EP2093733B1 - Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen - Google Patents

Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen Download PDF

Info

Publication number
EP2093733B1
EP2093733B1 EP08101742A EP08101742A EP2093733B1 EP 2093733 B1 EP2093733 B1 EP 2093733B1 EP 08101742 A EP08101742 A EP 08101742A EP 08101742 A EP08101742 A EP 08101742A EP 2093733 B1 EP2093733 B1 EP 2093733B1
Authority
EP
European Patent Office
Prior art keywords
light
output signal
scattered
scattered light
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP08101742A
Other languages
English (en)
French (fr)
Other versions
EP2093733A1 (de
Inventor
Kurt Dr. Müller
Markus Loepfe
Georges A. Dr. Tenchio
Walter Vollenweider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39587915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2093733(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE502008003347T priority Critical patent/DE502008003347D1/de
Priority to EP08101742A priority patent/EP2093733B1/de
Priority to AT08101742T priority patent/ATE507544T1/de
Priority to US12/735,846 priority patent/US20110037971A1/en
Priority to PCT/EP2009/051756 priority patent/WO2009103668A1/de
Priority to CN200980105644.4A priority patent/CN101952863B/zh
Publication of EP2093733A1 publication Critical patent/EP2093733A1/de
Publication of EP2093733B1 publication Critical patent/EP2093733B1/de
Application granted granted Critical
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/04Monitoring of the detection circuits
    • G08B29/043Monitoring of the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to the technical field of danger detection technology. More particularly, the present invention relates to an apparatus for discriminating between detection of smoke and detection of insects based on scattered light optical measurements. The present invention further relates to a corresponding method based on the principle of optical scattered light measurements.
  • Optical or photoelectric smoke detectors usually work according to the scattered light method. It is exploited that clear air reflects virtually no light. However, if smoke particles are in the air, an illumination light emitted by a light source is at least partially scattered on the smoke particles. Part of this scattered light then falls on a light receiver, which is not directly illuminated by the light beam. Without smoke particles in the air, the illumination light can not reach the photosensitive sensor.
  • a fire detector is known, which is based on the known scattered radiation principle.
  • the fire detector has a plurality of radiation transmitters and a plurality of radiation receivers whose radiation paths define a plurality of spaced-apart scattering volumes or detection spaces.
  • the detection spaces are spatially spaced such that small objects such as insects can not move through multiple detection spaces simultaneously. In this way, a distinction can be made between a light scattered by a small object to be measured and a case of fire, in which smoke a distinction is made between smoke distributed over all detection spaces.
  • the fire detector has the disadvantage that it has several independent light paths each having both a light transmitter and a light receiver. The equipment required for the fire alarm is thus relatively high.
  • the smoke detector has a sensor housing with two light transmitters received therein, which emit light of different wavelengths and which are aligned with a smoke detection space located outside the sensor housing. It is recorded in the sensor housing, a light receiver for detecting scattered light, which comes from the illuminated by the light emitter smoke detection room. The light receiver outputs in each case a signal corresponding to the received light quantity.
  • the fire detector also has an evaluation unit which, from the intensity ratio of the two signals, makes it possible to distinguish the smoke into light smoke and dark smoke.
  • a smoke detector according to the backscatter principle which determines the presence of a non-fire case from the ratio of the received backscatter signals of two different wavelengths by means of an evaluation unit when the ratio of the two-wavelength signals is less than 2.
  • a fire detector which has a laser light source.
  • the laser light source is set up to emit short laser pulses in a surveillance area.
  • the fire detector also has a light detector which is arranged next to the laser light source and which is set up to detect laser light scattered back by 180 ° from smoke or other objects located in the monitoring area. Based on the time difference between emitted and received laser pulses, the position of a backscatter object within the Be determined monitoring area. By a suitable comparison with time differences obtained by reference measurements, the type of detected smoke can also be detected. In particular, a distinction can be made between black and white smoke.
  • the fire detector described has the disadvantage that the cost of measuring and evaluating the time difference is relatively high.
  • a smoke detector which comprises a housing and disposed within the housing has a light emitter and a light receiver. A defined by the spatial arrangement of light emitter and light receiver smoke detection area is located outside the smoke detector.
  • the smoke detector described has the disadvantage that in the smoke detection area penetrating insects can distort the detection of smoke.
  • the invention is based on the device-related object to provide a simply constructed open scattered light smoke detector, which is characterized on the one hand by a high reliability in the detection of smoke and on the other by a low false alarm probability in insects located in the detection room.
  • the invention is based on the method-related object to provide a method for detecting smoke on the basis of optical scattered light measurements, which is also characterized by a high reliability in the detection of smoke and on the other hand by a low false alarm probability in insects located in the detection room.
  • an apparatus for detecting smoke based on scattered light optical measurements has (a) a light emitting device configured to emit a temporal sequence of light pulses, wherein a first light pulse has a first spectral distribution and a second light pulse has a second spectral distribution that is different from the first spectral distribution (b ) a light receiver configured to receive a first scattered light from the first light pulse and a second scattered light from the second light pulse, and to provide a first output indicative of the first stray light and a second output indicative of the second stray light , and (c) an evaluation unit configured to compare the first output signal with the second output signal and to determine an insect presence index if the two output signals of great and approximately equal amplitude vary in time.
  • the described device for detecting smoke which is also referred to below as a scattered light smoke detector, is based on the finding that different light scatterers, which may be within the detection range of the scattered light detector, can be discriminated from one another by comparing their optical scattering properties at different wavelengths become.
  • the light receiver is preferably arranged spatially relative to the light-emitting device such that the primary illumination light emitted by the light-emitting device does not strike the light receiver. This applies to both the first and the second light pulses. Thus, in the absence of any light scatterers in the detection range of the scattered light smoke detector, no light rays reach the light receiver.
  • the described scattered light smoke detector may in particular be an open smoke detector. This means that a spatially separated scatter chamber, which is often referred to as a labyrinth, is not required.
  • Such other light scatterers may in particular be insects which may have entered the detection range of the scattered light smoke detector.
  • such light scatterers may also be typically stationary objects such as ground, wall or even side surfaces of a space monitored by the described scattered light smoke detector.
  • the two output signals are each indicative of the respective scattered light.
  • the output signals may preferably be directly proportional to the respective scattered light intensity. This means that the light receiver and the evaluation unit connected downstream of the light receiver operate linearly. A doubling of the scattered light intensity will then lead to an increase of the respective output signal by a factor of two.
  • the evaluation unit is set up to form a difference between the first output signal and the second output signal.
  • the signal evaluation depending on the difference between the two output signals is particularly advantageous if this object is relatively far away from the light emitting device and / or the light receiver.
  • the signal amplitudes can both be very large. However, whether they are in fact exactly the same size, so that the difference between two relatively large signals results in a zero signal, however, is unlikely in practice.
  • a difference signal remains which, with regard to its signal strength, corresponds at least to the order of magnitude of a smoke difference signal.
  • the difference formation described is particularly suitable for a highly accurate scattered light measurement of smoke or on a relatively widely spaced from the scattered light smoke detector object, when the two light paths of the first light pulse and the second light pulses are aligned with respect to the resulting output signals.
  • the intensity of the two light pulses can be set so that the two output signals are equal in a light scattering of the two light pulses on a Referenzstreucons.
  • the reference object may be, for example, a simple black scattering object which is introduced into the measuring range of the scattered light smoke detector during the adjustment.
  • N is typically in the range between 4 and 6.
  • the evaluation unit is set up to determine the ratio of the amplitude of the first output signal to the amplitude of the second output signal.
  • the determination of the described amplitude ratio can also be based on the two previously determined amplitudes of the first output signal and the second output signal.
  • the evaluation of the amplitude ratio has the advantage that it is always independent of the distance of the object from the scattered light detector for solid objects with a weak wavelength dependence of the scatter signal Signal ratio of approximately equal to one.
  • the signal ratio for a solid object regardless of its distance from the scattered light smoke detector differs significantly from the signal ratio of smoke.
  • the following relationship (2) results for the ratio of the amplitudes or the intensities of two scattered light signals: I ⁇ ⁇ 1 / I ⁇ ⁇ 2 ⁇ ⁇ ⁇ 2 / ⁇ ⁇ 1 n
  • n is typically in the range between 4 and 6.
  • the light-emitting device and the light receiver are arranged directly next to one another.
  • optoelectronic components for the light emitting device and the light receiver of the scattered light smoke detector can be realized for example with a maximum linear extent of about 7 mm.
  • the described scattered light smoke detector can additionally be realized within a small height extent.
  • the scattered light smoke detector can therefore be an inconspicuous object, which is suitable for many applications. Both space and aesthetic requirements can be met in a simple manner.
  • the light-emitting device has a first light source and a second light source.
  • the two light sources may be, for example, two light-emitting diodes, which are preferably arranged directly next to each other.
  • the two light sources can also be realized by means of a so-called. Multichip LED, which has at least two elements emitting light in different spectral ranges. In this case, the two light-emitting elements are anyway arranged in close proximity to each other.
  • the smallest possible distance between the two light sources has the advantage that the spatial signal paths for both light pulses are approximately equal.
  • the scattering on an insect continues to result in two signals having at least approximately the same amplitude, which, given a separate signal detection and a subsequent amplitude comparison, provide an amplitude ratio of at least approximately one. This is true at least as long as the time difference between the two light pulses is significantly smaller than the typical time scale of movements of insects.
  • the light-emitting device can also be realized by means of a light-emitting element, from which both light pulses emerge.
  • the Light-emitting element may be, for example, the end of an optical waveguide whose other end is split into two dividing ends. One divider may then be optically coupled to the first pulsed light source, the other divisor may be optically coupled to the second pulsed light source.
  • the device additionally has a microcontroller which is coupled at least to the light-emitting device and to the evaluation unit and which is set up for temporally synchronizing at least the light-emitting device and the evaluation unit.
  • the microcontroller and the evaluation unit can also be realized within an integrated component.
  • the evaluation unit can be controlled by software, by means of one or more special electrical circuits, i. in hardware or in any hybrid form, i. using software components and hardware components.
  • the first light pulse lies in the near infrared spectral range and / or the second light pulse is in the visible spectral range, in particular in the blue or violet spectral range.
  • a light emitting diode in the near infrared spectral range can provide the corresponding light pulses with a high intensity. This is all the more true since the two optoelectronic components can each be subjected to a current intensity which is higher is the current that would result in a stationary energization to a thermal destruction of the respective light emitting diode. Between two consecutive light pulses of the same type, the respective light-emitting diode can namely at least cool somewhat.
  • the first light pulse may have, for example, a wavelength of 880 nm (near infrared spectral range).
  • the second light pulse may, for example, have a wavelength of 420 nm (blue region of the visible spectrum).
  • the first and / or the second light pulse has a time length in the range between 1 ⁇ s and 200 ⁇ s, in the range between 10 ⁇ s and 150 ⁇ s or in the range between 50 ⁇ s and 120 ⁇ s. Particularly preferred currently appears a pulse length of 100 microseconds for both light pulses.
  • the repetition rate can result from the sum of the time lengths of the individual light pulses.
  • a rest pause follow, so that the effective repetition rate is significantly smaller than the inverted sum of the individual pulse durations.
  • Such a rest period can serve, for example, to reduce the effective power consumption of the described scattered light smoke detector. This is particularly advantageous in a battery-powered or battery-powered device, as this can significantly extend the life of the battery or the battery.
  • the present invention is by no means limited to the use of two types of light pulses. Rather, three or even more than three spectrally different light pulses of a given sequence can be evaluated in a suitable manner. This can the accuracy in the spectral discrimination of different scattering objects can be further improved.
  • the number of first light pulses and the number of second light pulses within a basic cycle need not necessarily be the same.
  • the first light pulse is significantly more intense than the second light pulse.
  • the adjustment described above can also take place in that the ratio between the number of first light pulses and the number of second light pulses is not equal to one and that the respective output signals of the two light pulses are integrated within a basic cycle. By a suitable choice of this ratio, an adjustment can then take place between the corresponding integrated output signals of the different light pulses.
  • the device additionally has an insect displacement device which is coupled to the evaluation unit and which can be activated in the case of temporally strong fluctuations of the first output signal and / or of the second output signal.
  • the insect eviscerating device may, for example, be a small "Ultra Sonic Mosquito Repeller" which, by means of an ultrasound sound that is very unpleasant for insects, sells the insects which are currently crawling over the light emitting device and / or via the light receiver and thereby causing strong fluctuations of the first output signal and / or cause the second output signal.
  • a method of detecting smoke based on scattered light optical measurements may in particular comprise a device of the above type.
  • the specified method comprises (a) transmitting a temporal sequence of light pulses by means of a light emitting device, wherein a first light pulse has a first spectral distribution and a second light pulse has a second spectral distribution that is different from the first spectral distribution, (b) receiving a first scattered light from the first light pulse and a second scattered light from the second light pulse by means of a first light pulse (C) providing a first output signal indicative of the first stray light and a second output indicative of the second stray light (d) comparing the first output signal with the second output signal by means of an evaluation unit; e) determining an insect presence index if the two output signals of large and approximately equal amplitude change with time.
  • the stated method for detecting smoke is also based on the knowledge that different light scatterers, which may be located in the detection range of the scattered light detector, can be discriminated from one another by comparing their optical scattering properties at different wavelengths.
  • the method additionally comprises matching the intensities of the two light pulses, so that when a scattering of the two light pulses to a reference scattering object, the first output signal and the second output signal are the same size.
  • the reference object may be, for example, a simple black scattering object which is introduced into the measuring range of the scattered light smoke detector during the adjustment.
  • the above-described comparison of the first output signal with the second output signal comprises forming a difference between the first output signal and the second output signal.
  • a difference signal can be generated, which is particularly indicative of the presence of smoke in the detection range of the scattered light smoke detector. This is because, unlike stationary objects such as the walls or the floor of a monitored room or moving objects such as insects, the scattered light behavior of smoke is strongly wavelength dependent. In fact, in the presence of smoke, a particularly large change in the difference signal will occur. This applies in particular to the case where the two light paths of the first light pulse and of the second light pulse are adjusted with respect to the resulting output signals, so that a difference signal of at least approximately zero normally results.
  • a time-varying difference signal is therefore a sure sign of the presence of insects.
  • the method additionally comprises compensating for a slowly varying difference signal towards a zero signal.
  • a difference signal which is based on a slowly varying first output signal and / or second output signal, be tracked so that in the absence of smoke, the difference signal is at least approximately equal to zero. The presence of smoke can then be reliably detected, starting from a zero signal by a difference signal, which differs significantly from the usual zero signal.
  • Different output signals can be caused for example by a slightly wavelength-dependent attenuation of reflected at the bottom or on the side walls of a space to be monitored light pulses.
  • Different output signals can also be caused by a time-varying and wavelength-dependent scattering behavior of the floor or the side walls.
  • these effects typically occur on a very slow time scale such that they can be reliably distinguished, for example, by appropriately filtering the difference signal from a highly variable difference signal produced by the presence of smoke.
  • FIG. 1 shows a top view of a scattered light smoke detector 100.
  • the scattered light smoke detector 100 has an in FIG. 1 not shown, on which all electronic and optoelectronic components of the scattered light smoke detector 100 are mounted.
  • the scattered-light smoke detector 100 has a light-emitting device 110, which comprises two light sources, a first light-emitting diode 111 and a second light-emitting diode 112.
  • the first light-emitting diode 111 has a light-emitting chip 111a.
  • the chip 111a emits an infrared light having a wavelength of 880 nm.
  • the second light-emitting diode 112 has a light-emitting chip 112a.
  • the chip 112a emits a blue light with a wavelength of 420 nm.
  • the two light-emitting diodes 111 and 112 are operated in a pulsed mode, with each light-emitting diode 111, 112 emitting light pulses with a time length of, for example, 100 ⁇ s.
  • the pulsed operation of the two light-emitting diodes 111 and 112 is synchronized with each other so that the two light pulses are fired or activated at a very small time interval. According to the exemplary embodiment illustrated here, this time interval between an infrared light pulse and a blue light pulse is approximately 1 to 100 ⁇ s.
  • the described scattered light smoke detector 100 is an open smoke detector.
  • the smoke detector 100 thus has no separated from the environment scattering chamber.
  • the smoke detection is rather on smoke particles that are in FIG. 1 located above the drawing plane.
  • at least part of the illumination light pulsed by the two light-emitting diodes 111, 112 is scattered at the aerosols of the smoke, and in turn a part of the scattered illumination light strikes the active surface 121 of a photodiode 120.
  • the two light-emitting diodes 111 and 112 are arranged directly next to the photodiode 120. This means that the housing of these components connect directly to each other or flush with each other. According to the embodiment shown here, the entire arrangement has a maximum linear extent of 7 mm.
  • the photodiode 120 sequentially measures a first optical scattered light signal in the near infrared spectral range and a second optical scattered light signal in the blue spectral range. By comparing the scattered light intensities of these two scattered light signals thus valuable information about the nature of the scattering object or the scattering medium can be obtained.
  • insects are not colored, but black, gray or brown to suppress the influence of insects in the scattering volume.
  • the luminous fluxes of the two light sources 111 and 111a and 112 or 112a are tuned in a balancing process so that the difference of the two measured signals generated by the photodiode offset in time from the radiation reflected by a black background is equal to zero.
  • the scattered light signals caused by the insects in the detection range can thus be effectively masked out.
  • the described scattered light smoke detector 100 can be realized in a miniaturized design.
  • FIG. 2 shows in a plan view of a scattered light smoke detector 200.
  • the scattered light smoke detector 200 differs from that in FIG. 1 shown scattered light smoke detector 100 only in that instead of two light emitting diodes, a so-called.
  • Multi-chip light-emitting diode 210 is used.
  • the multi-chip light-emitting diode 210 has a chip 211a emitting in the infrared spectral range and a chip 211b emitting in the blue spectral range.
  • the photodiode 220 is the same as the photodiode 120 of the scattered light smoke detector 100, and therefore will not be explained again.
  • the distance from the center of the photodiode 220 to the center of the multi-chip LED 210 is less than 4 mm.
  • FIG. 3 shows in a cross-sectional view the in FIG. 1 shown scattered light smoke detector, which is now provided with the reference numeral 300.
  • the scattered light smoke detector 300 has a housing 302. In the lower region of the housing 302, a groove-shaped recess is provided, which serves as a holder for a printed circuit board 305. On the circuit board 305 all electronic and optoelectronic components of the scattered light smoke detector 300 are mounted.
  • the circuit board is thus not only used as a carrier for in FIG. 3 not shown interconnects which electrically connect the individual components of the scattered light smoke detector 300 in a suitable manner.
  • the circuit board 3 ⁇ 5 thus also serves as a mechanical support for the components of the scattered light smoke detector 300th
  • circuit board 305 At the bottom of the circuit board 305 are formed as a dual-chip LED light emitting device 310 and the photodiode 320. Further, located at the bottom of the common circuit board 305 designed as a US Mosquito Repeller insect eviscerating device 350. This can always be activated when at According to the signal analysis described above, an insect is located directly on the light emitting diode 310 and / or the photodiode 320 or flying around in the vicinity of these two optoelectronic components.
  • a driver electronics 315 for driving the dual-chip LED 310 in a suitable manner.
  • a photo-amplifier 322 which is connected downstream of the photodiode 320, and an evaluation unit 330, which is the photo-amplifier 322 downstream.
  • a microcontroller 340 located at the top of the circuit board 305, which controls the entire operation of the scattered light smoke detector 300.
  • the microcontroller 340 and the evaluation unit 330 can also be designed as a common integrated component.

Description

  • Die vorliegende Erfindung betrifft das technische Gebiet der Gefahrmeldetechnik. Die vorliegende Erfindung betrifft insbesondere eine Vorrichtung zum Unterscheiden zwischen einer Detektion von Rauch und einer Detektion von Insekten auf der Grundlage von optischen Streulichtmessungen. Die vorliegende Erfindung betrifft ferner ein auf dem Prinzip optischer Streulichtmessungen beruhendes korrespondierendes Verfahren.
  • Optische bzw. photoelektrische Rauchmelder arbeiten üblicherweise nach dem Streulichtverfahren. Dabei wird ausgenutzt, dass klare Luft praktisch kein Licht reflektiert. Befinden sich aber Rauchpartikel in der Luft, so wird ein von einer Lichtquelle ausgesandtes Beleuchtungslicht zumindest teilweise an den Rauchpartikeln gestreut. Ein Teil dieses Streulichtes fällt dann auf einen Lichtempfänger, der nicht direkt vom Lichtstrahl beleuchtet wird. Ohne Rauchpartikel in der Luft kann das Beleuchtungslicht den lichtempfindlichen Sensor nicht erreichen.
  • Aus der DE 10 2004 001 699 A1 ist ein Brandmelder bekannt, welcher auf dem bekannten Streustrahlungsprinzip beruht. Der Brandmelder weist mehrere Strahlungssender und mehrere Strahlungsempfänger auf, deren Strahlungspfade mehrere beabstandete Streuvolumina bzw. Detektionsräume definieren. Die Detektionsräume sind örtlich derart voneinander beabstandet, dass sich kleine Messobjekte wie beispielsweise Insekten nicht gleichzeitig durch mehrere Detektionsräume bewegen können. Auf diese Weise kann zwischen einem an einem kleinen Messobjekt gestreuten Licht und einem Brandfall unterschieden werden, bei dem Rauch über sämtliche Detektionsräume verteilten Rauch unterschieden werden. Der Brandmelder hat jedoch den Nachteil, dass er mehrere voneinander unabhängige Lichtpfade mit jeweils sowohl einen Lichtsender als auch einen Lichtempfänger aufweist. Der apparative Aufwand für den Brandmelder ist damit vergleichsweise hoch.
  • Aus der europäischen Patentanmeldung EP 1 688 898 A1 ist ein auf dem Streulichtprinzip basierender Rauchmelder bekannt. Bei einer dortigen Ausführungsform weist der Rauchmelder ein Sensorgehäuse mit zwei darin aufgenommenen Lichtsendern auf, welche Licht unterschiedlicher Wellenlänge aussenden und welche auf einen außerhalb des Sensorgehäuses liegenden Rauchdetektionsraum ausgerichtet sind. Es ist im Sensorgehäuse ein Lichtempfänger zur Detektion von Streulicht aufgenommen, welches von dem durch den Lichtsender beleuchteten Rauchdetektionsraum stammt. Der Lichtempfänger gibt jeweils ein zur empfangenen Lichtmenge korrespondierendes Signal aus. Der Brandmelder weist ferner eine Auswerteeinheit auf, welche aus dem Intensitätsverhältnis der beiden Signale eine Unterscheidung des Rauchs in hellen Rauch und dunklen Rauch ermöglicht.
  • Aus dem Patent Abstract of Japan 2005 115970 A ist ein Rauchmelder nach dem Rückstreuprinzip bekannt, welcher aus dem Verhältnis der empfangenen Rückstreusignale zweier unterschiedlicher Wellenlängen mittels einer Auswerteeinheit das Vorliegen eines Nicht-Brandfalls ermittelt, wenn das Verhältnis der Zwei-Wellenlängensignale kleiner als 2 ist.
  • Aus der EP 0 472 039 A2 ist ein Brandmelder bekannt, welcher eine Laserlichtquelle aufweist. Die Laserlichtquelle ist eingerichtet zum Aussenden von kurzen Laserpulsen in einen Überwachungsbereich. Der Brandmelder weist ferner einen Lichtdetektor auf, welcher neben der Laserlichtquelle angeordnet ist und welcher eingerichtet ist, von im Überwachungsbereich befindlichen Rauch oder anderen Objekten um 180° zurück gestreutes Laserlicht zu detektieren. Anhand der Zeitdifferenz zwischen ausgesandten und empfangenen Laserpulsen kann die Position eines Rückstreuobjekts innerhalb des Überwachungsbereichs bestimmt werden. Durch einen geeigneten Vergleich mit durch Referenzmessungen gewonnenen Zeitdifferenzen kann ferner die Art von detektiertem Rauch erkannt werden. Insbesondere kann zwischen schwarzem und weißem Rauch unterschieden werden. Der mit der EP 0 472 039 A2 beschriebene Brandmelder hat jedoch den Nachteil, dass der Aufwand zum Messen und Auswerten der Zeitdifferenz relativ hoch ist.
  • Aus der EP 1 039 426 A2 ist ein Rauchmelder bekannt, welcher ein Gehäuse und innerhalb des Gehäuses angeordnet einen Lichtsender und einen Lichtempfänger aufweist. Ein durch die räumliche Anordnung von Lichtsender und Lichtempfänger definierter Rauch-Detektierungsbereich befindet sich außerhalb des Rauchmelders. Der mit der EP 1 039 426 A2 beschriebene Rauchmelder weist jedoch den Nachteil auf, dass in den Rauch-Detektierungsbereich eindringenden Insekten die Detektion von Rauch verfälschen können.
  • Der Erfindung liegt die vorrichtungsbezogene Aufgabe zugrunde, einen einfach aufgebauten offenen Streulichtrauchmelder zu schaffen, welcher sich zum einen durch eine hohe Zuverlässigkeit bei der Detektion von Rauch und zum anderen durch eine geringe Fehlalarmwahrscheinlichkeit bei im Detektionsraum befindlichen Insekten auszeichnet. Der Erfindung liegt die verfahrensbezogene Aufgabe zugrunde, ein Verfahren zum Detektieren von Rauch auf der Grundlage von optischen Streulichtmessungen anzugeben, welches sich ebenfalls zum einen durch eine hohe Zuverlässigkeit bei der Detektion von Rauch und zum anderen durch eine geringe Fehlalarmwahrscheinlichkeit bei im Detektionsraum befindlichen Insekten auszeichnet.
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Gemäß einem ersten Aspekt der Erfindung wird eine Vorrichtung zum Detektieren von Rauch auf der Grundlage von optischen Streulichtmessungen beschrieben. Die beschriebene Vorrichtung weist auf (a) eine Lichtsendeeinrichtung, eingerichtet zum Aussenden einer zeitlichen Abfolge von Lichtpulsen, wobei ein erster Lichtpuls eine erste spektrale Verteilung aufweist und ein zweiter Lichtpuls eine zweite spektrale Verteilung aufweist, die unterschiedlich ist zu der ersten spektralen Verteilung, (b) einen Lichtempfänger, eingerichtet zum Empfangen eines ersten Streulichts von dem ersten Lichtpuls und eines zweiten Streulichts von dem zweiten Lichtpuls, und zum Bereitstellen eines ersten Ausgangssignals, welches für das erste Streulicht indikativ ist, und eines zweiten Ausgangssignal, welches für das zweite Streulicht indikativ ist, und (c) eine Auswerteeinheit, eingerichtet zum Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal und zum Bestimmen eines Indizes für das Vorhandensein von Insekten, falls sich die beiden Ausgangssignale mit großer und mit etwa gleicher Amplitude zeitlich stark verändern.
  • Der beschriebenen Vorrichtung zum Detektieren von Rauch, welche nachfolgend auch kurz als Streulichtrauchmelder bezeichnet wird, liegt die Erkenntnis zugrunde, dass unterschiedliche Lichtstreuer, die sich im Erfassungsbereichs des Streulichtmelders befinden können, dadurch voneinander diskriminiert werden können, dass ihre optischen Streueigenschaften bei unterschiedlichen Wellenlängen miteinander verglichen werden.
  • Der Lichtempfänger ist relativ zu der Lichtsendeeinrichtung bevorzugt räumlich derart angeordnet, dass das von der Lichtsendeeinrichtung ausgesandte primäre Beleuchtungslicht nicht auf den Lichtempfänger trifft. Dies gilt sowohl für die ersten als auch für die zweiten Lichtpulse. Im Falle der Abwesenheit von jeglichen Lichtstreuern in dem Erfassungsbereich des Streulichtrauchmelders erreichen somit keinerlei Lichtstrahlen den Lichtempfänger.
  • Bei dem beschriebenen Streulichtrauchmelder kann es sich insbesondere um einen offenen Rauchmelder handeln. Dies bedeutet, dass eine räumlich abgetrennte Streukammer, welche häufig auch als Labyrinth bezeichnet wird, nicht erforderlich ist.
  • Durch die Auswertung der ggf. spektral unterschiedlichen Streueigenschaften von möglichen Streugegenständen kann zuverlässig zwischen einer Detektion von Rauch und einer Detektion von anderen Lichtstreuern unterschieden werden, die sich in dem Erfassungsbereich des offenen Streulichtrauchmelders befinden. Solche anderen Lichtstreuer können insbesondere Insekten sein, die in den Erfassungsbereich des Streulichtrauchmelders eingedrungen sein können. Ebenso kann es sich bei derartigen Lichtstreuern auch um typischerweise stationäre Objekt wie beispielsweise Boden-, Wand- oder auch Seitenflächen eines durch den beschriebenen Streulichtrauchmelder überwachten Raumes handeln.
  • Bei dem beschriebenen Streulichtrauchmelder sind die beiden Ausgangssignale jeweils indikativ für das jeweilige Streulicht. Die Ausgangssignale können dabei bevorzugt direkt proportional zu der jeweiligen Streulichtintensität sein. Dies bedeutet, dass der Lichtempfänger und die dem Lichtempfänger nachgeschaltete Auswerteeinheit linear arbeiten. Eine Verdoppelung der Streulichtintensität wird dann zu einer Erhöhung des jeweiligen Ausgangssignals um den Faktor zwei führen.
  • Gemäß einem Ausführungsbeispiel der Erfindung ist die Auswerteeinheit eingerichtet zum Bilden einer Differenz zwischen dem ersten Ausgangssignals und dem zweiten Ausgangssignal. Dies hat den Vorteil, dass auf besonders einfache Weise Rauch gegenüber anderen streuenden Objekten unterschieden werden kann. Bei den meisten Objekten ist nämlich das Streuverhalten zumindest in erster Näherung unabhängig von der Wellenlänge des Lichts.
  • Es wird darauf hingewiesen, dass im Falle eines festen Gegenstandes als Messobjekt die Signalauswertung in Abhängigkeit der Differenz zwischen den beiden Ausgangssignalen insbesondere dann vorteilhaft ist, wenn sich dieser Gegenstand relativ weit weg von der Lichtsendeeinrichtung und/oder dem Lichtempfänger befindet. Bei einem festen Gegenstand, der sich in der Nähe des Streulichtrauchmelders befindet, können die Signalamplituden beide sehr groß sein. Ob sie jedoch tatsächlich exakt gleich groß sind, so dass aus der Differenzbildung zwischen zwei relative großen Signalen ein Nullsignal resultiert, ist jedoch in der Praxis eher unwahrscheinlich. So ist es durchaus möglich, dass bei einer Differenzbildung zwischen zwei sehr großen Signalen ein Differenzsignal übrig bleibt, welches hinsichtlich seiner Signalstärke zumindest der Größenordnung eines Rauchdifferenzsignals entspricht.
  • Die beschriebene Differenzbildung eignet sich insbesondere dann für eine hochgenaue Streulichtmessung an Rauch oder an einem von dem Streulichtrauchmelder relativ weit beabstandeten Messobjekt, wenn die beiden Lichtpfade des ersten Lichtpulses und des zweiten Lichtpulse hinsichtlich der resultierenden Ausgangssignale abgeglichen sind. Bei einem Abgleich kann beispielsweise die Intensität der beiden Lichtpulse so eingestellt werden, dass die beiden Ausgangssignale bei einer Lichtstreuung der beiden Lichtpulse an einem Referenzstreuobjekts gleich stark sind. Das Referenzobjekt kann beispielsweise ein einfaches schwarzes Streuobjekt sein, welches während des Abgleichs in den Messbereich des Streulichtrauchmelders eingebracht wird.
  • Im Gegensatz zu dem Referenzstreuobjekt oder zu einem in dem Messbereich eingedrungenem Insekt, ergibt sich bei Rauch als dem streuenden Medium ein deutlich größeres Differenzsignal als bei einem Messobjekt, welches sich relativ weit weg von der Lichtsendeeinrichtung und/oder dem Lichtempfänger befindet. Dies liegt daran, dass die Lichtstreuung an Rauch eine starke Wellenlängenabhängigkeit aufweist. Die Abhängigkeit der Intensität I des an Rauchaerosolen gestreuten Lichts von der Wellenlänge λ wird zumindest annähernd durch folgende Beziehung (1) beschrieben: I λ 1 / λ n
    Figure imgb0001
  • Dabei liegt n typischerweise im Bereich zwischen 4 und 6.
  • Sollte sich somit nach einem korrekten Abgleich der beiden Lichtpulse während des Betriebs des Streulichtrauchmelders ein starkes aber zeitlich lediglich schwach veränderliches Differenzsignal ergeben, dann ist dies ein sicheres Indiz für das Vorhandensein von Rauch.
  • Es wird darauf hingewiesen, dass auch in dem Messbereich befindliche Insekten zu großen Einzelsignalen führen können, deren Verhältnis nahe bei eins liegt. Zudem weist dieses Verhältnis jedoch üblicherweise starke zeitliche bzw. abrupte Schwankungen auf, die von einer typischen Bewegung des jeweiligen Insekts herrühren. Zwei zeitlich stark veränderliche Ausgangssignale mit großer und etwa gleicher Amplitude sind demzufolge ein sicheres Indiz für das Vorhandensein von Insekten.
  • Gemäß einem Ausführungsbeispiel der Erfindung ist die Auswerteeinheit eingerichtet zum Bestimmen des Verhältnisses der Amplitude des ersten Ausgangssignals zu der Amplitude des zweiten Ausgangssignals. Die Bestimmung des beschriebenen Amplitudenverhältnisses kann auch basierend auf den beiden zuvor bestimmten Amplituden des ersten Ausgangssignals und des zweiten Ausgangssignals erfolgen.
  • Die Auswertung des Amplitudenverhältnisses hat den Vorteil, dass es bei festen Gegenständen mit einer schwachen Wellenlängenabhängigkeit des Streusignals unabhängig von der Entfernung des Gegenstandes von dem Streulichtmelder stets ein Signalverhältnis von ungefähr gleich eins geben wird. Dabei unterscheidet sich das Signalverhältnis für einen festen Gegenstand unabhängig von dessen Entfernung von dem Streulichtrauchmelder in signifikanter Weise vom dem Signalverhältnis von Rauch. Aus der o. g. Beziehung (1) ergibt sich nämlich für das Verhältnis der Amplituden bzw. der Intensitäten zweier Streulichtsignale folgende Beziehung (2): I λ 1 / I λ 2 λ 2 / λ 1 n
    Figure imgb0002
  • Auch hier liegt n typischerweise im Bereich zwischen 4 und 6.
  • Unter der Annahme dass λ2 = 2 · λ1 ergibt sich aus der Beziehung (2) für das Verhältnis I(λ1)/I(λ2) ein Wert von ungefähr 16 bis 64.
  • In diesem Punkt unterscheidet sich die beschriebene Auswertung des Amplitudenverhältnisses von der oben beschriebenen Differenzbildung. Bei der oben beschriebenen Differenzbildung würde sich nämlich für den Fall λ2 = 2 · λ1 ein Wert I(λ1) - I(λ2) ergeben, welcher in Anbetracht der Beziehung (1) ungefähr gleich I(λ1) ist. Damit würden also ggf. wertvolle Informationen verloren gehen. Die hier beschriebene Auswertung des Amplitudenverhältnisses ist also der oben beschriebenen Differenzbildung für die meisten Anwendungen vorzuziehen.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Lichtsendeeinrichtung und der Lichtempfänger unmittelbar nebeneinander angeordnet. Dies hat den Vorteil, dass der gesamte Streulichtrauchmelder innerhalb einer besonders kompakten Bauform realisiert werden kann. Insbesondere bei Verwendung von optoelektronischen Bauelementen für die Lichtsendeeinrichtung und den Lichtempfänger kann der Streulichtrauchmelder beispielsweise mit einer maximalen linearen Ausdehnung von ungefähr 7 mm realisiert werden.
  • Sämtliche elektronischen und/oder optoelektronischen Bauelemente können auf einer gemeinsamen Leiterplatte angebracht sein. Dadurch kann der beschriebene Streulichtrauchmelder zusätzlich innerhalb einer geringen Höhenausdehnung realisiert werden. Der Streulichtrauchmelder kann demzufolge ein unauffälliges Objekt sein, welches sich für viele Anwendungen eignet. Dabei können sowohl platztechnische als auch ästhetische Vorgaben auf einfache Weise erfüllt werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Lichtsendeeinrichtung eine erste Lichtquelle und eine zweite Lichtquelle auf.
  • Die beiden Lichtquellen können beispielsweise zwei Leuchtdioden sein, die bevorzugt unmittelbar nebeneinander angeordnet sind. Die beiden Lichtquellen können außerdem mittels einer sog. Multichip LED realisiert sein, welche zumindest zwei in unterschiedlichen Spektralbereichen Licht emittierende Elemente aufweist. In diesem Fall sind die beiden Licht emittierende Elemente ohnehin in großer räumlicher Nähe zueinander angeordnet.
  • Ein möglichst geringer Abstand zwischen den beiden Lichtquellen hat den Vorteil, dass die räumlichen Signalpfade für beide Lichtpulse annähernd gleich sind. Damit führt insbesondere bei zwei zeitlich kurz aufeinander fallenden Lichtpulsen die Streuung an einem Insekt weiterhin zu zwei Signalen mit zumindest annähernd gleicher Amplitude, die bei einer getrennten Signalerfassung und einem nachfolgenden Amplitudenvergleich ein Amplitudenverhältnis von zumindest ungefähr eins liefern. Dies gilt jedenfalls solange die Zeitdifferenz zwischen beiden Lichtpulsen deutlich kleiner als die typische Zeitskala von Bewegungen der Insekten ist.
  • Es wird darauf hingewiesen, dass die Lichtsendeinrichtung auch mittels eines Licht emittierenden Elements realisiert werden kann, aus welchem beide Lichtpulse austreten. Das Licht emittierende Element kann beispielsweise das Ende eines Lichtwellenleiters sein, dessen anderes Ende in zwei Teilenden aufgespaltet ist. Ein Teilende kann dann mit einer ersten gepulsten Lichtquelle, das andere Teilende kann mit der zweiten gepulsten Lichtquelle optisch gekoppelt sein.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung zusätzlich einen Mikrocontroller auf, welcher zumindest mit der Lichtsendeeinrichtung und mit der Auswerteeinheit gekoppelt ist und welcher eingerichtet zum zeitlichen Synchronisieren zumindest der Lichtsendeeinrichtung und der Auswerteeinheit.
  • Durch die beschriebene Synchronisation des Betriebs der Lichtsendeeinrichtung und der Auswerteeinheit kann gewährleistet werden, dass die beiden Ausgangssignale auch tatsächlich dem jeweiligen Lichtpuls zugeordnet werden.
  • Es wird darauf hingewiesen, dass der Mikrocontroller und die Auswerteeinheit auch innerhalb eines integrierten Bauelements realisiert werden können. In diesem Fall kann die Auswerteeinheit mittels Software, mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung liegt der erste Lichtpuls im nahen infraroten Spektralbereich und/oder der zweite Lichtpuls liegt im sichtbaren Spektralbereich, insbesondere im blauen oder violetten Spektralbereich. Dies hat den Vorteil, dass beide Lichtpulse durch einfache optoelektronische Bauelemente realisiert werden können. Insbesondere eine im nahen infraroten Spektralbereich emittierende Leuchtdiode kann die entsprechenden Lichtpulse mit einer hohen Intensität bereitstellen. Dies gilt umso mehr, als die beiden optoelektronische Bauelemente jeweils mit einer Stromstärke beaufschlagt werden können, welche höher ist als die Stromstärke, die bei einer stationären Bestromung zu einer thermischen Zerstörung der jeweiligen Leuchtdiode führen würde. Zwischen zwei aufeinander folgenden Lichtpulsen desselben Typs kann die jeweilige Leuchtdiode sich nämlich zumindest etwas abkühlen.
  • Der erste Lichtpuls kann dabei beispielsweise eine Wellenlänge von 880 nm (naher infraroter Spektralbereich) aufweisen. Der zweite Lichtpuls kann beispielsweise eine Wellenlänge von 420 nm (blauer Bereich des sichtbaren Spektrums) aufweisen.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der erste und/oder der zweite Lichtpuls eine zeitliche Länge im Bereich zwischen 1 µs und 200 µs, im Bereich zwischen 10 µs und 150 µs oder im Bereich zwischen 50 µs und 120 µs auf. Besonders bevorzugt erscheint derzeit eine Pulslänge von 100 µs für beide Lichtpulse.
  • Die Repetitionsrate kann sich dabei aus der Summe der zeitlichen Längen der einzelnen Lichtpulse ergeben. Ebenso kann nach einer vorgegebenen Pulssequenz mit zumindest einem ersten Lichtpuls und einem zweiten Lichtpuls eine Ruhepause folgen, so dass die effektive Repetitionsrate deutlich kleiner ist als die invertierte Summe aus den einzelnen Pulsdauern. Eine derartige Ruhepause kann beispielsweise dazu dienen, den effektiven Strombedarf des beschriebenen Streulichtrauchmelders zu reduzieren. Dies ist insbesondere bei einem batterie- bzw. akkubetriebenem Gerät vorteilhaft, da dadurch die Lebensdauer der Batterie bzw. des Akkus erheblich verlängert werden kann.
  • Es wird darauf hingewiesen, dass die vorliegende Erfindung keineswegs auf die Verwendung von zwei Arten von Lichtpulsen beschränkt ist. Vielmehr können auch drei oder sogar mehr als drei spektral unterschiedliche Lichtpulse einer vorgegebenen Sequenz in geeigneter Weise ausgewertet werden. Dadurch kann die Genauigkeit bei der spektralen Diskriminierung von unterschiedlichen Streuobjekten zusätzlich verbessert werden.
  • Es wird ferner darauf hingewiesen, dass die Anzahl an ersten Lichtpulsen und die Anzahl an zweiten Lichtpulsen innerhalb eines Grundzyklus nicht zwangsweise gleich sein muss. So ist es beispielsweise denkbar, dass der erste Lichtpuls deutlich intensiver ist als der zweite Lichtpuls. Der oben beschriebene Abgleich kann auch dadurch erfolgen, dass das Verhältnis zwischen der Anzahl an ersten Lichtpulsen und der Anzahl an zweiten Lichtpulsen ungleich eins ist und dass die jeweiligen Ausgangssignale der beiden Lichtpulse innerhalb eines Grundzyklus integriert werden. Durch eine geeignete Wahl dieses Verhältnisses kann dann ein Abgleich zwischen den entsprechenden integrierten Ausgangssignalen der verschiedenen Lichtpulse erfolgen.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung zusätzlich eine Insektenvertreibungseinrichtung auf, welche mit der Auswerteeinheit gekoppelt ist und welche bei zeitlich starken Schwankungen des ersten Ausgangssignals und/oder des zweiten Ausgangssignals aktivierbar ist.
  • Die Insektenvertreibungseinrichtung kann beispielsweise ein kleiner "Ultra Sonic Mosquito-Repeller" sein, der mittels eines für Insekten sehr unangenehmen Ultraschall-Tons die Insekten vertreibt, die beispielsweise aktuell über die Lichtsendeeinrichtung und/oder über den Lichtempfänger kriechen und dadurch starke Schwankungen des ersten Ausgangssignals und/oder des zweiten Ausgangssignals bewirken.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Detektieren von Rauch auf der Grundlage von optischen Streulichtmessungen angegebene. Das Verfahren kann insbesondere eine Vorrichtung des oben genannten Typs aufweisen. Das angegebene Verfahren weist auf (a) ein Aussenden einer zeitlichen Abfolge von Lichtpulsen mittels einer Lichtsendeeinrichtung, wobei ein erster Lichtpuls eine erste spektrale Verteilung aufweist und ein zweiter Lichtpuls eine zweite spektrale Verteilung aufweist, die unterschiedlich ist zu der ersten spektralen Verteilung, (b) ein Empfangen eines ersten Streulichts von dem ersten Lichtpuls und eines zweiten Streulichts von dem zweiten Lichtpuls mittels eines Lichtempfängers, (c) ein Bereitstellen eines ersten Ausgangssignals, welches für das erste Streulicht indikativ ist, und eines zweiten Ausgangssignal, welches für das zweite Streulicht indikativ ist, (d) ein Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal mittels einer Auswerteeinheit, und (e) ein Bestimmen eines Indizes für das Vorhandensein von Insekten, falls sich die beiden Ausgangssignale mit großer und mit etwa gleicher Amplitude zeitlich stark verändern.
  • Auch dem angegebenen Verfahren zum Detektieren von Rauch liegt die Erkenntnis zugrunde, dass unterschiedliche Lichtstreuer, die sich im Erfassungsbereichs des Streulichtmelders befinden können, dadurch voneinander diskriminiert werden können, dass ihre optischen Streueigenschaften bei unterschiedlichen Wellenlängen miteinander verglichen werden.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist das Verfahren zusätzlich ein Abgleichen der Intensitäten der beiden Lichtpulse auf, so dass bei einer Streuung der beiden Lichtpulse an einem Referenzstreuobjekt das erste Ausgangssignal und das zweite Ausgangssignal gleich groß sind.
  • Das Referenzobjekt kann beispielsweise ein einfaches schwarzes Streuobjekt sein, welches während des Abgleichs in den Messbereich des Streulichtrauchmelders eingebracht wird.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das oben beschriebene Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal das Bilden einer Differenz zwischen dem ersten Ausgangssignals und dem zweiten Ausgangssignal auf.
  • Durch das beschriebene Bilden einer Differenz zwischen den beiden Ausgangssignalen kann ein Differenzsignal generiert werden, welches in besonderem Maße indikativ ist für die Präsenz von Rauch in dem Erfassungsbereich des Streulichtrauchmelders. Dies liegt daran, dass, im Gegensatz zu stationären Objekten wie beispielsweise den Wänden oder dem Boden eines überwachten Raumes oder beweglichen Objekten wie beispielsweise Insekten, das Streulichtverhalten von Rauch stark wellenlängenabhängig ist. Bei dem Vorhandensein von Rauch wird sich nämlich eine besonders starke Änderung des Differenzsignals einstellen. Dies gilt insbesondere für den Fall, dass die beiden Lichtpfade des ersten Lichtpulses und des zweiten Lichtpulse hinsichtlich der resultierenden Ausgangssignale abgeglichen sind, so dass sich im Normalfall ein Differenzsignal von zumindest annähernd Null ergibt.
  • An dieser Stelle wird darauf hingewiesen, dass auch die Gegenwart von Insekten zu einem relativ großen Differenzsignal führen kann. Dieses weist jedoch typischerweise relativ abrupte Schwankungen auf, die von einer typischen Bewegung des jeweiligen Insekts herrühren. Ein zeitlich stark veränderliches Differenzsignal ist demzufolge ein sicheres Indiz für das Vorhandensein von Insekten. Im Gegensatz dazu ist eine große Ähnlichkeit oder eine Korrelation, insbesondere in zeitlicher Hinsicht, ein weiteres Indiz, anhand dessen ein auf Rauch basierendes Streusignalsignal von einer durch Insekten verursachtes Streusignal diskriminiert werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Verfahren zusätzlich ein Kompensieren eines langsam veränderlichen Differenzsignals hin zu einem Nullsignal auf. Auf diese Weise kann ein Differenzsignal, welches auf einem langsam veränderlichen ersten Ausgangsignal und/oder zweiten Ausgangssignal beruht, so nachgeführt werden, dass in Abwesenheit von Rauch das Differenzsignal zumindest annähernd gleich null ist. Die Präsenz von Rauch kann dann ausgehend von einem Nullsignal durch ein Differenzsignal, welches sich deutlich von dem üblichen Nullsignal unterscheidet, zuverlässig erkannt werden.
  • Unterschiedliche Ausgangssignale können beispielsweise durch eine geringfügig wellenlängenabhängige Dämpfung von am Boden oder an den Seitenwänden eines zu überwachenden Raumes reflektierten Lichtpulsen hervorgerufen werden. Unterschiedliche Ausgangssignale können ferner durch ein zeitlich veränderliches und wellenlängeabhängiges Streuverhalten von dem Boden oder den Seitenwänden verursacht werden. Diese Effekte treten jedoch typischerweise auf einer sehr langsamen Zeitskala auf, so dass sie beispielsweise durch eine geeignete Filterung des Differenzsignals von einem stark veränderlichen Differenzsignal, welches durch das Vorhandensein von Rauch erzeugt wird, zuverlässig unterschieden werden können.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen.
    • Figur 1 zeigt in einer Draufsicht einen Streulichtrauchmelder mit einer Photodiode und zwei unmittelbar neben der Photodiode angeordneten Leuchtdioden.
    • Figur 2 zeigt in einer Draufsicht einen Streulichtrauchmelder mit einer Photodiode und einer Zweifachchip-Leuchtdiode, welche unmittelbar neben der Photodiode abgeordnet ist.
    • Figur 3 zeigt in einer Querschnittsdarstellung den in Figur 1 dargestellten Streulichtrauchmelder, bei dem sämtlichen elektronischen und optoelektronischen Komponenten an einer gemeinsamen Leiterplatte angebracht sind.
  • An dieser Stelle bleibt anzumerken, dass sich in der Zeichnung die Bezugszeichen von gleichen oder von einander entsprechenden Komponenten lediglich in ihrer ersten Ziffer unterscheiden.
  • Figur 1 zeigt in einer Draufsicht einen Streulichtrauchmelder 100. Der Streulichtrauchmelder 100 weist eine in Figur 1 nicht dargestellte Leiterplatte auf, an der sämtliche elektronischen und optoelektronischen Komponenten des Streulichtrauchmelders 100 angebracht sind.
  • Der Streulichtrauchmelder 100 weist eine Lichtsendeeinrichtung 110 auf, welche zwei Lichtquellen, eine erste Leuchtdiode 111 und eine zweite Leuchtdiode 112, umfasst. Die erste Leuchtdiode 111 weist einen Licht emittierenden Chip 111a auf. Gemäß dem hier dargestellten Ausführungsbeispiel sendet der Chip 111a ein infrarotes Licht mit einer Wellenlänge von 880 nm aus. Die zweite Leuchtdiode 112 weist einen Licht emittierenden Chip 112a auf. Gemäß dem hier dargestellten Ausführungsbeispiel sendet der Chip 112a ein blaues Licht mit einer Wellenlänge von 420 nm aus.
  • Die beiden Leuchtdioden 111 und 112 werden in einem gepulsten Modus betrieben, wobei jede Leuchtdiode 111, 112 Lichtpulse mit einer zeitlichen Länge von beispielsweise 100 µs aussendet. Der gepulste Betrieb der beiden Leuchtdioden 111 und 112 ist miteinander derart synchronisiert, dass die beiden Lichtpulse mit einem sehr kleinen zeitlichen Abstand befeuert bzw. aktiviert werden. Gemäß dem hier dargestellten Ausführungsbeispiel beträgt dieser zeitliche Abstand zwischen einem infraroten Lichtpuls und einem blauen Lichtpuls ca. 1 bis 100 µs.
  • Bei dem beschriebenen Streulichtrauchmelder 100 handelt es sich um einen offenen Rauchmelder. Der Rauchmelder 100 weist somit keine von der Umgebung abgetrennte Streukammer auf. Die Rauchdetektierung erfolgt vielmehr an Rauchpartikeln, die sich in Figur 1 oberhalb der Zeichenebene befinden. Dabei wird zumindest ein Teil des von den beiden Leuchtdioden 111, 112 gepulsten Beleuchtungslichts an den Aerosolen des Rauchs gestreut und wiederum ein Teil des gestreuten Beleuchtungslichts trifft auf die aktive Fläche 121 einer Photodiode 120.
  • Wie aus Figur 1 ersichtlich, sind die beiden Leuchtdioden 111 und 112 unmittelbar neben der Photodiode 120 angeordnet. Dies bedeutet, dass die Gehäuse dieser Bauelemente unmittelbar aneinander anschließen bzw. bündig aneinander anliegen. Gemäß dem hier dargestellten Ausführungsbeispiel hat die gesamte Anordnung eine maximale lineare Ausdehnung von 7 mm.
  • Infolge der unmittelbar nacheinander vorgenommenen Aktivierung der beiden Leuchtdioden misst die Photodiode 120 nun sequentiell ein erstes optisches Streulichtsignal im nahen infraroten Spektralbereich und ein zweites optisches Streulichtsignal im blauen Spektralbereich. Durch einen Vergleich der Streulichtintensitäten dieser beiden Streulichtsignale können somit wertvolle Informationen über die Art des streuenden Objekts bzw. des streuenden Mediums gewonnen werden.
  • Bei der Auswertung der beiden Streulichtintensitäten kann man sich zum Unterdrücken der Einflüsse von im Streuvolumen befindlichen Insekten die Tatsache zunutze machen, dass Insekten nicht farbig, sondern schwarz, grau oder braun sind.
  • Ihre spektrale Reflexion hat demzufolge einen sehr flachen Verlauf. Dies bedeutet, dass sie im infraroten wie im blauen Wellenlängenbereich ähnlich stark reflektieren bzw. streuen.
  • Im Folgenden wird ein Verfahren beschrieben, mit dem unter Verwendung des Streulichtrauchmelders 100 verschiedene Streulichtsignale aufgrund ihrer spektralen Signatur und/oder ihrer zeitlichen Schwankungen voneinander unterschieden werden können.
  • Zunächst werden die Lichtströme der beiden Lichtquellen 111 bzw. 111a und 112 bzw. 112a in einem Abgleichverfahren so abgestimmt, dass die Differenz der beiden zeitlich versetzt von der Photodiode generierten Messsignale, die von der an einem schwarzen Hintergrund reflektierten Strahlung herrühren, gleich null ist.
  • Beim Betrieb eines offenen optischen Streulichtmelders 100 gibt es dann Signale aus vier unterschiedlichen Ursachen, die für eine sinnvolle Rauchdetektierung zuverlässig voneinander unterschieden werden müssen. Dies ist mit beschriebenen Streulichtrauchmelder 100 möglich.
    1. a) Signale vom Boden oder einer Seitenwand eines zu überwachenden Raumes sind wegen der unterschiedlichen Wellenlänge der zwei Leuchtdioden 111 und 112 evtl. nicht exakt gleich stark. Sie werden jedoch auf alle Fälle hinsichtlich ihrer Amplitude zumindest ähnlich stark sein. Ergibt eine Differenzbildung einen von Null verschiedenen Wert, so entsteht ein kleines Offsetsignal. Dieses hat weder mit der Detektierung von Rauch noch mit dem Einfluss von Insekten zu tun. Für einen zuverlässigen Betrieb mit einer hohen Empfindlichkeit sollte dieses Offsetsignal so nachgeführt werden, dass es stets den Signalpegel Null annimmt .
    2. b) Streulicht-Messsignale von herumschwirrenden Insekten ergeben bei einer erfolgreich durchgeführten Abgleichprozedur für beide Leuchtdioden 111, 112 dasselbe Signal. Dies liegt insbesondere an den drei folgenden Umständen:
      • b1) Der oben bereits beschriebene spektral flache Verlauf des Streuverhaltens der Insekten.
      • b2) Infolge des miniaturisierten Aufbaus des Streulichtrauchmelders 100 sind für beide Arten von Lichtpulsen die relativen räumlichen Lagen der Photodiode 120, eines Insekts und der beiden Leuchtdioden 111, 112 nahezu identisch.
      • b3) Die beiden Leuchtdioden 111, 112 werden annähernd gleichzeitig aktiviert. Dies bedeutet, dass eine Bewegung des Insekts innerhalb einer Zeitspanne zwischen den beiden aufeinanderfolgenden Lichtpulsen in guter Näherung vernachlässigt werden kann.
      Die an einem Insekt reflektierten und von der Photodiode 120 empfangenen beiden Messsignale sind somit nahezu identisch für beide Leuchtdioden 111, 112. Bei der Differenzbildung fallen diese Messsignale weg.
    3. c) Ist Rauch vorhanden, so ist dessen Streulichtsignal für die blaue Leuchtdiode 112 um ein Mehrfaches größer als für die infrarote Leuchtdiode 111. Dies liegt daran, dass das spektrale Streuverhalten von Rauchaerosolen seht steil ist. Das an den Rauchaerosolen reflektierte Licht hängt mit etwa (1/λ) hoch n, von der Wellenlänge λ ab. Dabei ist n abhängig von der Art und der Dichte des Rauches eine Zahl zwischen ungefähr 4 und ungefähr 6. Bei der Differenzbildung zwischen den beiden Messsignalen bleibt somit ein großes Differenzsignal bestehen. Dieses ist ein deutliches Anzeichen für das Vorhandensein von Rauch in dem Streuvolumen.
    4. d) Insekten, die über die Photodiode 120 oder die Leuchtdiode 111, 112 kriechen, können über sehr starke Schwankungen der Messsignale entdeckt werden. Um die Insekten in diesem Falle zu vertreiben, kann bei Bedarf zusätzlich eine Insektenvertreibungseinrichtung verwendet werden. Die Insektenvertreibungseinrichtung kann beispielsweise ein Ultra Sonic Mosquito-Repeller sein.
  • Durch den mit dieser Anmeldung beschriebenen offenen Streulichtrauchmelder 100 können somit auf effektive Weise die von im Detektierungsbereich befindlichen Insekten verursachten Streulichtsignale ausgeblendet werden. Außerdem kann der beschriebene Streulichtrauchmelder 100 in einer miniaturisierten Bauweise realisiert werden.
  • Figur 2 zeigt in einer Draufsicht einen Streulichtrauchmelder 200. Die Streulichtrauchmelder 200 unterscheidet sich von dem in Figur 1 dargestellten Streulichtrauchmelder 100 lediglich darin, dass anstelle von zwei Leuchtdioden eine sog. Multi-Chip Leuchtdiode 210 verwendet wird. Die Multi-Chip Leuchtdiode 210 weist einen im infraroten Spektralbereich emittierenden Chip 211a und einen im blauen Spektralbereich emittierenden Chip 211b auf. Die Photodiode 220 ist die gleiche wie die Photodiode 120 des Streulichtrauchmelders 100 und wird deshalb nicht noch einmal erläutert. Das gleiche gilt für die räumliche Anordnung mit den unmittelbar aneinander angrenzenden Komponenten Photodiode 220 und Multi-Chip Leuchtdiode 210. Der Abstand vom Zentrum der Photodiode 220 zum Zentrum der Multi-Chip Leuchtdiode 210 beträgt weniger als 4 mm.
  • Figur 3 zeigt in einer Querschnittsdarstellung den in Figur 1 dargestellten Streulichtrauchmelder, der nun mit dem Bezugszeichen 300 versehen ist. Der Streulichtrauchmelder 300 weist ein Gehäuse 302 auf. In dem unteren Bereich des Gehäuses 302 ist eine nutförmige Aussparung vorgesehen, die als Halterung für eine Leiterplatte 305 dient. An der Leiterplatte 305 sind sämtliche elektronischen und optoelektronischen Komponenten des Streulichtrauchmelders 300 angebracht. Die Leiterplatte dient somit nicht nur als Träger für in Figur 3 nicht dargestellte Leiterbahnen, welche die einzelnen Komponenten des Streulichtrauchmelders 300 in geeigneter Weise elektrisch miteinander verbinden. Die Leiterplatte 3β5 dient somit auch als mechanische Halterung für die Komponenten des Streulichtrauchmelders 300.
  • An der Unterseite der Leiterplatte 305 befinden sich die als Zweifach-Chip Leuchtdiode ausgebildete Lichtsendeeinrichtung 310 und die Photodiode 320. Ferner befindet sich an der Unterseite der gemeinsamen Leiterplatte 305 eine als US Mosquito Repeller ausgebildete Insektenvertreibungseinrichtung 350. Diese kann immer dann aktiviert werden, wenn bei der oben beschriebenen Signalauswertung herauskommt, dass sich ein Insekt direkt auf der Leuchtdiode 310 und/oder der Photodiode 320 befindet oder in der Nähe dieser beiden optoelektronischen Bauteile herumfliegt.
  • An der Oberseite der Leiterplatte 305 befindet sich eine Treiberelektronik 315 zum Ansteuern der Zweifach-Chip Leuchtdiode 310 in geeigneter Weise. Ferner befindet sich an der Oberseite der Leiterplatte 305 ein Photoverstärker 322, welcher der Photodiode 320 nachgeschaltet ist, und eine Auswerteeinheit 330, welche dem Photoverstärker 322 nachgeschaltet ist. Außerdem befindet sich an der Oberseite der Leiterplatte 305 ein Mikrocontroller 340, welche den gesamten Betrieb des Streulichtrauchmelders 300 steuert.
  • Der Mikrocontroller 340 und die Auswerteeinheit 330 können auch als ein gemeinsames integriertes Bauelement ausgebildet sein.
  • Es wird darauf hingewiesen, dass die hier beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. So ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier explizit dargestellten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.

Claims (13)

  1. Vorrichtung zum Unterscheiden zwischen einer Detektion von Rauch und einer Detektion von Insekten auf der Grundlage von optischen Streulichtmessungen, die Vorrichtung aufweisend
    • eine Lichtsendeeinrichtung (110, 210, 310), eingerichtet zum Aussenden einer zeitlichen Abfolge von Lichtpulsen, wobei ein erster Lichtpuls eine erste spektrale Verteilung aufweist und ein zweiter Lichtpuls eine zweite spektrale Verteilung aufweist, die unterschiedlich ist zu der ersten spektralen Verteilung,
    • einen Lichtempfänger (120, 220, 320), eingerichtet zum Empfangen eines ersten Streulichts von dem ersten Lichtpuls und eines zweiten Streulichts von dem zweiten Lichtpuls, und zum Bereitstellen eines ersten Ausgangssignals, welches für das erste Streulicht indikativ ist, und eines zweiten Ausgangssignals, welches für das zweite Streulicht indikativ ist, und
    • eine Auswerteeinheit (330), eingerichtet zum Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal und zum Bestimmen eines Indizes für das Vorhandensein von Insekten, falls sich die beiden Ausgangssignale mit großer und mit etwa gleicher Amplitude zeitlich stark verändern.
  2. Vorrichtung nach Anspruch 1, wobei
    die Auswerteeinheit (330) eingerichtet ist zum Bilden einer Differenz zwischen dem ersten Ausgangssignal und dem zweiten Ausgangssignal.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, wobei
    die Auswerteeinheit (330) eingerichtet ist zum Bestimmen des Verhältnisses der Amplitude des ersten Ausgangssignals zu der Amplitude des zweiten Ausgangssignals.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei die Lichtsendeeinrichtung (110, 210, 310) und der Lichtempfänger (120, 220, 320) unmittelbar nebeneinander angeordnet sind.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei die Lichtsendeeinrichtung (110, 210, 310) eine erste Lichtquelle (111a, 211a,) und eine zweite Lichtquelle (112a, 212a) aufweist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, zusätzlich aufweisend einen Mikrocontroller (340), welcher zumindest mit der Lichtsendeeinrichtung (110, 210, 310) und mit der Auswerteeinheit (330) gekoppelt ist und welcher eingerichtet zum zeitlichen Synchronisieren zumindest der Lichtsendeeinrichtung (110, 210, 310) und der Auswerteeinheit (330).
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, wobei der erste Lichtpuls im nahen infraroten Spektralbereich liegt und/oder der zweite Lichtpuls im sichtbaren Spektralbereich, insbesondere im blauen und/oder violetten Spektralbereich liegt.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, wobei der erste und/oder der zweite Lichtpuls eine zeitliche Länge im Bereich zwischen 1 µs und 200 µs, zwischen 10 µs und 150 µs oder zwischen 50 µs und 120 µs aufweist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, zusätzlich aufweisend eine Insektenvertreibungseinrichtung (350), welche mit der Auswerteeinheit (330) gekoppelt ist und welche bei zeitlich starken Schwankungen des ersten Ausgangssignals und/oder des zweiten Ausgangssignals aktivierbar ist.
  10. Verfahren zum Unterscheiden zwischen einer Detektion von Rauch und einer Detektion von Insekten auf der Grundlage von optischen Streulichtmessungen, insbesondere unter Verwendung einer Vorrichtung (100, 20, 300) nach einem der Ansprüche 1 bis 8, das Verfahren aufweisend
    • Aussenden einer zeitlichen Abfolge von Lichtpulsen mittels einer Lichtsendeeinrichtung (110, 210, 310), wobei ein erster Lichtpuls eine erste spektrale Verteilung aufweist und ein zweiter Lichtpuls eine zweite spektrale Verteilung aufweist, die unterschiedlich ist zu der ersten spektralen Verteilung,
    • Empfangen eines ersten Streulichts von dem ersten Lichtpuls und eines zweiten Streulichts von dem zweiten Lichtpuls mittels eines Lichtempfängers (120, 220, 320),
    • Bereitstellen eines ersten Ausgangssignals, welches für das erste Streulicht indikativ ist, und eines zweiten Ausgangssignal, welches für das zweite Streulicht indikativ ist,
    • Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal mittels einer Auswerteeinheit (330) und
    • Bestimmen eines Indizes für das Vorhandensein von Insekten, falls sich die beiden Ausgangssignale mit großer und mit etwa gleicher Amplitude zeitlich stark verändern.
  11. Verfahren nach Anspruch 10, zusätzlich aufweisend Abgleichen der Intensitäten der beiden Lichtpulse, so dass bei einer Streuung der beiden Lichtpulse an einem Referenzstreuobjekt das erste Ausgangssignal und das zweite Ausgangssignal gleich groß sind.
  12. Verfahren nach Anspruch 11, bei dem das Vergleichen des ersten Ausgangssignals mit dem zweiten Ausgangssignal das Bilden einer Differenz zwischen dem ersten Ausgangssignals und dem zweiten Ausgangssignal aufweist.
  13. Verfahren nach Anspruch 12, zusätzlich aufweisend Kompensieren eines langsam veränderlichen Differenzsignals hin zu einem Nullsignal.
EP08101742A 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen Revoked EP2093733B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502008003347T DE502008003347D1 (de) 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen
EP08101742A EP2093733B1 (de) 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen
AT08101742T ATE507544T1 (de) 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher streulichtmessungen
PCT/EP2009/051756 WO2009103668A1 (de) 2008-02-19 2009-02-16 Rauchdetektion mittels zweier spektral unterschiedlicher streulichtmessungen
US12/735,846 US20110037971A1 (en) 2008-02-19 2009-02-16 Smoke detection by way of two spectrally different scattered light measurements
CN200980105644.4A CN101952863B (zh) 2008-02-19 2009-02-16 借助于两种光谱不同的散射光测量的烟雾探测

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08101742A EP2093733B1 (de) 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen

Publications (2)

Publication Number Publication Date
EP2093733A1 EP2093733A1 (de) 2009-08-26
EP2093733B1 true EP2093733B1 (de) 2011-04-27

Family

ID=39587915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101742A Revoked EP2093733B1 (de) 2008-02-19 2008-02-19 Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen

Country Status (6)

Country Link
US (1) US20110037971A1 (de)
EP (1) EP2093733B1 (de)
CN (1) CN101952863B (de)
AT (1) ATE507544T1 (de)
DE (1) DE502008003347D1 (de)
WO (1) WO2009103668A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336993B1 (de) * 2008-10-09 2020-06-24 Hochiki Corporation Rauchdetektor
US20130100135A1 (en) * 2010-07-01 2013-04-25 Thomson Licensing Method of estimating diffusion of light
EP2463837A1 (de) * 2010-12-09 2012-06-13 Nxp B.V. Rauchdetektor
US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US8947244B2 (en) 2012-04-29 2015-02-03 Valor Fire Safety, Llc Smoke detector utilizing broadband light, external sampling volume, and internally reflected light
MY169183A (en) * 2012-06-08 2019-02-25 Xtralis Technologies Ltd Multi-mode detection
AU2014342621B2 (en) 2013-10-30 2019-07-18 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
EP2908298B1 (de) * 2014-02-13 2018-04-18 Siemens Schweiz AG Rauchmelder nach dem Streulichtprinzip mit einer zweifarbigen Leuchtdiode mit unterschiedlich grossen LED-Chips
ES2721929T3 (es) 2014-12-01 2019-08-06 Siemens Schweiz Ag Detector de humo de luz dispersa con un diodo emisor de luz de dos colores
EP3029648A1 (de) * 2014-12-01 2016-06-08 Siemens Schweiz AG Streulichtrauchmelder mit zwei zweifarbigen Leuchtdioden und einem gemeinsamen Photosensor oder mit einer zweifarbigen Leuchtdiode und mit zwei Photosensoren jeweils in einer Vorwärts- und Rückwärtsstreulichtanordnung
EP3073458A1 (de) * 2015-03-23 2016-09-28 Siemens Schweiz AG Brandmelder mit einer streulichtanordnung im bereich einer raucheintrittsöffnung zur verschmutzungsüberwachung
EP3091516A1 (de) * 2015-05-06 2016-11-09 Siemens Schweiz AG Offener streulichtrauchmelder sowie mobiles kommunikationsgerät für einen derartigen offenen streulichtrauchmelder zum empfang von melderdaten und zum senden von update-daten
EP3091517B1 (de) 2015-05-06 2017-06-28 Siemens Schweiz AG Offener streulichtrauchmelder sowie prüfgerät für einen derartigen offenen streulichtrauchmelder
US10825334B2 (en) 2016-07-19 2020-11-03 Autronica Fire & Security As Smoke detector operational integrity verification system and method
CA3032865A1 (en) 2016-08-04 2018-02-08 Carrier Corporation Smoke detector
EP3276680A1 (de) * 2017-01-25 2018-01-31 Siemens Schweiz AG Optische rauchdetektion nach dem zweifarben-prinzip mittels einer leuchtdiode mit einem led-chip zur lichtemission und mit einem lichtkonverter zum umwandeln eines teils des emittierten lichts in langwelligeres licht
EP3584774A1 (de) * 2018-06-19 2019-12-25 Wagner Group GmbH Streulichtdetektor und ansaugbranderkennungssystem mit einem streulichtdetektor
EP3608657A3 (de) * 2018-08-07 2020-03-25 Inim Electronics S.r.l. Verfahren und system zum erweitern des dynamikbereiches eines feinstaubdetektors und feinstaubdetektor
IT201800007932A1 (it) * 2018-08-07 2020-02-07 Inim Electronics Srl Metodo e sistema per la calibrazione di un rilevatore di particolato e rilevatore di particolato
US11137331B2 (en) 2018-08-21 2021-10-05 Viavi Solutions Inc. Multispectral sensor based alert condition detector
CN109615816A (zh) * 2019-01-31 2019-04-12 中磊电子(苏州)有限公司 可避免假警报的烟雾检测器
CN111179540A (zh) * 2020-01-20 2020-05-19 上海中环科仪消防报警设备有限公司 一种三波长光电式烟雾检测的方法及传感器
CN112991666B (zh) * 2021-02-08 2023-04-28 三明学院 一种火灾烟雾探测器及其烟室和抗干扰烟雾探测方法
US20230384198A1 (en) * 2022-05-27 2023-11-30 Honeywell International Inc. Smoke detector device insect control

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524351A (en) * 1981-08-20 1985-06-18 Nittan Company, Limited Smoke detector
GB2123548B (en) * 1982-07-14 1985-09-04 Chloride Group Plc Suspended particle detector
US4654644A (en) * 1985-04-05 1987-03-31 General Signal Corporation Photoelectric smoke detector circuitry
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
JP2935549B2 (ja) 1990-08-23 1999-08-16 能美防災株式会社 火災検出方法及び装置
CH683464A5 (de) * 1991-09-06 1994-03-15 Cerberus Ag Optischer Rauchmelder mit aktiver Ueberwachung.
JPH1123458A (ja) * 1997-05-08 1999-01-29 Nittan Co Ltd 煙感知器および監視制御システム
JP4027374B2 (ja) 1997-05-08 2007-12-26 ニッタン株式会社 煙感知器および監視制御システム
GB2329056B (en) * 1997-09-03 2002-03-06 Manhar Amlani Insect repulsion
GB9718547D0 (en) * 1997-09-03 1997-11-05 Amlani Manhar Smoke detector
EP1039426A3 (de) 1999-03-22 2001-01-31 Schako Metallwarenfabrik Ferdinand Schad Kg Vorrichtung zur Erkennung von Rauch
WO2005043479A1 (en) * 2003-10-23 2005-05-12 Terence Cole Martin Improvement(s) related to particle monitors and method(s) therefor
EP1688898A4 (de) * 2003-11-17 2010-03-03 Hochiki Co Rauchmelder, der streulicht verwendet
DE102004001699A1 (de) 2004-01-13 2005-08-04 Robert Bosch Gmbh Brandmelder

Also Published As

Publication number Publication date
WO2009103668A1 (de) 2009-08-27
DE502008003347D1 (de) 2011-06-09
US20110037971A1 (en) 2011-02-17
ATE507544T1 (de) 2011-05-15
CN101952863B (zh) 2020-04-24
EP2093733A1 (de) 2009-08-26
CN101952863A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
EP2093733B1 (de) Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen
EP2093734B1 (de) Rauchmelder mit zeitlicher Auswertung eines Rückstreusignals, Testverfahren für Funktionsfähigkeit eines Rauchmelders
EP1191496B2 (de) Streulichtrauchmelder
EP2093732A1 (de) Vorrichtung und Verfahren zum Detektieren von Rauch durch gemeinsame Auswertung zweier optischer Rückstreusignale
EP3029647B1 (de) Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
EP2706515B1 (de) Vorrichtung und Verfahren zum Detektieren von Streulichtsignalen
DE3514982C2 (de)
EP1936400B1 (de) Laserscanner
EP2899565A1 (de) Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
EP1887536A1 (de) Streulicht-Rauchmelder
EP2257840B1 (de) Optischer sensor und verfahren zum nachweis von objekten
EP2479586B1 (de) Verfahren zur Abschätzung eines Verunreinigungsgrads einer Frontscheibe einer optischen Erfassungsvorrichtung und optische Erfassungsvorrichtung
EP2093731A1 (de) Linearer optischer Rauchmelder mit mehreren Teilstrahlen
EP0130992A1 (de) Photoelektrischer rauchdetektor.
EP1655623B1 (de) Optischer Sensor
EP2851704B1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
EP3705914B1 (de) Sensoranordnung
DE102006011250A1 (de) Reflexionslichtschranke zum Nachweis von Objekten in einem Überwachungsbereich und Verfahren zu deren Betrieb
DE102012102056A1 (de) Optischer Sensor
DE102016221989A1 (de) Partikelsensor mit wenigstens zwei Laser-Doppler-Sensoren
DE102011014195B4 (de) Optischer Sensor
EP3994453B1 (de) Prüfgerät und verfahren zur prüfung der retroreflexion und/oder fluoreszenz eines objekts
EP1496335A2 (de) Optoelektronische Vorrichtung
EP4249950B1 (de) Erfassung und abstandsbestimmung eines objekts
EP2718917B1 (de) Rauchwarnmelder und verfahren zu dessen betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100219

17Q First examination report despatched

Effective date: 20100312

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 29/04 20060101AFI20100930BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008003347

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003347

Country of ref document: DE

Effective date: 20110609

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110827

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NOVAR GMBH

Effective date: 20120127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008003347

Country of ref document: DE

Effective date: 20120127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008003347

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 507544

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: NOVAR GMBH

Effective date: 20120127

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: NOVAR GMBH

Effective date: 20120127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190213

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502008003347

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502008003347

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190208

Year of fee payment: 12

Ref country code: AT

Payment date: 20190114

Year of fee payment: 12

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20190513

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20190513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190509

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 507544

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190416

Year of fee payment: 12