EP2095047A2 - Method and device for obtaining products from synthesis gas - Google Patents

Method and device for obtaining products from synthesis gas

Info

Publication number
EP2095047A2
EP2095047A2 EP07819626A EP07819626A EP2095047A2 EP 2095047 A2 EP2095047 A2 EP 2095047A2 EP 07819626 A EP07819626 A EP 07819626A EP 07819626 A EP07819626 A EP 07819626A EP 2095047 A2 EP2095047 A2 EP 2095047A2
Authority
EP
European Patent Office
Prior art keywords
carbon monoxide
gas
hydrogen
stage
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07819626A
Other languages
German (de)
French (fr)
Inventor
Martin Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2095047A2 publication Critical patent/EP2095047A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04587Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for the NH3 synthesis, e.g. for adjusting the H2/N2 ratio
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Definitions

  • the invention relates to a process for obtaining a carbon monoxide and a hydrogen product by cryogenic decomposition of a feed gas consisting predominantly of hydrogen (H 2 ) and carbon monoxide (CO) in a two-stage condensation process, wherein peak cooling for the second condensation stage by mixing an H 2 - rich fraction with liquid nitrogen (MN 2 ) is produced, and an apparatus for carrying out the method.
  • B. catalytic steam reforming or partial oxidation (POX) is produced from hydrocarbonaceous starting materials, such as natural gas, LPG, naphtha, heavy oil or coal, so-called synthesis gas, which for the most part consists of H 2 and CO, but also methane (CH 4 ) , Water (H 2 O), carbon dioxide (CO 2 ) and other components, such as. As nitrogen and argon contains. From the synthesis gas, CO and H 2 are obtained as products by purification and decomposition, which are widely used in industry.
  • Separation method is particularly useful for separation of synthesis gases produced by partial oxidation, since such gases are usually of high pressure and at the same time have high CO and low methane content.
  • the feed gas is cooled in indirect heat exchange against process streams to be heated so far that it comes to a partial condensation in which form a CO-rich, H 2 -containing liquid fraction and an H 2 -rich, CO-containing gas fraction, which subsequently in a Phase separator to be separated.
  • the CO-rich liquid fraction in the still H 2 and other substances are dissolved, is subsequently purified (H 2 -Strippung, methane separation) and delivered as a CO product.
  • the CO contained in the feed gas can only be obtained with a yield of about 90%.
  • an H 2 -containing stream is obtained, which has a purity of only about 90 mol%, and therefore can not be discharged as a product.
  • the condensation process either by one Membrane unit or extended by a condensation stage (two-stage condensation process).
  • the H 2 -rich, CO-containing gas fraction obtained by condensation is subjected to a wide treatment, wherein the carbon monoxide is largely separated and fed into the CO product; after separation of the carbon monoxide, the H 2 -rich gas fraction has the required purity of more than 95 mol%, which in some cases can be dispensed with a subsequent purification by pressure swing adsorption.
  • the H 2 -rich, CO-containing gas fraction obtained in the first condensation stage is further cooled against zuracemende process streams to form a second CO-rich, H 2 -containing liquid fraction and a second H 2 -rich, CO-containing gas fraction, the subsequently separated in a second phase separator.
  • the peak cold needed for the second condensation stage is generated in the prior art by the mixture of liquid nitrogen with a predominantly hydrogen gas fraction, including liquid nitrogen from the cryogenic process from the outside -. B. from a cryogenic air separation, in which the oxygen required for the POX is obtained - is supplied.
  • the invention is therefore based on the object to provide a method of the type mentioned and an apparatus for performing the method, which make it possible with lower operating costs than is possible in the prior art, from a synthesis gas, a hydrogen and a carbon monoxide product to create.
  • this object is achieved in that at least part (GN 2 ) of the MN 2 is produced from nitrogen supplied from the outside by cooling, condensation, and, preferably, subcooling against process streams to be heated within the two-stage condensation process, to the two-stage condensation process.
  • the invention is based on the experience that gaseous nitrogen can be produced much more cost-effectively compared to liquid nitrogen. By applying the method according to the invention thus corresponding reductions in operating, but also the investment costs in the air separator, achieved.
  • the two-stage condensation process is used to decompose synthesis gas produced by partial oxidation (POX) and the oxygen required for the POX is recovered in an air fractionator by the cryogenic separation of air, then the liquid nitrogen is conveniently obtained from that air fractionator ,
  • POX partial oxidation
  • an embodiment of the method according to the invention provides that the missing amount of nitrogen (LN 2 ) is liquid is supplied outside.
  • the quantitative ratio of GN 2 to LN 2 is expediently adjusted so that both the carbon monoxide product with the desired yield and the hydrogen product with the required purity, but without a cold excess, are produced.
  • GN 2 or / and LN 2 be obtained from an air fractionator in which oxygen is produced (for example in a POX) to produce the feed gas containing hydrogen and carbon monoxide.
  • medium or low pressure level GN 2 is withdrawn from the air separator to minimize the overall energy requirements of the process.
  • the invention further relates to an apparatus for carrying out a two-stage condensation process (gas decomposer) in which a feed gas consisting predominantly of hydrogen (H 2 ) and carbon monoxide (CO) can be decomposed into a carbon monoxide and a hydrogen product, wherein peak cooling for the second condensation stage of the gas decomposer by the mixture of an H 2 -rich fraction with liquid nitrogen (MN 2 ) is generated.
  • gas decomposer a feed gas consisting predominantly of hydrogen (H 2 ) and carbon monoxide (CO) can be decomposed into a carbon monoxide and a hydrogen product, wherein peak cooling for the second condensation stage of the gas decomposer by the mixture of an H 2 -rich fraction with liquid nitrogen (MN 2 ) is generated.
  • the gas decomposer comprises a device for producing at least part (GN 2 ) of the MN 2 , in which nitrogen which can be supplied in gaseous form from the outside by cooling against process streams to be heated is condensable and, preferably, subcoolable.
  • a gas separator usually has two series-connected heat exchangers, wherein the heat exchangers are plate heat exchangers and the cold side of the first heat exchanger is warmer than the warm side of the second heat exchanger.
  • the warm side of the first heat exchanger is connected via a line with a source of gaseous nitrogen, is supplied via the nitrogen gas in the first heat exchanger.
  • the heat exchangers is then carried out against heated process streams cooling, condensation and optionally a supercooling of the nitrogen.
  • the gas separator is equipped with a device on a subset of the MN 2 as liquid nitrogen (LN 2 ) from outside the gas separator can be fed.
  • a preferred embodiment of the device according to the invention provides that the gaseous nitrogen for generating G-N 2 or / and LN 2 are obtainable from an air separator, in which oxygen is produced for generating the feed gas containing hydrogen and carbon monoxide (for example in a POX) ,
  • this gaseous nitrogen from the air separator has a medium or low pressure level.
  • the process of the invention enables the cost of producing peak cold in the two-stage condensation process to be reduced and the economics of this separation process to be increased.
  • the embodiments are methods for producing a hydrogen and a carbon monoxide product from a hydrocarbon-containing feed.
  • the hydrocarbon-containing feed 1 is introduced into the POX reactor P together with the oxygen stream 2 obtained from the air fractionator LZ, where it is converted by partial oxidation into a synthesis gas 3 containing predominantly hydrogen (H 2 ) and carbon monoxide (CO).
  • a predominantly consisting of hydrogen and carbon monoxide feed gas 4 is obtained from the synthesis gas 3 by the substantial removal of undesirable substances such as water and carbon dioxide, which is then fed to the cryogenic separation unit Z.
  • a first two-phase mixture 5 is produced from the feed gas 4 by cooling and partial condensation against process streams to be heated in the two main heat exchangers E1 and E2, which in the phase separator D1 into a first H 2 -rich, CO-containing gas phase 6 and a first CO rich, H 2 -containing liquid phase 7 is separated.
  • the first H 2 -rich, CO-containing gas phase 6 is further cooled, wherein a part of the carbon monoxide contained in it condenses out and a second biphasic mixture 8 is formed, which in the phase separator D 2 in a second H 2 -rich, CO-containing gas phase 9 and a second CO-rich, H 2 -containing liquid phase 10 is separated.
  • the second CO-rich, H 2 -containing liquid phase 10 is continued after warming against cooling process streams in the heat exchanger E3 via line 11, via the throttle body a relaxed, together with the relaxed over the throttle body b first CO-rich, H 2 -containing liquid phase 7 via Passed line 12 to the H 2 -Strippkolonnen T1 and abandoned this at the head.
  • the H 2 -trip column T1 serves to remove the dissolved in the CO-rich stream 12 hydrogen.
  • a natural circulation evaporator (reboiler), which is integrated in the heat exchanger E2. From the bottom of the H 2 -trip column T1, a stream 13 is passed into the reboiler, partially evaporated there and returned via line 14.
  • the H 2 -rich, CO-containing overhead fraction 15 from the H 2 -trip column T1 is heated in the heat exchangers E2 and E1 and returned as so-called. Flash gas 16 via the gas purifier R in the process. If the gas purifier R is a Rectisol wash, the recycle compressor (not shown) installed there is preferably used for the recirculation.
  • the bottom fraction from the H 2 -Strippkolonnen T1 a predominantly carbon monoxide and nitrogen (N 2 ) containing mixture is withdrawn via line 17, expanded via the throttle body c and fed to the N 2 / CO separation column T2.
  • the N 2 / CO separation column T2 is heated directly via stream 18, which is carbon monoxide 19 having product purity, which is withdrawn from the CO compressor V after the medium-pressure section V2, cooled in the heat exchanger E1 against process streams to be heated, then via the Throttle d relaxed and fed directly into the column bottom.
  • the product purity having carbon monoxide fraction 27 from the bottom of the N 2 / CO separation column T2 is divided into two subsets 28 and 29, wherein the subset 28 relaxed via the throttle body g and the integrated into the N 2 / CO separation column T2 top condenser E5 its cooling is supplied while the subset 29, after a relaxation via the throttle body h, together with the vaporized in the head cooler E5 and withdrawn from the top of the N 2 / CO separation column T2 CO fraction 30 flows via the line 31 to the heat exchanger E2, from which it is warmed off withdrawn via line 32.
  • a small subset 33 branched off from the CO fraction 32 and passed in the bypass to the heat exchanger E1, wherein the size of the subset 33 is adjusted via the control element i.
  • the remaining portion 34 of the CO fraction 32 is heated in the heat exchanger E1, led on line 35 and after the union with the guided in the bypass subset 33 via line 36 as an intermediate feed to the CO compressor V abandoned.
  • a portion of the liquid carbon monoxide from the top of the N 2 / CO separation column T2 is withdrawn via line 20. After a relaxation to low pressure level via the throttle body e, it provides the peak cold at the heat exchanger E2, in which it is then evaporated. Via line 21, it is fed to the heat exchanger E1, there warmed and fed via line 22 to the suction side of the first section V1 of the CO compressor V.
  • the top fraction 23 from the N 2 / CO separation column T2, a N 2 / CO mixture, is expanded via the throttle body f and passed into the residual gas, which is passed via the lines 24 and 25 into the heat exchangers E1 and E2 and warmed there is before it is discharged via line 26 from the process.
  • the two product quality carbon monoxide fractions 22 and 36 are compressed in the compressor sections V1-V4 to product pressure and discharged at the plant boundary as CO product 37.
  • the gaseous nitrogen stream 39 which also serves for cooling recovery, is first cooled in the heat exchangers E1 and E2 and condensed and then subcooled in the heat exchanger E3, to which it is supplied via the line 41. Via line 42, the supercooled nitrogen is withdrawn from the heat exchanger E3 and, after relaxation to the pressure of the residual gas through the throttle member j, with a subset 43 of the H 2 fraction 9 from the separator D2 and via the throttle body k supplied liquid nitrogen stream 38th mixed.
  • the separator D2 can be operated at a temperature which makes it possible to deposit in the separator D2 a second H 2 -rich, CO-containing gas phase 9 with high purity (> 95 mol% H 2 ).
  • the main quantity 46 of the second H 2 -rich, CO-containing gas phase 9 is heated in the heat exchanger E 3 and then in the two heat exchangers E 2 and E 1, to which it is supplied via the lines 47 and 48, and delivered as hydrogen product 49 at the plant boundary.
  • the heated in the heat exchanger E3 N 2 / H 2 mixture 50 is performed together with the top fraction 23 from the N 2 / CO separation column T2 in the residual gas 26.
  • a second embodiment provides that a portion of the nitrogen stream 41 condensed in the heat exchangers E1 and E2 is used as reflux for the H 2 -tripping column T1 in order to reduce the CO content in the H 2 -rich top fraction.
  • this configuration can be dispensed with a return of the top fraction 16 from the H 2 - stripping T1. Instead, the top fraction 15 is discharged into the residual gas stream 24 or, if a particularly high H 2 yield is required, after subcooling in the heat exchanger E 3 instead of the partial stream 43 of the H 2 - rich fraction 9 from the separator D 2 with the two liquid nitrogen streams 38 and 42 mixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a method for obtaining a carbon monoxide (37) and a hydrogen product (16) by cryogenically decomposing a feed gas (1) predominantly composed of hydrogen (H<SUB>2</SUB>) and carbon monoxide (CO) in a two-stage condensation process, maximum coldness for the second condensation stage being generated by mixing an H<SUB>2</SUB>-rich fraction (43) with liquid nitrogen (M-N<SUB>2</SUB>) (38, 42). The invention also relates to a device for carrying out said method. At least some (G-N<SUB>2</SUB>) (42) of the M-N<SUB>2</SUB> is produced from nitrogen (39) that is externally fed to the two-stage condensation process as a gas, by cooling, condensing, and, preferably, supercooling the same within the two-stage condensation process against process flows that are to be heated.

Description

Beschreibung description
Verfahren und Vorrichtung zur Gewinnung von Produkten aus SvntheseqasMethod and device for obtaining products from svntheseqas
Gegenstand der Erfindung ist ein Verfahren zur Gewinnung eines Kohlenmonoxid- und eines Wasserstoffproduktes durch kryogene Zerlegung eines vorwiegend aus Wasserstoff (H2) und Kohlenmonoxid (CO) bestehenden Einsatzgases in einem zweistufigen Kondensationsprozess, wobei Spitzenkälte für die zweite Kondensationsstufe durch die Mischung einer H2-reichen Fraktion mit flüssigem Stickstoff (M-N2) erzeugt wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a process for obtaining a carbon monoxide and a hydrogen product by cryogenic decomposition of a feed gas consisting predominantly of hydrogen (H 2 ) and carbon monoxide (CO) in a two-stage condensation process, wherein peak cooling for the second condensation stage by mixing an H 2 - rich fraction with liquid nitrogen (MN 2 ) is produced, and an apparatus for carrying out the method.
Durch unterschiedliche Erzeugungsmethoden, wie z. B. katalytische Dampfreformierung oder partielle Oxidation (POX), wird aus kohlenwasserstoffhaltigen Ausgangsstoffen, wie Erdgas, Flüssiggas, Naphta, Schweröl oder Kohle, sog. Synthesegas erzeugt, das zum größten Teil aus H2 und CO besteht, aber auch Methan (CH4), Wasser (H2O), Kohlendioxid (CO2) und andere Komponenten, wie z. B. Stickstoff und Argon enthält. Aus dem Synthesegas werden durch Reinigung und Zerlegung vor allem CO und H2 als Produkte gewonnen, die in der Industrie in vielfältiger weise Verwendung finden.By different production methods, such. B. catalytic steam reforming or partial oxidation (POX), is produced from hydrocarbonaceous starting materials, such as natural gas, LPG, naphtha, heavy oil or coal, so-called synthesis gas, which for the most part consists of H 2 and CO, but also methane (CH 4 ) , Water (H 2 O), carbon dioxide (CO 2 ) and other components, such as. As nitrogen and argon contains. From the synthesis gas, CO and H 2 are obtained as products by purification and decomposition, which are widely used in industry.
Abhängig von der Zusammensetzung der zu trennenden Einsatzgase, dem geforderten Produktspektrum und der angestrebten Reinheit der Produkte, werden großtechnisch zur Synthesegastrennung vor allem zwei kryogene Trennverfahren, der Kondensationsprozess und die Methanwäsche, eingesetzt.Depending on the composition of the input gases to be separated, the required product range and the desired purity of the products, two cryogenic separation processes, the condensation process and the methane scrubbing, are used on a large scale for synthesis gas separation.
Der Kondensationsprozess, der ältere und einfachere der beiden kryogenenThe condensation process, the older and simpler of the two cryogenic
Trennverfahren, eignet sich besonders zur Trennung von Synthesegasen, die durch partielle Oxidation erzeugt werden, da derartige Gase für gewöhnlich mit einem hohen Druck vorliegen und gleichzeitig einen hohen CO- und einen niedrigen Methangehalt aufweisen. Beim Kondensationsprozess wird das Einsatzgas im indirekten Wärmetausch gegen anzuwärmende Verfahrensströme so weit abgekühlt, dass es zu einer Teilkondensation kommt, bei der sich eine CO-reiche, H2 enthaltende Flüssigfraktion und eine H2-reiche, CO enthaltende Gasfraktion bilden, die anschließend in einem Phasentrenner getrennt werden. Die CO-reiche Flüssigfraktion, in der noch H2 und andere Stoffe gelöst sind, wird nachfolgend gereinigt (H2-Strippung, Methanabtrennung) und als CO-Produkt abgegeben. Bei diesem Verfahren kann das im Einsatzgas enthaltene CO lediglich mit einer Ausbeute von ca. 90% gewonnen werden. Darüber hinaus fällt ein H2 enthaltender Stoffstrom an, der eine Reinheit von lediglich ca. 90mol-% aufweist, und daher nicht als Produkt abgegeben werden kann.Separation method is particularly useful for separation of synthesis gases produced by partial oxidation, since such gases are usually of high pressure and at the same time have high CO and low methane content. During the condensation process, the feed gas is cooled in indirect heat exchange against process streams to be heated so far that it comes to a partial condensation in which form a CO-rich, H 2 -containing liquid fraction and an H 2 -rich, CO-containing gas fraction, which subsequently in a Phase separator to be separated. The CO-rich liquid fraction, in the still H 2 and other substances are dissolved, is subsequently purified (H 2 -Strippung, methane separation) and delivered as a CO product. In this method, the CO contained in the feed gas can only be obtained with a yield of about 90%. In addition, an H 2 -containing stream is obtained, which has a purity of only about 90 mol%, and therefore can not be discharged as a product.
Um die oben beschriebenen Nachteile zu umgehen, und ein CO-Produkt mit höherer Ausbeute zu gewinnen und/oder um ein H2-Produkt mit einer Reinheit von mehr als 95mol-% zu erzeugen, wird nach dem Stand der Technik der Kondensationsprozess entweder um eine Membraneinheit oder um eine Kondensationsstufe erweitert (zweistufiger Kondensationsprozess). Bei beiden Prozessen wird die durch Kondensation gewonnene H2-reiche, CO enthaltende Gasfraktion einer weitem Behandlung unterzogen, wobei das Kohlenmonoxid weitgehend abgetrennt und in das CO-Produkt geführt wird; nach der Abtrennung des Kohlenmonoxids weist die H2- reiche Gasfraktion die erforderliche Reinheit von mehr als 95mol-% auf, wodurch in manchen Fällen auf eine Nachreinigung mittels Druckwechseladsorption verzichtet werden kann.In order to circumvent the disadvantages described above and to obtain a CO product with higher yield and / or to produce a H 2 product with a purity of more than 95 mol%, according to the prior art, the condensation process either by one Membrane unit or extended by a condensation stage (two-stage condensation process). In both processes, the H 2 -rich, CO-containing gas fraction obtained by condensation is subjected to a wide treatment, wherein the carbon monoxide is largely separated and fed into the CO product; after separation of the carbon monoxide, the H 2 -rich gas fraction has the required purity of more than 95 mol%, which in some cases can be dispensed with a subsequent purification by pressure swing adsorption.
Bei einem zweistufigen Kondensationsprozess wird die in der ersten Kondensationsstufe gewonnene H2-reiche, CO enthaltende Gasfraktion gegen anzuwärmende Verfahrensströme weiter abgekühlt, wobei eine zweite CO-reiche, H2 enthaltende Flüssigfraktion und eine zweite H2-reiche, CO enthaltende Gasfraktion entstehen, die anschließend in einem zweiten Phasentrenner getrennt werden. Die für die zweite Kondensationsstufe benötigte Spitzenkälte, wird nach dem Stand der Technik durch die Mischung von flüssigem Stickstoff mit einer vorwiegend aus Wasserstoff bestehenden Gasfraktion erzeugt, wozu flüssiger Stickstoff dem kryogenen Prozess von außen - z. B. von einem kryogenen Luftzerleger, in dem der für die POX benötigte Sauerstoff gewonnen wird - zugeführt wird. Um am zweiten Abscheider eine ausreichend tiefe Temperatur zu erreichen, muss dem zweistufigen Kondensationsprozess eine relativ große Menge an flüssigem Stickstoff zugeführt werden, mit der eine größere, als zur Deckung der Kältebilanz des Prozesses benötigte Kältemenge eingebracht wird. Die überschüssige Kältemenge geht bisher ungenutzt verloren. Da der flüssige Stickstoff mit beträchtlichem apparativem und vor allem energetischem Aufwand hergestellt wird, beeinträchtigt die ungenutzte Kältemenge die Wirtschaftlichkeit eines zweistufigen Kondensationsprozesses erheblich.In a two-stage condensation process, the H 2 -rich, CO-containing gas fraction obtained in the first condensation stage is further cooled against zuheizmende process streams to form a second CO-rich, H 2 -containing liquid fraction and a second H 2 -rich, CO-containing gas fraction, the subsequently separated in a second phase separator. The peak cold needed for the second condensation stage is generated in the prior art by the mixture of liquid nitrogen with a predominantly hydrogen gas fraction, including liquid nitrogen from the cryogenic process from the outside -. B. from a cryogenic air separation, in which the oxygen required for the POX is obtained - is supplied. In order to achieve a sufficiently low temperature at the second separator, a relatively large amount of liquid nitrogen must be supplied to the two-stage condensation process, with which a greater amount of refrigerant than is required to cover the cold balance of the process is introduced. The excess amount of cold is lost so far unused. Since the liquid nitrogen is produced with considerable equipment and above all energy expenditure, the unused Cooling the economy of a two-stage condensation process considerably.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine Vorrichtung zur Durchführung des Verfahrens anzugeben, die es ermöglichen, mit geringeren Betriebskosten, als es nach dem Stand der Technik möglich ist, aus einem Synthesegas ein Wasserstoff- und ein Kohlenmonoxidprodukt zu erzeugen.The invention is therefore based on the object to provide a method of the type mentioned and an apparatus for performing the method, which make it possible with lower operating costs than is possible in the prior art, from a synthesis gas, a hydrogen and a carbon monoxide product to create.
Diese Aufgabe wird verfahrensseitig erfindungsgemäß dadurch gelöst, dass zumindest ein Teil (G-N2) des M-N2 aus gasförmig dem zweistufigen Kondensationsprozess von außen zugeführtem Stickstoff durch Abkühlung, Kondensation und, vorzugsweise, Unterkühlung gegen anzuwärmende Verfahrensströme innerhalb des zweistufigen Kondensationsprozesses erzeugt wird.According to the invention, this object is achieved in that at least part (GN 2 ) of the MN 2 is produced from nitrogen supplied from the outside by cooling, condensation, and, preferably, subcooling against process streams to be heated within the two-stage condensation process, to the two-stage condensation process.
Der Erfindung liegt der Erfahrung zugrunde, dass gasförmiger Stickstoff im Vergleich zu flüssigem Stickstoff wesentlich kostengünstiger produziert werden kann. Durch die Anwendung des erfindungsgemäßen Verfahrens werden somit entsprechende Reduzierungen der Betriebs-, aber auch der Investitionskosten im Bereich des Luftzerlegers, erreicht.The invention is based on the experience that gaseous nitrogen can be produced much more cost-effectively compared to liquid nitrogen. By applying the method according to the invention thus corresponding reductions in operating, but also the investment costs in the air separator, achieved.
Dient der zweistufige Kondensationsprozess beispielsweise zur Zerlegung von Synthesegas, das durch partielle Oxidation (POX) erzeugt wird, und wird der für die POX benötigte Sauerstoff in einem Luftzerleger durch die kryogene Zerlegung von Luft gewonnen, so wird der flüssige Stickstoff zweckmäßiger Weise von diesem Luftzerleger bezogen.For example, if the two-stage condensation process is used to decompose synthesis gas produced by partial oxidation (POX) and the oxygen required for the POX is recovered in an air fractionator by the cryogenic separation of air, then the liquid nitrogen is conveniently obtained from that air fractionator ,
Zeigt die Kältebilanz, dass im zweistufigen Kondensationsprozess nicht genügend G- N2 erzeugt werden kann, um die gewünschte Temperatur am Abscheider in der zweiten Kondensationsstufe zu erreichen, so sieht eine Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass die fehlende Stickstoffmenge (L-N2) flüssig von außen zugeführt wird. Das Mengenverhältnis von G-N2 zu L-N2 wird zweckmäßiger Weise so eingestellt, dass sowohl das Kohlenmonoxidprodukt mit der gewünschten Ausbeute als auch das Wasserstoffprodukt mit der geforderten Reinheit, jedoch ohne Kälteüberschuss erzeugt werden. Das erfindungsgemäße Verfahren weiterbildend, wird vorgeschlagen, dass G-N2 oder/und L-N2 von einem Luftzerleger bezogen werden, in dem Sauerstoff zur Erzeugung des Wasserstoff und Kohlenmonoxid enthaltenden Einsatzgases (beispielsweise in einer POX) produziert wird. Vorzugsweise wird G-N2 mit mittlerem oder niedrigem Druckniveau aus dem Luftzerleger abgezogen, um den Gesamtenergiebedarf des Prozesses zu minimieren.If the cold balance shows that sufficient G-N 2 can not be produced in the two-stage condensation process in order to achieve the desired temperature at the separator in the second condensation stage, an embodiment of the method according to the invention provides that the missing amount of nitrogen (LN 2 ) is liquid is supplied outside. The quantitative ratio of GN 2 to LN 2 is expediently adjusted so that both the carbon monoxide product with the desired yield and the hydrogen product with the required purity, but without a cold excess, are produced. Further developing the process according to the invention, it is proposed that GN 2 or / and LN 2 be obtained from an air fractionator in which oxygen is produced (for example in a POX) to produce the feed gas containing hydrogen and carbon monoxide. Preferably, medium or low pressure level GN 2 is withdrawn from the air separator to minimize the overall energy requirements of the process.
Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung eines zweistufigen Kondensationsprozesses (Gaszerleger), in der ein vorwiegend aus Wasserstoff (H2) und Kohlenmonoxid (CO) bestehendes Einsatzgas in ein Kohlenmonoxid- und ein Wasserstoffprodukt zerlegbar ist, wobei Spitzenkälte für die zweite Kondensationsstufe des Gaszerlegers durch die Mischung einer H2-reichen Fraktion mit flüssigem Stickstoff (M-N2) erzeugbar ist.The invention further relates to an apparatus for carrying out a two-stage condensation process (gas decomposer) in which a feed gas consisting predominantly of hydrogen (H 2 ) and carbon monoxide (CO) can be decomposed into a carbon monoxide and a hydrogen product, wherein peak cooling for the second condensation stage of the gas decomposer by the mixture of an H 2 -rich fraction with liquid nitrogen (MN 2 ) is generated.
Vorrichtungsseitig wird die gestellte Aufgabe erfindungsgemäß dadurch gelöst, dass der Gaszerleger eine Einrichtung zur Herstellung von zumindest eines Teils (G-N2) des M-N2 umfasst, in welcher gasförmig von außen zuführbarer Stickstoff durch Abkühlung gegen anzuwärmende Verfahrensströme kondensierbar und, vorzugsweise, unterkühlbar ist.On the device side, this object is achieved according to the invention in that the gas decomposer comprises a device for producing at least part (GN 2 ) of the MN 2 , in which nitrogen which can be supplied in gaseous form from the outside by cooling against process streams to be heated is condensable and, preferably, subcoolable.
Nach dem Stand der Technik weist ein Gaszerleger zumeist zwei in Serie geschaltete Wärmetauscher auf, wobei es sich bei den Wärmetauschern um Plattenwärmetauscher handelt und die kalte Seite des ersten Wärmetauschers wärmer ist als die warme Seite des zweiten Wärmetauschers. Zweckmäßiger Weise ist die warme Seite des ersten Wärmetauschers über eine Leitung mit einer Quelle für gasförmigen Stickstoff verbunden, über die Stickstoff gasförmig dem ersten Wärmetauscher zuführbar ist. In den Wärmetauschern erfolgt anschließend gegen anzuwärmende Verfahrensströme eine Abkühlung, Kondensation und gegebenenfalls eine Unterkühlung des Stickstoffs.In the prior art, a gas separator usually has two series-connected heat exchangers, wherein the heat exchangers are plate heat exchangers and the cold side of the first heat exchanger is warmer than the warm side of the second heat exchanger. Conveniently, the warm side of the first heat exchanger is connected via a line with a source of gaseous nitrogen, is supplied via the nitrogen gas in the first heat exchanger. In the heat exchangers is then carried out against heated process streams cooling, condensation and optionally a supercooling of the nitrogen.
Für den Fall, dass innerhalb des Gaszerlegers nicht genügend Kälte zur Verfügung steht, um die gesamte Menge des benötigten M-N2 aus gasförmigem Stickstoff zu erzeugen, sieht eine Ausgestaltung der erfϊndungsgemäßen Vorrichtung vor, dass der Gaszerleger mit einer Einrichtung ausgerüstet ist, über die eine Teilmenge des M-N2 als flüssiger Stickstoff (L-N2) von außerhalb dem Gaszerleger zuführbar ist. Eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, dass der gasförmige Stickstoff zur Erzeugung von G- N2 oder/und L-N2 von einem Luftzerleger beziehbar sind, in dem Sauerstoff zur Erzeugung des Wasserstoff und Kohlenmonoxid enthaltenden Einsatzgases (beispielsweise in einer POX) produziert wird.In the event that not enough cold is available within the Gaszerlegers to produce the entire amount of the required MN 2 of gaseous nitrogen, provides an embodiment of the invention erf ,ndungsgemäßen device that the gas separator is equipped with a device on a subset of the MN 2 as liquid nitrogen (LN 2 ) from outside the gas separator can be fed. A preferred embodiment of the device according to the invention provides that the gaseous nitrogen for generating G-N 2 or / and LN 2 are obtainable from an air separator, in which oxygen is produced for generating the feed gas containing hydrogen and carbon monoxide (for example in a POX) ,
Vorzugsweise besitzt dieser gasförmige Stickstoff aus dem Luftzerleger ein mittleres oder niedriges Druckniveau.Preferably, this gaseous nitrogen from the air separator has a medium or low pressure level.
Durch die Substitution von flüssigem durch gasförmigen Stickstoff, ermöglicht es das erfindungsgemäße Verfahren, die Kosten für die Erzeugung von Spitzenkälte im zweistufigen Kondensationsprozess zu reduzieren und die Wirtschaftlichkeit dieses Trennverfahrens zu steigern.By substituting liquid nitrogen with gaseous nitrogen, the process of the invention enables the cost of producing peak cold in the two-stage condensation process to be reduced and the economics of this separation process to be increased.
Im Folgenden soll die Erfindung anhand zweier Ausführungsbeispiele näher erläutert werden, die sich beide auf die schematische Darstellung in der Figur beziehen.In the following, the invention will be explained in more detail with reference to two embodiments, both of which relate to the schematic representation in the figure.
Bei den Ausführungsbeispielen handelt es sich um Verfahren zur Erzeugung eines Wasserstoff- und eines Kohlenmonoxidproduktes aus einem Kohlenwasserstoffe enthaltenden Einsatz.The embodiments are methods for producing a hydrogen and a carbon monoxide product from a hydrocarbon-containing feed.
Der Kohlenwasserstoffe enthaltende Einsatz 1 wird gemeinsam mit dem aus dem Luftzerleger LZ bezogenen Sauerstoffstrom 2 in den POX-Reaktor P eingeleitet und dort durch partielle Oxidation in ein vorwiegend Wasserstoff (H2) und Kohlenmonoxid (CO) enthaltendes Syntheserohgas 3 umgesetzt. In der Gasreinigungseinrichtung R wird aus dem Syntheserohgas 3 durch die weitgehende Entfernung von unerwünschten Stoffen, wie Wasser und Kohlendioxid, ein vorwiegend aus Wasserstoff und Kohlenmonoxid bestehendes Einsatzgas 4 gewonnen, das anschließend der kryogenen Zerlegungseinheit Z zugeführt wird. Hier wird aus dem Einsatzgas 4 durch Abkühlung und Teilkondensation gegen anzuwärmende Verfahrensströme in den beiden Hauptwärmetauschern E1 und E2 ein erstes zweiphasiges Stoffgemisch 5 erzeugt, das im Phasentrenner D1 in eine erste H2-reiche, CO enthaltende Gasphase 6 und eine erste CO-reiche, H2 enthaltende Flüssigphase 7 aufgetrennt wird. Im Wärmetauscher E3 wird die erste H2-reiche, CO enthaltende Gasphase 6 weiter abgekühlt, wobei ein Teil des in ihr enthaltenen Kohlenmonoxids auskondensiert und ein zweites zweiphasiges Stoffgemisch 8 entsteht, welches im Phasentrenner D2 in eine zweite H2-reiche, CO enthaltende Gasphase 9 und eine zweite CO-reiche, H2 enthaltende Flüssigphase 10 getrennt wird. Die zweite CO-reiche, H2 enthaltende Flüssigphase 10 wird nach Anwärmung gegen abzukühlende Verfahrensströme im Wärmetauscher E3 über Leitung 11 weitergeführt, über das Drosselorgan a entspannt, gemeinsam mit der über das Drosselorgan b entspannten ersten CO-reichen, H2 enthaltenden Flüssigphase 7 über Leitung 12 zur H2-Strippkolonne T1 geleitet und dieser am Kopf aufgegeben. Die H2-Strippkolonne T1 dient zur Entfernung des in dem CO-reichen Stoffstrom 12 gelösten Wasserstoffs. Zur Beheizung der H2-Strippkolonne T1 dient ein Naturumlaufverdampfer (Reboiler), der im Wärmetauscher E2 integriert ist. Aus dem Sumpf der H2-Strippkolonne T1 wird ein Stoffstrom 13 in den Reboiler geleitet, dort teilverdampft und über Leitung 14 zurückgeführt. Die H2-reiche, CO enthaltende Kopffraktion 15 aus der H2-Strippkolonne T1 wird in den Wärmetauschern E2 und E1 angewärmt und als sog. Flash Gas 16 über die Gasreinigungseinrichtung R in den Prozess zurückgeführt. Handelt es sich bei der Gasreinigungseinrichtung R um eine Rectisolwäsche, so wird bevorzugt der dort installierte Recycleverdichter (nicht dargestellt) für die Rückführung verwendet.The hydrocarbon-containing feed 1 is introduced into the POX reactor P together with the oxygen stream 2 obtained from the air fractionator LZ, where it is converted by partial oxidation into a synthesis gas 3 containing predominantly hydrogen (H 2 ) and carbon monoxide (CO). In the gas purification device R, a predominantly consisting of hydrogen and carbon monoxide feed gas 4 is obtained from the synthesis gas 3 by the substantial removal of undesirable substances such as water and carbon dioxide, which is then fed to the cryogenic separation unit Z. Here, a first two-phase mixture 5 is produced from the feed gas 4 by cooling and partial condensation against process streams to be heated in the two main heat exchangers E1 and E2, which in the phase separator D1 into a first H 2 -rich, CO-containing gas phase 6 and a first CO rich, H 2 -containing liquid phase 7 is separated. In the heat exchanger E3, the first H 2 -rich, CO-containing gas phase 6 is further cooled, wherein a part of the carbon monoxide contained in it condenses out and a second biphasic mixture 8 is formed, which in the phase separator D 2 in a second H 2 -rich, CO-containing gas phase 9 and a second CO-rich, H 2 -containing liquid phase 10 is separated. The second CO-rich, H 2 -containing liquid phase 10 is continued after warming against cooling process streams in the heat exchanger E3 via line 11, via the throttle body a relaxed, together with the relaxed over the throttle body b first CO-rich, H 2 -containing liquid phase 7 via Passed line 12 to the H 2 -Strippkolonnen T1 and abandoned this at the head. The H 2 -trip column T1 serves to remove the dissolved in the CO-rich stream 12 hydrogen. To heat the H 2 -trip column T1 is a natural circulation evaporator (reboiler), which is integrated in the heat exchanger E2. From the bottom of the H 2 -trip column T1, a stream 13 is passed into the reboiler, partially evaporated there and returned via line 14. The H 2 -rich, CO-containing overhead fraction 15 from the H 2 -trip column T1 is heated in the heat exchangers E2 and E1 and returned as so-called. Flash gas 16 via the gas purifier R in the process. If the gas purifier R is a Rectisol wash, the recycle compressor (not shown) installed there is preferably used for the recirculation.
Die Sumpffraktion aus der H2-Strippkolonne T1 , ein vorwiegend Kohlenmonoxid und Stickstoff (N2) enthaltendes Stoffgemisch, wird über Leitung 17 abgezogen, über das Drosselorgan c entspannt und in die N2/CO-Trennkolonne T2 eingespeist. Die N2/CO- Trennkolonne T2 wird direkt über Strom 18 beheizt, bei dem es sich um Produktreinheit aufweisendes Kohlenmonoxid 19 handelt, das nach der Mitteldrucksektion V2 aus dem CO-Verdichter V abgezogenen, im Wärmetauscher E1 gegen anzuwärmende Verfahrensströme abgekühlt, anschließend über das Drosselorgan d entspannt und direkt in den Kolonnensumpf eingespeist wird.The bottom fraction from the H 2 -Strippkolonnen T1, a predominantly carbon monoxide and nitrogen (N 2 ) containing mixture is withdrawn via line 17, expanded via the throttle body c and fed to the N 2 / CO separation column T2. The N 2 / CO separation column T2 is heated directly via stream 18, which is carbon monoxide 19 having product purity, which is withdrawn from the CO compressor V after the medium-pressure section V2, cooled in the heat exchanger E1 against process streams to be heated, then via the Throttle d relaxed and fed directly into the column bottom.
Die Produktreinheit aufweisende Kohlenmonoxidfraktion 27 aus dem Sumpf der N2/CO-Trennkolonne T2, wird in zwei Teilmengen 28 und 29 aufgeteilt, wobei die Teilmenge 28 über das Drosselorgan g entspannt und dem in die N2/CO-Trennkolonne T2 integrierten Kopfkondensator E5 zu dessen Kühlung zugeführt wird, während die Teilmenge 29, nach einer Entspannung über das Drosselorgan h, gemeinsam mit der im Kopfkühler E5 verdampften und vom Kopf der N2/CO-Trennkolonne T2 abgezogenen CO-Fraktion 30 über die Leitung 31 dem Wärmetauscher E2 zuströmt, aus dem es angewärmt über Leitung 32 abgezogen wird. Zur Feinregelung des Kältehaushalts des kryogenen Gaszerlegungsprozesses, wird eine geringe Teilmenge 33 von der CO-Fraktion 32 abgezweigt und im Bypass zum Wärmetauscher E1 geführt, wobei die Größe der Teilmenge 33 über das Regelorgan i eingestellt wird. Die verbleibende Teilmenge 34 der CO-Fraktion 32 wird im Wärmetauscher E1 angewärmt, über Leitung 35 weiter geführt und nach der Vereinigung mit der im Bypass geführten Teilmenge 33 über Leitung 36 als Zwischeneinspeisung am CO- Verdichter V aufgegeben.The product purity having carbon monoxide fraction 27 from the bottom of the N 2 / CO separation column T2 is divided into two subsets 28 and 29, wherein the subset 28 relaxed via the throttle body g and the integrated into the N 2 / CO separation column T2 top condenser E5 its cooling is supplied while the subset 29, after a relaxation via the throttle body h, together with the vaporized in the head cooler E5 and withdrawn from the top of the N 2 / CO separation column T2 CO fraction 30 flows via the line 31 to the heat exchanger E2, from which it is warmed off withdrawn via line 32. For fine regulation of the refrigeration system of the cryogenic gas separation process, a small subset 33 branched off from the CO fraction 32 and passed in the bypass to the heat exchanger E1, wherein the size of the subset 33 is adjusted via the control element i. The remaining portion 34 of the CO fraction 32 is heated in the heat exchanger E1, led on line 35 and after the union with the guided in the bypass subset 33 via line 36 as an intermediate feed to the CO compressor V abandoned.
Ein Teil des flüssigen Kohlenmonoxids vom Kopf der N2/CO-Trennkolonne T2 wird über Leitung 20 abgezogen. Nach einer Entspannung auf Niederdruckniveau über das Drosselorgan e, liefert es die Spitzenkälte am Wärmetauscher E2, in welchem es anschließend verdampft wird. Über Leitung 21 wird es dem Wärmetauscher E1 zugeführt, dort angewärmt und über Leitung 22 der Saugseite der ersten Sektion V1 des CO-Verdichters V zugeleitet.A portion of the liquid carbon monoxide from the top of the N 2 / CO separation column T2 is withdrawn via line 20. After a relaxation to low pressure level via the throttle body e, it provides the peak cold at the heat exchanger E2, in which it is then evaporated. Via line 21, it is fed to the heat exchanger E1, there warmed and fed via line 22 to the suction side of the first section V1 of the CO compressor V.
Die Kopffraktion 23 aus der N2/CO-Trennkolonne T2, ein N2/CO-Gemisch, wird über das Drosselorgan f entspannt und in das Restgas geführt, das über die Leitungen 24 und 25 in die Wärmetauscher E1 und E2 geleitet und dort angewärmt wird, bevor es über Leitung 26 aus dem Prozess abgeführt wird.The top fraction 23 from the N 2 / CO separation column T2, a N 2 / CO mixture, is expanded via the throttle body f and passed into the residual gas, which is passed via the lines 24 and 25 into the heat exchangers E1 and E2 and warmed there is before it is discharged via line 26 from the process.
Die beiden Produktqualität aufweisenden Kohlenmonoxidfraktionen 22 und 36 werden in den Verdichtersektionen V1-V4 auf Produktdruck verdichtet und an der Anlagengrenze als CO-Produkt 37 abgegeben.The two product quality carbon monoxide fractions 22 and 36 are compressed in the compressor sections V1-V4 to product pressure and discharged at the plant boundary as CO product 37.
Zur Erzeugung der im zweistufigen Kondensationsprozess benötigten Spitzenkälte und zum Ausgleich der Kältebilanz, dienen die beiden Stickstoffströme 38 und 39, wobei der eine Stickstoff ström 38 flüssig und der andere Stickstoffstrom 39 gasförmig vom Luftzerleger LZ bezogen wird. Der gasförmige Stickstoffstrom 39, der auch zur Kälterückgewinnung dient, wird zunächst in den Wärmetauschern E1 und E2 abgekühlt und kondensiert und anschließend im Wärmtauscher E3, dem er über die Leitung 41 zugeführt wird, unterkühlt. Über Leitung 42 wird der unterkühlte Stickstoff aus dem Wärmetauscher E3 abgezogen und, nach Entspannung auf den Druck des Restgases über das Drosselorgan j, mit einer Teilmenge 43 der H2-Fraktion 9 aus dem Abscheider D2 und dem über das Drosselorgan k zugeführten flüssigen Stickstoffstrom 38 gemischt. Durch die Mischung von flüssigem Stickstoff und Wasserstoff wird erreicht, dass das N2/H2-Gemisch 44 mit einer Temperatur auf der kalten Seite in den Wärmetauscher E3 eingeleitet wird, die unterhalb des N2-Taupunktes (78K) liegt. Hierdurch kann der Abscheider D2 bei einer Temperatur betrieben werden, die es ermöglicht, im Abscheider D2 eine zweite H2-reiche, CO enthaltende Gasphase 9 mit hoher Reinheit (>95mol-% H2) abzuscheiden. Die Hauptmenge 46 der zweiten H2- reichen, CO enthaltenden Gasphase 9 wird im Wärmetauscher E3 und anschließend in den beiden Wärmetauschern E2 und E1 , denen sie über die Leitungen 47 und 48 zugeführt wird, angewärmt und als Wasserstoffprodukt 49 an der Anlagengrenze abgegeben. Das im Wärmetauscher E3 angewärmte N2/H2-Gemisch 50 wird gemeinsam mit der Kopffraktion 23 aus der N2/CO-Trennkolonne T2 in das Restgas 26 geführt.To generate the peak cooling required in the two-stage condensation process and to compensate for the cold balance, serve the two nitrogen streams 38 and 39, wherein the one nitrogen Ström 38 liquid and the other nitrogen stream 39 is obtained in gaseous form from the air separation LZ. The gaseous nitrogen stream 39, which also serves for cooling recovery, is first cooled in the heat exchangers E1 and E2 and condensed and then subcooled in the heat exchanger E3, to which it is supplied via the line 41. Via line 42, the supercooled nitrogen is withdrawn from the heat exchanger E3 and, after relaxation to the pressure of the residual gas through the throttle member j, with a subset 43 of the H 2 fraction 9 from the separator D2 and via the throttle body k supplied liquid nitrogen stream 38th mixed. By the mixture of liquid nitrogen and hydrogen is achieved that the N 2 / H 2 mixture 44 with a temperature on the cold side in the Heat exchanger E3 is initiated, which is below the N 2 dew point (78K). In this way, the separator D2 can be operated at a temperature which makes it possible to deposit in the separator D2 a second H 2 -rich, CO-containing gas phase 9 with high purity (> 95 mol% H 2 ). The main quantity 46 of the second H 2 -rich, CO-containing gas phase 9 is heated in the heat exchanger E 3 and then in the two heat exchangers E 2 and E 1, to which it is supplied via the lines 47 and 48, and delivered as hydrogen product 49 at the plant boundary. The heated in the heat exchanger E3 N 2 / H 2 mixture 50 is performed together with the top fraction 23 from the N 2 / CO separation column T2 in the residual gas 26.
Ein zweites Ausführungsbeispiel sieht vor, dass ein Teil des in den Wärmetauschern E1 und E2 kondensierten Stickstoffstromes 41 als Rücklauf für die H2-Strippkolonne T1 verwendet wird, um den CO-Gehalt in der H2-reichen Kopffraktion zu reduzieren. In dieser Konfiguration kann auf eine Rückführung der Kopffraktion 16 aus der H2- Strippkolonne T1 verzichtet werden. Stattdessen wird die Kopffraktion 15 in den Restgasstrom 24 abgegeben oder, falls eine besonders hohe H2-Ausbeute gefordert ist, nach einer Unterkühlung im Wärmetauscher E3 anstatt des Teilstromes 43 der H2- reichen Fraktion 9 aus dem Abscheider D2 mit den beiden flüssigen Stickstoffströmen 38 und 42 gemischt. A second embodiment provides that a portion of the nitrogen stream 41 condensed in the heat exchangers E1 and E2 is used as reflux for the H 2 -tripping column T1 in order to reduce the CO content in the H 2 -rich top fraction. In this configuration can be dispensed with a return of the top fraction 16 from the H 2 - stripping T1. Instead, the top fraction 15 is discharged into the residual gas stream 24 or, if a particularly high H 2 yield is required, after subcooling in the heat exchanger E 3 instead of the partial stream 43 of the H 2 - rich fraction 9 from the separator D 2 with the two liquid nitrogen streams 38 and 42 mixed.

Claims

Patentansprüche claims
1. Verfahren zur Gewinnung eines Kohlenmonoxid- (37) und eines Wasserstoffproduktes (16) durch kryogene Zerlegung eines vorwiegend aus Wasserstoff (H2) und Kohlenmonoxid (CO) bestehenden Einsatzgases (1) in einem zweistufigen Kondensationsprozess, wobei Spitzenkälte für die zweiteA process for recovering a carbon monoxide (37) and a hydrogen product (16) by cryogenically decomposing a feed gas (1) consisting primarily of hydrogen (H 2 ) and carbon monoxide (CO) in a two-stage condensation process, wherein peak cooling for the second
Kondensationsstufe durch die Mischung einer H2-reichen Fraktion (43) mit flüssigem Stickstoff (M-N2) (38, 42) erzeugt wird, dadurch gekennzeichnet, dass zumindest ein Teil (G-N2) (42) des M-N2 aus gasförmig dem zweistufigen Kondensationsprozess von außen zugeführtem Stickstoff (39) durch Abkühlung, Kondensation und, vorzugsweise, Unterkühlung gegen anzuwärmendeCondensation stage by the mixture of a H 2 -rich fraction (43) with liquid nitrogen (MN 2 ) (38, 42) is generated, characterized in that at least a part (GN 2 ) (42) of the MN 2 from gaseous the two-stage condensation process nitrogen supplied from the outside (39) by cooling, condensation and, preferably, subcooling against being heated
Verfahrensströme innerhalb des zweistufigen Kondensationsprozesses erzeugt wird.Process streams is generated within the two-stage condensation process.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Teil des M-N2 aus G-N2 besteht, während ein anderer Teil (L-N2) dem Kondensationsprozess flüssig von außen zugeführt wird.2. The method according to claim 1, characterized in that a part of the MN 2 consists of GN 2 , while another part (LN 2 ) is supplied to the condensation process liquid from the outside.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass G- N2 oder/und L-N2 von einem Luftzerleger bezogen werden, in dem Sauerstoff zur Erzeugung des Wasserstoff und Kohlenmonoxid enthaltenden Einsatzgases produziert wird.3. The method according to any one of claims 1 or 2, characterized in that G-N 2 or / and LN 2 are obtained from an air separation, is produced in the oxygen for generating the hydrogen and carbon monoxide-containing feed gas.
4. Vorrichtung zur Durchführung eines zweistufigen Kondensationsprozesses4. Apparatus for carrying out a two-stage condensation process
(Gaszerleger), in der ein vorwiegend aus Wasserstoff (H2) und Kohlenmonoxid (CO) bestehendes Einsatzgas in ein Kohlenmonoxid- und ein Wasserstoffprodukt zerlegbar ist, wobei Spitzenkälte für die zweite Kondensationsstufe des Gaszerlegers durch die Mischung einer H2-reichen Fraktion mit flüssigem Stickstoff (M-N2) erzeugbar ist, dadurch gekennzeichnet, dass der Gaszerleger eine(Gas Separator), in which a predominantly of hydrogen (H 2 ) and carbon monoxide (CO) existing feed gas is decomposable into a carbon monoxide and a hydrogen product, with peak cooling for the second condensation stage of the Gaszerlegers by mixing an H 2 -rich fraction with liquid Nitrogen (MN 2 ) can be generated, characterized in that the gas separator a
Einrichtung zur Herstellung von zumindest eines Teils (G-N2) des M-N2 umfasst, in welcher gasförmig von außen zuführbarer Stickstoff durch Abkühlung gegen anzuwärmende Verfahrensströme kondensierbar und, vorzugsweise, unterkühlbar ist.Means for the production of at least a part (GN 2 ) of the MN 2 , in which gaseous externally supplied nitrogen by cooling against heated process streams condensable and, preferably, is subcooled.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Gaszerleger mit einer Einrichtung ausgerüstet ist, über die eine Teilmenge des M-N2 als flüssiger Stickstoff (L-N2) von außerhalb dem Gaszerleger zuführbar ist. 5. Apparatus according to claim 4, characterized in that the gas separator is equipped with a device via which a subset of the MN 2 as liquid nitrogen (LN 2 ) from outside the gas separator can be fed.
6. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass G-N2 oder/und L-N2 von einem Luftzerleger beziehbar sind, in dem Sauerstoff zur Erzeugung des Wasserstoff und Kohlenmonoxid enthaltenden Einsatzgases produziert wird. 6. Device according to one of claims 4 or 5, characterized in that GN 2 or / and LN 2 are obtainable from an air separator, is produced in the oxygen for generating the hydrogen and carbon monoxide-containing feed gas.
EP07819626A 2006-11-30 2007-11-06 Method and device for obtaining products from synthesis gas Withdrawn EP2095047A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006056642A DE102006056642A1 (en) 2006-11-30 2006-11-30 Process and apparatus for recovering products from synthesis gas
PCT/EP2007/009607 WO2008064762A2 (en) 2006-11-30 2007-11-06 Method and device for obtaining products from synthesis gas

Publications (1)

Publication Number Publication Date
EP2095047A2 true EP2095047A2 (en) 2009-09-02

Family

ID=39338850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819626A Withdrawn EP2095047A2 (en) 2006-11-30 2007-11-06 Method and device for obtaining products from synthesis gas

Country Status (4)

Country Link
EP (1) EP2095047A2 (en)
CN (1) CN101627273A (en)
DE (1) DE102006056642A1 (en)
WO (1) WO2008064762A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438666B (en) * 2013-08-21 2015-05-20 张周卫 Multi-strand winding pipe type main back heating and heat exchange device for low-temperature liquid nitrogen
FR3018599B1 (en) * 2014-03-17 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN
DE102014015160A1 (en) 2014-10-14 2016-04-14 Linde Aktiengesellschaft Process and apparatus for recovering carbon monoxide and hydrogen from synthesis gas
FR3075067B1 (en) * 2017-12-14 2020-08-28 Air Liquide PROCESS AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING A NITROGEN SEPARATION STEP
CN110044133B (en) * 2019-05-17 2024-03-22 成都赛普瑞兴科技有限公司 Apparatus and method for separating and purifying carbon monoxide
WO2023139259A1 (en) * 2022-01-24 2023-07-27 Topsoe A/S Effective use of cryogenic separation section in syngas manufacture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1515926A (en) * 1966-09-30 1968-03-08 Air Liquide Process for the production of oxygen and pure nitrogen under high pressure from air for the manufacture and purification at low temperature of a mixture of hydrogen and nitrogen
IN160585B (en) * 1983-02-14 1987-07-18 Exxon Research Engineering Co
DE3802552A1 (en) * 1988-01-28 1989-08-10 Linde Ag PROCESS FOR CLEANING A GAS MIXTURE
GB9802231D0 (en) * 1998-02-02 1998-04-01 Air Prod & Chem Separation of carbon monoxide from nitrogen-contaminated gaseous mixtures also containing hydrogen
ATE289047T1 (en) * 2000-12-18 2005-02-15 Air Prod & Chem METHOD AND DEVICE FOR SEPARATING CARBON MONOXIDE AND HYDROGEN FROM A GAS MIXTURE
DE10226209B4 (en) * 2002-06-13 2008-04-03 Lurgi Ag Plant and process for the production and decomposition of synthesis gases from natural gas
DE10226210A1 (en) * 2002-06-13 2004-01-08 Lurgi Ag Plant part for the disassembly and cleaning of synthesis gas
DE102005046790A1 (en) * 2005-09-29 2007-04-05 Linde Ag Method for cleaning of gas mixture, involves obtaining part of washing column of supplied nitrogen liquid and deep-frozen from a cryogenic air decomposer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008064762A2 *

Also Published As

Publication number Publication date
WO2008064762A3 (en) 2009-04-23
CN101627273A (en) 2010-01-13
WO2008064762A2 (en) 2008-06-05
DE102006056642A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
EP1729077B1 (en) Process and device for the recovery of products from synthesis gas
DE69201038T2 (en) Process and apparatus for the production of carbon oxide and hydrogen.
EP1724542B1 (en) Process and device for the recovery of products from synthesis gas
EP2122281B1 (en) Method and device for obtaining gaseous products and liquid methane from synthesis gas
DE102010044646A1 (en) Process for separating nitrogen and hydrogen from natural gas
EP0100923B1 (en) Process and apparatus for separating a gas mixture
DE2912761A1 (en) METHOD FOR DISASSEMBLING A GAS MIXTURE
DE102007007581A1 (en) Carbon dioxide product producing method for gas analysis process, involves producing two-phase material-mixture by releasing fluid phase by throttle element, and vaporizing and heating fluid phase against application gas
DE102007010032A1 (en) Procedure for separating a nitrogen-rich fraction from a liquefied natural gas, comprises supplying the natural gas after its liquefaction and super cooling, to a stripping column that serves the separation of the nitrogen-rich fraction
EP2095047A2 (en) Method and device for obtaining products from synthesis gas
DE69909143T2 (en) Separation of carbon monoxide from nitrogen-contaminated gas mixtures containing hydrogen and methane
DE102015001858A1 (en) Combined separation of heavy and light ends from natural gas
DE102005010054A1 (en) Process for simultaneously recovering a helium and a nitrogen pure fraction
DE19541339B4 (en) Process for recovering carbon monoxide
DE102016002225A1 (en) Process and apparatus for cryogenic synthesis gas separation
DE4210638A1 (en) High purity hydrogen and carbon mon:oxide recovery from dry gas mixt. - by one stage partial condensation and purificn. giving high yield at reduced cost
WO2008052776A2 (en) Process and device for fractionating synthesis gas by means of methane scrubbing
EP0313883B1 (en) Hydrogen-carbonmonoxide separation process using partial condensation at low temperatures
EP2192365A2 (en) Process for minimising recycle gases in a condensation process
DE1815532A1 (en) Process for generating cold
DE2814660A1 (en) Carbon mon:oxide and hydrogen recovery from gas mixt. - by partial liquefaction, rectification and scrubbing with liquid nitrogen
DE102017006552A1 (en) Process for the recovery of gas products
DE102012020470A1 (en) Method for separating methane from synthesis gas that is utilized for e.g. combustion in power plant, involves utilizing liquefied methane-rich fraction process for cooling and vaporizing synthesis gas in heat exchangers
DE102007062213A1 (en) Production of hydrogen- and carbon monoxide-containing gas, i.e. oxo gas, from a mixture of these gases and methane, involves separation in a cryogenic stripper and scrubbing with liquid carbon monoxide
DE102005024106A1 (en) Multistage cryogenic separation of material stream comprises dehydrogenating material stream with hydrocarbon-rich liquid, extracting liquid fraction, mixing hydrocarbon-rich gas and producing flash gas and liquid product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090512

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANG, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110531