EP2091690B9 - Method for determining the position of a drill hole to be formed in an ophthalmic lens - Google Patents

Method for determining the position of a drill hole to be formed in an ophthalmic lens Download PDF

Info

Publication number
EP2091690B9
EP2091690B9 EP07872398A EP07872398A EP2091690B9 EP 2091690 B9 EP2091690 B9 EP 2091690B9 EP 07872398 A EP07872398 A EP 07872398A EP 07872398 A EP07872398 A EP 07872398A EP 2091690 B9 EP2091690 B9 EP 2091690B9
Authority
EP
European Patent Office
Prior art keywords
target
lens
point
projection
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07872398A
Other languages
German (de)
French (fr)
Other versions
EP2091690A1 (en
EP2091690B1 (en
Inventor
Philippe Pinault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0611124A external-priority patent/FR2910644B1/en
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP2091690A1 publication Critical patent/EP2091690A1/en
Application granted granted Critical
Publication of EP2091690B1 publication Critical patent/EP2091690B1/en
Publication of EP2091690B9 publication Critical patent/EP2091690B9/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/146Accessories, e.g. lens mounting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • B24B13/0055Positioning of lenses; Marking of lenses

Definitions

  • the present invention generally relates to the field of eyewear and more specifically to the drilling of ophthalmic lenses for mounting on spectacle frames of the type without a circle.
  • it relates to a method of determining the position of a target borehole to be made on a target correction lens from a reference lens that has a reference borehole.
  • the positioning of the target drill holes to be made on the target corrective lens is inferred from that of the reference drilling holes of the reference lens. This positioning can be done manually: the optician measures the position of the referred drilling holes and reports these measurements on the target correction lens of the cut-out lens.
  • the reference lens is placed in an image acquisition device of this lens, which displays this image on a screen.
  • the operator then proceeds to locate the referent drilling holes by pointing on the screen each of these holes.
  • the processing system stores the position of the referential drill holes relative to the image of the reference contour of the reference lens in the acquisition plane.
  • the target correction lens is then centered. Its image is acquired in a centering plane so as to locate its optical reference and to position accordingly the desired target contour for the target correction lens. Then, after trimming the target correction lens according to the target contour identical to that of the reference lens, a drill bit having a suitable diameter is brought opposite a target piercing point of the lens. target correction.
  • This target drilling point is directly defined as being the projection counterpart in the acquisition and centering planes of the reference drilling point, in the sense that it is the point that is projected in the centering plane ( of the correction lens) has a position similar to that of the image in the acquisition plane (of the reference lens) of the reference drilling point of the reference lens.
  • the correction lens is then pierced by means of a relative advance movement of the drill bit relative to the lens along the axis of rotation of the drill bit. If the diameter of the drill bit is smaller than the desired diameter, the hole obtained is widened to the right diameter by means of a suitable transverse displacement of the drill bit.
  • the object of the present invention is to accurately determine the position of the drilling holes to be made on the target correction lens for assembly to the branches and the nasal bridge of the eyeglass frame without a circle selected by the wearer.
  • the drill When drilling the target correction lens, for example on the side of the front face of the lens, the drill pierces the lens at a previously marked target drilling point.
  • this target drilling point is marked so that, if the projected images of the reference and correction lenses are superimposed in projection in the acquisition and centering planes so as to coincide their respective reference and target contours, the image of the target piercing point of the target correction lens is merged with the image of the reference piercing point of the reference lens.
  • the actual three-dimensional distance separating the wafer (or any other point identified) from the reference lens of the reference point of the drilling hole is determined. Knowing this distance, it is possible to transfer it to the corresponding optical face of the target correction lens, so that the actual three-dimensional distance between the wafer of the correction lens and its target piercing hole is identical to that determined on the reference lens. This distance no longer depends on the projection plane in which the image of the reference lens is acquired.
  • the bridge and the branches of the frame can thus be assembled with the correction lenses without any difficulty and at the desired position, which then allows to correctly position the lenses opposite the pupils of the eyes of the wearer so that they exercise the best the optical functions for which they were designed.
  • the drill points reference and target drill holes of the reference lens and the target correction lens match" in the sense that they are of the same nature with respect to the piercing hole concerned: for example, if the point The reference hole of the reference drilling hole is chosen to be the center of the mouthpiece on the front face of this reference drilling hole, the reference point of the target drilling hole is also coincident with the center of its mouth on the front face.
  • two points are "homologous" if, on the one hand, they belong to the corresponding optical faces of the target correction lens and of the reference lens, and if, on the other hand, when the images of the reference lens and the correction lens are superimposed in the same plane by matching all or part of their contours, the images of these two points are also superimposed.
  • projections anchor points and piercing points in the acquisition plane are made in the same and only direction of projection perpendicular to a general plane of the lens or parallel to the axis of illumination or image capture.
  • a target anchor point of the target correction lens homologous to the reference anchor point of the objective lens is identified. reference and calculates the position of the target drilling point according to this target anchor point and the reference three-dimensional distance.
  • the referent anchor point and the referent pierce point belong to the same reference face of the reference lens, and the target anchor point and the target pierce point belong to the same target face of the target correction lens, said reference face and said corresponding target face.
  • the target three-dimensional distance from said target anchor point is transferred to the target correction lens substantially in a deflection direction connecting the target anchor point to the target piercing point.
  • the target anchor point of the target correction lens is homologous to the reference anchor point of the reference lens in the previously defined sense.
  • the reference anchor point of the reference lens is disposed on the contour of this lens, the target anchor point of the target correction lens is positioned on the same point of the contour after the correction lens has been trimmed. (these contours are identical).
  • the reference anchor point of the reference lens is disposed in the center of another of the referent boreholes associated with a target target already determined, the target anchor point of the Target correction is the center of this target hole.
  • the anchor points of the lens Target correction and the reference lens are therefore not necessarily homologous.
  • a drill bit opposite the piercing point of the correction lens there are various types of drills and different types of methods for positioning according to the invention a drill bit opposite the piercing point of the correction lens.
  • One of these methods is to come tangent with the drill bit the edge of the correction lens previously cut out, and then move the drill in a direction parallel to the plane tangent to the area to be pierced from the front face of the correction lens. This displacement, if it is performed by a distance corresponding to the previously calculated distance, then makes it possible correctly to position the drill vis-à-vis the desired drilling point so that the mount can be precisely assembled with this lens.
  • At least one characteristic of the curve of the target correction lens is determined and the target projection distance is calculated in a centering plane similar to the acquisition plane, between the projected target drilling point of the target drilling hole of the target correction lens and the projection of the target anchor point of this target correction lens, depending on the reference three-dimensional distance and the curve characteristic of the target correction lens.
  • the anchor points of the reference and correction lenses are homologous in the sense explained above.
  • the image of the reference lens is acquired in a given acquisition plan.
  • the image of the correction lens is acquired, in view of its centering, in a given centering plane.
  • These planes are similar in that they are substantially inclined in the same way with respect to the lenses, so that the contour of the image of the reference lens is identical to that of the image of the correction lens.
  • these acquisition and centering planes are substantially parallel to the mean planes of the reference or target correction lens, or to the average planes of the contours of these lenses. It is thus possible to consider in the same virtual plane confusing these acquisition and centering plans, the images of the reference and correction lenses.
  • the grinders and drills locate the position of their drill bit in a plane corresponding to the aforementioned centering plane. It is therefore necessary to determine the distance between the projections of these two points in the centering plane, in order to then simply and accurately position the drill bit relative to the correction lens.
  • said characteristic of the curve of the target correction lens is identified on one of the optical faces of the target correction lens near an approximate point of the target drilling point of the target drilling hole, said optical face is palpated of the target correction lens at at least three points located in the vicinity (typically less than 10 millimeters) of the approximate point, and an angle of inclination of said optical face of the correction lens at the approximate point with respect to centering plane, this angle then constituting said characteristic of the desired curve.
  • the approximate point is a point on the correction lens that is judged to be near or calculated to be close to the piercing point of the target hole.
  • This approximate point may for example be the homologous point of the reference point of the reference drilling hole of the reference lens.
  • the relative positions of three probed points make it possible to approximate the shape of the palpated optical face of the lens, in the area of the approximate point.
  • the shape of the optical face of the lens does not have large variations in this area, it is approximated that this shape is identical to the shape of the lens in the vicinity of the area where it will be pierced.
  • This probing thus makes it possible in particular to deduce the inclination of the axis according to which the correction lens will have to be pierced so that the target piercing hole opens out orthogonally to the palpated optical face of the lens.
  • This inclination further provides a value of the curve of the correction lens which makes it possible to determine the position of the projected reference point of the target drilling hole in the centering plane.
  • the overall curvature of one of the optical faces of the target correction lens is acquired, one of the optical faces of the target correction lens is identified by approached point near the target drilling point of the target drilling hole, and an angle of inclination of said optical face of the target correction lens at the approached point is calculated as a function of said overall curvature and the position of the approached point. relative to the centering plane, this angle then constituting said characteristic of the desired curve.
  • the front optical face of a lens is generally approximately circumscribed to a sphere whose radius of curvature is generally provided to the optician by the lens manufacturer.
  • the radius of curvature of this sphere and the position of the point approaching the piercing point makes it possible to determine an approximation of the inclination of the axis through which the lens will be pierced.
  • this angle also makes it possible to determine the position of the projected reference point of the target drilling hole in the centering plane.
  • the objective of the method according to the invention is to determine the position of a target drilling hole to be made on a correction lens according to the position, which is proposed to acquire, a drilling hole referent of a reference lens.
  • the method thus comprises a first step of acquiring the position of the reference drilling holes of the reference lens.
  • This acquisition device comprises lighting means 51, 52, a support 55 for accommodating a reference lens 100 (typically consisting of a presentation lens used to present the frame) and capture means 53 of a global image of this lens.
  • the lighting means 51, 52 comprise a collimation lens 52 of axis A52 and a light source 51 placed at the focus of the collimation lens 52. After passing through the collimation lens 52, the light rays are thus directed in parallel. to the axis A52 of the collimation lens 52.
  • the illumination direction D51 is thus parallel to the direction of the axis A52.
  • the capture means 53 comprise a camera 53 provided with a lens having an optical axis A53.
  • the device for acquiring the position of the reference drilling holes comprises an optical axis defined as the axis A52 of the collimation lens 52 and the axis A53 of the objective of the acquisition means 53.
  • the capture direction image by the acquisition means 53 is here confused with the direction of illumination D51.
  • the directions of illumination or image capture are, of course, returned or not.
  • the support 55 of the reference lens 100 is designed such that the reference lens 100 extends in a general plane transverse to the direction of illumination D51. The lens 100 is then illuminated in front.
  • the reference lens 100 has an edge 120 which has a front edge 121 and a rear edge 122.
  • the edge 120 is cylindrical with an axis parallel to the direction of illumination and image capture and therefore here perpendicular to the acquisition plan.
  • the edge 120 could, however, be of different shape, in particular conical or similar, so that its projection on the acquisition plane would no longer be wired and the projections of its edges 121, 122 would no longer be confused but distinct.
  • the general plane of the lens typically consists of a middle or medial plane of one and / or the other of the surfaces of the lens, or a middle or medial plane of one and / or the other of the edges 121, 122 of its edge 120.
  • the support 55 of the lens 100 is here in the form of a transparent glass plate perpendicular to the illumination direction D 51, so that neither the front face 98 nor the rear face 99 of the reference lens 100 are visually hidden by the support 55.
  • This reference lens 100 here comprises two referent drilling holes, a first reference drilling hole 110 located on the side of the temporal zone and another drilling hole (not visible on the figure 1 ) located on the side of the nasal area of the lens.
  • the remainder of the description details only the acquisition of the reference drilling hole 110, but this description applies also to the acquisition of the other hole of drilling. Alternatively, if this lens had a greater number of drill holes, the following description would also apply to the additional drill holes.
  • the reference drilling hole 110 comprises, on the one hand, a front mouth 111 which opens on the front face 98 of the lens 100 and, on the other hand, a rear mouth 112 which opens on the rear face 99 of the lens 100.
  • the center C2 of the reference drilling hole 110 itself is also defined, which is also the average of the positions of the centers C1, C3 of the front mouthpieces 111 and rear 112.
  • the point C1 of the front mouth 111 of the drilling hole referent 110 will be considered here as a reference drilling point.
  • the image capturing means 53 ( figure 1 ) further communicate with an electronic and computer processing system 54.
  • the processing system 54 is adapted to derive from the acquired image the position of the center C1 of the mouth 111 of the referencing borehole 110. on the front face 98.
  • the processing system 54 may also be designed to deduce from the acquired image, the position of the center of the mouth 112 of the reference drilling hole 110 on the rear face 99, or any another point attached to this piercing hole defines as the referent piercing point.
  • the drilling hole position acquisition device is designed such that the camera 53 sees the lens in projected vision.
  • the lighting means 51, 52 and the camera 53 are distributed on either side of the support of the lens.
  • a frosted glass plate 50 is disposed between the camera 53 and the support 55 of the lens.
  • the frosted glass plate 50 is centered on the axis A52 of the collimating lens 52 and extends in the plane transverse to this axis A52.
  • the frosted glass plate 50 makes it possible to form the shadow of the assembly of the reference lens 100 and in particular the shadow of the reference drilling hole 110 of the lens.
  • the front face of this frosted glass plate 50 then forms an acquisition plane P1 of the image of the reference lens 100. This acquisition plane is parallel to the general plane of the reference lens 100.
  • the processing system 54 determines, from the image of the contour of the reference lens 100, a virtual rectangular frame 107, each of whose four edges passes through a single point of the projected image of the contour of the reference lens 100.
  • the considered contour of the reference lens 100 typically consists of one of the front 121 and rear 122 edges of the edge 120 of the reference lens 100, or an average of these two edges, in correspondence with the definition adopted for the reference drilling point.
  • Two edges of the frame 108, 109 are, under the conditions of the worn, horizontal and thus form lines of horizon.
  • the processing system calculates the intersection of the diagonals of this frame 107 which constitutes the projected image of a geometric center of the contour of the reference lens 100 called boxing center CB.
  • the processing system 54 also operates a treatment of the shadow image (or projection) of the reference drilling hole 110 of the reference lens 100.
  • This image represented on the lower part of the figure 2 shows an overall figure 90 of the reference drilling hole 110.
  • the overall figure 90 of the reference drilling hole 110 comprises two rings 40, 41, of substantially oval shape, which intersect each other.
  • the first ring 40 is the projected shadow of the mouth 111 on the front face of the reference drilling hole 110
  • the second ring 41 is the projected shadow of the mouth 112 on the rear face.
  • the portion constituted by the superposition of the two rings 40, 41 is clear. Indeed, this portion is the result of the projection of a portion of the reference drilling hole which is crossed by the light rays without meeting the material of the lens. Conversely, the non-superposed portions of the two rings are dark because of the reflection or diffusion of these rays by the side wall of the piercing hole.
  • the point 102 of the reference drilling hole 110 results from the intersection between, on the one hand, a cutting plane P3 and, on the other hand, the portion of the contour of the mouth 111 in the front face 98 of the reference hole 110 of the reference lens 100, located outwards of this lens.
  • the point 101 is defined as the point of intersection of the sectional plane P3 of the reference lens 100 with the portion of the contour of the mouth 111 on the front face 98 of the reference lens, located towards the inside of this lens.
  • Points 105 and 104 are defined as the points of intersection of the section plane P3 with the portion of the mouth 99 on the rear face 99 of the reference lens, located respectively outwardly and inwardly of this lens.
  • the processing system 54 operates from the image acquired in projection. For this purpose, as shown on the lower part of the figure 2 , we define a reference anchor line D3 which is the straight line passing through the centers of the two rings 40, 41 and which is identified as such by the processing system 54. This reference anchor line D3 corresponds to the trace in the acquisition plane P1 of the previously defined cutting plane P3.
  • the points M1 and M2 are then identified by the processing system 54 as points of intersection of the reference anchor line D3 with respectively the right (inner) and left (outer) parts of the ring 40 as represented on the figure 2 . These points M1 and M2 are the image points of the points 101 and 102. Similarly, the points M4 and M5 are identified by the processing system 54 as intersection points of the line D3 with the right (interior) parts respectively. and left (outer) second ring 41. These points M4 and M5 are the image points of the points 104 and 105. Note XM1, XM2, XM4, XM5 the positions of the points M1, M2, M4, M5 on the right D3.
  • the processing system 54 identifies the point MO1 which is situated at the intersection of the reference anchor line D3 with the contour image M121 of the reference lens 100.
  • This point MO1 is the projection of a point of reference.
  • reference anchor O1 which is located at the intersection of the section plane P3 and the front edge 121 of the reference lens 100.
  • the line D3 thus forms a linear guide whose origin is the MO1 point.
  • a reference anchor line D4 which passes through the projected MC2 of the center C2 of the reference drilling hole 110 and which is horizontal in range condition, that is to say parallel to the horizon lines 108, 109 of the frame 107.
  • the processing system then identifies the reference anchor point 04 of the reference lens 100 as the point whose projected MO4 is located at the intersection of a reference anchor line D4 and the contour image M121 of the reference lens 100.
  • the point MC1 is the image point of the center C1, projected in the acquisition plane P1, whose position XMC1 on the line D3 is to be calculated.
  • the position XMC1 of the center C1 then makes it possible to determine the distance R1 separating the point MC1 from the origin MO1 of the linear mark. This distance R1 is called reference projection distance.
  • a first method it is intended to determine the position XM90 of the center M90 of the overall figure 90 of the reference drilling hole 110 and to deduce the position of the image MC1 from the center C1 of the mouthpiece 111 in FIG. front face 98 of this drilling hole.
  • the processing system 54 includes a user interface and a display screen (not shown) which displays the overall image 90 of the referencing borehole 110.
  • the processing system 54 is also designed to enable display on the display. 60.
  • This ring has dimensions that can be modified by the operator.
  • the processing system 54 is also designed such that this registration ring 60 is movable by the operator on the display screen. The displacement of the registration ring 60 as well as the adjustments of its dimensions can be obtained using control tools integrated in the user interface of the processing system 54.
  • the operator sizes and centers the registration ring 60 on the overall image 90 of the reference drilling hole 110.
  • the operator can, for example as illustrated by the figure 2 overlay the registration ring 60 in the overall figure 90 so that the registration ring 60 passes through the media segments M1M4 and M2M5.
  • the optician may alternatively provide for adjusting the position and the dimension of the registration ring 60 to make it pass through the points M1 and M5 bordering the clear part of the overall figure 90. It can further adjust the position and the dimension of the registration ring 60 to make it pass through the points M2 and M4 bordering the dark part of the overall figure 90.
  • the processing system 54 automatically detects and stores the position of the center M60 of the registration ring 60.
  • the position of the center M60 is associated by the processing system 54 at position XM90 of center M90 of FIG.
  • the operator points on the screen, with a tool integrated in the user interface such as a mouse or a stylus, the center M60 of the registration ring 60 which is then stored.
  • a tool integrated in the user interface such as a mouse or a stylus
  • the processing system 54 calculates the position XMC1, on the line D3, of the image MC1 of the center C1 of the front mouth of the reference drilling hole 110 from the position of the center M90 of said overall figure 90 and as a function of the inclination angle ALPHA100 of the reference drilling hole 110 and the thickness E of the lens.
  • the angle of inclination ALPHA100 is the angle formed between the average direction of illumination D51 and the axis A110 of the reference drilling hole.
  • the angle ALPHA100 and the thickness E of the lens can be measured by probing the lens, for example, or can be entered manually by the operator using an on-screen input interface provided for this purpose. .
  • the considered thickness of the lens may be the local thickness of the lens around the reference drill hole or the average thickness of the lens.
  • the processing system 54 then associates said calculated position with the desired position of the center C1 of the mouth of the reference drilling hole 110 opening on the front face 98 of the lens 100.
  • the detection of the center M60 of the registration ring 60 is performed automatically by the processing system 54, which is then designed to superimpose (with appropriate centering and sizing) automatically the register ring 60 on the overall image 90 of the reference drilling hole 110 and thus deduce the position and the diameter of the center M60 of this ring.
  • the distance R1 taking into account the prismatic deviations induced by the reference lens 100 (the image of the point 102 is deflected by the reference lens 100) or from only easily recognizable positions of points M1 and M2.
  • Such variants of methods for acquiring the distance R1 are more precisely set out in the French patent application. FR 06/11124 .
  • the thickness E of the lens can be measured for example by probing or be fixed at an average value of about 2 millimeters.
  • the distance R1 separating the projected MO1 from the reference anchor point O1 of the reference lens 100 and the projected MC1 from the center C1 of the mouth opposite before the reference drilling hole 110 is known.
  • the ALPHA100 angle of inclination of the drilling axis A110 of the reference drilling hole 110 with respect to the illumination axis D51 is also known.
  • the processing system 54 then proceeds to calculate a reference three-dimensional distance R2 separating, in space and not in projection, the reference anchor point O1 of the reference lens 100 and the center C1 of the mouthpiece on the front face of the reference drilling hole 110. Because of the curve of the reference lens 100, the distances R1 and R2 are indeed different.
  • the reference anchor point O1, the center C1 of the mouthpiece on the front face of the reference drilling hole 110 and their respective projections in the acquisition plane P1 are coplanar (in the radial plane P3 corresponding to the section plane of the lower part of the figure 3 ).
  • This reference three-dimensional distance R2 is then that which, when it is carried over any target correction lens having a curve identical to or different from the curve of the reference lens 100, makes it possible to determine the position at which it will be necessary to pierce the correction lens so that the bridge or branch of the selected frame can hang easily on this correction lens.
  • This reference three-dimensional distance R2 must, however, be reported following the curvature of the front face of the correction lens concerned. It is therefore necessary to take into account the curve of the correction lens 200.
  • the processing system 54 then proceeds to the identification of a target piercing point C10 on the front face 198 of the correction lens 200 to which the correction lens 200 will have to be pierced.
  • This target piercing point C10 corresponds here to the center of the mouth on the front face of the target drilling hole 210 to be made on the correction lens 200.
  • the optician Prior to identifying the position of this target piercing point C10, the optician centers the correction lens 200.
  • This centering consists of determining the position that the correction lens will occupy on the frame selected by the wearer. , in order to be properly centered facing the pupil of the eye of the wearer to properly perform the optical function for which it was designed. This operation therefore consists in correctly positioning on the correction lens 200 the final contour according to which it will have to be cut off.
  • the geometry of this final contour is known, since this final contour is identical to the acquired contour of the reference lens 100.
  • the optician initially equips the wearer of a frame of reference glasses identical to the frame chosen by the wearer and provided with reference lenses, then he determines on each reference lens the position of the point. pupillary disposed opposite the pupil of the corresponding eye of the wearer. More specifically, it measures or conventionally acquires two parameters related to the morphology of the wearer, namely the interpupillary half-gaps defined as the distances between each of the wearer's pupils and the center of the nose, as well as the heights of his pupils by relation to the contour. The knowledge of these parameters allows him to locate the position of the contour of the reference lens relative to the pupillary point of the wearer.
  • the optician disposes the correction lens 200 in a lighting and image acquisition device such as for example that previously described and shown in FIG. figure 1 . It thus acquires the image of the correction lens 200 not cut out in a centering plane corresponding to the acquisition plane P1.
  • this correction lens 200 is provided with erasable visible marks 202, 203 which appear on the acquired image.
  • the correction lens 200 has in particular a visible mark 203 which corresponds to the optical centering point of the correction lens to be positioned facing the pupil of the eye of the wearer.
  • the optician Knowing the position of the pupillary point relative to the final contour 201, the optician virtually superimposes the pupillary point on the optical centering point 203 of the correction lens 200 and thus positions the final contour 201 on the correction lens 200. This positioning by orienting the final contour 201 with respect to the correction lens 200 as a function of the optical prescriptions of the wearer (in particular according to the prescribed cylinder axis). It thus determines on the correction lens 200 the position of the final contour 201 according to which the lens will have to be cut off.
  • the processing system 54 can therefore memorize and display on the screen 50 the image of the correction lens 200 uncut as well as, superimposed on this image, the image of the final contour 201.
  • one point of the correction lens 200 it is the homologue of a point of the reference lens 100 if, on the one hand, these two points are arranged on the front optical faces or the corresponding backs of the two lenses, and if, on the other hand, when the image of the contour of the reference lens 100 and the image of the final contour of the correction lens 200 are virtually superimposed, the images of these two lenses points are confused.
  • the point O2 is in this case located on the front face of the target correction lens 200 and on its final contour 201.
  • the position of the target anchor point O2 of the target correction lens 200 is then known.
  • the curves of the reference lenses 100 and correction 200 are not identical, the point C10 is not the homologue of the point C1 in the previously defined sense.
  • a characteristic of the overall shape of the target correction lens 200 is determined.
  • the angle ALPHA200 of the axis A210, in which the target correction lens 200 is to be pierced, can typically be defined with respect to the illumination direction D51 (this angle is characteristic of the curve of the target correction lens 200 at piercing point C10). This angle then constitutes said characteristic of the desired curve.
  • a first method for determining this angle ALPHA200 is to feel the front face 198 of the lens.
  • target correction lens 200 in a local area estimated to be close to the position the point of C10 drilling to position. More precisely, this method consists first of all in defining an approximate point C11 a priori located near the piercing point C10. This approximate point C11 is here chosen as being the homologous point of the point C1 of the reference lens 100. Then, the front face of the correction lens 200 is probed at three distinct points located less than 10 millimeters from the point approached C11.
  • the processing system 54 can thus determine the orientation of the plane tangent to the front face of the correction lens 200 at the approximate point C11.
  • the orientation of this plane with respect to the acquisition plane P1 is substantially identical to the orientation that would present the plane tangent to the front face of the correction lens 200 at the piercing point C10 with respect to this same acquisition plane.
  • the angle of inclination of this tangent plane with respect to the acquisition plane P1 corresponds to the angle ALPHA200 which can thus be calculated with precision.
  • the overall curvature of one of the optical faces 198, 199, in this case the front face 198, of the target correction lens 200 is identified on the face an approximate point C11 adjacent to the target piercing point C10 of the target pierce hole 210, and an inclination angle ALPHA200 of the optical face 198 is calculated as a function of said overall curvature and the position of the approximate point C11.
  • the processing system 54 identifies the approximate point C11 for example as the point whose projectile MC11 in the centering plane has a position homologous to that of the projected MC1 of the reference drilling point C1 of the reference drilling hole 110 in the plane of P1 acquisition.
  • the angle ALPHA200 can be determined otherwise.
  • the optician can measure it manually on the lens and then enter it using an on-screen input interface 50 provided for this purpose.
  • the angle ALPHA200 can also be calculated by the treatment system 54 from the calculated position of the approximate point C11 and the base of the lens which is generally supplied to the optician by the lens manufacturer and that the optician will have taken care to enter using the on-screen input interface.
  • R is the distance, projected in the acquisition plane P1, from the center C10 to the geometric center of the contour of the correction lens (obtained by image processing), B being the base of the lens, and n being the index of the lens.
  • the base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.
  • the processing system 54 can then calculate, by means of a trigonometric relationship, the target projection distance R3 to be separated in the centering plane similar to the acquisition plane P1 from the projected point MC10. for the target three-dimensional distance R2 separating the target anchor point O2 from the target piercing point C10 to be equal to the distance R2.
  • the processing system can calculate the three-dimensional position of the target piercing point C10 by transferring the reference three-dimensional distance R2 from the target anchor point 02 to the target correction lens 200.
  • This transfer is carried out substantially according to the local inclination of the relevant face (here, the front face) of the target correction lens 200, that is to say substantially in a transfer direction connecting the target anchor point 02 to the target piercing point C10, as illustrated by the figure 3 .
  • a conventional grinder or drill with a drill bit may drill the target drill hole 210 in the correction lens so that lens is perfectly mountable on the frame without circle selected by the future carrier.
  • the method is identical to that described above, with the difference that it is necessary to define the anchoring points O1 and O2 and the points of reference C1 and drilling C10 as belonging to the rear face 199 of the correction lens 200.
  • Some eyeglass frames differ from the one previously studied in that they require, for fixing a branch or a bridge on a lens, two drilling holes.
  • the reference lens 100 has four holes of referent drilling, including two referent drilling holes 110, 150 located on the side of its temporal area and two other drilling holes (not shown) located on the side of its nasal area.
  • the correction lens shown on the upper part of the figure 8 is intended to be pierced with two target drilling holes 210, 250 on the side of its temporal area and two other drilling holes (not shown) on the side of its nasal area.
  • the method for determining the position of the two target drilling holes 210, 250 of the correction lens 200 is similar to that previously discussed for a lens having two piercing holes.
  • the processing system 54 determines, on the reference lens 100, on the one hand, the distance R1 separating, in the acquisition plane P1, the projected MO1 from the reference anchor point O1 and the projected MC1 from the center C1 by front face of the mouth of the first reference drilling hole 110, and, secondly, the distance R4 separating, in the acquisition plane P1, the projected MC1 from the center in front of the mouth of the first hole of reference drilling 110 and projected MC5 from the center on the front face of the mouth of the second reference drilling hole 150.
  • the method for determining the distance R1 is strictly identical to that previously described with the same references for a lens with two holes drilled isolated from each other.
  • the method for determining the distance R4 differs therefrom in that the reference anchor point from which the distance R4 is measured corresponds to the projected MC1 of the center C1 of the first reference drilling hole 110.
  • the technique is otherwise identical and will not be described in more detail. It also makes it possible to acquire the angle ALPHA150 between the lighting direction D51 and the axis A150 of the second referent drilling hole 150. As a variant, the calculation of this angle can be avoided by making the approximation that the angles ALPHA100 and ALPHA150 are equal.
  • the processing system 54 then proceeds to calculate, on the one hand, the distance R2 separating the reference anchor point O1 from the reference lens 100 and the center C1 of the mouthpiece on the front face of the first reference drilling hole. 110, and, on the other hand, the distance R5 separating the centers C1 and C5 from the mouths on the front face of the first and second referential drilling holes 110, 150.
  • the processing system 54 proceeds to identify, on the front face 198 of the target correction lens 200, the target piercing points C10, C15 to which it will be necessary to pierce the correction lens 200.
  • the identification of the piercing point C10 is here also carried out according to a method identical to that described for a lens with two piercing holes.
  • the identification of the piercing point C15 is carried out by taking the piercing point C10 as the target anchor point of the target correction lens 200.
  • the objective of this identification is to determine in the acquisition plane P1 the position of the projected MC15 of the drilling point C15.
  • the angular position of the piercing point C15 and its projected MC15 around the axis A52 of the correction lens 200 are known since they both belong to the radial plane P4 considered. It remains to determine the distance R6 separating, in the acquisition plane P1, the projectile MC10 from the drilling point C10 and the projected MC15 from the drilling point C15.
  • the angle ALPHA250 of the axis A250 it is necessary to define, with respect to the lighting direction D51, the angle ALPHA250 of the axis A250 according to which the lens must be pierced by the second target hole 250.
  • the determination of this angle can be carried out by a similar way to one of those presented to determine the angle ALPHA200.
  • the processing system 54 calculates, by means of a trigonometric relationship, the distance R6 to be separated in the acquisition plane P1 from the projected MC15 from the drilling point C15 and the projected MC10 from the piercing point C10, so that the distance in the space between the piercing point C10 and the piercing point C15 is equal to the distance R5.
  • the piercing points C10, C15 are perfectly located in the acquisition plane P1. Since the orientations of the axes A210 and A250 of the target drill holes 210, 250 are also known, a conventional grinder or drill with a drill bit can drill the target drill holes 210, 250 into the correction lens 200. so that this lens is perfectly mountable on the frame without circle selected by the future carrier.
  • the reference lens 100 is seen by the camera 53 in direct vision.
  • the camera 53 is arranged such that the optical axis of its objective is parallel to the direction of illumination and the optical center of its objective is located at the focus 51 of the collimation lens 52.
  • a set of backlighting composed of a matrix of light sources such as LEDs 56 and a diffusion plate 57, is arranged on the side of the support plate 55 opposite to the lens 100.
  • the camera 53 then sees directly, that is to say without intermediate projection screen, the reference lens 100 on the front face.
  • the lens of the camera acquires the image of the lens in an acquisition plane orthogonal to the image capture direction A52.
  • This acquisition plan is not identifiable here on the structure of the device. It corresponds here to the image plane P2 of the collimation lens 52. It is indeed in this image plane P2 that a clear image of the reference lens 100 seen by the collimating lens 52 is formed.
  • the base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Boring (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Prostheses (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

The method involves acquiring a curve characteristic (ALPHA100) of a reference lens (100), and determining reference projection distance (R1) between a projection (MO1) of a reference anchoring point (O1) of the lens and a projection (MC1) of a reference drilling point (C1) of a target drilling hole (110). Tri-dimensional distance between the lens anchoring point and the hole drilling point is calculated according to the lens curve characteristic and the determined distance. A position of the hole on a target correction lens is determined based on the tri-dimensional distance.

Description

DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTIONTECHNICAL FIELD TO WHICH THE INVENTION REFERS

La présente invention concerne de manière générale le domaine de la lunetterie et plus précisément le perçage de lentilles ophtalmiques en vue de leurs montages sur des montures de lunettes de types sans cercle.The present invention generally relates to the field of eyewear and more specifically to the drilling of ophthalmic lenses for mounting on spectacle frames of the type without a circle.

Elle concerne plus particulièrement un procédé de détermination de la position d'un trou de perçage cible à réaliser sur une lentille de correction cible à partir d'une lentille de référence qui présente un trou de perçage référent.More particularly, it relates to a method of determining the position of a target borehole to be made on a target correction lens from a reference lens that has a reference borehole.

ARRIÈRE-PLAN TECHNOLOGIQUETECHNOLOGICAL BACKGROUND

Lorsqu'une monture de lunettes est du type sans cercle, le détourage de chacune des lentilles de correction destinées à équiper cette monture est suivi du perçage approprié de chaque lentille pour permettre la fixation des branches et du pontet nasal de la monture sans cercle. Le perçage peut être effectué sur une meuleuse ou sur une machine de perçage distincte au moyen d'un foret de perçage.When an eyeglass frame is of the circle-free type, the clipping of each of the correction lenses intended to equip this frame is followed by the appropriate drilling of each lens to allow the attachment of the branches and the nasal bridge of the frame without a circle. Drilling can be performed on a grinder or on a separate drilling machine by means of a drill bit.

Le plus souvent, le procédé suivant est mis en oeuvre. Tout d'abord le futur porteur choisit une monture à son goût, qui est équipée de lentilles de référence, communément appelées lentilles de présentation. Chaque lentille de référence est déjà percée sur ses parties temporale et nasale et peut alors servir de modèle pour le détourage et le perçage convenables de la lentille de correction cible destinée à équiper la monture sélectionnée par le futur porteur.Most often, the following method is implemented. First of all the future carrier chooses a frame to his taste, which is equipped with reference lenses, commonly called presentation lenses. Each reference lens is already pierced on its temporal and nasal parts and can then serve as a model for the proper trimming and piercing of the target correction lens intended to equip the frame selected by the future carrier.

Le positionnement des trous de perçage cibles à réaliser sur la lentille correctrice cible s'infère de celui des trous de perçage référents de la lentille de référence. Ce positionnement peut être réalisé manuellement : l'opticien mesure la position des trous de perçage référents et reporte ces mesures sur la lentille de correction cible de la lentille détourée.The positioning of the target drill holes to be made on the target corrective lens is inferred from that of the reference drilling holes of the reference lens. This positioning can be done manually: the optician measures the position of the referred drilling holes and reports these measurements on the target correction lens of the cut-out lens.

Mais il est intéressant en pratique de réaliser ce positionnement de façon automatique. Le brevet EP1053075 propose en ce sens un procédé de détermination de la position d'un trou de perçage cible à réaliser sur une lentille de correction cible ayant un contour cible prévu après détourage, à partir d'une lentille de référence qui présente un contour référent et au moins un trou de perçage référent, identique à celui de la lentille de référence. Ce procédé comporte les étapes suivantes :

  • acquérir une image de la lentille de référence, avec en particulier une image de son contour référent et une image de son trou de perçage référent, dans un plan d'acquisition,
  • en déduire la position d'un point de perçage cible du trou de perçage cible de la lentille de correction cible par rapport au contour cible.
But it is interesting in practice to achieve this positioning automatically. The patent EP1053075 proposes in this sense a method for determining the position of a target drilling hole to be made on a target correction lens having a target contour provided after trimming, from a reference lens which has a reference contour and at least a reference drilling hole, identical to that of the reference lens. This process comprises the following steps:
  • acquire an image of the reference lens, with in particular an image of its referent contour and an image of its reference drilling hole, in an acquisition plane,
  • deriving the position of a target piercing point from the target piercing hole of the target correction lens relative to the target contour.

La lentille de référence est placée dans un dispositif d'acquisition d'images de cette lentille, qui affiche cette image sur un écran. L'opérateur procède ensuite au repérage des trous de perçage référents en pointant sur l'écran chacun de ces trous. Le système de traitement mémorise la position des trous de perçage référents par rapport à l'image du contour référent de la lentille de référence dans le plan d'acquisition.The reference lens is placed in an image acquisition device of this lens, which displays this image on a screen. The operator then proceeds to locate the referent drilling holes by pointing on the screen each of these holes. The processing system stores the position of the referential drill holes relative to the image of the reference contour of the reference lens in the acquisition plane.

La lentille de correction cible est ensuite centrée. Son image est acquise dans un plan de centrage de manière à repérer son référentiel optique et à positionner en conséquence le contour cible souhaité pour la lentille de correction cible. Puis, après le détourage de la lentille de correction cible suivant le contour cible identique à celui de la lentille de référence, un foret de perçage ayant un diamètre adapté est amené en vis-à-vis d'un point de perçage cible de la lentille de correction cible.The target correction lens is then centered. Its image is acquired in a centering plane so as to locate its optical reference and to position accordingly the desired target contour for the target correction lens. Then, after trimming the target correction lens according to the target contour identical to that of the reference lens, a drill bit having a suitable diameter is brought opposite a target piercing point of the lens. target correction.

Ce point de perçage cible est directement défini comme étant l'homologue en projection dans les plans d'acquisition et de centrage du point de perçage référent, en ce sens qu'il s'agit du point dont le projeté dans le plan de centrage (de la lentille de correction) présente une position analogue à celle de l'image dans le plan d'acquisition (de la lentille de référence) du point de perçage référent de la lentille de référence.This target drilling point is directly defined as being the projection counterpart in the acquisition and centering planes of the reference drilling point, in the sense that it is the point that is projected in the centering plane ( of the correction lens) has a position similar to that of the image in the acquisition plane (of the reference lens) of the reference drilling point of the reference lens.

La lentille de correction est alors percée au moyen d'une mobilité d'avance relative du foret de perçage par rapport à la lentille suivant l'axe de rotation du foret. Si le diamètre du foret est inférieur au diamètre voulu, le trou obtenu est élargi au bon diamètre à la faveur d'un déplacement transversal approprié du foret.The correction lens is then pierced by means of a relative advance movement of the drill bit relative to the lens along the axis of rotation of the drill bit. If the diameter of the drill bit is smaller than the desired diameter, the hole obtained is widened to the right diameter by means of a suitable transverse displacement of the drill bit.

Cependant, on constate, en particulier pour les lentilles fortement galbées, qu'il existe une erreur souvent importante entre la position du trou de perçage cible réalisé sur la lentille de correction cible et la position du trou de perçage référent de la lentille de référence. Cette erreur de positionnement induit des difficultés de montage de la lentille de correction cible sur les branches et le pontet nasal de la monture et peut même aboutir, dans certains cas, à un montage impossible ou de mauvaise qualité. Dans ce cas, l'opticien est forcé d'effectuer une opération de reprise des trous de perçage qui est consommatrice de temps, qui exige un savoir-faire élevé et qui génère des résultats souvent peu esthétiques. Il peut en outre en résulter un mauvais positionnement de la lentille correctrice cible en regard de l'oeil du porteur, ce qui dégrade la performance de correction optique et peut provoquer pour le porteur une forte gêne.However, it is found, particularly for highly curved lenses, that there is often a large error between the position of the target borehole made on the target correction lens and the position of the reference hole of the reference lens. This positioning error induces difficulties in mounting the target correction lens on the branches and the nasal bridge of the frame and may even lead, in some cases, to impossible mounting or poor quality. In this case, the optician is forced to perform a drill hole recovery operation that is time consuming, which requires a high level of expertise and generates results that are often unsightly. It can further result in a poor positioning of the target corrective lens opposite the eye of the wearer, which degrades the performance of the optical correction and can cause the wearer a strong discomfort.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

Le but de la présente invention est de déterminer avec précision la position des trous de perçage à réaliser sur la lentille de correction cible en vue de son assemblage aux branches et au pontet nasal de la monture de lunettes sans cercle sélectionnée par le porteur.The object of the present invention is to accurately determine the position of the drilling holes to be made on the target correction lens for assembly to the branches and the nasal bridge of the eyeglass frame without a circle selected by the wearer.

Plus particulièrement, on propose selon l'invention un procédé de détermination de la position d'un trou de perçage cible à réaliser sur une lentille de correction cible ayant un contour cible prévu après détourage, à partir d'une lentille de référence qui présente un contour référent et au moins un trou de perçage référent, comportant les étapes suivantes :

  • acquérir une image de la lentille de référence, avec en particulier une image de son contour référent et une image de son trou de perçage référent dans un plan d'acquisition ;
  • acquérir au moins une caractéristique du galbe de la lentille de référence ;
  • déterminer, dans le plan d'acquisition, la distance en projection référente entre le projeté d'un point d'ancrage référent de la lentille de référence associé au contour référent et le projeté d'un point de perçage référent du trou de perçage référent ;
  • calculer la distance tridimensionnelle référente entre le point d'ancrage référent de la lentille de référence et le point de perçage référent du trou de perçage référent en fonction de ladite caractéristique du galbe de la lentille de référence et de la distance en projection référente déterminée ;
  • déterminer la position d'un point de perçage cible du trou de perçage cible de la lentille de correction cible par rapport au contour cible, en fonction de la distance tridimensionnelle référente calculée.
More particularly, it is proposed according to the invention a method for determining the position of a target drilling hole to be made on a target correction lens having a target contour provided after trimming, from a reference lens which has a reference contour and at least one referent drilling hole, comprising the following steps:
  • acquiring an image of the reference lens, with in particular an image of its referent contour and an image of its reference drilling hole in an acquisition plane;
  • acquiring at least one characteristic of the curve of the reference lens;
  • determining, in the acquisition plane, the reference projection distance between the projection of a reference anchor point of the reference lens associated with the reference contour and the projection of a reference drilling point of the reference drilling hole;
  • calculating the reference three-dimensional distance between the reference anchor point of the reference lens and the reference drilling point of the reference drilling hole as a function of said characteristic of the curve of the reference lens and the determined reference projection distance;
  • determining the position of a target drilling point of the target drilling hole of the target correction lens relative to the target contour, according to the calculated three-dimensional reference distance.

Lors du perçage de la lentille de correction cible, par exemple du côté de la face avant de la lentille, le foret perce la lentille en un point de perçage cible préalablement repéré. Dans l'état de la technique, ce point de perçage cible est repéré de sorte que, si l'on superpose en projection dans les plans d'acquisition et de centrage les images projetées des lentilles de référence et de correction de manière à faire coïncider leurs contours référents et cibles respectifs, l'image du point de perçage cible de la lentille de correction cible est confondue avec l'image du point de perçage référent de la lentille de référence.When drilling the target correction lens, for example on the side of the front face of the lens, the drill pierces the lens at a previously marked target drilling point. In the state of the art, this target drilling point is marked so that, if the projected images of the reference and correction lenses are superimposed in projection in the acquisition and centering planes so as to coincide their respective reference and target contours, the image of the target piercing point of the target correction lens is merged with the image of the reference piercing point of the reference lens.

La demanderesse a cependant remarqué que les distances réelles (dans l'espace et non plus en projection) séparant les tranches des lentilles de leurs trous de perçage diffèrent d'une lentille à l'autre. Elle a pu identifier que cette erreur provient en grande partie de la différence de galbes (ou courbures) des lentilles de référence et de correction.The plaintiff however noticed that the real distances (in space and not in projection) separating the slices of the lenses from their Drill holes differ from one lens to another. She was able to identify that this error is largely due to the difference in curves (or curvatures) of the reference and correction lenses.

Il se produit donc une erreur lors du report sur la lentille de correction cible de la distance acquise sur la lentille de référence. En raison de cette erreur, le trou de perçage cible réalisé sur la lentille de correction cible est en pratique décalé par rapport à la position idéale à laquelle il devrait se trouver. En conséquence, les trous de perçage de la lentille de correction cible risquent d'être trop éloignés de la tranche de cette lentille, de sorte que les branches ou le pontet de la monture ne peuvent pas s'accrocher dans ces trous de perçage. Cette erreur peut en outre également être à l'origine d'une erreur de centrage des lentilles de correction cibles en regard des yeux du porteur, car le bon positionnement des trous de perçage conditionne celui du référentiel optique de la lentille en regard des yeux du porteur.There is therefore an error in the report on the target correction lens of the distance acquired on the reference lens. Because of this error, the target drill hole made on the target correction lens is in practice offset from the ideal position at which it should be located. As a result, the drilling holes of the target correction lens may be too far from the edge of this lens, so that the legs or bridge of the frame can not catch in these holes. This error can also also be the cause of a centering error of the target correction lenses facing the eyes of the wearer, because the proper positioning of the drill holes determines that of the optical reference of the lens facing the eyes of the user. carrier.

Grâce au procédé selon l'invention, on détermine, à partir du galbe de la lentille de référence, la distance tridimensionnelle réelle séparant la tranche (ou tout autre point repéré) de la lentille de référence du point de référence du trou de perçage réfèrent. Connaissant cette distance, il est possible de la reporter sur la face optique correspondante de la lentille de correction cible, de manière que la distance tridimensionnelle réelle séparant la tranche de la lentille de correction et son trou de perçage cible soit identique à celle déterminée sur la lentille de référence. Cette distance ne dépend donc plus du plan de projection dans lequel l'image de la lentille de référence est acquise. Le pontet et les branches de la monture peuvent ainsi être assemblés avec les lentilles de correction sans aucune difficulté et à la position voulue, ce qui permet alors de correctement positionner les lentilles en regard des pupilles des yeux du porteur afin qu'elles exercent aux mieux les fonctions optiques pour lesquelles elles ont été conçues.With the method according to the invention, from the reference lens curve, the actual three-dimensional distance separating the wafer (or any other point identified) from the reference lens of the reference point of the drilling hole is determined. Knowing this distance, it is possible to transfer it to the corresponding optical face of the target correction lens, so that the actual three-dimensional distance between the wafer of the correction lens and its target piercing hole is identical to that determined on the reference lens. This distance no longer depends on the projection plane in which the image of the reference lens is acquired. The bridge and the branches of the frame can thus be assembled with the correction lenses without any difficulty and at the desired position, which then allows to correctly position the lenses opposite the pupils of the eyes of the wearer so that they exercise the best the optical functions for which they were designed.

Les points de perçage référent et cible des trous de perçage de la lentille de référence et de la lentille de correction cible « correspondent » en ce sens qu'ils sont de même nature par rapport au trou de perçage concerné : par exemple, si le point de référence du trou de perçage référent est choisi comme étant le centre de l'embouchure en face avant de ce trou de perçage référent, le point de référence du trou de perçage cible est également confondu avec le centre de son embouchure en face avant.The drill points reference and target drill holes of the reference lens and the target correction lens "match" in the sense that they are of the same nature with respect to the piercing hole concerned: for example, if the point The reference hole of the reference drilling hole is chosen to be the center of the mouthpiece on the front face of this reference drilling hole, the reference point of the target drilling hole is also coincident with the center of its mouth on the front face.

On comprend en revanche que les points de référence des trous de perçage des lentilles de référence et de correction ne sont pas « homologues » à cause de la différence de galbes des lentilles. En effet, si l'on acquiert les images des lentilles de référence et de correction et qu'on les superpose, les images de ces deux points de référence ne sont pas confondues, et ce en raison du correctif que prévoit l'invention.It is understood however that the reference points of the drilling holes of the reference and correction lenses are not "homologous" because of the difference in the curves of the lenses. Indeed, if we acquire the images reference and correction lenses and superimposed, the images of these two reference points are not confused, and this because of the fix provided by the invention.

Plus généralement, on considérera par la suite que deux points sont « homologues » si, d'une part, ils appartiennent aux faces optiques correspondantes de la lentille de correction cible et de la lentille de référence, et si, d'autre part, lorsqu'on superpose dans un même plan les images de la lentille de référence et de la lentille de correction en faisant correspondre tout ou partie de leurs contours, les images de ces deux points se superposent également.More generally, it will be considered later that two points are "homologous" if, on the one hand, they belong to the corresponding optical faces of the target correction lens and of the reference lens, and if, on the other hand, when the images of the reference lens and the correction lens are superimposed in the same plane by matching all or part of their contours, the images of these two points are also superimposed.

On notera par ailleurs que les projections des points d'ancrage et des points de perçage dans le plan d'acquisition sont réalisées selon une même et unique direction de projection perpendiculaire à un plan général de la lentille ou parallèle à l'axe d'éclairage ou de capture d'image.Note also that projections anchor points and piercing points in the acquisition plane are made in the same and only direction of projection perpendicular to a general plane of the lens or parallel to the axis of illumination or image capture.

Selon une première caractéristique avantageuse de l'invention, pour déterminer la position du point de perçage cible du trou de perçage cible, on identifie un point d'ancrage cible de la lentille de correction cible homologue du point d'ancrage référent de la lentille de référence et on calcule la position du point de perçage cible en fonction de ce point d'ancrage cible et de la distance tridimensionnelle référente.According to a first advantageous characteristic of the invention, in order to determine the position of the target piercing point of the target pierce hole, a target anchor point of the target correction lens homologous to the reference anchor point of the objective lens is identified. reference and calculates the position of the target drilling point according to this target anchor point and the reference three-dimensional distance.

Le point d'ancrage référent et le point de perçage référent appartiennent à une même face référente de la lentille de référence, et le point d'ancrage cible et le point de perçage cible appartiennent à une même face cible de la lentille de correction cible, ladite face référente et ladite face cible se correspondant.The referent anchor point and the referent pierce point belong to the same reference face of the reference lens, and the target anchor point and the target pierce point belong to the same target face of the target correction lens, said reference face and said corresponding target face.

Pour calculer la position du point de perçage cible, on reporte sur la lentille de correction cible la distance tridimensionnelle référente, à partir dudit point d'ancrage cible, sensiblement suivant une direction de report reliant le point d'ancrage cible au point de perçage cible.To calculate the position of the target piercing point, the target three-dimensional distance from said target anchor point is transferred to the target correction lens substantially in a deflection direction connecting the target anchor point to the target piercing point. .

Le point d'ancrage cible de la lentille de correction cible est homologue du point d'ancrage référent de la lentille de référence au sens défini précédemment. Ainsi, si le point d'ancrage référent de la lentille de référence est disposé sur le contour de cette lentille, le point d'ancrage cible de la lentille de correction cible est positionné sur le même point du contour après détourage de la lentille de correction (ces contours sont identiques). De la même manière, si le point d'ancrage référent de la lentille de référence est disposé au centre d'un autre des trous de perçage référents associé à un point de référence cible déjà déterminé, le point d'ancrage cible de la lentille de correction cible est constitué par le centre de ce trou de perçage cible. Les points d'ancrage de la lentille de correction cible et de la lentille de référence ne sont donc pas nécessairement homologues.The target anchor point of the target correction lens is homologous to the reference anchor point of the reference lens in the previously defined sense. Thus, if the reference anchor point of the reference lens is disposed on the contour of this lens, the target anchor point of the target correction lens is positioned on the same point of the contour after the correction lens has been trimmed. (these contours are identical). In the same way, if the reference anchor point of the reference lens is disposed in the center of another of the referent boreholes associated with a target target already determined, the target anchor point of the Target correction is the center of this target hole. The anchor points of the lens Target correction and the reference lens are therefore not necessarily homologous.

Il existe divers types de perceuses et différents types de procédés pour positionner selon l'invention un foret de perçage en regard du point de perçage de la lentille de correction. Un de ces procédés consiste à venir tangenter avec le foret de perçage la tranche de la lentille de correction préalablement détourée, puis à déplacer le foret selon une direction parallèle au plan tangent à la zone à percer de la face avant de la lentille de correction. Ce déplacement, s'il est réalisé d'une distance correspondant à la distance préalablement calculée, permet alors de correctement positionner le foret en vis-à-vis du point de perçage désiré de sorte que la monture peut être précisément assemblée avec cette lentille.There are various types of drills and different types of methods for positioning according to the invention a drill bit opposite the piercing point of the correction lens. One of these methods is to come tangent with the drill bit the edge of the correction lens previously cut out, and then move the drill in a direction parallel to the plane tangent to the area to be pierced from the front face of the correction lens. This displacement, if it is performed by a distance corresponding to the previously calculated distance, then makes it possible correctly to position the drill vis-à-vis the desired drilling point so that the mount can be precisely assembled with this lens.

Selon un autre mode de réalisation de l'invention, pour calculer la position du point de perçage cible du trou de perçage cible, on détermine au moins une caractéristique du galbe de la lentille de correction cible et on calcule la distance en projection cible, dans un plan de centrage analogue au plan d'acquisition, entre le projeté du point de perçage cible du trou de perçage cible de la lentille de correction cible et le projeté du point d'ancrage cible de cette lentille de correction cible, en fonction de la distance tridimensionnelle référente et de la caractéristique du galbe de la lentille de correction cible.According to another embodiment of the invention, in order to calculate the position of the target drilling point of the target drilling hole, at least one characteristic of the curve of the target correction lens is determined and the target projection distance is calculated in a centering plane similar to the acquisition plane, between the projected target drilling point of the target drilling hole of the target correction lens and the projection of the target anchor point of this target correction lens, depending on the reference three-dimensional distance and the curve characteristic of the target correction lens.

Les points d'ancrage des lentilles de référence et de correction sont homologues au sens expliqué ci-dessus.The anchor points of the reference and correction lenses are homologous in the sense explained above.

L'image de la lentille de référence est acquise dans un plan d'acquisition donné. Par ailleurs, l'image de la lentille de correction est acquise, en vue de son centrage, dans un plan de centrage donné. Ces plans sont analogues en ce qu'ils sont sensiblement inclinés de la même manière par rapport aux lentilles, de sorte que le contour de l'image de la lentille de référence soit identique à celui de l'image de la lentille de correction. Typiquement, ces plans d'acquisition et de centrage sont sensiblement parallèles à des plans moyens de la lentille de référence ou de correction cible, ou à des plans moyens des contours de ces lentilles. Il est ainsi possible de considérer dans un même plan virtuel confondant ces plans d'acquisition et de centrage les images des lentilles de référence et de correction.The image of the reference lens is acquired in a given acquisition plan. Moreover, the image of the correction lens is acquired, in view of its centering, in a given centering plane. These planes are similar in that they are substantially inclined in the same way with respect to the lenses, so that the contour of the image of the reference lens is identical to that of the image of the correction lens. Typically, these acquisition and centering planes are substantially parallel to the mean planes of the reference or target correction lens, or to the average planes of the contours of these lenses. It is thus possible to consider in the same virtual plane confusing these acquisition and centering plans, the images of the reference and correction lenses.

A ce stade, on connaît la distance tridimensionnelle référente devant séparer, dans l'espace, un point d'ancrage cible de la lentille de correction d'un point de référence du trou de perçage cible. Or, généralement, les meuleuses et perceuses repèrent la position de leur foret de perçage dans un plan correspondant au plan de centrage précité. Il convient donc de déterminer la distance entre les projections de ces deux points dans le plan de centrage, afin de pouvoir ensuite positionner simplement et avec précision le foret de perçage par rapport à la lentille de correction.At this stage, it is known the reference three-dimensional distance to separate, in space, a target anchor point of the correction lens of a reference point of the target drilling hole. However, generally, the grinders and drills locate the position of their drill bit in a plane corresponding to the aforementioned centering plane. It is therefore necessary to determine the distance between the projections of these two points in the centering plane, in order to then simply and accurately position the drill bit relative to the correction lens.

Préférentiellement, pour déterminer ladite caractéristique du galbe de la lentille de correction cible, on identifie sur l'une des faces optiques de la lentille de correction cible un point approché voisin du point de perçage cible du trou de perçage cible, on palpe ladite face optique de la lentille de correction cible en au moins trois points situés au voisinage (typiquement à moins de 10 millimètres) du point approché, et on en déduit un angle d'inclinaison de ladite face optique de la lentille de correction au point approché par rapport au plan de centrage, cet angle constituant alors ladite caractéristique du galbe recherchée.Preferably, to determine said characteristic of the curve of the target correction lens, is identified on one of the optical faces of the target correction lens near an approximate point of the target drilling point of the target drilling hole, said optical face is palpated of the target correction lens at at least three points located in the vicinity (typically less than 10 millimeters) of the approximate point, and an angle of inclination of said optical face of the correction lens at the approximate point with respect to centering plane, this angle then constituting said characteristic of the desired curve.

Le point approché est un point de la lentille de correction qui est jugé proche ou calculé pour être proche du point de perçage du trou de perçage cible. Ce point approché peut par exemple être le point homologue du point de référence du trou de perçage référent de la lentille de référence.The approximate point is a point on the correction lens that is judged to be near or calculated to be close to the piercing point of the target hole. This approximate point may for example be the homologous point of the reference point of the reference drilling hole of the reference lens.

Les positions relatives de trois points palpés permettent d'approximer la forme de la face optique palpée de la lentille, dans la zone du point approché. La forme de la face optique de la lentille ne présentant pas de grandes variations dans cette zone, on fait l'approximation que cette forme est identique à la forme de la lentille au voisinage de la zone où elle sera percée. Ce palpage permet donc en particulier de déduire l'inclinaison de l'axe selon lequel il faudra percer la lentille de correction de manière que le trou de perçage cible débouche orthogonalement à la face optique palpée de la lentille.The relative positions of three probed points make it possible to approximate the shape of the palpated optical face of the lens, in the area of the approximate point. The shape of the optical face of the lens does not have large variations in this area, it is approximated that this shape is identical to the shape of the lens in the vicinity of the area where it will be pierced. This probing thus makes it possible in particular to deduce the inclination of the axis according to which the correction lens will have to be pierced so that the target piercing hole opens out orthogonally to the palpated optical face of the lens.

Cette inclinaison fournit en outre une valeur du galbe de la lentille de correction qui permet de déterminer la position du projeté du point de référence du trou de perçage cible dans le plan de centrage.This inclination further provides a value of the curve of the correction lens which makes it possible to determine the position of the projected reference point of the target drilling hole in the centering plane.

En variante, pour déterminer ladite caractéristique du galbe de la lentille de correction, on acquiert la courbure globale de l'une des faces optiques de la lentille de correction cible, on identifie sur l'une des faces optiques de la lentille de correction cible un point approché voisin du point de perçage cible du trou de perçage cible, et on calcule, en fonction de ladite courbure globale et de la position du point approché, un angle d'inclinaison de ladite face optique de la lentille de correction cible au point approché par rapport au plan de centrage, cet angle constituant alors ladite caractéristique du galbe recherchée.In a variant, in order to determine said characteristic of the curve of the correction lens, the overall curvature of one of the optical faces of the target correction lens is acquired, one of the optical faces of the target correction lens is identified by approached point near the target drilling point of the target drilling hole, and an angle of inclination of said optical face of the target correction lens at the approached point is calculated as a function of said overall curvature and the position of the approached point. relative to the centering plane, this angle then constituting said characteristic of the desired curve.

La face optique avant d'une lentille est généralement approximativement circonscrite à une sphère dont le rayon de courbure est généralement fourni à l'opticien par le fabricant de la lentille. Ainsi, le rayon de courbure de cette sphère et la position du point approché du point de perçage permettent de déterminer une approximation de l'inclinaison de l'axe selon lequel il faudra percer la lentille. Ici encore, cet angle permet en outre de déterminer la position du projeté du point de référence du trou de perçage cible dans le plan de centrage.The front optical face of a lens is generally approximately circumscribed to a sphere whose radius of curvature is generally provided to the optician by the lens manufacturer. Thus, the radius of curvature of this sphere and the position of the point approaching the piercing point makes it possible to determine an approximation of the inclination of the axis through which the lens will be pierced. Here again, this angle also makes it possible to determine the position of the projected reference point of the target drilling hole in the centering plane.

D'autres caractéristiques avantageuses et non limitatives du procédé selon l'invention sont les suivantes :

  • on identifie le point d'ancrage référent de la lentille de référence comme le point dont le projeté dans le plan d'acquisition est situé à l'intersection, d'une part, d'une ligne de contour projetée résultant de la projection de l'une des arêtes avant et arrière du bord de la lentille de référence ou d'une moyenne de ces arêtes, et, d'autre part, d'une ligne d'ancrage référente passant par le projeté du point de perçage référent du trou de perçage référent ; cette ligne d'ancrage référente peut en particulier être celle qui passe par le projeté d'un centre géométrique, tel que le centre boxing, de la lentille de référence ou qui est parallèle à la ligne d'horizon de la lentille de référence ;
  • on identifie le point d'ancrage cible de la lentille de correction cible comme le point dont le projeté, dans un plan de centrage analogue au plan d'acquisition, présente une position homologue de celle du projeté du point d'ancrage référent de la lentille de référence dans le plan d'acquisition ;
  • pour déterminer la position du point de perçage cible on considère que le projeté de ce point dans un plan de centrage analogue au plan d'acquisition appartient à une ligne d'ancrage cible homologue de la ligne d'ancrage référente ;
  • la lentille de référence comportant deux trous de perçage référents adjacents conçus pour maintenir une même branche ou un même pontet nasal d'une montre, dont un premier trou de perçage référent et un second trou de perçage référent, la lentille de correction présentant deux trous de perçage cibles à réaliser, dont un premier trou de perçage cible qui correspond au premier trou de perçage référent de la lentille de référence et dont la position est déjà identifiée et un second trou de perçage cible, le point d'ancrage référent de la lentille de référence est, pour la détermination du second trou de perçage cible, constitué par le point de perçage référent du premier trou de perçage référent ;
  • le point d'ancrage cible de la lentille de correction cible est constitué par le point de perçage cible du premier trou de perçage cible.
Other advantageous and non-limiting features of the method according to the invention are the following:
  • the reference anchor point of the reference lens is identified as the point whose projection in the acquisition plane is situated at the intersection, on the one hand, of a projected contour line resulting from the projection of the reference lens. one of the front and rear edges of the edge of the reference lens or an average of these edges, and, on the other hand, a reference anchor line passing through the projected reference drilling point of the hole of referent drilling; this reference anchor line may in particular be that which passes through the projected geometric center, such as the boxing center, of the reference lens or which is parallel to the horizon line of the reference lens;
  • the target anchor point of the target correction lens is identified as the point whose projected, in a centering plane similar to the acquisition plane, has a position homologous to that of the projected reference anchor point of the lens reference in the acquisition plan;
  • to determine the position of the target piercing point, it is considered that the projection of this point in a centering plane similar to the acquisition plane belongs to a target anchor line homologous to the reference anchor line;
  • the reference lens having two adjacent referent drill holes designed to hold a same branch or nasal bridge of a watch, including a first reference drill hole and a second reference drill hole, the correction lens having two target drilling to be performed, including a first target drilling hole that corresponds to the first referent drilling hole of the reference lens and whose position is already identified and a second target drilling hole, the reference anchor point of the target lens; reference is, for the determination of the second target drilling hole, constituted by the reference drilling point of the first reference drilling hole;
  • the target anchor point of the target correction lens is the target pierce point of the first target pierce hole.

DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATIONDETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT

La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The description which follows, with reference to the accompanying drawings, given by way of non-limiting example, will make it clear what the invention consists of and how it can be achieved.

Sur les dessins annexés :

  • la figure 1 est une vue schématique en coupe axiale d'un dispositif d'acquisition de la position de trous de perçage d'une lentille de référence ;
  • la figure 2 est une vue mixte, avec une partie supérieure montrant en coupe axiale le trou de perçage de la lentille de référence de la figure 1, et une partie inférieure montrant, dans un plan d'acquisition, l'image d'ensemble en ombre projetée de ce trou de perçage, dont certains points sont utilisés pour le calcul de la position de ce trou de perçage ;
  • la figure 3 est une vue mixte, avec une partie inférieure montrant en coupe une portion de la lentille de référence de la figure 1, et une partie supérieure montrant en coupe une portion d'une lentille de correction percée selon le procédé conforme à l'invention ;
  • les figures 4 et 6 sont deux vues similaires de l'image de la lentille de référence de la figure 1 projetée dans le plan d'acquisition, illustrant deux définitions de la ligne d'ancrage référence ;
  • les figures 5 et 7 sont deux vues en plan de face de la lentille de correction cible de la figure 4 avant usinage ; et
  • la figure 8 est une vue mixte, avec une partie inférieure montrant en coupe une portion d'une autre lentille de référence pourvue de deux trous de perçage adjacents, et une partie supérieure montrant en coupe une portion d'une autre lentille de correction cible percée selon le procédé conforme à l'invention.
  • la figure 9 est une vue schématique en coupe axiale d'une variante de réalisation du dispositif d'acquisition de la figure 1.
In the accompanying drawings:
  • the figure 1 is a diagrammatic view in axial section of a device for acquiring the position of the drilling holes of a reference lens;
  • the figure 2 is a mixed view, with an upper part showing in axial section the drilling hole of the reference lens of the figure 1 , and a lower part showing, in an acquisition plane, the projected shadow overall image of this drilling hole, some points of which are used for calculating the position of this drilling hole;
  • the figure 3 is a mixed view, with a lower part showing in section a portion of the reference lens of the figure 1 and an upper portion showing in section a portion of a correction lens pierced according to the method according to the invention;
  • the Figures 4 and 6 are two similar views of the image of the reference lens of the figure 1 projected in the acquisition plan, illustrating two definitions of the reference anchor line;
  • the Figures 5 and 7 are two front plane views of the target correction lens of the figure 4 before machining; and
  • the figure 8 is a mixed view, with a lower portion showing in section a portion of another reference lens provided with two adjacent piercing holes, and an upper portion showing in section a portion of another target correction lens pierced by the method according to the invention.
  • the figure 9 is a schematic view in axial section of an alternative embodiment of the device for acquiring the figure 1 .

L'objectif du procédé selon l'invention est de déterminer la position d'un trou de perçage cible à réaliser sur une lentille de correction en fonction de la position, que l'on se propose d'acquérir, d'un trou de perçage référent d'une lentille de référence.The objective of the method according to the invention is to determine the position of a target drilling hole to be made on a correction lens according to the position, which is proposed to acquire, a drilling hole referent of a reference lens.

Le procédé comporte ainsi une première étape d'acquisition de la position des trous de perçage référents de la lentille de référence.The method thus comprises a first step of acquiring the position of the reference drilling holes of the reference lens.

Dispositif d'acquisition d'imageImage acquisition device

Sur la figure 1, on a représenté un exemple de dispositif d'acquisition de la position des trous de perçage référents d'une lentille de lunettes de référence, permettant la mise en oeuvre du procédé selon l'invention. Ce dispositif d'acquisition comporte des moyens d'éclairage 51, 52, un support 55 pour accueillir une lentille de référence 100 (consistant typiquement en une lentille de présentation servant à présenter la monture) et des moyens de capture 53 d'une image globale de cette lentille.On the figure 1 , there is shown an exemplary device for acquiring the position of the reference drilling holes of a reference eyeglass lens, allowing the implementation of the method according to the invention. This acquisition device comprises lighting means 51, 52, a support 55 for accommodating a reference lens 100 (typically consisting of a presentation lens used to present the frame) and capture means 53 of a global image of this lens.

Les moyens d'éclairage 51, 52 comportent une lentille de collimation 52 d'axe A52 et une source lumineuse 51 placée au foyer de la lentille de collimation 52. Après leur passage par la lentille de collimation 52, les rayons lumineux sont ainsi dirigés parallèlement à l'axe A52 de la lentille de collimation 52. La direction d'éclairement D51 est ainsi parallèle à la direction de l'axe A52.The lighting means 51, 52 comprise a collimation lens 52 of axis A52 and a light source 51 placed at the focus of the collimation lens 52. After passing through the collimation lens 52, the light rays are thus directed in parallel. to the axis A52 of the collimation lens 52. The illumination direction D51 is thus parallel to the direction of the axis A52.

Les moyens de capture 53 comportent une caméra 53 pourvue d'un objectif ayant un axe optique A53. Le dispositif d'acquisition de la position des trous de perçage référents comporte un axe optique défini comme étant l'axe A52 de la lentille de collimation 52 et l'axe A53 de l'objectif des moyens d'acquisition 53. La direction de capture d'image par les moyens d'acquisition 53 est ici confondue avec la direction d'éclairement D51. Les directions d'éclairement ou de capture d'image s'entendent, bien entendu, renvoyées ou non.The capture means 53 comprise a camera 53 provided with a lens having an optical axis A53. The device for acquiring the position of the reference drilling holes comprises an optical axis defined as the axis A52 of the collimation lens 52 and the axis A53 of the objective of the acquisition means 53. The capture direction image by the acquisition means 53 is here confused with the direction of illumination D51. The directions of illumination or image capture are, of course, returned or not.

Le support 55 de la lentille 100 de référence est conçu de telle sorte que la lentille de référence 100 s'étend dans un plan général transversal à la direction d'éclairement D51. La lentille 100 est alors éclairée de front.The support 55 of the reference lens 100 is designed such that the reference lens 100 extends in a general plane transverse to the direction of illumination D51. The lens 100 is then illuminated in front.

La lentille de référence 100 présente un bord 120 qui possède une arête avant 121 et une arête arrière 122. Le bord 120 est en l'espèce cylindrique d'axe parallèle à la direction d'éclairement et de capture d'image et donc ici perpendiculaire au plan d'acquisition. Le bord 120 pourrait cependant être de forme différente, notamment conique ou approchante, de sorte que sa projection sur le plan d'acquisition ne serait plus filaire et que les projections de ses arêtes 121, 122 ne seraient plus confondues mais distinctes. Dans l'exemple illustré, on s'intéresse à la face avant de la lentille de référence 100 et donc à l'arête avant 121. On pourra bien entendu, de manière analogue, s'intéresser à la face arrière ou à une surface virtuelle moyenne.The reference lens 100 has an edge 120 which has a front edge 121 and a rear edge 122. The edge 120 is cylindrical with an axis parallel to the direction of illumination and image capture and therefore here perpendicular to the acquisition plan. The edge 120 could, however, be of different shape, in particular conical or similar, so that its projection on the acquisition plane would no longer be wired and the projections of its edges 121, 122 would no longer be confused but distinct. In the illustrated example, we are interested in the front face of the reference lens 100 and therefore in the front edge 121. We can of course, in a similar way, be interested in the rear face or a virtual surface average.

Le plan général de la lentille consiste typiquement en un plan moyen ou médiateur de l'une et/ou l'autre des surfaces de la lentille, ou encore en un plan moyen ou médiateur de l'une et/ou l'autre des arêtes 121, 122 de son bord 120.The general plane of the lens typically consists of a middle or medial plane of one and / or the other of the surfaces of the lens, or a middle or medial plane of one and / or the other of the edges 121, 122 of its edge 120.

Le support 55 de la lentille 100 se présente ici sous la forme d'un plateau transparent en verre perpendiculaire à la direction d'éclairement D51, de sorte que ni la face avant 98 ni la face arrière 99 de la lentille de référence 100 ne soient masquées visuellement par le support 55.The support 55 of the lens 100 is here in the form of a transparent glass plate perpendicular to the illumination direction D 51, so that neither the front face 98 nor the rear face 99 of the reference lens 100 are visually hidden by the support 55.

Cette lentille de référence 100 comporte ici deux trous de perçage référents, un premier trou de perçage référent 110 situé du côté de la zone temporale et un autre trou de perçage (non visible sur la figure 1) situé du côté de la zone nasale de la lentille. La suite de la description détaille seulement l'acquisition du trou de perçage référent 110, mais cette description s'applique également à l'acquisition de l'autre trou de perçage. En variante, si cette lentille comportait un nombre supérieur de trous de perçage, la description qui suit s'appliquerait également aux trous de perçage supplémentaires.This reference lens 100 here comprises two referent drilling holes, a first reference drilling hole 110 located on the side of the temporal zone and another drilling hole (not visible on the figure 1 ) located on the side of the nasal area of the lens. The remainder of the description details only the acquisition of the reference drilling hole 110, but this description applies also to the acquisition of the other hole of drilling. Alternatively, if this lens had a greater number of drill holes, the following description would also apply to the additional drill holes.

Comme représenté sur la partie supérieure de la figure 2, le trou de perçage référent 110 comporte, d'une part, une embouchure avant 111 qui débouche sur la face avant 98 de la lentille 100 et, d'autre part, une embouchure arrière 112 qui débouche sur la face arrière 99 de la lentille 100. On définit également le centre C2 du trou de perçage référent 110 lui-même qui est également la moyenne des positions des centres C1, C3 des embouchures avant 111 et arrière 112. Le point C1 de l'embouchure avant 111 du trou de perçage référent 110 sera ici considéré comme un point de perçage référent.As shown on the upper part of the figure 2 , the reference drilling hole 110 comprises, on the one hand, a front mouth 111 which opens on the front face 98 of the lens 100 and, on the other hand, a rear mouth 112 which opens on the rear face 99 of the lens 100. The center C2 of the reference drilling hole 110 itself is also defined, which is also the average of the positions of the centers C1, C3 of the front mouthpieces 111 and rear 112. The point C1 of the front mouth 111 of the drilling hole referent 110 will be considered here as a reference drilling point.

Les moyens de capture 53 d'image (figure 1) communiquent en outre avec un système de traitement électronique et informatique 54. Comme expliqué ci-après, le système de traitement 54 est conçu pour déduire de l'image acquise la position du centre C1 de l'embouchure 111 du trou de perçage référent 110 en face avant 98. Bien entendu, en variante, le système de traitement 54 peut également être conçu pour déduire de l'image acquise, la position du centre de l'embouchure 112 du trou de perçage référent 110 en face arrière 99, ou tout autre point attaché à ce trou de perçage définit comme point de perçage référent.The image capturing means 53 ( figure 1 ) further communicate with an electronic and computer processing system 54. As explained hereinafter, the processing system 54 is adapted to derive from the acquired image the position of the center C1 of the mouth 111 of the referencing borehole 110. on the front face 98. Of course, alternatively, the processing system 54 may also be designed to deduce from the acquired image, the position of the center of the mouth 112 of the reference drilling hole 110 on the rear face 99, or any another point attached to this piercing hole defines as the referent piercing point.

Selon un premier mode d'exécution représenté sur les figures 1 et 2, le dispositif d'acquisition de la position des trous de perçage est conçu de telle sorte que la caméra 53 voit la lentille en vision projetée. Dans ce mode d'exécution, les moyens d'éclairage 51, 52 et la caméra 53 sont répartis de part et d'autre du support de la lentille.According to a first embodiment represented on the figures 1 and 2 , the drilling hole position acquisition device is designed such that the camera 53 sees the lens in projected vision. In this embodiment, the lighting means 51, 52 and the camera 53 are distributed on either side of the support of the lens.

Comme représenté sur la figure 1, une plaque en verre dépoli 50 est disposée entre la caméra 53 et le support 55 de la lentille. La plaque en verre dépoli 50 est centrée sur l'axe A52 de la lentille de collimation 52 et s'étend dans le plan transversal à cet axe A52. La plaque en verre dépoli 50 permet de former l'ombre de l'ensemble de la lentille de référence 100 et en particulier l'ombre du trou de perçage référent 110 de la lentille. La face avant de cette plaque en verre dépoli 50 forme alors un plan d'acquisition P1 de l'image de la lentille de référence 100. Ce plan d'acquisition est parallèle au plan général de la lentille de référence 100.As shown on the figure 1 , a frosted glass plate 50 is disposed between the camera 53 and the support 55 of the lens. The frosted glass plate 50 is centered on the axis A52 of the collimating lens 52 and extends in the plane transverse to this axis A52. The frosted glass plate 50 makes it possible to form the shadow of the assembly of the reference lens 100 and in particular the shadow of the reference drilling hole 110 of the lens. The front face of this frosted glass plate 50 then forms an acquisition plane P1 of the image of the reference lens 100. This acquisition plane is parallel to the general plane of the reference lens 100.

Traitement d'image préliminairePreliminary image processing

En référence à la figure 4 et par convention, le système de traitement 54 détermine, à partir de l'image du contour de la lentille de référence 100, un cadre rectangulaire 107 virtuel dont chacun des quatre bords passe par un seul point de l'image projetée du contour de la lentille de référence 100. Le contour considéré de la lentille de référence 100 consiste typiquement en l'une des arêtes avant 121 et arrière 122 du bord 120 de la lentille de référence 100, ou en une moyenne de ces deux arêtes, en correspondance avec la définition retenue pour le point de perçage référent. Dans l'exemple illustré, on considère l'image M121 de l'arête avant 121 du bord 120 de la lentille de référence 100 (qui est en l'espèce confondue avec l'image de l'arête avant de la lentille, mais qui pourrait être distincte comme exposé précédemment).With reference to the figure 4 and by convention, the processing system 54 determines, from the image of the contour of the reference lens 100, a virtual rectangular frame 107, each of whose four edges passes through a single point of the projected image of the contour of the reference lens 100. The considered contour of the reference lens 100 typically consists of one of the front 121 and rear 122 edges of the edge 120 of the reference lens 100, or an average of these two edges, in correspondence with the definition adopted for the reference drilling point. In the example illustrated, we consider the image M121 of the leading edge 121 of the edge 120 of the reference lens 100 (which is confused with the image of the front edge of the lens, but which could be distinct as previously discussed).

Deux bords du cadre 108, 109 (les bords les plus longs) sont, dans les conditions du porté, horizontaux et forment ainsi des lignes d'horizon. Le système de traitement calcule l'intersection des diagonales de ce cadre 107 qui constitue l'image projetée d'un centre géométrique du contour de la lentille de référence 100 appelé centre boxing CB.Two edges of the frame 108, 109 (the longest edges) are, under the conditions of the worn, horizontal and thus form lines of horizon. The processing system calculates the intersection of the diagonals of this frame 107 which constitutes the projected image of a geometric center of the contour of the reference lens 100 called boxing center CB.

Le système de traitement 54 opère par ailleurs, un traitement de l'image en ombre (ou projection) du trou de perçage référent 110 de la lentille de référence 100. Cette image représentée sur la partie inférieure de la figure 2 fait apparaître une figure d'ensemble 90 du trou de perçage référent 110.The processing system 54 also operates a treatment of the shadow image (or projection) of the reference drilling hole 110 of the reference lens 100. This image represented on the lower part of the figure 2 shows an overall figure 90 of the reference drilling hole 110.

La figure d'ensemble 90 du trou de perçage référent 110 comporte deux anneaux 40, 41, de forme sensiblement ovale, qui s'entrecroisent. Le premier anneau 40 est l'ombre projetée de l'embouchure 111 en face avant du trou de perçage référent 110, et le deuxième anneau 41 est l'ombre projetée de l'embouchure 112 en face arrière. La portion constituée par la superposition des deux anneaux 40, 41 est claire. En effet, cette portion est le résultat de la projection d'une portion du trou de perçage référent qui est traversée par les rayons lumineux sans rencontrer la matière de la lentille. A l'inverse, les portions non superposées des deux anneaux sont sombres du fait de la réflexion ou de la diffusion de ces rayons par la paroi latérale du trou de perçage.The overall figure 90 of the reference drilling hole 110 comprises two rings 40, 41, of substantially oval shape, which intersect each other. The first ring 40 is the projected shadow of the mouth 111 on the front face of the reference drilling hole 110, and the second ring 41 is the projected shadow of the mouth 112 on the rear face. The portion constituted by the superposition of the two rings 40, 41 is clear. Indeed, this portion is the result of the projection of a portion of the reference drilling hole which is crossed by the light rays without meeting the material of the lens. Conversely, the non-superposed portions of the two rings are dark because of the reflection or diffusion of these rays by the side wall of the piercing hole.

On définit, en référence aux figures 2 et 4, plusieurs points du trou de perçage 110 de la lentille de référence 100 ainsi que les points projetés correspondants de la figure d'ensemble 90 de projection du trou de perçage référent 110. Le point 102 du trou de perçage référent 110 résulte de l'intersection entre, d'une part, un plan de coupe P3 et, d'autre part, la partie du contour de l'embouchure 111 en face avant 98 du trou de perçage référent 110 de la lentille de référence 100, située vers l'extérieur de cette lentille. De même, le point 101 est défini comme étant le point d'intersection du plan de coupe P3 de la lentille de référence 100 avec la partie du contour de l'embouchure 111 en face avant 98 de la lentille de référence, située vers l'intérieur de cette lentille. Les points 105 et 104 sont définis comme étant les points d'intersection du plan de coupe P3 avec la partie de l'embouchure 112 en face arrière 99 de la lentille de référence, située respectivement vers l'extérieur et vers l'intérieur de cette lentille.We define, with reference to figures 2 and 4 , several points of the drilling hole 110 of the reference lens 100 as well as the corresponding projected points of the overall projection figure 90 of the reference drilling hole 110. The point 102 of the reference drilling hole 110 results from the intersection between, on the one hand, a cutting plane P3 and, on the other hand, the portion of the contour of the mouth 111 in the front face 98 of the reference hole 110 of the reference lens 100, located outwards of this lens. Similarly, the point 101 is defined as the point of intersection of the sectional plane P3 of the reference lens 100 with the portion of the contour of the mouth 111 on the front face 98 of the reference lens, located towards the inside of this lens. Points 105 and 104 are defined as the points of intersection of the section plane P3 with the portion of the mouth 99 on the rear face 99 of the reference lens, located respectively outwardly and inwardly of this lens.

Plusieurs définitions du plan de coupe sont possibles. Dans l'exemple illustré par les figures 4 et 5. Le plan de coupe P3 est le plan des figures 2 et 3. Il est défini comme :

  • étant sensiblement perpendiculaire au plan général de la lentille de référence 100 ou, ce qui revient quasiment au même, parallèle à la direction d'éclairage ou de capture d'image D51, et
  • passant par le centre C2 du trou de perçage référent 110. Ce plan de coupe P3 est le plan qui passe par le centre C2 du trou de perçage référent 110 et par le centre boxing CB de la lentille de référence 100.
Several definitions of the cutting plane are possible. In the example illustrated by the Figures 4 and 5 . The P3 cutting plane is the plane of the figures 2 and 3 . It is defined as:
  • being substantially perpendicular to the general plane of the reference lens 100 or, which is almost the same, parallel to the direction of illumination or image capture D51, and
  • passing through the center C2 of the referent drilling hole 110. This cutting plane P3 is the plane passing through the center C2 of the reference drilling hole 110 and the boxing center CB of the reference lens 100.

Un autre exemple de définition du plan de coupe est envisagé plus loin.Another example of definition of the cutting plane is considered below.

Le système de traitement 54 opère à partir de l'image acquise en projection. A cet effet, comme représenté sur la partie inférieure de la figure 2, on définit une ligne d'ancrage référente D3 qui est la droite passant par les centres des deux anneaux 40, 41 et qui est identifiée en tant que telle par le système de traitement 54. Cette ligne d'ancrage référente D3 correspond à la trace dans le plan d'acquisition P1 du plan de coupe P3 précédemment défini.The processing system 54 operates from the image acquired in projection. For this purpose, as shown on the lower part of the figure 2 , we define a reference anchor line D3 which is the straight line passing through the centers of the two rings 40, 41 and which is identified as such by the processing system 54. This reference anchor line D3 corresponds to the trace in the acquisition plane P1 of the previously defined cutting plane P3.

Les points M1 et M2 sont alors identifiés par le système de traitement 54 en tant que points d'intersection de la ligne d'ancrage référente D3 avec respectivement les parties droite (intérieure) et gauche (extérieure) de l'anneau 40 tel que représenté sur la figure 2. Ces points M1 et M2 sont les points image des points 101 et 102. De même, les points M4 et M5 sont identifiés par le système de traitement 54 en tant que points d'intersection de la droite D3 avec respectivement les parties droite (intérieure) et gauche (extérieure) du deuxième anneau 41. Ces points M4 et M5 sont les points image des points 104 et 105. On note XM1, XM2, XM4, XM5 les positions des points M1, M2, M4, M5 sur la droite D3.The points M1 and M2 are then identified by the processing system 54 as points of intersection of the reference anchor line D3 with respectively the right (inner) and left (outer) parts of the ring 40 as represented on the figure 2 . These points M1 and M2 are the image points of the points 101 and 102. Similarly, the points M4 and M5 are identified by the processing system 54 as intersection points of the line D3 with the right (interior) parts respectively. and left (outer) second ring 41. These points M4 and M5 are the image points of the points 104 and 105. Note XM1, XM2, XM4, XM5 the positions of the points M1, M2, M4, M5 on the right D3.

Le système de traitement 54 identifie le point MO1 qui est situé à l'intersection de la ligne d'ancrage référente D3 avec l'image de contour M121 de la lentille de référence 100. Ce point MO1 est le projeté d'un point d'ancrage référent O1 qui est situé à l'intersection du plan de coupe P3 et de l'arête avant 121 de la lentille de référence 100. La droite D3 forme ainsi un repère linéaire dont l'origine est le point MO1.The processing system 54 identifies the point MO1 which is situated at the intersection of the reference anchor line D3 with the contour image M121 of the reference lens 100. This point MO1 is the projection of a point of reference. reference anchor O1 which is located at the intersection of the section plane P3 and the front edge 121 of the reference lens 100. The line D3 thus forms a linear guide whose origin is the MO1 point.

En variante, comme le montre la figure 6, on peut substituer à la ligne d'ancrage référente D3 définie ci-dessus, une ligne d'ancrage référente D4 qui passe par le projeté MC2 du centre C2 du trou de perçage référent 110 et qui est horizontale en condition de portée, c'est-à-dire parallèle aux lignes d'horizon 108, 109 du cadre 107.Alternatively, as shown in figure 6 , it is possible to substitute for the reference anchor line D3 defined above, a reference anchor line D4 which passes through the projected MC2 of the center C2 of the reference drilling hole 110 and which is horizontal in range condition, that is to say parallel to the horizon lines 108, 109 of the frame 107.

Cette droite D4 correspond à la trace dans le plan d'acquisition P1 d'un plan de coupe P4 défini comme :

  • étant sensiblement perpendiculaire au plan général de la lentille de référence 100,
  • parallèle à la ligne d'horizon de la lentille de référence et
  • passant par le centre C2 du trou de perçage référent 110.
This line D4 corresponds to the trace in the acquisition plane P1 of a section plane P4 defined as:
  • being substantially perpendicular to the general plane of the reference lens 100,
  • parallel to the horizon line of the reference lens and
  • passing through the center C2 of the reference drilling hole 110.

Le système de traitement identifie alors le point d'ancrage référent 04 de la lentille de référence 100 comme le point dont le projeté MO4 est situé à l'intersection d'une ligne d'ancrage référente D4 et de l'image de contour M121 de la lentille de référence 100.The processing system then identifies the reference anchor point 04 of the reference lens 100 as the point whose projected MO4 is located at the intersection of a reference anchor line D4 and the contour image M121 of the reference lens 100.

Détermination de la distance en projection référente R1Determination of distance in reference projection R1

Le point MC1 est le point image du centre C1, en projection dans le plan d'acquisition P1, dont on cherche à calculer la position XMC1 sur la droite D3. La position XMC1 du centre C1 permet alors de déterminer la distance R1 séparant le point MC1 de l'origine MO1 du repère linéaire. Cette distance R1 est appelée distance en projection référente.The point MC1 is the image point of the center C1, projected in the acquisition plane P1, whose position XMC1 on the line D3 is to be calculated. The position XMC1 of the center C1 then makes it possible to determine the distance R1 separating the point MC1 from the origin MO1 of the linear mark. This distance R1 is called reference projection distance.

Selon une première méthode, il est prévu de déterminer la position XM90 du centre M90 de la figure d'ensemble 90 du trou de perçage référent 110 et d'en déduire la position de l'image MC1 du centre C1 de l'embouchure 111 en face avant 98 de ce trou de perçage.According to a first method, it is intended to determine the position XM90 of the center M90 of the overall figure 90 of the reference drilling hole 110 and to deduce the position of the image MC1 from the center C1 of the mouthpiece 111 in FIG. front face 98 of this drilling hole.

Le système de traitement 54 comporte une interface utilisateur et un écran d'affichage (non représenté) qui affiche l'image d'ensemble 90 du trou de perçage référent 110. Le système de traitement 54 est également conçu pour permettre l'affichage sur l'écran d'un anneau de repérage 60. Cet anneau présente des dimensions qui peuvent être modifiées par l'opérateur. Le système de traitement 54 est également conçu de telle sorte que cet anneau de repérage 60 soit déplaçable par l'opérateur sur l'écran d'affichage. Le déplacement de l'anneau de repérage 60 ainsi que les réglages de ses dimensions peuvent être obtenus à l'aide d'outils de commande intégrés dans l'interface-utilisateur du système de traitement 54.The processing system 54 includes a user interface and a display screen (not shown) which displays the overall image 90 of the referencing borehole 110. The processing system 54 is also designed to enable display on the display. 60. This ring has dimensions that can be modified by the operator. The processing system 54 is also designed such that this registration ring 60 is movable by the operator on the display screen. The displacement of the registration ring 60 as well as the adjustments of its dimensions can be obtained using control tools integrated in the user interface of the processing system 54.

L'opérateur dimensionne et centre l'anneau de repérage 60 sur l'image d'ensemble 90 du trou de perçage référent 110. Pour le centrage de l'anneau de repérage 60 sur la figure d'ensemble 90, l'opérateur peut, par exemple comme illustré par la figure 2, superposer l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1M4 et M2M5. L'opticien peut alternativement prévoir d'ajuster la position et la dimension de l'anneau de repérage 60 pour le faire passer par les points M1 et M5 bordant la partie claire de la figure d'ensemble 90. Il peut encore ajuster la position et la dimension de l'anneau de repérage 60 pour le faire passer par les points M2 et M4 bordant la partie sombre de la figure d'ensemble 90.The operator sizes and centers the registration ring 60 on the overall image 90 of the reference drilling hole 110. For the centering of the registration ring 60 in the overall figure 90, the operator can, for example as illustrated by the figure 2 overlay the registration ring 60 in the overall figure 90 so that the registration ring 60 passes through the media segments M1M4 and M2M5. The optician may alternatively provide for adjusting the position and the dimension of the registration ring 60 to make it pass through the points M1 and M5 bordering the clear part of the overall figure 90. It can further adjust the position and the dimension of the registration ring 60 to make it pass through the points M2 and M4 bordering the dark part of the overall figure 90.

Une fois l'anneau centré sur l'image de l'ombre du trou de perçage, le système de traitement 54 détecte automatiquement et mémorise la position du centre M60 de l'anneau de repérage 60. La position du centre M60 est associée par le système de traitement 54 à la position XM90 du centre M90 de la figure d'ensemble 90.Once the ring centered on the image of the shadow of the drilling hole, the processing system 54 automatically detects and stores the position of the center M60 of the registration ring 60. The position of the center M60 is associated by the processing system 54 at position XM90 of center M90 of FIG.

En variante, on peut prévoir que l'opérateur pointe sur l'écran, avec un outil intégré à l'interface utilisateur tel qu'une souris ou un stylet, le centre M60 de l'anneau de repérage 60 qui est alors mémorisé.Alternatively, it can be provided that the operator points on the screen, with a tool integrated in the user interface such as a mouse or a stylus, the center M60 of the registration ring 60 which is then stored.

Le système de traitement 54 calcule la position XMC1, sur la droite D3, de l'image MC1 du centre C1 de l'embouchure avant du trou de perçage référent 110 à partir de la position du centre M90 de ladite figure d'ensemble 90 et en fonction de l'angle d'inclinaison ALPHA100 du trou de perçage référent 110 et de l'épaisseur E de la lentille. L'angle d'inclinaison ALPHA100 est l'angle formé entre la direction moyenne d'éclairage D51 et l'axe A110 du trou de perçage référent. L'angle ALPHA100 et l'épaisseur E de la lentille peuvent être mesurés par palpage de la lentille, par exemple, ou être saisis manuellement par l'opérateur à l'aide d'une interface de saisie à l'écran prévue à cet effet. L'épaisseur considérée de la lentille peut être l'épaisseur locale de la lentille autour du trou de perçage référent ou l'épaisseur moyenne de la lentille.The processing system 54 calculates the position XMC1, on the line D3, of the image MC1 of the center C1 of the front mouth of the reference drilling hole 110 from the position of the center M90 of said overall figure 90 and as a function of the inclination angle ALPHA100 of the reference drilling hole 110 and the thickness E of the lens. The angle of inclination ALPHA100 is the angle formed between the average direction of illumination D51 and the axis A110 of the reference drilling hole. The angle ALPHA100 and the thickness E of the lens can be measured by probing the lens, for example, or can be entered manually by the operator using an on-screen input interface provided for this purpose. . The considered thickness of the lens may be the local thickness of the lens around the reference drill hole or the average thickness of the lens.

Le calcul de la position XMC1 du centre C1, et donc de la distance R1, est le suivant : XMC 1 = XM 90 - E / 2. sin ALPHA 100 .

Figure imgb0001
The calculation of the position XMC1 of the center C1, and therefore of the distance R1, is as follows: XMC 1 = XM 90 - E / 2. sin ALPHA 100 .
Figure imgb0001

Le système de traitement 54 associe alors ladite position calculée à la position recherchée du centre C1 de l'embouchure du trou de perçage référent 110 débouchant sur la face avant 98 de la lentille 100.The processing system 54 then associates said calculated position with the desired position of the center C1 of the mouth of the reference drilling hole 110 opening on the front face 98 of the lens 100.

Le système calcule également la valeur du diamètre D du trou 110. Ce calcul dépend de la méthode de superposition de l'anneau de repérage 60 sur la figure d'ensemble 90 utilisée. Dans le cas où on superpose l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1M4 et M2M5, le diamètre D vaut : D = DA / cos ALPHA 100 ,

Figure imgb0002
The system also calculates the value of the diameter D of the hole 110. This calculation depends on the method of superposition of the registration ring 60 in the overall figure 90 used. In the case where the registration ring 60 is superimposed on the overall figure 90 so that the registration ring 60 passes through the middle of the segments M1M4 and M2M5, the diameter D is: D = DA / cos ALPHA 100 ,
Figure imgb0002

DA étant le diamètre de l'anneau de repérage 60.DA being the diameter of the registration ring 60.

Selon une variante de cette méthode d'acquisition, la détection du centre M60 de l'anneau de repérage 60 est effectuée de manière automatique par le système de traitement 54, qui est alors conçu pour superposer (avec centrage et dimensionnement adéquats) automatiquement l'anneau de repérage 60 sur l'image d'ensemble 90 du trou de perçage référent 110 et en déduire ainsi la position et le diamètre du centre M60 de cet anneau.According to a variant of this acquisition method, the detection of the center M60 of the registration ring 60 is performed automatically by the processing system 54, which is then designed to superimpose (with appropriate centering and sizing) automatically the register ring 60 on the overall image 90 of the reference drilling hole 110 and thus deduce the position and the diameter of the center M60 of this ring.

Il est également possible d'acquérir, selon d'autres variantes, la distance R1 en tenant compte des déviations prismatiques induites par la lentille de référence 100 (l'image du point 102 est déviée par la lentille de référence 100) ou encore à partir seulement des positions facilement repérables des points M1 et M2. De telles variantes de méthodes d'acquisition de la distance R1 sont plus précisément exposées dans la demande de brevet français FR 06/11124 .It is also possible to acquire, according to other variants, the distance R1 taking into account the prismatic deviations induced by the reference lens 100 (the image of the point 102 is deflected by the reference lens 100) or from only easily recognizable positions of points M1 and M2. Such variants of methods for acquiring the distance R1 are more precisely set out in the French patent application. FR 06/11124 .

On peut également calculer l'angle ALPHA100 à partir des positions XM1 et XM4 des points M1 et M4 avec l'équation suivante, dans la configuration de mesure définie précédemment en vision projetée (figure 2) : ALPHA 100 = arcsin abs XM 1 - XM 4 / E = arcsin abs XM 5 - XM 3 / E .

Figure imgb0003
It is also possible to calculate the angle ALPHA100 from the positions XM1 and XM4 of the points M1 and M4 with the following equation, in the measurement configuration previously defined in projected vision ( figure 2 ): ALPHA 100 = arcsin abs XM 1 - XM 4 / E = arcsin abs XM 5 - XM 3 / E .
Figure imgb0003

L'épaisseur E de la lentille peut être mesurée par exemple par palpage ou être fixée à une valeur moyenne d'environ 2 millimètres.The thickness E of the lens can be measured for example by probing or be fixed at an average value of about 2 millimeters.

En résumé, à ce stade de mise en oeuvre du procédé selon l'invention, la distance R1 séparant le projeté MO1 du point d'ancrage référent O1 de la lentille de référence 100 et le projeté MC1 du centre C1 de l'embouchure en face avant du trou de perçage référent 110 est connue. On connaît également l'angle ALPHA100 d'inclinaison de l'axe de perçage A110 du trou de perçage référent 110 par rapport à l'axe d'éclairage D51.In summary, at this stage of implementation of the method according to the invention, the distance R1 separating the projected MO1 from the reference anchor point O1 of the reference lens 100 and the projected MC1 from the center C1 of the mouth opposite before the reference drilling hole 110 is known. The ALPHA100 angle of inclination of the drilling axis A110 of the reference drilling hole 110 with respect to the illumination axis D51 is also known.

Calcul de la distance tridimensionnelle référente R2.Calculation of the reference three-dimensional distance R2.

Comme illustré sur la partie inférieure de la figure 3, le système de traitement 54 procède ensuite au calcul d'une distance tridimensionnelle référente R2 séparant, dans l'espace et non plus en projection, le point d'ancrage référent O1 de la lentille de référence 100 et le centre C1 de l'embouchure en face avant du trou de perçage référent 110. Du fait du galbe de la lentille de référence 100, les distances R1 et R2 sont en effet différentes.As illustrated on the lower part of the figure 3 , the processing system 54 then proceeds to calculate a reference three-dimensional distance R2 separating, in space and not in projection, the reference anchor point O1 of the reference lens 100 and the center C1 of the mouthpiece on the front face of the reference drilling hole 110. Because of the curve of the reference lens 100, the distances R1 and R2 are indeed different.

Le point d'ancrage référent O1, le centre C1 de l'embouchure en face avant du trou de perçage référent 110 et leurs projetés respectifs dans le plan d'acquisition P1 sont coplanaires (dans le plan radial P3 correspondant au plan de coupe de la partie inférieure de la figure 3).The reference anchor point O1, the center C1 of the mouthpiece on the front face of the reference drilling hole 110 and their respective projections in the acquisition plane P1 are coplanar (in the radial plane P3 corresponding to the section plane of the lower part of the figure 3 ).

L'axe A110 du trou de perçage référent 110 étant orthogonal au plan tangent à la face avant de la lentille de référence au point C1, l'angle ALPHA100 précédemment déterminé permet d'approximer la distance R2 au moyen du calcul suivant : R 2 = R 1 / cos ALPHA 100 .

Figure imgb0004
The axis A110 of the reference drilling hole 110 being orthogonal to the plane tangent to the front face of the reference lens at point C1, the angle ALPHA100 previously determined allows to approximate the distance R2 by means of the following calculation: R 2 = R 1 / cos ALPHA 100 .
Figure imgb0004

Cette distance tridimensionnelle référente R2 est alors celle qui, lorsqu'elle est reportée sur n'importe quelle lentille de correction cible présentant un galbe identique ou différent du galbe de la lentille de référence 100, permet de déterminer la position à laquelle il faudra percer la lentille de correction de manière que le pontet ou la branche de la monture sélectionnée puisse s'accrocher sans difficulté sur cette lentille de correction.This reference three-dimensional distance R2 is then that which, when it is carried over any target correction lens having a curve identical to or different from the curve of the reference lens 100, makes it possible to determine the position at which it will be necessary to pierce the correction lens so that the bridge or branch of the selected frame can hang easily on this correction lens.

Cette distance tridimensionnelle référente R2 doit toutefois être reportée en suivant la courbure de la face avant de la lentille de correction concernée. Il convient donc de tenir compte du galbe de la lentille de correction 200.This reference three-dimensional distance R2 must, however, be reported following the curvature of the front face of the correction lens concerned. It is therefore necessary to take into account the curve of the correction lens 200.

Détermination de la position du point de perçage cible C10Determination of the position of the target piercing point C10

Comme illustré sur la partie supérieure de la figure 3, le système de traitement 54 procède ensuite à l'identification d'un point de perçage cible C10 sur la face avant 198 de la lentille de correction 200 auquel il faudra percer la lentille de correction 200. Ce point de perçage cible C10 correspond ici au centre de l'embouchure en face avant du trou de perçage cible 210 à réaliser sur la lentille de correction 200.As shown on the upper part of the figure 3 , the processing system 54 then proceeds to the identification of a target piercing point C10 on the front face 198 of the correction lens 200 to which the correction lens 200 will have to be pierced. This target piercing point C10 corresponds here to the center of the mouth on the front face of the target drilling hole 210 to be made on the correction lens 200.

Préalablement à l'identification de la position de ce point de perçage cible C10, l'opticien procède au centrage de la lentille de correction 200. Ce centrage consiste à déterminer la position qu'occupera la lentille de correction sur la monture sélectionnée par le porteur, afin d'être convenablement centrée en regard de la pupille de l'oeil du porteur pour convenablement exercer la fonction optique pour laquelle elle a été conçue. Cette opération consiste donc à correctement positionner sur la lentille de correction 200 le contour final selon lequel elle devra être détourée. La géométrie de ce contour final est connue, puisque ce contour final est identique au contour acquis de la lentille de référence 100.Prior to identifying the position of this target piercing point C10, the optician centers the correction lens 200. This centering consists of determining the position that the correction lens will occupy on the frame selected by the wearer. , in order to be properly centered facing the pupil of the eye of the wearer to properly perform the optical function for which it was designed. This operation therefore consists in correctly positioning on the correction lens 200 the final contour according to which it will have to be cut off. The geometry of this final contour is known, since this final contour is identical to the acquired contour of the reference lens 100.

Concrètement pour ce centrage, l'opticien équipe dans un premier temps le porteur d'une monture de lunettes de référence identique à la monture choisie par le porteur et pourvue de lentilles de référence, puis il détermine sur chaque lentille de référence la position du point pupillaire disposé en regard de la pupille de l'oeil correspondant du porteur. Plus précisément, il mesure ou acquiert de manière classique deux paramètres liés à la morphologie du porteur, à savoir les demi-écarts inter-pupillaires définis comme les distances entre chacune des pupilles du porteur et le centre du nez, ainsi que les hauteurs de ses pupilles par rapport au contour. La connaissance de ces paramètres lui permet de situer la position du contour de la lentille de référence relativement au point pupillaire du porteur.Specifically for this centering, the optician initially equips the wearer of a frame of reference glasses identical to the frame chosen by the wearer and provided with reference lenses, then he determines on each reference lens the position of the point. pupillary disposed opposite the pupil of the corresponding eye of the wearer. More specifically, it measures or conventionally acquires two parameters related to the morphology of the wearer, namely the interpupillary half-gaps defined as the distances between each of the wearer's pupils and the center of the nose, as well as the heights of his pupils by relation to the contour. The knowledge of these parameters allows him to locate the position of the contour of the reference lens relative to the pupillary point of the wearer.

Puis, dans un second temps, l'opticien dispose la lentille de correction 200 dans un dispositif d'éclairage et d'acquisition d'image tel que par exemple celui décrit précédemment et représenté sur la figure 1. Il acquiert ainsi l'image de la lentille de correction 200 non détourée dans un plan de centrage correspondant au plan d'acquisition P1. Comme le montre la figure 5, cette lentille de correction 200 est munie de repères visibles 202, 203 effaçables qui apparaissent sur l'image acquise. Ici, la lentille de correction 200 présente en particulier un repère visible 203 qui correspond au point de centrage optique de la lentille de correction à positionner en regard de la pupille de l'oeil du porteur. Connaissant la position du point pupillaire par rapport au contour final 201, l'opticien superpose virtuellement le point pupillaire sur le point de centrage optique 203 de la lentille de correction 200 et positionne ainsi le contour final 201 sur la lentille de correction 200. Il réalise ce positionnement en orientant le contour final 201 par rapport à la lentille de correction 200 en fonction des prescriptions optiques du porteur (en fonction en particulier de l'axe de cylindre prescrit). Il détermine ainsi sur la lentille de correction 200 la position du contour final 201 selon lequel la lentille devra être détourée.Then, in a second step, the optician disposes the correction lens 200 in a lighting and image acquisition device such as for example that previously described and shown in FIG. figure 1 . It thus acquires the image of the correction lens 200 not cut out in a centering plane corresponding to the acquisition plane P1. As shown in figure 5 this correction lens 200 is provided with erasable visible marks 202, 203 which appear on the acquired image. Here, the correction lens 200 has in particular a visible mark 203 which corresponds to the optical centering point of the correction lens to be positioned facing the pupil of the eye of the wearer. Knowing the position of the pupillary point relative to the final contour 201, the optician virtually superimposes the pupillary point on the optical centering point 203 of the correction lens 200 and thus positions the final contour 201 on the correction lens 200. this positioning by orienting the final contour 201 with respect to the correction lens 200 as a function of the optical prescriptions of the wearer (in particular according to the prescribed cylinder axis). It thus determines on the correction lens 200 the position of the final contour 201 according to which the lens will have to be cut off.

Le système de traitement 54 peut par conséquent mémoriser et afficher sur l'écran 50 l'image de la lentille de correction 200 non détourée ainsi que, superposée à cette image, l'image du contour final 201.The processing system 54 can therefore memorize and display on the screen 50 the image of the correction lens 200 uncut as well as, superimposed on this image, the image of the final contour 201.

A ce stade, on dira d'un point de la lentille de correction 200 qu'il est l'homologue d'un point de la lentille de référence 100 si, d'une part, ces deux points sont disposés sur les faces optiques avants ou arrières correspondantes des deux lentilles, et si, d'autre part, lorsqu'on superpose virtuellement l'image du contour de la lentille de référence 100 et l'image du contour final de la lentille de correction 200, les images de ces deux points sont confondues.At this stage, it will be said from one point of the correction lens 200 that it is the homologue of a point of the reference lens 100 if, on the one hand, these two points are arranged on the front optical faces or the corresponding backs of the two lenses, and if, on the other hand, when the image of the contour of the reference lens 100 and the image of the final contour of the correction lens 200 are virtually superimposed, the images of these two lenses points are confused.

Comme illustré par la figure 5, le système de traitement 54 définit, en projection sur le plan de centrage analogue au plan d'acquisition, et donc ici sensiblement parallèle au plan moyen de la lentille, une ligne d'ancrage cible D5 homologue de la ligne D3 associée à la lentille de référence 100. Cette ligne d'ancrage cible D5 est définie, dans l'exemple illustré par les figures 4 et 5, comme étant la droite :

  • passant par le projeté dans le plan de centrage d'un centre optique 203 ou d'un centre géométrique (tel que le centre boxing) du contour final souhaité après détourage 221 de la lentille de correction cible 200 et
  • passant par la projection MO2 du point O2 homologue du point O1 de la lentille de référence 100.
As illustrated by figure 5 , the processing system 54 defines, in projection on the centering plane similar to the acquisition plane, and therefore here substantially parallel to the mean plane of the lens, a target anchor line D5 homologous to the line D3 associated with the lens 100. This target anchor line D5 is defined, in the example illustrated by the Figures 4 and 5 , as being the right:
  • passing through the projected in the centering plane of an optical center 203 or a geometric center (such as the boxing center) of the desired final contour after trimming 221 of the target correction lens 200 and
  • passing through the MO2 projection of the O2 point homologous to the point O1 of the reference lens 100.

Le point O2 est donc en l'espèce situé sur la face avant de la lentille de correction cible 200 et sur son contour final 201.The point O2 is in this case located on the front face of the target correction lens 200 and on its final contour 201.

En variante illustrée par les figures 6 et 7, comme indiqué précédemment, on définit la ligne d'ancrage référente comme la ligne qui est parallèle à la ligne d'horizon 108 ou 109 de la lentille de référence 100 et qui passe par la projection MO2 du point O2 homologue O1 de la lentille de référence 100. Dans ce cas le système de traitement 54 définit, en projection sur le plan de centrage, une ligne d'ancrage cible D6 homologue de la ligne D4 associée à la lentille de référence 100. Cette ligne d'ancrage cible D6 est définie, dans l'exemple illustré par les figures 6 et 7, comme étant la droite :

  • parallèle à la ligne d'horizon 202, 203 de la lentille de correction cible 200 et
  • passant par la projection MO2 du point O2 homologue du point O1 de la lentille de référence 100.
In a variant illustrated by the Figures 6 and 7 , as indicated previously, the reference anchor line is defined as the line which is parallel to the horizon line 108 or 109 of the reference lens 100 and which passes through the projection MO2 of the homologous O2 point O1 of the lens of reference 100. In this case the processing system 54 defines, in projection on the centering plane, a target anchor line D6 homologous to the line D4 associated with the reference lens 100. This target anchor line D6 is defined , in the example illustrated by the Figures 6 and 7 , as being the right:
  • parallel to the horizon line 202, 203 of the target correction lens 200 and
  • passing through the MO2 projection of the O2 point homologous to the point O1 of the reference lens 100.

On connaît alors la position du point d'ancrage cible O2 de la lentille de correction cible 200.The position of the target anchor point O2 of the target correction lens 200 is then known.

Les galbes des lentilles de référence 100 et de correction 200 n'étant pas identiques, le point C10 n'est pas l'homologue du point C1 au sens défini précédemment.The curves of the reference lenses 100 and correction 200 are not identical, the point C10 is not the homologue of the point C1 in the previously defined sense.

Selon une première méthode, pour calculer la position du point de perçage cible C10, on détermine une caractéristique du galbe global de la lentille de correction cible 200.According to a first method, to calculate the position of the target piercing point C10, a characteristic of the overall shape of the target correction lens 200 is determined.

On peut procéder de différentes manières pour déterminer la caractéristique du galbe de la lentille de correction cible 200.There are various ways to determine the characteristic of the curve of the target correction lens 200.

On peut typiquement définir, par rapport à la direction d'éclairage D51, l'angle ALPHA200 de l'axe A210 selon lequel la lentille de correction cible 200 devra être percée (cet angle est caractéristique du galbe de la lentille de correction cible 200 au point de perçage C10). Cet angle constitue alors ladite caractéristique du galbe recherchée.The angle ALPHA200 of the axis A210, in which the target correction lens 200 is to be pierced, can typically be defined with respect to the illumination direction D51 (this angle is characteristic of the curve of the target correction lens 200 at piercing point C10). This angle then constitutes said characteristic of the desired curve.

A cet effet, sachant que la courbure de la lentille de correction cible 200 est continue et approximativement constante dans une zone locale de la face avant de cette lentille, une première méthode de détermination de cet angle ALPHA200 consiste à palper la face avant 198 de la lentille de correction cible 200 dans une zone locale estimée proche de la position que présentera le point de perçage C10 à positionner. Plus précisément, cette méthode consiste tout d'abord à définir un point approché C11 a priori situé à proximité du point de perçage C10. Ce point approché C11 est ici choisi comme étant le point homologue du point C1 de la lentille de référence 100. Puis, on procède au palpage de la face avant de la lentille de correction 200 en trois points distincts situés à moins de 10 millimètres du point approché C11. Le système de traitement 54 peut ainsi déterminer l'orientation du plan tangent à la face avant de la lentille de correction 200 au point approché C11. L'orientation de ce plan par rapport au plan d'acquisition P1 est sensiblement identique à l'orientation que présenterait le plan tangent à la face avant de la lentille de correction 200 au point de perçage C10 par rapport à ce même plan d'acquisition P1. L'angle d'inclinaison de ce plan tangent par rapport au plan d'acquisition P1 correspond à l'angle ALPHA200 qui peut ainsi être calculé avec précision.For this purpose, knowing that the curvature of the target correction lens 200 is continuous and approximately constant in a local area of the front face of this lens, a first method for determining this angle ALPHA200 is to feel the front face 198 of the lens. target correction lens 200 in a local area estimated to be close to the position the point of C10 drilling to position. More precisely, this method consists first of all in defining an approximate point C11 a priori located near the piercing point C10. This approximate point C11 is here chosen as being the homologous point of the point C1 of the reference lens 100. Then, the front face of the correction lens 200 is probed at three distinct points located less than 10 millimeters from the point approached C11. The processing system 54 can thus determine the orientation of the plane tangent to the front face of the correction lens 200 at the approximate point C11. The orientation of this plane with respect to the acquisition plane P1 is substantially identical to the orientation that would present the plane tangent to the front face of the correction lens 200 at the piercing point C10 with respect to this same acquisition plane. P1. The angle of inclination of this tangent plane with respect to the acquisition plane P1 corresponds to the angle ALPHA200 which can thus be calculated with precision.

Selon une seconde méthode de calcul de l'angle ALPHA200, on acquiert la courbure globale de l'une des faces optiques 198, 199, en l'espèce la face avant 198, de la lentille de correction cible 200, on identifie sur la face optique 198 un point approché C11 voisin du point de perçage cible C10 du trou de perçage cible 210, et on calcule, en fonction de ladite courbure globale et de la position du point approché C11, un angle d'inclinaison ALPHA200 de la face optique 198, 199 de la lentille de correction cible 200 au point approché C11 par rapport au plan de centrage analogue au plan d'acquisition P1. Le système de traitement 54 identifie le point approché C11 par exemple comme le point dont le projeté MC11 dans le plan de centrage présente une position homologue de celle du projeté MC1 du point de perçage référent C1 du trou de perçage référent 110 dans le plan d'acquisition P1.According to a second method of calculating the angle ALPHA200, the overall curvature of one of the optical faces 198, 199, in this case the front face 198, of the target correction lens 200 is identified on the face an approximate point C11 adjacent to the target piercing point C10 of the target pierce hole 210, and an inclination angle ALPHA200 of the optical face 198 is calculated as a function of said overall curvature and the position of the approximate point C11. , 199 of the target correction lens 200 at the approximate point C11 with respect to the centering plane similar to the acquisition plane P1. The processing system 54 identifies the approximate point C11 for example as the point whose projectile MC11 in the centering plane has a position homologous to that of the projected MC1 of the reference drilling point C1 of the reference drilling hole 110 in the plane of P1 acquisition.

En variante, l'angle ALPHA200 peut être déterminé autrement. Par exemple, l'opticien peut le mesurer manuellement sur la lentille puis le saisir à l'aide d'une interface de saisie à l'écran 50 prévue à cet effet.Alternatively, the angle ALPHA200 can be determined otherwise. For example, the optician can measure it manually on the lens and then enter it using an on-screen input interface 50 provided for this purpose.

En variante encore, l'angle ALPHA200 peut également être calculé par le système de traitement 54 à partir de la position calculée du point approché C11 et de la base de la lentille qui est généralement fournie à l'opticien par le fabricant de lentille et que l'opticien aura pris soin de saisir à l'aide de l'interface de saisie à l'écran. Dans ce cas, l'angle ALPHA 200 est calculé au moyen de la relation suivante : ALPHA 200 = R . B / n - 1 ,

Figure imgb0005
In another variant, the angle ALPHA200 can also be calculated by the treatment system 54 from the calculated position of the approximate point C11 and the base of the lens which is generally supplied to the optician by the lens manufacturer and that the optician will have taken care to enter using the on-screen input interface. In this case, the angle ALPHA 200 is calculated using the following relation: ALPHA 200 = R . B / not - 1 ,
Figure imgb0005

R étant la distance, projetée dans le plan d'acquisition P1, du centre C10 au centre géométrique du contour de la lentille de correction (obtenu par traitement d'image), B étant la base de la lentille, et n étant l'indice de la lentille. La base de la lentille peut être saisie manuellement par l'opérateur à l'aide d'une interface de saisie à l'écran, ou obtenue, par exemple, par un sphéromètre.Where R is the distance, projected in the acquisition plane P1, from the center C10 to the geometric center of the contour of the correction lens (obtained by image processing), B being the base of the lens, and n being the index of the lens. The base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.

Quoi qu'il en soit, le système de traitement 54 peut alors calculer, au moyen d'une relation de trigonométrie, la distance en projection cible R3 devant séparer dans le plan de centrage analogue au plan d'acquisition P1 le projeté MC10 du point de perçage C10 et le projeté MO2 du point d'ancrage cible O2, pour que la distance tridimensionnelle cible R2 séparant le point d'ancrage cible O2 du point de perçage cible C10 soit égale à la distance R2. Ce calcul est le suivant : R 3 = R 2. cos ALPHA 200 .

Figure imgb0006
In any event, the processing system 54 can then calculate, by means of a trigonometric relationship, the target projection distance R3 to be separated in the centering plane similar to the acquisition plane P1 from the projected point MC10. for the target three-dimensional distance R2 separating the target anchor point O2 from the target piercing point C10 to be equal to the distance R2. This calculation is as follows: R 3 = R 2. cos ALPHA 200 .
Figure imgb0006

Connaissant la position du point d'ancrage cible 02 et la distance en projection cible R3 entre ce point d'ancrage cible 02 et le point de perçage C10, la projection de ce dernier dans le plan de centrage est parfaitement repérée.Knowing the position of the target anchor point 02 and the target projection distance R3 between this target anchor point 02 and the piercing point C10, the projection of the latter in the centering plane is perfectly located.

En variante, le système de traitement peut calculer la position tridimensionnelle du point de perçage cible C10 en reportant sur la lentille de correction cible 200 la distance tridimensionnelle référente R2 à partir du point d'ancrage cible 02. Ce report est réalisé sensiblement suivant l'inclinaison locale de la face concernée (ici, la face avant) de la lentille de correction cible 200, c'est-à-dire sensiblement suivant une direction de report reliant le point d'ancrage cible 02 au point de perçage cible C10, comme illustré par la figure 3.As a variant, the processing system can calculate the three-dimensional position of the target piercing point C10 by transferring the reference three-dimensional distance R2 from the target anchor point 02 to the target correction lens 200. This transfer is carried out substantially according to the local inclination of the relevant face (here, the front face) of the target correction lens 200, that is to say substantially in a transfer direction connecting the target anchor point 02 to the target piercing point C10, as illustrated by the figure 3 .

L'orientation de l'axe A210 du trou de perçage cible 210 étant également connue, une meuleuse ou une perceuse classique munie d'un forêt de perçage peut procéder au perçage du trou de perçage cible 210 dans la lentille de correction de sorte que cette lentille soit parfaitement montable sur la monture sans cercle sélectionnée par le futur porteur.Since the orientation of the axis A210 of the target drilling hole 210 is also known, a conventional grinder or drill with a drill bit may drill the target drill hole 210 in the correction lens so that lens is perfectly mountable on the frame without circle selected by the future carrier.

Si l'on souhaite percer la lentille de correction cible 200 depuis sa face arrière 199, le procédé est identique à celui exposé précédemment, à la différence près qu'il est nécessaire de définir les points d'ancrage O1 et O2 et les points de référence C1 et de perçage C10 comme appartenant à la face arrière 199 de la lentille de correction 200.If it is desired to pierce the target correction lens 200 from its rear face 199, the method is identical to that described above, with the difference that it is necessary to define the anchoring points O1 and O2 and the points of reference C1 and drilling C10 as belonging to the rear face 199 of the correction lens 200.

Détermination de la position d'un second trou de perçage associé au précédentDetermining the position of a second drilling hole associated with the previous

Certaines montures de lunettes diffèrent de celle précédemment étudiée en ce sens qu'elles nécessitent, pour la fixation d'une branche ou d'un pontet sur une lentille, deux trous de perçage. Dans ce cas, comme le montre la partie inférieure de la figure 8, la lentille de référence 100 comporte quatre trous de perçage référents, dont deux trous de perçage référents 110, 150 situés du côté de sa zone temporale et deux autres trous de perçage (non représentés) situés du côté de sa zone nasale. De manière analogue, la lentille de correction représentée sur la partie supérieure de la figure 8 est destinée à être percée de deux trous de perçage cibles 210, 250 du côté de sa zone temporale et de deux autres trous de perçage (non représentés) du côté de sa zone nasale.Some eyeglass frames differ from the one previously studied in that they require, for fixing a branch or a bridge on a lens, two drilling holes. In this case, as shown in the lower part of the figure 8 , the reference lens 100 has four holes of referent drilling, including two referent drilling holes 110, 150 located on the side of its temporal area and two other drilling holes (not shown) located on the side of its nasal area. Similarly, the correction lens shown on the upper part of the figure 8 is intended to be pierced with two target drilling holes 210, 250 on the side of its temporal area and two other drilling holes (not shown) on the side of its nasal area.

Le procédé de détermination de la position des deux trous de perçage cibles 210, 250 de la lentille de correction 200 est similaire à celui précédemment exposé pour une lentille présentant deux trous de perçage.The method for determining the position of the two target drilling holes 210, 250 of the correction lens 200 is similar to that previously discussed for a lens having two piercing holes.

Le système de traitement 54 détermine, sur la lentille de référence 100, d'une part, la distance R1 séparant, dans le plan d'acquisition P1, le projeté MO1 du point d'ancrage référent O1 et le projeté MC1 du centre C1 en face avant de l'embouchure du premier trou de perçage référent 110, et, d'autre part, la distance R4 séparant, dans le plan d'acquisition P1, le projeté MC1 du centre en face avant de l'embouchure du premier trou de perçage référent 110 et le projeté MC5 du centre en face avant de l'embouchure du second trou de perçage référent 150.The processing system 54 determines, on the reference lens 100, on the one hand, the distance R1 separating, in the acquisition plane P1, the projected MO1 from the reference anchor point O1 and the projected MC1 from the center C1 by front face of the mouth of the first reference drilling hole 110, and, secondly, the distance R4 separating, in the acquisition plane P1, the projected MC1 from the center in front of the mouth of the first hole of reference drilling 110 and projected MC5 from the center on the front face of the mouth of the second reference drilling hole 150.

La méthode pour déterminer la distance R1 est strictement identique à celle exposée précédemment avec les mêmes références pour une lentille à deux trous de perçage isolés l'un de l'autre. La méthode pour déterminer la distance R4 diffère de celle-ci en ce que le point d'ancrage référent à partir duquel est mesurée la distance R4 correspond au projeté MC1 du centre C1 du premier trou de perçage référent 110. La technique est sinon identique et ne sera pas décrite plus en détail. Elle permet par ailleurs d'acquérir l'angle ALPHA150 entre la direction d'éclairage D51 et l'axe A150 du second trou de perçage référent 150. En variante, le calcul de cet angle peut être évité en faisant l'approximation que les angles ALPHA100 et ALPHA150 sont égaux.The method for determining the distance R1 is strictly identical to that previously described with the same references for a lens with two holes drilled isolated from each other. The method for determining the distance R4 differs therefrom in that the reference anchor point from which the distance R4 is measured corresponds to the projected MC1 of the center C1 of the first reference drilling hole 110. The technique is otherwise identical and will not be described in more detail. It also makes it possible to acquire the angle ALPHA150 between the lighting direction D51 and the axis A150 of the second referent drilling hole 150. As a variant, the calculation of this angle can be avoided by making the approximation that the angles ALPHA100 and ALPHA150 are equal.

Le système de traitement 54 procède ensuite au calcul, d'une part, de la distance R2 séparant le point d'ancrage référent O1 de la lentille de référence 100 et le centre C1 de l'embouchure en face avant du premier trou de perçage référent 110, et, d'autre part, la distance R5 séparant les centres C1 et C5 des embouchures en face avant des premier et second trous de perçage référents 110, 150.The processing system 54 then proceeds to calculate, on the one hand, the distance R2 separating the reference anchor point O1 from the reference lens 100 and the center C1 of the mouthpiece on the front face of the first reference drilling hole. 110, and, on the other hand, the distance R5 separating the centers C1 and C5 from the mouths on the front face of the first and second referential drilling holes 110, 150.

La méthode pour déterminer la distance R1 est strictement identique à celle exposée précédemment avec les mêmes références. L'axe A150 du trou de perçage référent 150 étant orthogonal au plan tangent à la face avant de la lentille de référence au point C5, l'angle ALPHA150 précédemment déterminé permet d'approximer la distance R5 au moyen du calcul suivant : R 5 = R 4 / cos ALPHA 150 .

Figure imgb0007
The method for determining the distance R1 is strictly identical to that previously described with the same references. Since the axis A150 of the reference borehole 150 is orthogonal to the plane tangent to the front face of the reference lens at point C5, the previously determined angle ALPHA150 makes it possible to approximate the distance R5 by means of the following calculation: R 5 = R 4 / cos ALPHA 150 .
Figure imgb0007

Comme illustré sur la partie supérieure de la figure 8, le système de traitement 54 procède à l'identification, sur la face avant 198 de la lentille de correction cible 200, des points de perçage cibles C10, C15 auxquels il conviendra de percer la lentille de correction 200.As shown on the upper part of the figure 8 , the processing system 54 proceeds to identify, on the front face 198 of the target correction lens 200, the target piercing points C10, C15 to which it will be necessary to pierce the correction lens 200.

L'identification du point de perçage C10 est ici également réalisée selon un procédé identique à celui exposé pour une lentille à deux trous de perçage.The identification of the piercing point C10 is here also carried out according to a method identical to that described for a lens with two piercing holes.

L'identification du point de perçage C15 est quant à elle réalisée en prenant le point de perçage C10 comme point d'ancrage cible de la lentille de correction cible 200. L'objectif de cette identification est de déterminer dans le plan d'acquisition P1 la position du projeté MC15 du point de perçage C15.The identification of the piercing point C15 is carried out by taking the piercing point C10 as the target anchor point of the target correction lens 200. The objective of this identification is to determine in the acquisition plane P1 the position of the projected MC15 of the drilling point C15.

On connaît la position angulaire du point de perçage C15 et de son projeté MC15 autour de l'axe A52 de la lentille de correction 200 puisqu'ils appartiennent tous deux au plan radial P4 considéré. Reste à déterminer la distance R6 séparant, dans le plan d'acquisition P1, le projeté MC10 du point de perçage C10 et le projeté MC15 du point de perçage C15.The angular position of the piercing point C15 and its projected MC15 around the axis A52 of the correction lens 200 are known since they both belong to the radial plane P4 considered. It remains to determine the distance R6 separating, in the acquisition plane P1, the projectile MC10 from the drilling point C10 and the projected MC15 from the drilling point C15.

Il faut pour cela définir, par rapport à la direction d'éclairage D51, l'angle ALPHA250 de l'axe A250 selon lequel la lentille devra être percée du second trou de perçage cible 250. La détermination de cet angle peut être réalisée d'une manière analogue à l'une de celles présentées pour déterminer l'angle ALPHA200. En variante, il est également possible de faire l'approximation que, les deux points de perçage cibles 210, 250 étant adjacents, les angles ALPHA200 et ALPHA250 sont égaux.For this purpose, it is necessary to define, with respect to the lighting direction D51, the angle ALPHA250 of the axis A250 according to which the lens must be pierced by the second target hole 250. The determination of this angle can be carried out by a similar way to one of those presented to determine the angle ALPHA200. Alternatively, it is also possible to make the approximation that, since the two target piercing points 210, 250 are adjacent, the angles ALPHA200 and ALPHA250 are equal.

Le système de traitement 54 calcule alors, au moyen d'une relation de trigonométrie, la distance R6 devant séparer dans le plan d'acquisition P1 le projeté MC15 du point de perçage C15 et le projeté MC10 du point de perçage C10, pour que la distance dans l'espace séparant le point de perçage C10 et le point de perçage C15 soit égale à la distance R5. Ce calcul est le suivant : R 6 = R 5 . cos ALPHA 250 .

Figure imgb0008
The processing system 54 then calculates, by means of a trigonometric relationship, the distance R6 to be separated in the acquisition plane P1 from the projected MC15 from the drilling point C15 and the projected MC10 from the piercing point C10, so that the distance in the space between the piercing point C10 and the piercing point C15 is equal to the distance R5. This calculation is as follows: R 6 = R 5 . cos ALPHA 250 .
Figure imgb0008

Connaissant la position angulaire des points de perçage C10, C15 autour de l'axe A52 de la lentille de correction 200, ainsi que les distances R3 et R6, les points de perçage C10 et C15 sont parfaitement repérés dans le plan d'acquisition P1. Les orientations des axes A210 et A250 des trous de perçage cibles 210, 250 étant également connues, une meuleuse ou une perceuse classique munie d'un foret de perçage peut procéder au perçage des trous de perçage cible 210, 250 dans la lentille de correction 200 de sorte que cette lentille soit parfaitement montable sur la monture sans cercle sélectionnée par le futur porteur.Knowing the angular position of the piercing points C10, C15 around the axis A52 of the correction lens 200, as well as the distances R3 and R6, the piercing points C10 and C15 are perfectly located in the acquisition plane P1. Since the orientations of the axes A210 and A250 of the target drill holes 210, 250 are also known, a conventional grinder or drill with a drill bit can drill the target drill holes 210, 250 into the correction lens 200. so that this lens is perfectly mountable on the frame without circle selected by the future carrier.

Variante de réalisation du dispositif d'acquisition d'imageEmbodiment variant of the image acquisition device

Selon un autre mode de réalisation illustré par la figure 9, la lentille de référence 100 est vue par la caméra 53 en vision directe. La caméra 53 est agencée de telle sorte que l'axe optique de son objectif soit parallèle avec la direction d'éclairement et que le centre optique de son objectif soit situé au foyer 51 de la lentille de collimation 52. Un ensemble de rétro-éclairage, composé d'une matrice de sources lumineuses telles que des LEDs 56 et d'une plaque de diffusion 57, est disposé du côté de la plaque support 55 opposé à la lentille 100.According to another embodiment illustrated by the figure 9 , the reference lens 100 is seen by the camera 53 in direct vision. The camera 53 is arranged such that the optical axis of its objective is parallel to the direction of illumination and the optical center of its objective is located at the focus 51 of the collimation lens 52. A set of backlighting , composed of a matrix of light sources such as LEDs 56 and a diffusion plate 57, is arranged on the side of the support plate 55 opposite to the lens 100.

La caméra 53 voit alors directement, c'est-à-dire sans écran de projection intermédiaire, la lentille de référence 100 en face avant.The camera 53 then sees directly, that is to say without intermediate projection screen, the reference lens 100 on the front face.

Comme précédemment, l'objectif de la caméra acquiert l'image de la lentille dans un plan d'acquisition orthogonal à la direction de capture d'image A52. Ce plan d'acquisition n'est pas ici identifiable sur la structure du dispositif. Il correspond ici au plan image P2 de la lentille de collimation 52. C'est en effet dans ce plan image P2 que se forme une image nette de la lentille de référence 100 vue par la lentille de collimation 52.As before, the lens of the camera acquires the image of the lens in an acquisition plane orthogonal to the image capture direction A52. This acquisition plan is not identifiable here on the structure of the device. It corresponds here to the image plane P2 of the collimation lens 52. It is indeed in this image plane P2 that a clear image of the reference lens 100 seen by the collimating lens 52 is formed.

Les différents modes de réalisation décrits précédemment mis en oeuvre en vision projetée pour le calcul de la position de l'embouchure en face avant ou arrière du trou de perçage peuvent être mis en oeuvre en vision directe.The various embodiments previously described implemented in projected vision for calculating the position of the mouthpiece on the front or rear face of the drilling hole can be implemented in direct vision.

De manière plus générale, la position exacte XMC1 du centre de l'embouchure en face avant est aisément obtenue puisqu'il n'y a pas de déviation des rayons lumineux par la lentille.More generally, the exact position XMC1 of the center of the mouth on the front face is easily obtained since there is no deviation of light rays by the lens.

La base de la lentille peut être saisie manuellement par l'opérateur à l'aide d'une interface de saisie à l'écran, ou obtenue, par exemple, par un sphéromètre.The base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.

Claims (14)

  1. A method of determining the position of a target drill hole (210; 250) to be drilled in a target corrective lens (200) having an expected target outline (220) after shaping, the position being determined from a reference lens (100) that presents a reference outline (120) and at least one reference drill hole (110; 150), the method comprising the following steps:
    - acquiring an image of the reference lens (100) in an acquisition plane (P1; P2), in particular including an image of its reference outline (120) and an image of its reference drill hole (110; 150);
    - deducing therefrom the position relative to the target outline (220) of a target drilling point (C10; C15) for the target drill hole (210; 250) of the target corrective lens (200);
    the method being characterized in that it further comprises the following steps:
    - acquiring at least one characteristic (ALPHA100; ALPHA150) of the curvature of the reference lens (100);
    - determining, in the acquisition plane (P1; P2), the reference distance in projection (R1; R4) between the projection (MO1; MC1) of a reference anchor point (O1; C1) of the reference lens (100), this reference anchor point being associated with the reference outline (120), and the projection (MC1; MC5) of a reference drilling point (C1; C5) of the reference drill hole (110; 150);
    - calculating the three-dimensional reference distance (R2; R5) between the reference anchor point (O1; C1) of the reference lens (100) and the reference drilling point (C1; C5) of the reference drill hole (110; 150) as a function of said characteristic (ALPHA100; ALPHA150) of the curvature of the reference lens (100) and of the determined reference distance in projection (R1; R4); and
    - determining the position of the target drilling point (C10; C15) for the target drill hole (210; 250) of the target corrective lens (200) as a function of the calculated three-dimensional reference distance (R2; R5).
  2. A method according to the preceding claim, wherein, in order to determine the position of the target drilling point (C10; C15) for the target drill hole (210; 250), a target anchor point (O2; C10) of the target corrective lens (200) homologous to the reference anchor point (O1; C1) of the reference lens (100) is identified, and the position of the target drilling point (C10 ; C15) is calculated as a function of the target anchor point (O2; C10) and of the three-dimensional reference distance (R2; R5).
  3. A method according to the preceding claim, wherein the reference anchor point (O1; C1) and the reference drilling point (C1; C5) belong to a single reference face of the reference lens (100), and the target anchor point (O2; C10) and the target drilling point (C10; C15) belong to a single target face of the target corrective lens (200), said reference face and said target face corresponding to each other.
  4. A method according to any one of claims 2 and 3, wherein, in order to calculate the position of the target drilling point (C10; C15), the three-dimensional reference distance (R2; R5) is transferred onto the target corrective lens (200), starting from said target anchor point (O2; C10), substantially along a transfer direction linking the target anchor point (O2; C10) to the target drilling point (C10; C15).
  5. A method according to any one of claims 2 and 3, wherein, in order to calculate the position of the target drilling point (C10; C15), at least one characteristic (ALPHA200; ALPHA250) of the curvature of the target corrective lens (200) is determined and the target distance in projection (R3; R6) is calculated, in a centering plane that is analogous with the acquisition plane (P1; P2), between the projection (MC10; MC15) of the target drilling point (C10; C15) for the target drill hole (210; 250) of the target corrective lens (200) and the projection (MO2; MC10) of the target anchor point (O2; C10) of the target corrective lens (200), as a function of the three-dimensional reference distance (R2; R5) and of the characteristics (ALPHA200; ALPHA250) of the curvature of the target corrective lens (200).
  6. A method according to the preceding claim, wherein, in order to determine said characteristic (ALPHA200; ALPHA250) of the curvature of the target corrective lens (200), an approximate point (C11) near to the target drilling point (C10; C15) of the target drill hole (210; 250) is identified on one of the optical faces (198, 199) of the target corrective lens (200), said optical face (198, 199) of the target corrective lens (200) is sensed by feeling at at least three points situated in the neighborhood of the approximate point (C11), and therefrom there is deduced an angle of inclination (ALPHA200; ALPHA250), relative to the centering plane (P1), of said optical face (198, 199) of the corrective lens (200) at said approximate point (C11), said angle thus constituting said looked-for characteristic of the curvature.
  7. A method according to claim 5, wherein, in order to determine said characteristic (ALPHA200; ALPHA250) of the curvature of the target corrective lens (200), the overall curvature of one of the optical faces (198, 199) of the target corrective lens (200) is acquired, an approximate point (C11) near to the target drilling point (C10; C15) of the target drill hole (210; 250) is identified on one of the optical faces (198, 199) of the target corrective lens (200), and an angle of inclination (ALPHA200; ALPHA250) relative to the centering plane (P1) is calculated for said optical face (198, 199) of the target corrective lens (200) at the approximate point (C11) as a function of said overall curvature and of the position of the approximate point (C11), said angle thus constituting said looked-for characteristic of the curvature.
  8. A method according to the preceding claim, wherein, for the image of the target corrective lens (200) being acquired in the centering plane (P1), the approximate point (C11) is identified as the point having its projection (MC11) in the centering plane (P1) presenting a position that is homologous to the position of the projection (MC1; MC5) of the reference drilling point (C1; C5) of the reference drill hole (110; 150) in the acquisition plane (P1).
  9. A method according to any preceding claim, wherein the reference anchor point (O1) of the reference lens (100) is identified as the point having its projection (MO1) in the acquisition plane situated at the intersection between, firstly, a projected outline (M121) resulting from the projection of one of the front and rear edges (121, 122) of the edge face (120) of the reference lens (100) or of an average of these edges, and, secondly, a reference anchor line (D3, D4) passing through the projection (MC1) of the reference drilling point (C1) of the reference drill hole (110).
  10. A method according to the preceding claim, wherein said reference anchor line (D3) passes through the projection (CB) of a geometrical center (CB) of the reference lens (100) or is parallel to the horizon lines (108, 109) of the reference lens (100).
  11. A method according to any one of claims 9 and 10 as dependent on claim 2, wherein the target anchor point (O2) of the target corrective lens (200) is identified as the point, that has its projection (MO2) in a centering plane analogous to the acquisition plane (P1; P2), that presents a position homologous to the position of the projection (MO1) of the reference anchor point (O1) of the reference lens (100) in the acquisition plane (P1).
  12. A method according to any one of claims 9 and 11 as dependent on claim 2, wherein, in order to determine the position of the target drilling point (C10; C15), it is considered that the projection (MC10; MC15) of said point in a centering plane that is analogous to the acquisition plane (P1; P2) belongs to a target anchor line (D5; D6) homologous to the reference anchor line (D3; D4).
  13. A method according to any one of claims 1 to 8, wherein, for a reference lens (100) including two adjacent reference drill holes (110, 150) designed to hold a single temple or a single nose bridge of a frame, namely a first reference drill hole (110) and a second reference drill hole (150), and for a target corrective lens (200) presenting two target holes (210, 250) to be drilled, namely a first target drill hole (210) corresponding to the first reference drill hole (110) of the reference lens (100) and of position that is already identified, and a second target drill hole (250), the reference anchor point of the reference lens (100) for determining the second target drill hole (250) is constituted by the reference drilling point (C1) of the first reference drill hole (110).
  14. A method according to the preceding claim as dependent on claim 2, wherein the target anchor point of the target corrective lens (200) is constituted by the target drilling point (C10) of the first target drill hole (210).
EP07872398A 2006-12-20 2007-12-19 Method for determining the position of a drill hole to be formed in an ophthalmic lens Not-in-force EP2091690B9 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0611124A FR2910644B1 (en) 2006-12-20 2006-12-20 DEVICE FOR DETERMINING THE POSITION AND / OR A CROSS-SECTIONAL DIMENSION OF A DRILLING HOLE OF A PRESENTATION LENS OF CIRCLE-FREE MOUNTED GLASSES
FR0701554A FR2910646B1 (en) 2006-12-20 2007-03-02 METHOD FOR DETERMINING THE POSITION OF A DRILLING HOLE TO BE MADE ON AN OPHTHALMIC LENS
PCT/FR2007/002111 WO2008093016A1 (en) 2006-12-20 2007-12-19 Method for determining the position of a drill hole to be formed in an ophthalmic lens

Publications (3)

Publication Number Publication Date
EP2091690A1 EP2091690A1 (en) 2009-08-26
EP2091690B1 EP2091690B1 (en) 2010-04-21
EP2091690B9 true EP2091690B9 (en) 2010-09-08

Family

ID=39493739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07872398A Not-in-force EP2091690B9 (en) 2006-12-20 2007-12-19 Method for determining the position of a drill hole to be formed in an ophthalmic lens

Country Status (6)

Country Link
US (1) US8300983B2 (en)
EP (1) EP2091690B9 (en)
AT (1) ATE464975T1 (en)
DE (1) DE602007006049D1 (en)
FR (1) FR2910646B1 (en)
WO (1) WO2008093016A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527047Y2 (en) * 1987-08-10 1993-07-09
DE102008060590B4 (en) 2008-12-05 2014-09-04 Schneider Gmbh & Co. Kg Method and device for edge measurement of optical lenses
JP6746894B2 (en) * 2015-11-04 2020-08-26 株式会社ニデック Centering device and centering position setting program
US9905026B1 (en) * 2016-09-14 2018-02-27 The Boeing Company Photogrammetric identification of locations for performing work
CN116612101B (en) * 2023-05-31 2023-11-21 广州市盛通建设工程质量检测有限公司 Visual control method, device, equipment and storage medium in anchoring process of anchor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804428A1 (en) * 1998-02-05 1999-08-19 Wernicke & Co Gmbh Method for marking or drilling holes in spectacle lenses and device for carrying out the method
JP3247687B1 (en) * 2001-05-23 2002-01-21 株式会社タケダ企画 Lens connection device for rimless glasses
US6951627B2 (en) * 2002-04-26 2005-10-04 Matsushita Electric Industrial Co., Ltd. Method of drilling holes with precision laser micromachining
FR2865046B1 (en) * 2004-01-08 2006-03-10 Frederic Dupuy DEVICE FOR DRILLING GLASSES AND FINISHING ASSEMBLING SCREWS AND ASSOCIATED METHOD
JP2006189472A (en) * 2004-12-28 2006-07-20 Nidek Co Ltd Spectacle lens processing device
JP4708035B2 (en) * 2005-01-06 2011-06-22 株式会社ニデック Eyeglass lens processing equipment
JP5085898B2 (en) * 2006-07-31 2012-11-28 株式会社ニデック Eyeglass lens processing equipment

Also Published As

Publication number Publication date
US20100074556A1 (en) 2010-03-25
EP2091690A1 (en) 2009-08-26
US8300983B2 (en) 2012-10-30
FR2910646B1 (en) 2009-02-27
FR2910646A1 (en) 2008-06-27
EP2091690B1 (en) 2010-04-21
ATE464975T1 (en) 2010-05-15
DE602007006049D1 (en) 2010-06-02
WO2008093016A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
EP2139642B1 (en) Device and method for preparing an ophthalmic lens for machining
EP2134249B1 (en) Method for measuring the position of the center of rotation of the eye of a subject along the horizontal direction of the sagittal plane
EP1817562B1 (en) Device for automatically measuring characteristics of an ophthalmic lens
EP2091689B1 (en) Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame
EP2091690B9 (en) Method for determining the position of a drill hole to be formed in an ophthalmic lens
CA2929942A1 (en) Method for determining at least one optical design parameter for a progressive ophthalmic lens
EP1338382B1 (en) Method for attaching a blocking tool to an ophtalmic lens blank
EP1866694B1 (en) Method for centring an ophthalmic lens on a rimless frame
EP2027968B1 (en) Method of determining parameters for adding frames to an ophthalmic lens
CA2956030C (en) Method for working out settings for edging an optical lens
EP2196845B1 (en) Method for preparing an ophthalmic lens in order to mount it on a curved spectacle frame
EP2150375B1 (en) Method for trimming ophthalmic lenses by reading out and updating a lens and/or frame database register
EP2380701B9 (en) Konturfräsverfahren einer ophtalmischen Linse für Brillen
EP2715438B1 (en) Method and device for determining at least one customized adjustment parameter of a lens carried by a spectacles frame facing the eye of a wearer
WO2007128925A1 (en) Method for centering an ophthalmic lens on a curved spectacle frame
EP3172011B1 (en) Machine for acquiring images of optical lenses and process for trimming optical lenses
FR3013620A1 (en) METHOD FOR BEVELING AN OPHTHALMIC LENS
WO2006061475A1 (en) Method for locking an ophthalmic lens for the trimming thereof and device for automatic mounting preparation of an ophthalmic lens
WO2006061477A1 (en) Method and device for automatic mounting preparation for an ophthalmic lens with the aid of a pair of gripping, transferring and locking noses
EP1882207B1 (en) Method for recording geometrical characteristics of a second lens by means of scanning a first lens both lenses being from the same batch
EP4116762A1 (en) Device for assisting with the preparation of a definitive corrective lens and associated method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007006049

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100421

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100821

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

26N No opposition filed

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100722

BERE Be: lapsed

Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQ

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101219

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101022

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121207

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007006049

Country of ref document: DE

Representative=s name: 24IP LAW GROUP SONNENBERG FORTMANN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007006049

Country of ref document: DE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON-LE-PONT, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181231

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007006049

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701