond like carbon film and coating formation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067211A1 (en) * 1999-07-08 2001-01-10 Sumitomo Electric Industries, Ltd. Hard coating and coated member
WO2005015065A2 (en) * 2002-12-18 2005-02-17 Masco Corporation Of Indiana Valve component with multiple surface layers
EP1657323A1 (en) * 2004-11-12 2006-05-17 Kabushiki Kaisha Kobe Seiko Sho Sliding member with excellent wear resistance in water-based environments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008081650A1 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209184A1 (en) * 2009-01-14 2010-07-21 Grundfos Management A/S Magnetic rotor
WO2010081653A1 (en) * 2009-01-14 2010-07-22 Grundfos Management A/S Rotor made of magnetic material
US8729768B2 (en) 2009-01-14 2014-05-20 Grundfos Management A/S Rotor made of magnetic material
DE102012013576A1 (en) * 2012-07-11 2014-01-16 Oerlikon Trading Ag, Trübbach DLC coatings with increased corrosion resistance
US11499643B2 (en) 2017-08-04 2022-11-15 Oerlikon Surface Solutions Ag, Pfäffikon Coated valve components with corrosion resistant sliding surfaces
CN111183269A (en) * 2017-08-04 2020-05-19 欧瑞康表面处理解决方案股份公司普费菲孔 Coated valve component with corrosion-resistant sliding surface
WO2019025627A1 (en) * 2017-08-04 2019-02-07 Oerlikon Surface Solutions Ag, Pfäffikon Coated valve components with corrosion resistand sliding surfaces
WO2019166041A1 (en) * 2018-02-28 2019-09-06 Schaeffler Technologies AG & Co. KG Fluid bearing and wet rotor pump comprising such a bearing
FR3082526A1 (en) * 2018-06-18 2019-12-20 H.E.F. PART COATED WITH A HYDROGEN AMORPHOUS CARBON COATING ON A SUB-LAYER COMPRISING CHROME, CARBON AND SILICON
FR3082527A1 (en) * 2018-06-18 2019-12-20 H.E.F. PART COATED WITH A NON-HYDROGEN AMORPHOUS CARBON COATING ON A SUB-LAYER COMPRISING CHROME, CARBON AND SILICON
WO2019243720A1 (en) * 2018-06-18 2019-12-26 H.E.F. Part coated with a hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon
WO2019243721A1 (en) * 2018-06-18 2019-12-26 H.E.F. Part coated with a non-hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon
CN112400037A (en) * 2018-06-18 2021-02-23 水力机械摩擦公司 Parts coated with a non-hydrogenated amorphous carbon coating on a base coat comprising chromium, carbon and silicon
RU2788796C2 (en) * 2018-06-18 2023-01-24 Идромеканик Э Фроттман Part provided with coating of hydrated amorphous carbon on sublayer containing chrome, carbon and silicon
US11732343B2 (en) 2018-06-18 2023-08-22 Hydromecanique Et Frottement Part coated with a non-hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon
US12012657B2 (en) 2018-06-18 2024-06-18 Hydromecanique Et Frottement Part coated with a hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon

Also Published As

Publication number Publication date
JP2008163430A (en) 2008-07-17
US20100314005A1 (en) 2010-12-16
EP2103711A4 (en) 2011-07-20
WO2008081650A1 (en) 2008-07-10
CN101578389A (en) 2009-11-11

Similar Documents

Publication Publication Date Title
EP2103711A1 (en) Highly corrosion-resistant members and processes for production thereof
EP1873412B1 (en) Rolling sliding member and rolling apparatus
US8240923B2 (en) X-ray tube rotating anode assembly bearing
EP1167791B1 (en) Rolling shaft
CN102037159B (en) Iron and steel material having quenched surface layer part, process for producing the iron and steel material, and quenched component
US20140050932A1 (en) Method for producing a hardened, coated metal component
KR20010104660A (en) Amorphous hard carbon film, mechanical parts and method for producing amorphous hard carbon film
US6481898B1 (en) Ball bearing
EP1701052B1 (en) Rolling bearing
TW200413569A (en) Surface-carbonitrided stainless steel parts excellent in wear resistance and method for their manufacture
EP3006601B1 (en) Method for manufacturing mold for cold working use
JP2012026023A (en) Iron-based sintered material
KR20180090907A (en) Method for nitriding iron-based metal
EP3845769B1 (en) Double-row self-aligning roller bearing and main shaft support device for wind generation equipped with same
JPS6246018A (en) Rolling bearing
JP2010222648A (en) Production method of carbon steel material and carbon steel material
JP2007155022A (en) Rolling device
EP3502302A1 (en) Nitriding process for carburizing ferrium steels
JP2007127263A (en) Rolling member and rolling device
US20070183703A1 (en) Rolling bearing having a nickel-phosphorus coating
US11661647B2 (en) Integrated surface treatments and coatings for artificial lift pump components
JP2008111462A (en) Rolling element and rolling device
US11434976B2 (en) Layer of hard material on a metal substrate
WO2023224026A1 (en) Rigid-film-coated object, machine component, and bearing
JP2009007603A (en) Gear

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20110620

17Q First examination report despatched

Effective date: 20121207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130418