EP2099727B1 - Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas - Google Patents

Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas Download PDF

Info

Publication number
EP2099727B1
EP2099727B1 EP07866482A EP07866482A EP2099727B1 EP 2099727 B1 EP2099727 B1 EP 2099727B1 EP 07866482 A EP07866482 A EP 07866482A EP 07866482 A EP07866482 A EP 07866482A EP 2099727 B1 EP2099727 B1 EP 2099727B1
Authority
EP
European Patent Office
Prior art keywords
ratio
synthesis
reaction
gas
fischer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07866482A
Other languages
German (de)
French (fr)
Other versions
EP2099727A1 (en
Inventor
Marie-Claire Marion
François Hugues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eni SpA
Original Assignee
IFP Energies Nouvelles IFPEN
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Eni SpA filed Critical IFP Energies Nouvelles IFPEN
Priority to PL07866482T priority Critical patent/PL2099727T3/en
Publication of EP2099727A1 publication Critical patent/EP2099727A1/en
Application granted granted Critical
Publication of EP2099727B1 publication Critical patent/EP2099727B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts

Definitions

  • the present invention relates to the field of hydrocarbon synthesis from a mixture comprising carbon monoxide (CO), hydrogen (H2) and optionally carbon dioxide (CO2), generally called synthesis gas.
  • CO carbon monoxide
  • H2 hydrogen
  • CO2 carbon dioxide
  • the method according to the invention makes it possible to optimize the operation of a hydrocarbon synthesis unit from synthesis gas (also called Fischer-Tropsch synthesis), or to restore stable operation in order to maximize the hydrocarbon yield.
  • synthesis gas also called Fischer-Tropsch synthesis
  • the process according to the invention is a process for controlling Fischer-Tropsch synthesis in which the ratio of partial pressures of water and hydrogen P H 2 O : P H 2 is used as the control parameter of this synthesis.
  • catalysts comprising cobalt can develop a CO conversion activity (WGSR), which then comes into competition with the Fischer-Tropsch synthesis reaction and strongly penalize this synthesis.
  • WGSR CO conversion reaction
  • the CO conversion reaction (WGSR) consumes some of the CO reagent by forming CO2 instead of the desired hydrocarbons and simultaneously produces an excess of hydrogen which modifies the H2: CO ratio and gives rise to a degradation of the selectivity of the reaction towards the lightest products.
  • the selectivities in methane and C2 to C4 hydrocarbons are therefore increased.
  • the patent US 6,534,552 B2 describes a process for the production of hydrocarbons from natural gas in which natural gas is converted to synthesis gas which is fed to a Fischer-Tropsch synthesis section to produce hydrocarbons and a tail gas (tail gas according to the terminology Anglo-Saxon).
  • a separation section makes it possible to separate hydrogen from a fraction of this gas, said hydrogen being recycled continuously, either to the Fischer-Tropsch section or to the synthesis gas production section.
  • the patent US 4,626,552 describes a procedure for starting a Fischer-Tropsch reactor in which the H2: CO ratio is maintained at a low value by imposing a hydrogen flow rate of between 15% and 90% of the flow rate in the stabilized state. Then gradually increases the gas load flow, pressure and temperature and finally the H2: CO ratio is adjusted to the desired optimum value by increasing the flow of hydrogen input.
  • Requirement WO 2005/123882 describes a method for producing liquid hydrocarbons by Fischer-Tropsch synthesis in which the difference between the H2 / CO ratio at the inlet and the H2 / CO ratio in the effuent is kept substantially constant.
  • the method according to the invention is a method for optimizing the operation of a hydrocarbon synthesis unit from a feedstock comprising synthesis gas, in which one operates in the presence of a catalyst comprising cobalt.
  • the method according to the invention relates to a process for the synthesis of hydrocarbons from a feedstock comprising synthesis gas operated with a catalyst comprising cobalt.
  • Said method comprises the following steps: the determination of the theoretical molar ratio of the partial pressures of water and of hydrogen P H2O : P H2 in the Fischer-Tropsch reaction section, followed by a possible adjustment of this ratio and then the determination of the new value of this report. These steps are optionally repeated until said ratio has a value less than 1.1, preferably strictly less than 1 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8. or even strictly less than 0.65.
  • This method of controlling the Fischer-Tropsch synthesis makes it possible to maintain high performances, particularly in terms of yield of heavy products (C5 + hydrocarbons). It also makes it possible to maximize the selectivity of the heavier hydrocarbons according to the Fischer-Tropsch reaction and to avoid the degradation of the selectivity by the development of the CO conversion reaction (in English WGSR).
  • the method according to the invention is a method for controlling and optimizing Fischer-Tropsch synthesis in which the molar ratio of the partial pressures of water and hydrogen P H 2 O : P H 2 in the Fischer-Tropsch reaction section is used. as a parameter for controlling and optimizing this synthesis.
  • the method according to the invention makes it possible to improve the operation of the Fischer-Tropsch synthesis unit by optimizing its yield and avoiding any selectivity drift towards the CO conversion reaction ("Water Gas Shift Reaction” or “WGS Reaction”). according to the English terminology).
  • This new method of control and optimization is particularly relevant during transitional phases, especially when starting a unit or during a temporary malfunction of the unit (for example, when an incident such as the rupture of part of the load supply, disrupts the operation of the reaction section).
  • the objective is the synthesis of a mixture of hydrocarbons comprising mainly paraffins, and mainly long-chain carbon compounds (hydrocarbons having more than 5 carbon atoms per molecule and preferably having more than 20 carbon atoms per molecule) in the presence of a catalyst comprising cobalt, also called Fischer-Tropsch synthesis.
  • a catalyst comprising cobalt also called Fischer-Tropsch synthesis.
  • it is important to minimize as much as possible the aforementioned transitional phases during which the conversion and or the selectivity of the Fischer-Tropsch reaction are generally not optimal.
  • the method for controlling and optimizing the operation of a hydrocarbon synthesis unit according to the invention makes it possible to maintain high performances, particularly in terms of yield of heavy products (C5 + hydrocarbons). More precisely, it makes it possible to maximize the selectivity for the heavier hydrocarbons according to the Fischer-Tropsch reaction and to avoid the degradation of the selectivity by the development of the CO conversion reaction.
  • said catalyst can be used in a fixed bed (reactor with a fixed bed catalyst, with one or more catalyst beds in the same reactor) or preferably in a reactor.
  • triphasic reactor (implementation in "slurry” according to the English terminology) comprising the catalyst in suspension in a substantially inert liquid phase and the reactive gas phase (synthesis gas).
  • the synthesis gas used in the Fischer-Tropsch synthesis step according to the invention can be obtained via the transformation of natural gas, coal, or biomass by processes such as steam reforming or partial oxidation, or via the decomposition of methanol, or from any other method known to those skilled in the art. Any charge comprising at least hydrogen and carbon monoxide may therefore be suitable.
  • the synthesis gas used in Fischer-Tropsch synthesis has a H 2: CO molar ratio of between 1: 2 and 5: 1, more preferably between 1.2: 2 and 3: 1, and more preferably between 1.5: 1 and 2.6: 1.
  • the Fischer-Tropsch synthesis is generally carried out under a pressure of between 0.1 MPa and 15 MPa, preferably between 1 MPa and 10 MPa and more preferably between 1.5 MPa and 5 MPa.
  • the hourly volumetric velocity of the synthesis gas is generally between 100 and 20000 h -1 (volume of synthesis gas per volume of catalyst per hour), preferably between 400 and 10,000 h -1 .
  • Any catalyst comprising cobalt known to those skilled in the art is suitable for the process according to the invention, especially those mentioned in the "prior art" part of this application.
  • Catalysts comprising cobalt deposited on a support selected from among the following oxides are preferably used: alumina, silica, zirconia, titanium oxide, magnesium oxide or their mixtures.
  • Various promoters known to those skilled in the art can also be added, in particular those selected from the following elements: rhenium, ruthenium, molybdenum, tungsten, chromium. It is also possible to add at least one alkali or alkaline earth metal to these catalytic formulations.
  • step a) The determination of the ratio P H2O : P H2 according to step a) can be carried out using any means known to those skilled in the art.
  • the reaction section may consist of one or more reactors.
  • Step a) is performed using a means selected from the means detailed below.
  • a preferred means consists in measuring the amount of carbon monoxide in the gaseous effluent and estimating the theoretical P H2O : P H2 ratio from the conversion rate of carbon monoxide in the whole of the reaction section comprising one or more reactors. , the H2: CO ratio in the feedstock and the H2: CO ratio for the gas consumed by the reaction (also called the use ratio).
  • the conversion rate of carbon monoxide is defined from measurements of carbon monoxide entering the hydrocarbon synthesis reaction section (CO input) and carbon monoxide leaving said reaction section (CO output ). These measurements are generally performed by gas chromatography using a katharometer detector. Similarly, hydrogen is measured with a specific column and detector in the gas streams entering and leaving the hydrocarbon synthesis reaction section to calculate the various H2 / CO ratios.
  • the Rft usage ratio qualifies in a certain way the intrinsic selectivity of the Fischer-Tropsch synthesis catalyst. It is generally determined beforehand under normal Fischer-Tropsch synthesis conditions, that is to say when the Shift reaction (WGSR) is a minority and practically negligible. By default, it can be taken equal to 2.0, according to the stoichiometry of the general Fischer-Tropsch synthesis reaction [1] recalled below, knowing that then the estimation of the ratio P H2O : P H2 theoretical will be conservative (c that is, slightly underestimated).
  • step c When the ratio P H2O : P H2 has been adjusted in step b), its new theoretical value is again determined (step c) in order to check that it is strictly less than 1.1, preferably strictly less than 1 , 0 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8, or even strictly less than 0.65.
  • steps a to c are repeated (step d) until the criterion P H2O is met: P H2 theoretical strictly less than 1.1, preferably strictly less than 1.0 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8, or even strictly less than 0.65.
  • Said reaction section may comprise one or more hydrocarbon synthesis reactors.
  • the Fischer-Tropsch synthesis reaction is carried out in a device comprising a perfectly stirred three-phase reactor of the autoclave type (CSTR according to the English abbreviations).
  • This reactor can be maintained under pressure and temperature and operated continuously.
  • the reactor is fed with a synthesis gas having an H2 / CO ratio which can be adjusted between 1.5 and 2.5.
  • the charge rate (synthesis gas) is controlled and can also be adjusted to increase or decrease the reaction time.
  • the Fischer-Tropsch synthesis is carried out at 230 ° C., 2 MPa, in the presence of 35 g of a catalyst containing 13% by weight of cobalt deposited on an alumina support having a specific surface area of approximately 150 m 2 / g and having a gamma structure. cubic.
  • the catalytic performances are evaluated by material balance from the analysis and the measurement of the various outgoing flows of the reactor.
  • the compositions of the various outgoing streams are determined by gas chromatography.
  • Example 2 Example of readjustment of the report after a setpoint change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The invention concerns a method for optimizing the operation of a reaction section for hydrocarbon synthesis starting from a feed comprising synthesis gas, operated in the presence of a catalyst comprising cobalt. This method comprises the following steps: a) determining the theoretical molar ratio, PH2O:PH2, in the reaction section; b) optionally, adjusting the ratio PH2O:PH2 determined in step a) to a value strictly below 1; c) determining the new value for the theoretical ratio PH2O:PH2 in the reaction section; and repeating steps a) to c) until the ratio of the partial pressures of water and hydrogen, PH2O:PH2, has a value strictly less than 1.1.

Description

La présente invention concerne le domaine de la synthèse d'hydrocarbures à partir d'un mélange comprenant du monoxyde de carbone (CO), de l'hydrogène (H2) et éventuellement du dioxyde de carbone (CO2), généralement appelé gaz de synthèse.The present invention relates to the field of hydrocarbon synthesis from a mixture comprising carbon monoxide (CO), hydrogen (H2) and optionally carbon dioxide (CO2), generally called synthesis gas.

Le procédé selon l'invention permet d'optimiser le fonctionnement d'une unité de synthèse d'hydrocarbures à partir de gaz de synthèse (également appelée synthèse Fischer-Tropsch), ou de rétablir un fonctionnement stable en vue de maximiser le rendement en hydrocarbures C5+ (hydrocarbures comprenant 5 atomes de carbones ou plus).The method according to the invention makes it possible to optimize the operation of a hydrocarbon synthesis unit from synthesis gas (also called Fischer-Tropsch synthesis), or to restore stable operation in order to maximize the hydrocarbon yield. C5 + (hydrocarbons comprising 5 or more carbon atoms).

Le procédé selon l'invention est un procédé de contrôle de la synthèse Fischer-Tropsch dans lequel on utilise le rapport des pressions partielles d'eau et d'hydrogène PH2O:PH2 comme paramètre de contrôle de cette synthèse.The process according to the invention is a process for controlling Fischer-Tropsch synthesis in which the ratio of partial pressures of water and hydrogen P H 2 O : P H 2 is used as the control parameter of this synthesis.

ART ANTERIEURPRIOR ART

La réaction de conversion du gaz de synthèse (mélange CO-(CO2-H2) en hydrocarbures est connue depuis le début du vingtième siècle et est communément appelée synthèse Fischer-Tropsch. Des unités ont été opérées en Allemagne pendant la seconde guerre mondiale, puis en Afrique du Sud afin de synthétiser des carburants synthétiques. La majorité de ces unités, essentiellement dédiées à la production de carburants synthétiques, étaient ou sont encore opérées avec des catalyseurs à base de fer.The conversion reaction of synthesis gas (CO- (CO2-H2) mixture into hydrocarbons has been known since the beginning of the twentieth century and is commonly known as Fischer-Tropsch synthesis, units were operated in Germany during the Second World War, then in South Africa to synthesize synthetic fuels The majority of these units, mainly dedicated to the production of synthetic fuels, were or are still operated with iron-based catalysts.

Plus récemment, un nouvel intérêt s'est manifesté envers ces synthèses, et plus particulièrement envers l'utilisation de catalyseurs comprenant du cobalt qui permettent d'orienter la réaction vers la formation d'hydrocarbures plus lourds, principalement paraffinique, essentiellement des hydrocarbures C5+ (hydrocarbures comprenant 5 atomes de carbone ou plus par molécule), tout en minimisant la formation de méthane et d'hydrocarbures ayant entre 2 et 4 atomes de carbone par molécule (C2-C4). Les hydrocarbures ainsi formés peuvent être transformés dans une unité d'hydrocraquage en aval, afin de produire majoritairement du kérosène et du gasoil. Un tel procédé est par exemple décrit dans le brevet EP-B-1 406 988 . L'utilisation de catalyseur comprenant du cobalt est plus adapté pour traiter des gaz de synthèse (charge) plus riche en hydrogène, issu de la transformation de gaz naturel notamment.More recently, there has been a new interest in these syntheses, and more particularly in the use of catalysts comprising cobalt which can direct the reaction towards the formation of heavier hydrocarbons, mainly paraffinic, essentially C5 + hydrocarbons ( hydrocarbons comprising 5 or more carbon atoms per molecule) while minimizing the formation of methane and hydrocarbons having 2 to 4 carbon atoms per molecule (C2-C4). The hydrocarbons thus formed can be transformed into a hydrocracking unit downstream, to produce mainly kerosene and gas oil. Such a method is for example described in the patent EP-B-1 406 988 . The use of a catalyst comprising cobalt is more suitable for treating hydrogen-rich synthesis gases (feedstock) resulting from the transformation of natural gas in particular.

De nombreuses formulations à base de cobalt ont été décrites dans l'art antérieur (voir par exemple les demandes de brevet EP-A-0 313 375 ou EP-A-1 233 011 ). Contrairement aux catalyseurs à base de fer qui sont actifs dans la réaction de conversion du CO en CO2 (water gas shift reaction ou WGSR selon la terminologie anglo-saxonne): CO + H2O → CO2 + H2, les catalyseurs à base de cobalt ne présentent que très peu d'activité pour cette réaction ( B.H. Davis, Catalysis Today, 84, 2003, p.83 ).Many cobalt-based formulations have been described in the prior art (see, for example, patent applications EP-A-0 313 375 or EP-A-1,233,011 ). Unlike iron-based catalysts that are active in the reaction of CO to CO2 (water gas shift reaction or WGSR): CO + H2O → CO2 + H2, cobalt-based catalysts do not present very little activity for this reaction ( BH Davis, Catalysis Today, 84, 2003, p.83 ).

Toutefois, dans certaines conditions, les catalyseurs comprenant du cobalt peuvent développer une activité en conversion du CO (WGSR), qui rentre alors en compétition avec la réaction de synthèse Fischer-Tropsch et pénaliser fortement cette synthèse. En effet, la réaction de conversion du CO (WGSR) consomme une partie du réactif CO en formant du CO2 en lieu et place des hydrocarbures souhaités et elle produit simultanément un excès d'hydrogène qui modifie le rapport H2:CO et engendre une dégradation de la sélectivité de la réaction vers les produits les plus légers. Les sélectivités en méthane et hydrocarbures C2 à C4 sont donc augmentées.However, under certain conditions, catalysts comprising cobalt can develop a CO conversion activity (WGSR), which then comes into competition with the Fischer-Tropsch synthesis reaction and strongly penalize this synthesis. Indeed, the CO conversion reaction (WGSR) consumes some of the CO reagent by forming CO2 instead of the desired hydrocarbons and simultaneously produces an excess of hydrogen which modifies the H2: CO ratio and gives rise to a degradation of the selectivity of the reaction towards the lightest products. The selectivities in methane and C2 to C4 hydrocarbons are therefore increased.

Le brevet US 6,534,552 B2 décrit un procédé de production d'hydrocarbures à partir de gaz naturel dans lequel le gaz naturel est converti en gaz de synthèse qui est envoyé dans une section de synthèse Fischer-Tropsch pour produire des hydrocarbures et un gaz de queue (tail gas selon la terminologie anglo-saxonne). Une section de séparation permet de séparer de l'hydrogène à partir d'une fraction de ce gaz, ledit hydrogène étant recyclé en permanence, soit à la section Fischer-Tropsch, soit à la section de production du gaz de synthèse.The patent US 6,534,552 B2 describes a process for the production of hydrocarbons from natural gas in which natural gas is converted to synthesis gas which is fed to a Fischer-Tropsch synthesis section to produce hydrocarbons and a tail gas (tail gas according to the terminology Anglo-Saxon). A separation section makes it possible to separate hydrogen from a fraction of this gas, said hydrogen being recycled continuously, either to the Fischer-Tropsch section or to the synthesis gas production section.

Le brevet US 4,626,552 décrit une procédure de démarrage d'un réacteur Fischer-Tropsch dans lequel on maintien le rapport H2:CO à une valeur basse en imposant un débit d'hydrogène compris entre 15% et 90% du débit à l'état stabilisé. Puis on augmente progressivement le débit de charge gazeuse, la pression et la température et enfin on ajuste le rapport H2:CO à la valeur optimale souhaitée par augmentation du débit d'hydrogène en entrée.The patent US 4,626,552 describes a procedure for starting a Fischer-Tropsch reactor in which the H2: CO ratio is maintained at a low value by imposing a hydrogen flow rate of between 15% and 90% of the flow rate in the stabilized state. Then gradually increases the gas load flow, pressure and temperature and finally the H2: CO ratio is adjusted to the desired optimum value by increasing the flow of hydrogen input.

La demande WO 2005/123882 décrit une méthode de production d'hydrocarbures liquides par synthèse Fischer-Tropsch dans laquelle on maintient sensiblement constant l'ecart entre le ratio H2/CO à l'entrée et le ratio H2/CO dans l'effuent.Requirement WO 2005/123882 describes a method for producing liquid hydrocarbons by Fischer-Tropsch synthesis in which the difference between the H2 / CO ratio at the inlet and the H2 / CO ratio in the effuent is kept substantially constant.

RÉSUMÉ DE L'INVENTIONSUMMARY OF THE INVENTION

La méthode selon l'invention est une méthode pour optimiser le fonctionnement d'une unité de synthèse d'hydrocarbures à partir d'une charge comprenant du gaz de synthèse, dans laquelle on opère en présence d'un catalyseur comprenant du cobalt.The method according to the invention is a method for optimizing the operation of a hydrocarbon synthesis unit from a feedstock comprising synthesis gas, in which one operates in the presence of a catalyst comprising cobalt.

La méthode selon l'invention concerne un procédé de synthèse d'hydrocarbures à partir d'une charge comprenant du gaz de synthèse, opéré avec un catalyseur comprenant du cobalt. Ladite méthode comprend les étapes suivantes: la détermination du rapport molaire théorique des pressions partielles d'eau et d'hydrogène PH2O:PH2 dans la section réactionnelle Fischer-Tropsch, suivi d'un ajustement éventuel de ce rapport puis de la détermination de la nouvelle valeur de ce rapport. Ces étapes sont éventuellement répétées jusqu'à ce que ledit rapport présente une valeur inférieure à 1,1 , de préférence strictement inférieure à 1 et de manière très préférée strictement inférieure à 0,9, de manière encore plus préférée strictement inférieure à 0,8, voire strictement inférieure à 0,65.The method according to the invention relates to a process for the synthesis of hydrocarbons from a feedstock comprising synthesis gas operated with a catalyst comprising cobalt. Said method comprises the following steps: the determination of the theoretical molar ratio of the partial pressures of water and of hydrogen P H2O : P H2 in the Fischer-Tropsch reaction section, followed by a possible adjustment of this ratio and then the determination of the new value of this report. These steps are optionally repeated until said ratio has a value less than 1.1, preferably strictly less than 1 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8. or even strictly less than 0.65.

Cette méthode de contrôle de la synthèse Fischer-Tropsch permet de maintenir des performances élevées, notamment en terme de rendement en produits lourds (hydrocarbures C5+). Elle permet également de maximiser la sélectivité en hydrocarbures les plus lourds selon la réaction Fischer-Tropsch et d'éviter la dégradation de la sélectivité par le développement de la réaction de conversion du CO (en anglais WGSR).This method of controlling the Fischer-Tropsch synthesis makes it possible to maintain high performances, particularly in terms of yield of heavy products (C5 + hydrocarbons). It also makes it possible to maximize the selectivity of the heavier hydrocarbons according to the Fischer-Tropsch reaction and to avoid the degradation of the selectivity by the development of the CO conversion reaction (in English WGSR).

DESCRIPTION DETAILLÉEDETAILED DESCRIPTION

La méthode selon l'invention est une méthode de contrôle et d'optimisation de la synthèse Fischer-Tropsch dans laquelle on utilise le rapport molaire des pressions partielles d'eau et d'hydrogène PH2O:PH2 dans la section réactionnelle Fischer-Tropsch comme paramètre de contrôle et d'optimisation de cette synthèse.The method according to the invention is a method for controlling and optimizing Fischer-Tropsch synthesis in which the molar ratio of the partial pressures of water and hydrogen P H 2 O : P H 2 in the Fischer-Tropsch reaction section is used. as a parameter for controlling and optimizing this synthesis.

La méthode selon l'invention permet d'améliorer l'opération de l'unité de synthèse Fischer-Tropsch en optimisant son rendement et en évitant toute dérive de sélectivité vers la réaction de conversion du CO (Water Gas Shift Reaction ou "WGS Reaction" selon la terminologie anglo-saxonne). Cette nouvelle méthode de contrôle et d'optimisation voit notamment tout son intérêt lors des phases transitoires, en particulier lors du démarrage d'une unité ou lors d'un disfonctionnement temporaire de l'unité (par exemple, lorsqu'un incident tel que la rupture d'une partie de l'approvisionnement en charge, vient perturber le fonctionnement de la section réactionnelle).The method according to the invention makes it possible to improve the operation of the Fischer-Tropsch synthesis unit by optimizing its yield and avoiding any selectivity drift towards the CO conversion reaction ("Water Gas Shift Reaction" or "WGS Reaction"). according to the English terminology). This new method of control and optimization is particularly relevant during transitional phases, especially when starting a unit or during a temporary malfunction of the unit (for example, when an incident such as the rupture of part of the load supply, disrupts the operation of the reaction section).

C'est également le cas lors de modification des consignes (températures, pression, débit de gaz, etc.) en raison d'un disfonctionnement temporaire de l'unité ou encore en raison d'une désactivation du catalyseur. A titre d'illustration, on peut citer le cas où, dans la phase de démarrage de l'unité, l'activité du catalyseur augmente lors de sa phase finale de construction, in situ sous gaz de synthèse ( H. Schulz et Coll., Catalysis Today 71, 351, 2002 ).This is also the case when the setpoints (temperatures, pressure, gas flow, etc.) are changed because of a temporary malfunction of the unit or because of deactivation of the catalyst. By way of illustration, mention may be made of the case where, during the start-up phase of the unit, the activity of the catalyst increases during its final phase of construction, in situ under synthesis gas ( H. Schulz et al., Catalysis Today 71, 351, 2002 ).

L'objectif visé est la synthèse d'un mélange d'hydrocarbures comprenant majoritairement des paraffines, et majoritairement des composés à longue chaîne carbonée (hydrocarbures à plus de 5 atomes de carbone par molécule et préférentiellement ayant plus de 20 atomes de carbone par molécule), en présence d'un catalyseur comprenant du cobalt, également appelée synthèse Fischer-Tropsch. Afin d'atteindre cet objectif, il est important de minimiser au maximum les phase transitoires mentionnés précédemment pendant lesquels la conversion et ou la sélectivité de la réaction Fischer-Tropsch ne sont généralement pas optimales.The objective is the synthesis of a mixture of hydrocarbons comprising mainly paraffins, and mainly long-chain carbon compounds (hydrocarbons having more than 5 carbon atoms per molecule and preferably having more than 20 carbon atoms per molecule) in the presence of a catalyst comprising cobalt, also called Fischer-Tropsch synthesis. In order to achieve this objective, it is important to minimize as much as possible the aforementioned transitional phases during which the conversion and or the selectivity of the Fischer-Tropsch reaction are generally not optimal.

La méthode de contrôle et d'optimisation du fonctionnement d'une unité de synthèse d'hydrocarbures selon l'invention permet de maintenir des performances élevées, notamment en terme de rendement en produits lourds (hydrocarbures C5+). Plus précisément, il permet de maximiser la sélectivité en hydrocarbures les plus lourds selon la réaction Fischer-Tropsch et éviter la dégradation de la sélectivité par le développement de la réaction de conversion du CO.The method for controlling and optimizing the operation of a hydrocarbon synthesis unit according to the invention makes it possible to maintain high performances, particularly in terms of yield of heavy products (C5 + hydrocarbons). More precisely, it makes it possible to maximize the selectivity for the heavier hydrocarbons according to the Fischer-Tropsch reaction and to avoid the degradation of the selectivity by the development of the CO conversion reaction.

Dans l'unité de synthèse Fischer-Tropsch selon l'invention, ledit catalyseur peut être mis en oeuvre en lit fixe (réacteur avec un catalyseur en lit fixe, avec un ou plusieurs lits de catalyseur dans un même réacteur) ou de préférence dans un réacteur triphasique (mise en oeuvre en "slurry" selon la terminologie anglo-saxonne) comprenant le catalyseur en suspension dans une phase liquide essentiellement inerte et la phase gazeuse réactive (gaz de synthèse).In the Fischer-Tropsch synthesis unit according to the invention, said catalyst can be used in a fixed bed (reactor with a fixed bed catalyst, with one or more catalyst beds in the same reactor) or preferably in a reactor. triphasic reactor (implementation in "slurry" according to the English terminology) comprising the catalyst in suspension in a substantially inert liquid phase and the reactive gas phase (synthesis gas).

Le gaz de synthèse utilisé dans l'étape de synthèse Fischer-Tropsch selon l'invention peut être obtenu via la transformation du gaz naturel, du charbon, ou de la biomasse par des procédés tels que le vaporeformage ou l'oxydation partielle, ou encore via la décomposition du méthanol, ou à partir de tout autre procédé connu de l'homme du métier. Toute charge comprenant au moins de l'hydrogène et du monoxyde de carbone peut donc convenir. De préférence, le gaz de synthèse utilisé dans la synthèse Fischer-Tropsch présente un rapport molaire H2:CO compris entre 1:2 et 5:1, de manière plus préférée entre 1,2:2 et 3:1 et de manière plus préférée entre 1,5:1 et 2,6:1.The synthesis gas used in the Fischer-Tropsch synthesis step according to the invention can be obtained via the transformation of natural gas, coal, or biomass by processes such as steam reforming or partial oxidation, or via the decomposition of methanol, or from any other method known to those skilled in the art. Any charge comprising at least hydrogen and carbon monoxide may therefore be suitable. Preferably, the synthesis gas used in Fischer-Tropsch synthesis has a H 2: CO molar ratio of between 1: 2 and 5: 1, more preferably between 1.2: 2 and 3: 1, and more preferably between 1.5: 1 and 2.6: 1.

La synthèse Fischer-Tropsch est généralement mise en oeuvre sous une pression comprise entre 0,1 MPa et 15 MPa, de préférence comprise entre 1 MPa et 10MPa et de manière plus préférée comprise entre 1,5 MPa et 5 MPa. La vitesse volumétrique horaire du gaz de synthèse est généralement comprise entre 100 et 20000 h-1 (volume de gaz de synthèse par volume de catalyseur et par heure), de préférence entre 400 et 10000 h-1 .The Fischer-Tropsch synthesis is generally carried out under a pressure of between 0.1 MPa and 15 MPa, preferably between 1 MPa and 10 MPa and more preferably between 1.5 MPa and 5 MPa. The hourly volumetric velocity of the synthesis gas is generally between 100 and 20000 h -1 (volume of synthesis gas per volume of catalyst per hour), preferably between 400 and 10,000 h -1 .

Tout catalyseur comprenant du cobalt connu de l'homme du métier convient au procédé selon l'invention, notamment ceux mentionnés dans la partie "Art Antérieur" de cette demande. On utilise de préférence des catalyseurs comprenant du cobalt déposé sur un support sélectionné parmi les oxydes suivants: alumine, silice, zircone, oxyde de titane, oxyde de magnésium ou leurs mélanges. Différents promoteurs connus de l'homme du métier peuvent également être ajoutés, notamment ceux sélectionnés parmi les éléments suivants: rhénium, ruthénium, molybdène, tungstène, chrome. II est également possible d'ajouter au moins un alcalin ou alcalino-terreux à ces formulations catalytiques.Any catalyst comprising cobalt known to those skilled in the art is suitable for the process according to the invention, especially those mentioned in the "prior art" part of this application. Catalysts comprising cobalt deposited on a support selected from among the following oxides are preferably used: alumina, silica, zirconia, titanium oxide, magnesium oxide or their mixtures. Various promoters known to those skilled in the art can also be added, in particular those selected from the following elements: rhenium, ruthenium, molybdenum, tungsten, chromium. It is also possible to add at least one alkali or alkaline earth metal to these catalytic formulations.

Dans la méthode selon l'invention, on réalise les étapes de contrôles suivantes:

  1. a) Détermination du rapport molaire PH2O:PH2 théorique dans la section réactionnelle comme dans la revendication 1.
  2. b) Ajustement éventuel du rapport PH2O:PH2 déterminé à l'étape a) à une valeur strictement inférieure à 1,1 grâce à des moyens détaillés par la suite,
  3. c) Détermination de la nouvelle valeur du rapport PH2O:PH2 ajusté à l'étape b) au moyen de la méthode utilisée à l'étape a),
    puis éventuellement, si cela est nécessaire, l'étape d) suivante, après l'étape c):
  4. d) Répétition des étapes a) à c) jusqu'à ce que le rapport des pressions partielles d'eau et d'hydrogène PH2O:PH2 présente une valeur strictement inférieure à 1,1.
In the method according to the invention, the following control steps are carried out:
  1. a) Determination of the theoretical P H2O : P H2 molar ratio in the reaction section as in claim 1.
  2. b) Possible adjustment of the ratio P H2O : P H2 determined in step a) to a value strictly less than 1.1 with detailed means thereafter,
  3. c) Determination of the new value of the ratio P H2O : P H2 adjusted in step b) by means of the method used in step a),
    then possibly, if necessary, the following step d), after step c):
  4. d) repeating steps a) to c) until the ratio of partial pressures of water and hydrogen P H2O : P H2 has a value strictly less than 1.1.

La détermination du rapport PH2O:PH2 selon l'étape a) peut être réalisée à l'aide de tout moyen connu de l'homme du métier. La section réactionnelle peut être constitué par un seul ou plusieurs réacteurs. L'étape a) est réalisée en utilisant un moyen sélectionné parmi les moyens détaillés ci-après.The determination of the ratio P H2O : P H2 according to step a) can be carried out using any means known to those skilled in the art. The reaction section may consist of one or more reactors. Step a) is performed using a means selected from the means detailed below.

Un moyen préféré consiste à mesurer la quantité de monoxyde de carbone dans l'effluent gazeux et estimer le rapport PH2O:PH2 théorique à partir du taux de conversion du monoxyde de carbone dans l'ensemble de la section réactionnelle comprenant un ou plusieurs réacteurs, du rapport H2:CO dans la charge et du rapport H2:CO pour le gaz consommé par la réaction (également nommé rapport d'usage).A preferred means consists in measuring the amount of carbon monoxide in the gaseous effluent and estimating the theoretical P H2O : P H2 ratio from the conversion rate of carbon monoxide in the whole of the reaction section comprising one or more reactors. , the H2: CO ratio in the feedstock and the H2: CO ratio for the gas consumed by the reaction (also called the use ratio).

Le taux de conversion du monoxyde de carbone (Cv) est défini à partir des mesures du monoxyde de carbone qui entre dans la section réactionnelle de synthèse d'hydrocarbures (CO entrée) et du monoxyde de carbone qui sort de ladite section réactionnelle (CO sortie). Ces mesures sont réalisées généralement par chromatographie en phase gazeuse au moyen d'un détecteur catharométrique. De la même façon, on mesure l'hydrogène avec une colonne et un détecteur spécifiques dans les flux gazeux entrant et sortant de la section réactionnelle de synthèse d'hydrocarbures afin de calculer les divers rapports H2/CO.The conversion rate of carbon monoxide (Cv) is defined from measurements of carbon monoxide entering the hydrocarbon synthesis reaction section (CO input) and carbon monoxide leaving said reaction section (CO output ). These measurements are generally performed by gas chromatography using a katharometer detector. Similarly, hydrogen is measured with a specific column and detector in the gas streams entering and leaving the hydrocarbon synthesis reaction section to calculate the various H2 / CO ratios.

On définit donc le taux de conversion du monoxyde de carbone (Cv), le ratio (ou rapport H2/CO) de la charge (R1) et le ratio (ou rapport H2/CO) d'usage (Rft) de la manière suivante :

  • Cv = (CO entrée - CO sortie) / CO entrée
  • R1 = H2/CO charge = H2 entrée / CO entrée (mol/mol)
  • Rft = H2/CO réaction = (H2 entrée - H2 sortie) / (CO entrée - CO sortie)
The conversion rate of carbon monoxide (Cv), the ratio (or ratio H2 / CO) of the charge (R1) and the ratio (or ratio H2 / CO) of use (Rft) are thus defined in the following manner :
  • Cv = (CO input - CO output) / CO input
  • R1 = H2 / CO load = H2 input / CO input (mol / mol)
  • Rft = H2 / CO reaction = (H2 input - H2 output) / (CO input - CO output)

On peut alors estimer le rapport PH2O:PH2 théorique dans la section réactionnelle par le calcul suivant : P H 2 O : P H 2 théorique = Cv / R 1 Rft * Cv

Figure imgb0001
We can then estimate the ratio P H2O : P H2 theoretical in the reaction section by the following calculation: P H 2 O : P H 2 theoretical = cv / R 1 - Rft * cv
Figure imgb0001

Le ratio d'usage Rft qualifie d'une certaine façon la sélectivité intrinsèque du catalyseur de synthèse Fischer-Tropsch. II est généralement déterminé au préalable dans des conditions normales de synthèse Fischer-Tropsch, c'est à dire lorsque la réaction de Shift (WGSR) est minoritaire et pratiquement négligeable. Par défaut, il peut être pris égale à 2.0, selon la stoechiométrie de la réaction générale de synthèse Fischer-Tropsch [1] rappelée ci-dessous, sachant qu'alors l'estimation du rapport PH2O:PH2 théorique sera conservateur (c'est-à-dire légèrement sous-estimé).The Rft usage ratio qualifies in a certain way the intrinsic selectivity of the Fischer-Tropsch synthesis catalyst. It is generally determined beforehand under normal Fischer-Tropsch synthesis conditions, that is to say when the Shift reaction (WGSR) is a minority and practically negligible. By default, it can be taken equal to 2.0, according to the stoichiometry of the general Fischer-Tropsch synthesis reaction [1] recalled below, knowing that then the estimation of the ratio P H2O : P H2 theoretical will be conservative (c that is, slightly underestimated).

Réaction Fischer-Tropsch :

        CO + 2 H2 → -(CH2)- + H2O [1]

Fischer-Tropsch reaction:

CO + 2 H2 → - (CH2) - + H2O [1]

L'étape b) d'ajustement éventuel du rapport PH2O:PH2 déterminé à l'étape a) à une valeur strictement inférieure à 1 peut être effectuée en utilisant un moyen sélectionné parmi les moyens suivants:

  1. i. Augmentation du débit de charge,
  2. ii. Dans le cas où la section réactionnelle ou le réacteur est équipé d'un recyclage du gaz non converti, augmentation du taux de recyclage,
  3. iii. Élimination en continu de tout ou partie de l'eau formée par la réaction,
  4. iv. Modification du rapport H2/CO en entrée de la section réactionnelle de synthèse d'hydrocarbure ou d'au moins un réacteur de ladite section lorsqu'il y en a plusieurs,
  5. v. Diminution de la température opératoire,
  6. vi. Diminution de la pression.
Step b) of any adjustment of the ratio P H2O : P H2 determined in step a) to a value strictly less than 1 may be carried out using a means selected from the following means:
  1. i. Increase of the charge flow,
  2. ii. In the case where the reaction section or the reactor is equipped with a recycling of unconverted gas, increasing the recycling rate,
  3. iii. Continuous removal of all or part of the water formed by the reaction,
  4. iv. Modification of the H2 / CO ratio at the inlet of the hydrocarbon synthesis reaction section or at least one reactor of said section when there are several,
  5. v. Decrease of the operating temperature,
  6. vi. Decrease of the pressure.

De manière plus détaillée, cet ajustement peut être effectué en utilisant l'un des moyens suivants:

  1. i. L'augmentation du débit de charge fraîche (gaz de synthèse) est un des moyens préférés. II permet de réduire le temps de contact de la charge avec le catalyseur, donc de réduire le taux de conversion de CO par passe et par conséquent de réduire le rapport PH2O:PH2 . En outre, cette action présente l'avantage d'augmenter la productivité de l'unité sans dégrader la sélectivité intrinsèque de la réaction Fischer-Tropsch.
  2. ii. L'augmentation du taux de recyclage du gaz non converti, dans le cas où la section réactionnelle ou au moins un réacteur de ladite section est équipée d'un recyclage interne, compte parmi les moyens d'action préférés. Il engendre la diminution du taux de conversion par passe et par conséquent la diminution du rapport PH2O:PH2 dans la section réactionnelle.
  3. iii. Une autre méthode consiste à éliminer en continu l'eau formée par la réaction au moyen d'un dispositif de séparation implanté dans au moins un réacteur de synthèse Fischer-Tropsch ou dans une boucle de recyclage. Une telle séparation peut par exemple être réalisée au moyen d'un ballon permettant de séparer la phase aqueuse et la phase organique dans une boucle de recyclage ou au moyen d'une membrane implantée dans cette boucle ou dans au moins un réacteur de synthèse.
  4. iv. Modification du rapport H2/CO en entrée de la section réactionnelle de synthèse d'hydrocarbures ou d'au moins un réacteur de synthèse d'hydrocarbures:
    1. a) Cette modification peut être obtenue en modifiant les conditions opératoire de la section de production de gaz de synthèse située en amont de la section réactionnelle Fischer-Tropsch et donc le rapport H2/CO en sortie de cette section gaz de synthèse.
    2. b) L'apport de monoxyde de CO supplémentaire à l'entrée de la section réactionnelle de synthèse ou d'au moins un réacteur conduit à diminuer le rapport H2/CO de la charge et à augmenter le débit total de la charge. Globalement les conditions cinétiques de la synthèse FT sont alors moins favorable et cela engendre une diminution du paramètre PH2O:PH2. Toutefois, cette option n'est généralement pas l'option très préférée car elle est difficile à mettre en oeuvre industriellement. La disponibilité de quantités de CO supplémentaires nécessite en effet une action sur l'unité de production de gaz de synthèse avec modification du rapport H2/CO en sortie de cette unité.
    3. c) L'apport d'hydrogène (H2) supplémentaire à l'entrée de la section réactionnelle de synthèse ou d'au moins un réacteur est généralement plus facile à mettre en oeuvre industriellement en utilisant un flux supplémentaire d'hydrogène disponible sur le site. Cet apport conduit à l'augmentation du rapport H2/CO dans la charge de l'étape réactionnelle Fischer-Tropsch. Cet excès supplémentaire d'hydrogène engendre une diminution du paramètre PH2O:PH2 . Toutefois, cette option présente l'inconvénient de modifier la sélectivité intrinsèque de la réaction FT du fait l'excès supplémentaire d'hydrogène dans la charge. Cette modification conduit à la formation plus importante de produits légers et notamment d'hydrocarbures C2-C4 et de méthane indésirable. Ce moyen n'est donc pas un moyen préféré selon l'invention.
    4. d) Cette modification peut-être également parfois être obtenue en modifiant les conditions de recyclage interne tel que détaillé précédemment en ii.
  5. v. La diminution de la température conduit à un ralentissement de la cinétique de la réaction selon la loi d'Arrhenius. Par conséquent, la diminution de la température provoque une diminution du taux de conversion de CO et donc une diminution du rapport PH2O:PH2. Cette action présente l'inconvénient de réduire également la productivité du procédé.
  6. vi. La diminution de pression aura également un impact sur la cinétique de la réaction et conduit à une diminution du rapport PH2O:PH2 par diminution du niveau de conversion. Toutefois, ce moyen présente un impact négatif sur la production du procédé.
In more detail, this adjustment can be made using one of the following means:
  1. i. Increasing the fresh charge rate (synthesis gas) is one of the preferred means. It makes it possible to reduce the contact time of the feedstock with the catalyst, thus to reduce the CO conversion rate per pass and consequently to reduce the P H 2 O : P H 2 ratio. In addition, this action has the advantage of increasing the productivity of the unit without degrading the intrinsic selectivity of the Fischer-Tropsch reaction.
  2. ii. Increasing the unconverted gas recycling rate, in the case where the reaction section or at least one reactor of said section is equipped with internal recycling, is one of the preferred means of action. It generates the decrease of the conversion rate per pass and consequently the decrease of the ratio P H2O : P H2 in the reaction section.
  3. iii. Another method consists in continuously removing the water formed by the reaction by means of a separation device implanted in at least one Fischer-Tropsch synthesis reactor or in a recycling loop. Such a separation may for example be carried out by means of a balloon for separating the aqueous phase and the organic phase in a recycling loop or by means of a membrane implanted in this loop or in at least one synthesis reactor.
  4. iv. Modification of the H2 / CO ratio at the inlet of the hydrocarbon synthesis reaction section or of at least one hydrocarbon synthesis reactor:
    1. a) This modification can be obtained by modifying the operating conditions of the synthesis gas production section located upstream of the Fischer-Tropsch reaction section and thus the H2 / CO ratio at the outlet of this synthesis gas section.
    2. b) The addition of additional CO monoxide to the inlet of the synthesis reaction section or at least one reactor leads to decrease the H2 / CO ratio of the feedstock and to increase the total flow rate of the feedstock. Overall, the kinetic conditions of the FT synthesis are then less favorable and this leads to a decrease in the parameter P H2O : P H2 . However, this option is generally not the very preferred option because it is difficult to implement industrially. The availability of additional amounts of CO 2 indeed requires action on the synthesis gas production unit with modification of the H2 / CO ratio at the outlet of this unit.
    3. c) The addition of hydrogen (H2) to the inlet of the synthesis reaction section or at least one reactor is generally easier to implement industrially using an additional flow of hydrogen available on the site . This addition leads to the increase of the H2 / CO ratio in the feed of the Fischer-Tropsch reaction step. This additional excess of hydrogen causes a decrease in the parameter P H2O : P H2 . However, this option has the drawback of modifying the intrinsic selectivity of the FT reaction because of the additional excess of hydrogen in the feedstock. This modification leads to the larger formation of light products including C2-C4 hydrocarbons and undesirable methane. This means is not a preferred means according to the invention.
    4. d) This modification may also sometimes be obtained by modifying the internal recycling conditions as detailed previously in ii.
  5. v. The decrease in temperature leads to a slowing down of the kinetics of the reaction according to Arrhenius's law. Therefore, the decrease in temperature causes a decrease in the CO conversion rate and therefore a decrease in the ratio P H2O : P H2 . This action has the disadvantage of also reducing the productivity of the process.
  6. vi. The decrease in pressure will also have an impact on the kinetics of the reaction and leads to a decrease in the ratio P H2O : P H2 by reducing the level of conversion. However, this means has a negative impact on the production of the process.

Le choix de l'un de ces moyens dépend essentiellement des moyens disponibles sur l'unité industrielle et des conditions opératoires au moment du choix.The choice of one of these means depends essentially on the means available on the industrial unit and the operating conditions at the time of choice.

Les moyens très préférés utilisés à l'étape b) d'ajustement éventuel du rapport PH2O:PH2 sont en général les suivants:

  • I. Augmentation du débit de charge,
  • II. Dans le cas où la section réactionnelle ou au moins un réacteur de ladite section est équipé d'un recyclage du gaz non converti, augmentation du taux de recyclage,
  • III. Élimination en continu de tout ou partie de l'eau formée par la réaction.
The most preferred means used in step b) of possible adjustment of the ratio P H2O : P H2 are in general the following:
  • I. Increase of the charge flow,
  • II. In the case where the reaction section or at least one reactor of said section is equipped with a recycling of the unconverted gas, increase of the recycling rate,
  • III. Continuous removal of all or part of the water formed by the reaction.

Dans certains cas, notamment après un incident sur une unité tel que par exemple une baisse inopinée de la température opératoires, d'autres moyens sont préférentiellement utilisés à l'étape b) d'ajustement éventuel du rapport PH2O:PH2 , ce sont alors les moyens suivants:

  • Diminution de la température opératoire (cas v)
  • Modification du rapport H2/CO en entrée de la section réactionnelle de synthèse Fischer-Tropsch (cas iv)
In some cases, especially after an incident on a unit such as for example an unexpected drop in operating temperature, other means are preferably used in step b) of possible adjustment of the ratio P H2O : P H2 , these are then the following means:
  • Decrease of the operating temperature (case v)
  • Modification of the H2 / CO ratio at the input of the Fischer-Tropsch synthesis reaction section (case iv)

Dans de tels cas, ces moyens sont en effet généralement plus faciles à mettre en oeuvreIn such cases, these means are indeed generally easier to implement

Lorsque le rapport PH2O:PH2 a été ajusté à l'étape b), sa nouvelle valeur théorique est à nouveau déterminée (étape c) afin de contrôler qu'elle est strictement inférieure à 1,1 , de préférence strictement inférieure à 1,0 et de manière très préférée strictement inférieure à 0,9, de manière encore plus préférée strictement inférieure à 0,8, voire strictement inférieure à 0,65.When the ratio P H2O : P H2 has been adjusted in step b), its new theoretical value is again determined (step c) in order to check that it is strictly less than 1.1, preferably strictly less than 1 , 0 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8, or even strictly less than 0.65.

Si tel n'est pas le cas les étapes a à c sont répétées (étape d) jusqu'à ce que soit respecté le critère PH2O:PH2 théorique strictement inférieure à 1,1 , de préférence strictement inférieure à 1,0 et de manière très préférée strictement inférieure à 0,9 , de manière encore plus préférée strictement inférieure à 0,8, voire strictement inférieure à 0,65.If this is not the case, steps a to c are repeated (step d) until the criterion P H2O is met: P H2 theoretical strictly less than 1.1, preferably strictly less than 1.0 and very preferably strictly less than 0.9, even more preferably strictly less than 0.8, or even strictly less than 0.65.

En résumé, l'invention concerne une méthode pour optimiser le fonctionnement d'une section réactionnelle de synthèse d'hydrocarbures à partir d'une charge comprenant du gaz de synthèse, dans laquelle on opère en présence d'un catalyseur comprenant du cobalt, ladite méthode comprenant les étapes suivantes :

  1. a) Détermination du rapport molaire PH2O:PH2 théorique dans la section réactionnelle comme dans la revendication 1.
  2. b) Ajustement éventuel du rapport PH2O:PH2 déterminé à l'étape a) à une valeur strictement inférieure à 1,1 à l'aide d'un moyen sélectionné parmi les moyens suivants:
    1. i. Augmentation du débit de charge,
    2. ii. Dans le cas où la section réactionnelle ou au moins un réacteur de ladite section est équipé d'un recyclage du gaz non converti, augmentation du taux de recyclage,
    3. iii. Élimination en continu de tout ou partie de l'eau formée par la réaction,
    4. iv. Modification du rapport H2/CO en entrée de la section réactionnelle de synthèse d'hydrocarbures ou d'au moins un réacteur de synthèse d'hydrocarbures,
    5. v. Diminution de la température opératoire,
    6. vi. Diminution de la pression,
  3. c) Détermination de la nouvelle valeur du rapport PH2O:PH2 théorique dans la section
    réactionnelle,
    puis éventuellement, lorsque cela est nécessaire, l'étape d) suivante, après l'étape c):
  4. d) Répétition des étapes a) à c) jusqu'à ce que le rapport des pressions partielles d'eau et d'hydrogène PH2O:PH2 présente une valeur strictement inférieure à 1,1.
In summary, the invention relates to a method for optimizing the operation of a hydrocarbon synthesis reaction section from a feedstock comprising synthesis gas, in which one operates in the presence of a catalyst comprising cobalt, said method comprising the following steps:
  1. a) Determination of the theoretical P H2O : P H2 molar ratio in the reaction section as in claim 1.
  2. b) Possible adjustment of the P H2O : P H2 ratio determined in step a) to a value strictly lower than 1.1 using a means selected from the following means:
    1. i. Increase of the charge flow,
    2. ii. In the case where the reaction section or at least one reactor of said section is equipped with a recycling of the unconverted gas, increase of the recycling rate,
    3. iii. Continuous removal of all or part of the water formed by the reaction,
    4. iv. Modification of the H2 / CO ratio at the inlet of the hydrocarbon synthesis reaction section or of at least one hydrocarbon synthesis reactor,
    5. v. Decrease of the operating temperature,
    6. vi. Decrease of the pressure,
  3. c) Determination of the new value of the ratio P H2O : theoretical P H2 in the section
    reaction,
    then optionally, when necessary, the following step d), after step c):
  4. d) repeating steps a) to c) until the ratio of partial pressures of water and hydrogen P H2O : P H2 has a value strictly less than 1.1.

Ladite section réactionnelle peut comprendre comprenant un ou plusieurs réacteurs de synthèse d'hydrocarbures.Said reaction section may comprise one or more hydrocarbon synthesis reactors.

Les exemples qui suivent illustrent l'invention.The following examples illustrate the invention.

Exemple 1:Example 1

La réaction de synthèse Fischer-Tropsch est opérée dans un dispositif comprenant un réacteur triphasique parfaitement agité de type autoclave (CSTR selon les abréviations anglo-saxonnes). Ce réacteur peut être maintenu en pression et en température et opéré en continu. Le réacteur est alimenté par un gaz de synthèse présentant un rapport H2/CO qui peut être ajusté entre 1,5 et 2,5.The Fischer-Tropsch synthesis reaction is carried out in a device comprising a perfectly stirred three-phase reactor of the autoclave type (CSTR according to the English abbreviations). This reactor can be maintained under pressure and temperature and operated continuously. The reactor is fed with a synthesis gas having an H2 / CO ratio which can be adjusted between 1.5 and 2.5.

Le débit de charge (gaz de synthèse) est contrôlé et peut être également ajusté pour augmenter ou diminuer le temps de réaction. La synthèse Fischer-Tropsch est effectué à 230 °C, 2 MPa, en présence de 35 g d'un catalyseur contenant 13%poids de cobalt déposé sur un support alumine ayant une surface spécifique d'environ 150 m2/g et de structure gamma cubique. Les performances catalytiques sont évaluées par bilan matière à partir de l'analyse et de la mesure des divers flux sortants du réacteur. Les compositions des divers flux sortants (effluents gaz, produit liquide hydrocarboné et produit aqueux) sont déterminées par chromatographie en phase gazeuse.The charge rate (synthesis gas) is controlled and can also be adjusted to increase or decrease the reaction time. The Fischer-Tropsch synthesis is carried out at 230 ° C., 2 MPa, in the presence of 35 g of a catalyst containing 13% by weight of cobalt deposited on an alumina support having a specific surface area of approximately 150 m 2 / g and having a gamma structure. cubic. The catalytic performances are evaluated by material balance from the analysis and the measurement of the various outgoing flows of the reactor. The compositions of the various outgoing streams (gas effluents, hydrocarbon liquid product and aqueous product) are determined by gas chromatography.

Plusieurs expériences sont réalisées dans différentes conditions d'alimentation en gaz de synthèse variables : cas 1 : 80 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,0 cas 2 : 70 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,0 cas 3 : 60 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,0 cas 4 : 40 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,0 cas 5 : 100 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,5 cas 6 : 88 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,5 cas 7 : 75 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,5 cas 8 : 70 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,5 cas 9: 64 NI/h de gaz de synthèse avec rapport H2/CO égal à 2,5 Cas 10: 78 NI/h de gaz de synthèse avec rapport H2/CO égal à 1,5 Cas 11: 66 NI/h de gaz de synthèse avec rapport H2/CO égal à 1,5 Cas 12:: 56 NI/h de gaz de synthèse avec rapport H2/CO égal à 1,5 Several experiments are carried out under different conditions of supply of variable synthesis gas: case 1: 80 NI / h of synthesis gas with H2 / CO ratio equal to 2.0 case 2: 70 NI / h of synthesis gas with H2 / CO ratio equal to 2.0 case 3: 60 NI / h of synthesis gas with H2 / CO ratio equal to 2.0 case 4: 40 NI / h of synthesis gas with H2 / CO ratio equal to 2.0 case 5: 100 NI / h of syngas with H2 / CO ratio of 2.5 case 6: 88 N / h of syngas with H2 / CO ratio of 2.5 case 7: 75 NI / h of syngas with H2 / CO ratio of 2.5 case 8: 70 NI / h of syngas with H2 / CO ratio of 2.5 case 9: 64 NI / h of syngas with H2 / CO ratio of 2.5 Case 10: 78 NI / h of synthesis gas with H2 / CO ratio equal to 1.5 Case 11: 66 NI / h of synthesis gas with H2 / CO ratio equal to 1.5 Case 12 :: 56 NI / h of synthesis gas with H2 / CO ratio equal to 1.5

Les résultats obtenus après 50 heures de test sont présentés dans le tableau 1 suivant: Tableau 1: Cas R1 H2/CO charge Cv Conv. CO(%) Rft H2/CO réaction PH2O:PH2 théorique Sélect. CO2 (% C) Sélect. CH4 (% C) Sélect. C5+ (% C) Prod. en C5+ (kg/kg.h) 1 2,0 57,3 2,10 0,72 0,8 7,0 83,8 0,220 2 2,0 62,7 2,10 0,92 0,9 7,1 82,6 0,211 3 2,0 68,7 2,10 1,23 1,8 8,5 78,2 0,198 4 2,0 80,9 2,10 2,69 6,2 17,9 59,8 0,155 5 2,5 62,2 2,15 0,53 0,4 9,1 78,4 0,256 6 2,5 69,1 2,15 0,68 0,7 10,0 78,0 0,250 7 2,5 78,0 2,15 0,95 0,9 12,1 74,1 0,241 8 2,5 81,5 2,15 1,09 1,6 13,5 69,5 0,235 9 2,5 86,0 2,15 1,32 4,1 19,5 55,3 0,226 10 1,5 42,2 2,06 0,67 0,5 4,5 90,2 0,226 11 1,5 47,1 2,06 0,89 0,8 5,0 88,7 0,190 12 1,5 51,6 2,06 1,18 1,6 7,3 83,1 0,179 The results obtained after 50 hours of test are presented in the following Table 1: <b> Table 1: </ b> Case R1 H2 / CO charge Cv Conv. CO(%) Rft H2 / CO reaction P H2O : Theoretical P H2 Select. CO2 (% C) Select. CH4 (% C) Select. C5 + (% C) Prod. in C5 + (kg / kg.h) 1 2.0 57.3 2.10 0.72 0.8 7.0 83.8 0,220 2 2.0 62.7 2.10 0.92 0.9 7.1 82.6 0.211 3 2.0 68.7 2.10 1.23 1.8 8.5 78.2 0.198 4 2.0 80.9 2.10 2.69 6.2 17.9 59.8 0.155 5 2.5 62.2 2.15 0.53 0.4 9.1 78.4 0.256 6 2.5 69.1 2.15 0.68 0.7 10.0 78.0 0,250 7 2.5 78.0 2.15 0.95 0.9 12.1 74.1 0.241 8 2.5 81.5 2.15 1.09 1.6 13.5 69.5 0,235 9 2.5 86.0 2.15 1.32 4.1 19.5 55.3 0.226 10 1.5 42.2 2.06 0.67 0.5 4.5 90.2 0.226 11 1.5 47.1 2.06 0.89 0.8 5.0 88.7 0,190 12 1.5 51.6 2.06 1.18 1.6 7.3 83.1 0.179

Sélectivités en % carbone (CO2,CH4,C5+):Selectivities in% carbon (CO2, CH4, C5 +):

100 × nombre de moles de carbone sous forme de CO 2 ou CH 4 ou C 5 + / nombre total de moles de carbone transformées en produits

Figure imgb0002
100 × number of moles of carbon in the form of CO 2 or CH 4 or C 5 + / total number of moles of carbon transformed into products
Figure imgb0002

Productivité en C5+ (kq/kq.h):Productivity in C5 + (kq / kq.h):

kilogrammes d'hydrocarbures C5+ formés par heure et par kilogramme de catalyseur utilisé.kilograms of C5 + hydrocarbons formed per hour per kilogram of catalyst used.

Les résultats du tableau 1 montrent que pour des rapports H2:CO allant de 1,5 à 2,5 on note une augmentation importante de la sélectivité en CO2 et en méthane lorsque le rapport PH2O:PH2 théorique présente une valeur supérieure à 1, ce qui a un impact global très néfaste sur la sélectivité en hydrocarbures C5+, les produits recherchés dans cette synthèse. En dessous de PH2O:PH2 = 1, l'influence d'une augmentation de ce rapport reste beaucoup plus faible.The results of Table 1 show that for ratios H2: CO ranging from 1.5 to 2.5 there is a significant increase in the selectivity of CO2 and methane when the ratio P H2O : P H2 theoretical has a value greater than 1 , which has a very detrimental global impact on the selectivity of C5 + hydrocarbons, the products sought in this synthesis. Below P H2O : P H2 = 1, the influence of an increase in this ratio remains much lower.

Exemple 2: Exemple de réajustement du rapport après une modification de consigne. Example 2 : Example of readjustment of the report after a setpoint change.

Le cas n°2 de l'exemple 1 est considéré comme base de départ (débit de charge de 70 NI/h. Les performances obtenues après 50 heures de test sont celles indiquées dans le tableau 1.Case No. 2 of Example 1 is considered as the starting point (charge flow of 70 N / h) The performances obtained after 50 hours of test are those indicated in Table 1.

La température de la section réactionnelle Fischer-Tropsch est augmentée de 5°C ( T= 235°C et 2 MPa) sans changer le débit de charge (gaz de synthèse au débit de 70 NI/h). Ceci engendre une modification du rapport PH2O:PH2 qui devient supérieur à 1 et une augmentation des sélectivités en méthane et en dioxyde de carbone (CO2). Ces conditions sont résumés dans le cas 13 du tableau 2.The temperature of the Fischer-Tropsch reaction section is increased by 5 ° C. (T = 235 ° C. and 2 MPa) without changing the feed rate (synthesis gas at a flow rate of 70 ° C.). NI / h). This causes a modification of the P H2O : P H2 ratio which becomes greater than 1 and an increase in the selectivities of methane and carbon dioxide (CO2). These conditions are summarized in case 13 of Table 2.

Les conditions opératoires sont maintenues constantes (T= 235°C et 2 MPa), mais le rapport PH2O:PH2 est ajusté par le biais d'une augmentation du débit de charge qui passe à 100 NI/h (cas 14). Ceci permet de retrouver un rapport PH2O:PH2 théorique <1 avec des sélectivités en CO2 et en méthane plus faibles, et une sélectivité en hydrocarbures C5+ (hydrocarbures ayant un nombre de carbone supérieur ou égal à 5) plus élevée. Tableau 2: Cas R1 H2:CO charge Cv Conv. CO (%) PH2O:PH2 théorique Sélect. CO2 (% C) Sélect. CH4 (% C) Sélect. C5+ (% C) Prod. en C5+ (kg/kg.h) 2 2,0 62,7 0,92 0,9 7,1 82,6 0,211 13 2,0 73,2 1,58 2,1 10,2 76,1 0,246 14 2,0 59,6 0,80 0,9 7,5 80,0 0,286 The operating conditions are kept constant (T = 235 ° C. and 2 MPa), but the ratio P H2O : P H2 is adjusted by means of an increase in the charge flow which goes to 100 N / h (case 14). This makes it possible to recover a theoretical P H2O : P H2 ratio <1 with lower CO2 and methane selectivities, and a selectivity for C5 + hydrocarbons (hydrocarbons having a carbon number greater than or equal to 5) higher. <b> Table 2: </ b> Case R1 H2: CO load Cv Conv. CO (%) P H2O : Theoretical P H2 Select. CO2 (% C) Select. CH4 (% C) Select. C5 + (% C) Prod. in C5 + (kg / kg.h) 2 2.0 62.7 0.92 0.9 7.1 82.6 0.211 13 2.0 73.2 1.58 2.1 10.2 76.1 0.246 14 2.0 59.6 0.80 0.9 7.5 80.0 0.286

Dans le cas n° 13, même si la productivité en hydrocarbures C5+ augmente légèrement, une perte de carbone est enregistrée dans le mesure l'augmentation de la conversion s'effectue avec une augmentation des sélectivités en méthane et en CO2. Une fraction beaucoup plus important du carbone présent dans la charge est donc transformée en méthane et en dioxyde de carbone, produits indésirables. Par contre, le retour à un rapport PH2O:PH2 théorique inférieur à 1 permet d'obtenir à nouveau une productivité élevée avec une faible sélectivité en CH4 et CO2, donc de minimiser les pertes en carbone.In case 13, even if the productivity of C5 + hydrocarbons increases slightly, a loss of carbon is recorded as the increase of the conversion is carried out with an increase of the selectivities in methane and in CO2. A much larger fraction of the carbon in the feed is converted into methane and carbon dioxide, undesirable products. On the other hand, the return to a theoretical P H2O : P H2 ratio of less than 1 makes it possible once again to obtain high productivity with a low selectivity for CH4 and CO2, thus minimizing carbon losses.

Claims (10)

  1. A method for optimizing the operation of a reaction section for hydrocarbon synthesis starting from a feed comprising synthesis gas, operated in the presence of a catalyst comprising cobalt, said method comprising the following steps:
    a) determining the theoretical molar ratio, PH2O:PH2, in the reaction section using the following calculation: theoretical P H 2 O : P H 2 = Cv / R 1 - Rft x Cv ;
    Figure imgb0004

    in which:
    Cv = (CO inlet - CO outlet)/CO inlet;
    R1 = H2/CO feed = H2 inlet/CO inlet (mol/mol);
    Rft = H2/CO reaction = (H2 inlet - H2 outlet)/(CO inlet - CO outlet).
    b) optionally, adjusting the ratio PH2O:PH2 determined in step a) to a value strictly below 1.1 using means selected from the following means:
    i. increasing the feed flow rate;
    ii. in the case in which the reaction section or at least one reactor of said section is equipped with a recycler for unconverted gas, increasing the recycle ratio;
    iii. continuously eliminating all or part of the water formed by the reaction;
    iv. modifying the ratio H2/CO at the inlet to the reaction section for hydrocarbon synthesis or to at least one hydrocarbon synthesis reactor;
    v. reducing the operating temperature;
    vi. reducing the pressure;
    c) determining the new value for the theoretical ratio PH2O:PH2 in the reaction section.
  2. A method according to claim 1, in which the optional adjustment of the ratio PH2O:PH2 (step b)) is carried out using means selected from the following means:
    i. increasing the feed flow rate;
    ii. in the case in which the reactor is equipped with a recyclcr for unconverted gas, increasing the recycle ratio;
    iii. continuously eliminating all or part of the water formed by the reaction.
  3. A method according to one of the preceding claims, in which the molar ratio PH2O:PH2 (steps a) and c)) is determined using means selected from the following means:
    i. analyzing the gas stream at the outlet from said reaction section;
    ii. measuring the quantity of carbon monoxide in the gaseous effluent and evaluating the ratio from the degree of conversion of carbon monoxide and the H2:CO ratio in the feed.
  4. A method according to one of the preceding claims, in which the molar ratio PH2O:PH2 (steps a) and c)) is determined by measuring the quantity of carbon monoxide in the gaseous effluent and evaluating the ratio from the degree of conversion of carbon monoxide and the H2:CO ratio in the feed, and optionally adjusting the ratio PH2O:PH2 (step b)) using means selected from the following means:
    i. increasing the feed flow rate;
    ii. in the case in which the reactor is equipped with a recycler for unconverted gas, increasing the recycle ratio.
  5. A method according to one of the preceding claims, in which the hydrocarbon synthesis is carried out in at least one reactor with a fixed bed catalyst.
  6. A method according to one of the preceding claims, in which the hydrocarbon synthesis is carried out in at least one three-phase reactor comprising the catalyst in suspension in an essentially inert liquid phase and the reactive gas phase.
  7. A method according to one of the preceding claims, in which the synthesis gas used in the Fischer-Tropsch synthesis has a H2:CO molar ratio in the range 1:2 to 5:1. and the Fischer-Tropsch synthesis is carried out at a pressure in the range 0.1 MPa to 15 MPa, with an hourly space velocity of synthesis gas in the range 100 to 20000 h-1.
  8. A method according to one of the preceding claims, in which the synthesis gas used in the Fischer-Tropsch synthesis has a H2:CO molar ratio in the range 1.5:1 to 2.6:1 and the Fischer-Tropsch synthesis is carried out at a pressure in the range 1.5 MPa to 5 MPa, with an hourly space velocity of synthesis gas in the range 400 to 10000 h-1 .
  9. A method according to one of the preceding claims, in which at the end of step c) the ratio of the partial pressures of water and hydrogen, PH2O:PH2, has a value strictly less than 1.
  10. A method according to one of the preceding claims, in which at the end of step c) the ratio of the partial pressures of water and hydrogen, PH2O:PH2, has a value strictly less than 0.65.
EP07866482A 2006-11-13 2007-11-02 Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas Active EP2099727B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07866482T PL2099727T3 (en) 2006-11-13 2007-11-02 Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0609879A FR2908421B1 (en) 2006-11-13 2006-11-13 METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS.
PCT/FR2007/001816 WO2008065268A1 (en) 2006-11-13 2007-11-02 Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas

Publications (2)

Publication Number Publication Date
EP2099727A1 EP2099727A1 (en) 2009-09-16
EP2099727B1 true EP2099727B1 (en) 2010-09-15

Family

ID=38219512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07866482A Active EP2099727B1 (en) 2006-11-13 2007-11-02 Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas

Country Status (10)

Country Link
US (1) US8399526B2 (en)
EP (1) EP2099727B1 (en)
CN (1) CN101605744B (en)
AT (1) ATE481372T1 (en)
CA (1) CA2669301C (en)
DE (1) DE602007009313D1 (en)
FR (1) FR2908421B1 (en)
NO (1) NO341790B1 (en)
PL (1) PL2099727T3 (en)
WO (1) WO2008065268A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908421B1 (en) 2006-11-13 2009-02-06 Inst Francais Du Petrole METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS.
ITMI20080007A1 (en) * 2008-01-04 2009-07-05 Eni Spa PROCEDURE FOR STABILIZING THE PERFORMANCE OF A CATALYST FOR THE REACTION OF FISCHER TROPSCH
FR2946659B1 (en) * 2009-06-10 2011-07-01 Inst Francais Du Petrole METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS BY CONTROLLING THE PARTIAL CO 2 PRESSURE
MX350697B (en) * 2012-03-09 2017-09-14 Evoenergy Llc Plasma chemical device for conversion of hydrocarbon gases to liquid fuel.
FR2991991B1 (en) * 2012-06-18 2014-06-13 IFP Energies Nouvelles PROCESS FOR SYNTHESIZING HYDROCARBONS FROM SYNTHESIS GAS WITH EXTERNAL LOOP TEMPERATURE CONTROL
WO2023174861A1 (en) * 2022-03-14 2023-09-21 Topsoe A/S Conversion of methanol to a hydrocarbon product stream
WO2024072544A1 (en) 2022-09-29 2024-04-04 Exxonmobil Chemical Patents Inc. Foamable branched polypropylene compositions and foamed products therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870544B1 (en) * 2004-05-19 2006-06-30 Inst Francais Du Petrole FISCHER-TROPSCH SYNTHESIS PROCESS INCLUDING IMPROVED REGULATION
FR2908421B1 (en) 2006-11-13 2009-02-06 Inst Francais Du Petrole METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS.

Also Published As

Publication number Publication date
CA2669301C (en) 2015-01-13
US20110009502A1 (en) 2011-01-13
CN101605744B (en) 2013-06-19
US8399526B2 (en) 2013-03-19
EP2099727A1 (en) 2009-09-16
NO341790B1 (en) 2018-01-22
CN101605744A (en) 2009-12-16
WO2008065268A1 (en) 2008-06-05
FR2908421B1 (en) 2009-02-06
CA2669301A1 (en) 2008-06-05
DE602007009313D1 (en) 2010-10-28
FR2908421A1 (en) 2008-05-16
NO20092043L (en) 2009-07-31
ATE481372T1 (en) 2010-10-15
PL2099727T3 (en) 2011-04-29

Similar Documents

Publication Publication Date Title
EP2099727B1 (en) Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas
CA2798647C (en) Continuous hydrocarbon fabrication process with catalyst loading
WO2005023736A1 (en) Novel method for improved fischer-tropsch catalyst stability and higher stable syngas conversion
AU2006323998A1 (en) Method to start a process for producing hydrocarbons from synthesis gas
EP1765956B1 (en) Fischer-tropsch synthesis method with improved control
FR2806736A1 (en) PROCESS FOR PRODUCING HYDROCARBONS FROM SYNTHESIS GAS IN A THREE-PHASE REACTOR
EP1448749B1 (en) Method for converting synthetic gas in series-connected reactors
EP2440634B1 (en) Method for optimizing the operation of a unit for the synthesis of hydrocarbons from synthetic gas by controlling the partial co pressure
US8487011B2 (en) Sulfided fischer-tropsch catalyst
US10227533B2 (en) Process to prepare paraffins and waxes
EP2077306B1 (en) Improved Fischer-Tropsch synthesis method by controlling the partial water pressure in the reaction zone
CA2876291C (en) Method for synthesizing hydrocarbons from a synthesis gas with temperature control for the external loop technical field of the invention
EP1268048A1 (en) Method for converting hydrocarbons in a three-phase reactor
AU2017440226A1 (en) Noble metal catalysts and processes for reforming of methane and other hydrocarbons
WO2008065284A2 (en) Gas-to-lquid conversion method with simplified logistics
US10421912B2 (en) Method of manufacturing hydrocarbons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENI S.P.A.

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REF Corresponds to:

Ref document number: 602007009313

Country of ref document: DE

Date of ref document: 20101028

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

BERE Be: lapsed

Owner name: IFP

Effective date: 20101130

Owner name: ENI S.P.A.

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101226

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

26N No opposition filed

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007009313

Country of ref document: DE

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20170831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20171030

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20171023

Year of fee payment: 11

Ref country code: LV

Payment date: 20171020

Year of fee payment: 11

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20181102

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E005072

Country of ref document: EE

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181102

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231123

Year of fee payment: 17

Ref country code: IT

Payment date: 20231124

Year of fee payment: 17

Ref country code: FI

Payment date: 20231124

Year of fee payment: 17

Ref country code: DE

Payment date: 20231127

Year of fee payment: 17