EP2089758A1 - Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides - Google Patents

Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides

Info

Publication number
EP2089758A1
EP2089758A1 EP07822738A EP07822738A EP2089758A1 EP 2089758 A1 EP2089758 A1 EP 2089758A1 EP 07822738 A EP07822738 A EP 07822738A EP 07822738 A EP07822738 A EP 07822738A EP 2089758 A1 EP2089758 A1 EP 2089758A1
Authority
EP
European Patent Office
Prior art keywords
cell
angle
measurement
incidence
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07822738A
Other languages
German (de)
English (en)
Inventor
Umberto Rossini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2089758A1 publication Critical patent/EP2089758A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Definitions

  • the present invention relates to a method for measuring the inclination or pre-tilt angle of liquid crystal molecules of liquid crystal cells of the helical nematic type, or TN for Twisted Nematic ,.
  • a liquid crystal cell TN is usually formed of two transparent substrates assembled to form between them a cavity in which the liquid crystal molecules are injected.
  • a liquid crystal molecule has an elongate shape along a longitudinal axis, such as a stick.
  • the pre-tilt angle can then be defined as follows: consider a normal position of such a molecule, flat against the surface plane of a substrate. One end of the molecule is anchored on this plane and the other end is forced into a position such that the longitudinal axis of the molecule forms an angle with the surface plane of the substrate: this is the pre-tilt angle .
  • This angle makes it possible in particular to impose on the liquid crystal molecules of the cell the direction of unwinding in a helix in the thickness of the cavity. It has a direct impact on the performance of a liquid crystal display. It is obtained in a well-known manner by depositing on each of the faces of the substrates internal to the cavity, a transparent alignment layer, typically polyimide, which is rubbed for example by means of a fabric roll along an axis of orientation. determined, so as to create anchoring lines on the surface in this axis, and which is subjected to various cleaning and thermal annealing. The friction operations performed on the two substrates and their assembly are such that there is a torsion angle called a twist angle between the friction axes of the two alignment layers.
  • a transparent alignment layer typically polyimide
  • this twist angle or twist is 90 ° or ⁇ / 2 rad. It may be lower, for example 80 ° or greater, for example 280 °, typically for the so-called supernatant liquid crystal STN helix.
  • TN liquid crystal means for any torsion or twist angle.
  • the liquid crystal molecules all have at rest the determined inclination, called the pre-tilt angle, with respect to the plane of the substrate. When an electric field is applied, a helical unwinding direction of the liquid crystal molecules is required in the thickness of the cavity.
  • the directions of the axes of friction of the two alignment layers in the assembled cell define the top position or Top and Bottom or Bottom of the cell in a display, which are concepts associated with the contrasts according to the angle of view.
  • the effective pre-tilt angle obtained at the output of manufacture depends on various factors, among which mention may be made of the conditions of friction of the alignment layers, the cleaning steps, the topography of each of the substrates, the material or materials. (Polyimides) used to make the alignment layers, the properties of the liquid crystals injected ... In particular, the topographies of the two substrates are different.
  • a first substrate corresponds to the active matrix, which notably comprises the TFT transistors, the selection lines, the lines of data and the first pixel electrodes of the image points of the screen
  • a second substrate corresponds to the counter-electrode forming the other common pixel electrode at all image points, and also includes the red green-blue color filters.
  • the filter network on the substrate 2 and the TFT array with the pixel electrodes on the substrate 1 give very different topographies of the substrates. Because of these different topographies of the two substrates, the value of the pre-tilt angle of the cell depends on the point of the surface where it is observed.
  • the pre-tilt angle of a cell is a mean value. Indeed the value of this angle can be different on one and the other substrate; it can vary according to the three dimensions, that is to say if one considers a molecule, the value of the angle can vary according to the position of this molecule in the plane of the substrates and in the thickness of the cavity. Yes any one or more steps of the manufacturing process are defective, it is understood that this can have a direct impact on the value of the pre-tilt angle of the cell, and consequently on the qualities of the display.
  • the measurement of the pre-tilt angle is used in the process of developing new manufacturing processes or processes using a new material.
  • the measurement is carried out by means of a well-known method called rotating crystal and described by Messieurs TJ. Scheffer and J. Nehring.
  • rotating crystal and described by Messieurs TJ. Scheffer and J. Nehring.
  • specially manufactured cells are used. These cells can be immersed in a liquid of suitable index in order to suppress so-called Fresnel reflections, which makes it possible to improve the accuracy of the measurement.
  • This method of measurement is well adapted for cells specially designed for it, and which are simplistic sets adapted to the parameter that one wants to characterize. But it can not be used to test defective LCD displays at the end of production. It is not suitable for measuring a pre-tilt angle in a cell that is a real product completed in all its complexity, leaving the production lines.
  • a solution to this technical problem is proposed with a method which does not require the production of special cells, and which can be easily used directly on the production lines of the liquid crystal cells.
  • an average value of the pre-tilt angle of a liquid crystal cell is evaluated, in particular by a comparison of an angle transmission measurement in a plane defined by the cell tested, with a calculated theoretical value. More specifically, to evaluate the value of the tilt angle in a twisted nematic liquid crystal cell, the transmission of the cell is calculated as a function of the angle of incidence ⁇ of wavelength light radiation.
  • the transmission curve is measured as a function of the angle of incidence of the cell along the axis YY 'passing through the high positions T and low B of the cell, for the light radiation of wavelength ⁇ , using a contrast measuring device.
  • the coincidence of this measurement curve with one of the plurality of simulation curves gives the value of the pre-tilt angle of this cell.
  • the invention thus relates to a method of evaluating a pre-tilt angle in a liquid crystal cell, said cell comprising a cavity between two substrates containing liquid crystal molecules, each side of the substrates being interior of the cavity comprising an alignment layer such that the liquid crystal molecules are each inclined relative to the plane of the substrates of said pre-tilt angle, said liquid crystal being of nematic helical type with a determined torsion angle, and said cell having high and low positions defining a median vertical axis in front view, characterized in that it comprises using a contrast measuring apparatus to establish a measurement curve along said vertical axis of the cell for transmitting a light radiation at a determined wavelength of said cell as a function of an angle of incidence of a light radiation on said cell, and a comparison of said measurement curve with a plurality of simulation curves of the transmission of said cell as a function of the angle of incidence of the light beam along said vertical axis of the cell, each of said plurality of simulation curves being calculated for a predetermined pre
  • is the angle of transmission of the light ray in the liquid crystal, a function of the value of the angle of incidence, and no the ordinary index of the liquid crystals, d and not being the thickness of the cavity and the extraordinary index in normal incidence.
  • the evaluation of the pre-tilt angle of said cell is given by the selection of a simulation curve among said plurality of curves which substantially coincides with said measurement curve.
  • FIGS. 1a and 1b illustrate, in front view and in transverse view, a liquid crystal cell display of the active matrix type with colored filters
  • FIGS. 2a to 2d illustrate the contrast measurement mounts used in the invention for measuring the transmission response of a cell
  • FIG. 3 gives an example of the optical images showing the response in white and in black of a cell obtained with a measurement assembly of the contrast function of the angle of incidence;
  • FIG. 4 illustrates the angles of incidence and refraction in the cell of a light beam
  • FIG. 5 illustrates the path of the refractive angle ⁇ of the light beam in the liquid crystal cavity, as a function of the angle ⁇ of incidence of the beam on the cell;
  • FIG. 6 is a diagram illustrating the variation of the so-called twist angle with the angle of incidence ⁇ , with respect to a normal incidence with respect to the surface plane of the cell;
  • FIGS. 7 and 8 illustrate a comparison method between the measurement of the transmission from the contrast measurements and the approximate theoretical curves of this response, allowing an evaluation of the average value of the pre-tilt angle of a cell.
  • the invention generally applies to liquid crystal cells of the TN-helical nematic type: with a passive or active matrix, with or without colored filters.
  • the invention is more particularly described for a twist angle of 90 ° ( ⁇ / 2 rad), but it applies generally whatever the value of the twist angle.
  • FIGS. 1a and 1b illustrate a liquid crystal cell, of the active matrix and color filter type, to which the invention can be applied.
  • Figure 1a is a front view, and Figure 1b a cross sectional view. They illustrate a conventional structure of a cell C: two transparent substrates 1 and 2 assembled to one another so as to form a cavity 3 in which the liquid crystals X1 are injected.
  • the substrate 1 is the one that comprises the pixel electrodes and associated switching devices for addressing, typically TFTs in the case of an active matrix.
  • the substrate 2 is the one that has the counter-electrode common to all image points of the cell. Note that in the case of a passive matrix type cell, there would not be a common counter electrode but a pixel electrode array, and associated switching devices.
  • the substrate 2 also comprises a network of filters colored, which is symbolically illustrated on the figure by a black and white checkerboard.
  • each substrate is covered on the cavity side with an alignment layer, typically a polyimide, which is rubbed: this is the layer 1.1, respectively 2.1 of the substrate 1, respectively 2.
  • the direction of friction on each layer 1.1, 2.1 is indicated on the figures by a corresponding arrow, F1 and F2 respectively.
  • the substrate 1 receives the incident radiation L to be transmitted by the cell.
  • the directions with respect to each other of the friction axes F1 and F2 in the assembled cell determine the high T and low B positions, called Top and Bottom, of the cell, as it will have to be. positioned in a display in front view. These positions T and B are indicated in these figures and the following figures. In practice, on a display, these positions define a vertical axis YY 'median of the cell in front view, typically on the surface plane of the substrate 2 ( Figures 1a and 1b).
  • FIGS. 2a to 2d and 3 illustrate steps of a first phase of a method for evaluating the tilt angle of a liquid crystal cell C of any type, and for example of an active matrix cell and color filters as described above in connection with Figures 1a and 1b.
  • the transmission of the cell is measured by means of a commercial contrast measuring device 4, which provides luminance measurements collected at each point, simultaneously for different incidences ⁇ of the light beam arriving on the surface plane. of the substrate 1.
  • the optical figures provided by the device show corresponding contrast maps or isocontrast diagrams.
  • ELDIM-EZContrast device marketed by ELDIM SA may be used.
  • the first two configurations A1 and A2 are respectively the contrast measurements of the cell when the display device aims to block the light (A1 configuration) or let all the light (A2 configuration). More precisely in the configuration A1, the display device comprises the LED light box, an input polarizer Pin, the cell C, an output polarizer Pout. The cell is illuminated by the rear face of the substrate 1.
  • the polarizers Pin and Pout are parallel polarized and the cell is used without applied voltage: Under these conditions, if we take the example of a cell C liquid crystal TN, the polarization of the light undergoes a rotation of ⁇ / 2 through the liquid crystal cavity: as the output polarizer is identical to the input polarizer, the light polarized along a different axis does not pass the output polarizer. In this configuration A1, a transmission measurement is carried out for the "black” state. To carry out the transmission measurement of the "white” state (all the polarized light passes), it suffices to remove the output polarizer Pout from the previous configuration A1: this is the configuration A2 illustrated in FIG. 2b.
  • Figure 3 shows an example of the optical images obtained for the black state (Mb) and for the white state (Mw).
  • the total transmission T of the cell is obtained by making the ratio of the two, for all the points situated on the vertical section Y and Y ", ie between the top T and the bottom B of the cell.
  • the contrast observed at normal incidence N on the surface of the substrate 1 (FIG. 1a), ie with an angle of incidence ⁇ 0 ° relative to normal N.
  • a black concentration is observed for the black state following a butterfly zone offset from the central point. For the black state, there is a lower brightness for the highest incidence angles.
  • the transmission of the cell as a function of the angle of incidence is obtained by making the ratio at each point of the luminosities obtained between the "black” state and the “white” state, for incident radiation at a length of given wave.
  • this transmission of the own contribution of the output polarizer Pout must be corrected.
  • the transmission of the polarizer is measured according to the same principle as before, ie with and without the output polarizer Pout, but without the cell, and at the same wavelength: these are the configurations A3 and A4 illustrated on FIG. Figures 2c and 2d.
  • the brightness values are recorded at each of the points of the right-hand portion [T; B] as a function of the angle of incidence relative to normal.
  • T; B the report obtained for the cell at this point, which is divided by the ratio (black state / white state) obtained at this point for the output polarizer Pout .
  • a transmission curve M (C) is obtained as a function of the angle of incidence ⁇ as illustrated in FIGS. 7 and 8, with ⁇ varying from -60 ° to + 60 °.
  • FIGS 4 to 8 illustrate another phase of the process that can be performed in parallel, before or after the measurement phase of the transmission of the C cell as a function of the incidence anal.
  • This other phase is a phase essentially of theoretical calculation of the transmission T as a function of the angle of incidence, on the vertical axis between the high position T and the low position B on the cell.
  • represents the wavelength of the incident radiation, ⁇ tw i st the twist angle, d the thickness of the liquid crystal cavity between the two substrates 1 and 2 and no and are the ordinary indices. and extraordinary characteristics of the liquid crystals used.
  • Eq 1 is however not valid for any non-normal incidence.
  • a non-normal incidence there is, as illustrated in FIG. 4, a refraction in the various mediums traversed, as a function of the differences in indices between the mediums, which modifies the apparent value of certain characteristics, and consequently the transmission.
  • Figure 4 there is shown a liquid crystal molecule xl.
  • An incident light ray Fj nc arrives on the rear face of the substrate 1 with an angle of incidence ⁇ ⁇ 0 ° relative to the normal N to this face. It passes through the substrate 1 forming an angle ⁇ with the normal. In the liquid crystal cavity 3, the F ms beam obtained forms an angle ⁇ with the normal. It passes through the substrate 2 forming an angle ⁇ 'with the normal, and out (F out ) at an angle ⁇ ' with the normal.
  • a helical nematic liquid crystal is considered such that the direction of rotation of the helix is to the right.
  • the idea of the invention is to approximate the apparent value of these parameters, by equations function of the angle of incidence ⁇ , to obtain an approximate value of the transmission as a function of the angle of incidence ⁇ to from the formula Eq 1 recalled above.
  • the apparent value of the twist angle is also modified, which is illustrated in FIG. 5 for an expected twist angle of ⁇ / 2 under normal incidence.
  • the refraction axis R N is considered in a TN-type liquid crystal corresponding to the normal incidence.
  • the twist angle ⁇ twist is ⁇ / 2. If we switch this axis by an angle ⁇ , backward in the example, the apparent twist angle is different, in the example it is greater. It is shown that this apparent value ⁇ tW ⁇ st-a of the twist angle can be written as a function of the refraction angle ⁇ in the liquid crystal:
  • T (a) ⁇ cos 2 ⁇ twnt _ a) + ⁇ - sm (2v. ⁇ tmt _ a) sm (2 ⁇ m ,, _ a) - ⁇ sm (v. ⁇ tmt _ a)) cos 2 (20 / im , _fl )
  • d is measured using a conventional device with a rotating polarizer, d can be adjusted to perfect the coincidence between the theoretical and measurement simulated curves: the value d is changed in normal incidence of the thickness of the the cavity, and the value for which the best coincidence is obtained between the simulation curve calculated with this value and the measurement curve, gives the value of the thickness of the cell.
  • the method according to the invention thus advantageously makes it possible to determine both the pre-tilt angle and the thickness of the tested cell.
  • equal to the value used for the measurement of the response of the cell in the previous phase, with a device for measuring contrast.
  • the pre-tilt value of the cell C is deduced by the coincidence between the measured curve and a determined simulated curve.
  • FIG. 7 relates to a cell defined in particular by a reference liquid crystal 6694-015, and polyimide alignment layers P1 of reference NISSAN7492, by which a small pre-tilt angle is obtained, typically between 3 ° and 4 °.
  • FIG. 8 relates to a cell defined in particular by a reference liquid crystal 6694-070, and polyimide alignment layers P1 of the reference NISSAN7792, by which a pre-tilt angle greater than in the preceding case is obtained, typically between 6 ° and 8 °.
  • a pre-tilt angle greater than in the preceding case typically between 6 ° and 8 °.
  • the typical values of dn, d, ne, and no for this cell are shown in the figure.
  • the simulated curve is translated along the vertical axis.
  • the simulated curves change from a symmetrical shape at 0 relative to the vertical axis, to non-symmetrical shapes.
  • the evaluation method which has just been described is simple to implement and has shown in practice good repeatability and sufficient accuracy, better than 0.5 °, which is sufficient to detect a significant problem in the manufacturing process or in the polyimide materials used. It is used whenever a display fault is found on a liquid crystal cell is found at the output of manufacture.

Abstract

Pour évaluer la valeur de l'angle de tilt ?<SUB>tilt</SUB> dans une cellule à cristaux liquides nématiques en hélice, on calcule la transmission de la cellule en fonction de l'angle d'incidence a d'un rayonnement lumineux de longueur d'onde donnée ? en utilisant des valeurs apparentes de l'épaisseur d de la cavité de la cellule, de l'indice extraordinaire ne et de l'angle de torsion ?<SUB>twist</SUB>. pour obtenir une pluralité de courbes de simulation Sim1, Sim2, une par valeur d'angle de pré-tilt ?<SUB>tilt</SUB> donnée, on mesure la courbe de transmission (M(C)) en fonction de l'angle d'incidence de la cellule le long de l'axe YY' passant par les positions haute T et basse B de la cellule, pour le rayonnement lumineux de longueur d'onde ?, en utilisant un dispositif de mesure de contraste, et la coïncidence de cette courbe de mesure avec une parmi la pluralité des courbes de simulation donne la valeur de l'angle de pré-tilt de cette cellule.

Description

PROCEDE D'EVALUATION DE L'ANGLE DE PRE-TILT DANS UNE CELLULE A CRISTAUX LIQUIDES
La présente invention concerne un procédé de mesure de l'inclinaison ou angle de pré-tilt des molécules de cristal liquide de cellules à cristaux liquides du type nématique en hélice, ou TN pour Twisted Nematic,.
Une cellule à cristaux liquides TN est habituellement formée de deux substrats transparents assemblés pour former entre eux une cavité dans laquelle les molécules de cristal liquide sont injectées. Une molécule de cristal liquide a une forme allongée selon un axe longitudinal, tel un bâtonnet. L'angle de pré-tilt peut alors se définir comme suit : on considère une position normale d'une telle molécule, à plat contre le plan de surface d'un substrat. On ancre une extrémité de la molécule sur ce plan et on force l'autre extrémité dans une position tel que l'axe longitudinal de la molécule forme un angle avec le plan de surface du substrat : c'est l'angle de pré-tilt.
Cet angle permet notamment d'imposer aux molécules de cristal liquide de la cellule le sens de déroulement en hélice dans l'épaisseur de la cavité. Il a un impact direct sur les performances d'un afficheur à cristal liquide. Il est obtenu de manière bien connue en déposant sur chacune des faces des substrats internes à la cavité, une couche d'alignement transparente, typiquement du polyimide, qui est frottée par exemple au moyen d'un rouleau en tissu suivant un axe d'orientation déterminé, de manière à créer en surface des lignes d'ancrage dans cet axe, et qui est soumise à différents nettoyages et recuits thermiques. Les opérations de frottement réalisées sur les deux substrats et leur assemblage sont tels qu'il existe un angle de torsion dit angle de twist entre les axes de frottement des deux couches d'alignement. Par exemple, cet angle de torsion ou twist est de 90° ou π/2 rad. Il peut être inférieur, par exemple de 80° ou supérieur, par exemple de 280°, typiquement pour les cristaux liquides dits super nématiques en hélice STN. Dans la suite, l'expression cristal liquide TN s'entend pour un angle de torsion ou de twist quelconque. Les molécules de cristal liquide ont toutes au repos l'inclinaison déterminée, appelée angle de pré-tilt, par rapport au plan du substrat. Quand un champ électrique est appliqué, un sens de déroulement en hélice des molécules de cristal liquide s'impose dans l'épaisseur de la cavité. Les directions des axes de frottement des deux couches d'alignement dans la cellule assemblée définissent la position haute ou Top et basse ou Bottom de la cellule dans un afficheur, qui sont des notions associées aux contrastes selon l'angle de vue.
L'angle de pré-tilt effectif obtenu en sortie de fabrication dépend de différents facteurs, au nombre desquels on peut citer les conditions de frottement des couches d'alignement, les étapes de nettoyage, la topographie de chacun des substrats, le ou les matériaux (polyimides) utilisés pour réaliser les couches d'alignement, les propriétés des cristaux liquides injectés... Notamment les topographies des deux substrats sont différentes.
Typiquement, si on prend l'exemple d'un afficheur à cristaux liquides comprenant une cellule du type à matrice active et filtres colorés, un premier substrat correspond à la matrice active, qui comprend notamment les transistors TFT, les lignes de sélection, les lignes de données et les premières électrodes pixels des points image de l'écran, et un deuxième substrat correspond à la contre-électrode formant l'autre électrode pixel commune à tous les points image, et comprend aussi les filtres colorés rouge vert bleu. Le réseau de filtres sur le substrat 2 et le réseau de TFT avec les électrodes pixel sur le substrat 1 donnent des topographies bien différentes des substrats. Du fait de ces topographies différentes des deux substrats, la valeur de l'angle de pré-tilt de la cellule dépend du point de la surface où il est observé. En pratique l'angle de pré-tilt d'une cellule est une valeur moyenne. En effet la valeur de cet angle peut être différente sur l'un et l'autre substrat ; elle peut varier suivant les trois dimensions, c'est à dire si on considère une molécule, la valeur de l'angle peut varier suivant la position de cette molécule dans le plan des substrats et dans l'épaisseur de la cavité. Si une ou des étapes quelconques du procédé de fabrication sont défectueuses, on comprend que cela peut avoir un impact direct sur la valeur de l'angle de pré-tilt de la cellule, et par suite sur les qualités de l'affichage.
Dans l'invention, dans le cas où des défauts d'affichage sont constatés en fin de fabrication lors de la phase de tests et mesures sur la cellule, par exemple si on observe du traînage, des fuites de lumières, des défauts de contraste en angle, on veut pouvoir vérifier la valeur moyenne de l'angle de pré-tilt de la cellule, pour remonter le cas échéant rapidement à une ou des phases de procédé de fabrication responsables du ou des défauts constatés : pollution, obsolescence ou défauts du polyimide, erreur dans l'opération de frottement.
Habituellement la mesure de l'angle de pré-tilt est utilisée dans le processus de mise au point de nouveaux procédés de fabrication ou de procédés utilisant un nouveau matériau. Dans ce contexte de mise au point, la mesure est effectuée au moyen d'une méthode bien connue dite à cristal tournant et décrite par Messieurs TJ. Scheffer et J.Nehring. Dans cette méthode on utilise des cellules fabriquées spécialement. Ces cellules peuvent être immergées dans un liquide d'indice adapté afin de supprimer les réflexions dites de Fresnel, ce qui permet d'améliorer la précision de la mesure.
Cette méthode de mesure est bien adaptée pour des cellules spécialement conçues pour elle, et qui sont des ensembles simplistes adaptés au paramètre que l'on veut caractériser. Mais elle ne peut pas être utilisée pour tester des écrans à cristaux liquides défectueux en sortie de fabrication. Elle n'est pas adaptée pour mesurer un angle de pré-tilt dans une cellule qui est un vrai produit abouti dans toute sa complexité, sortant des lignes de production.
Dans l'invention, on propose une solution à ce problème technique avec un procédé qui ne nécessite pas la réalisation de cellules spéciales, et qui peut être facilement utilisé directement sur les lignes de production des cellules à cristaux liquides. Dans un procédé selon l'invention, on évalue une valeur moyenne de l'angle de pré-tilt d'une cellule à cristaux liquides notamment par une comparaison d'une mesure de transmission en angle dans un plan défini par la cellule testée, avec une valeur théorique calculée. Plus précisément, pour évaluer la valeur de l'angle de tilt dans une cellule à cristaux liquides nématiques en hélice, on calcule la transmission de la cellule en fonction de l'angle d'incidence α d'un rayonnement lumineux de longueur d'onde donnée λ en utilisant des valeurs apparentes de l'épaisseur d de la cavité de la cellule, de l'indice extraordinaire ne et de l'angle de torsion θtWist, pour obtenir une pluralité de courbes de simulation, une par valeur d'angle de pré-tilt donnée ; on mesure la courbe de transmission en fonction de l'angle d'incidence de la cellule le long de l'axe YY' passant par les positions haute T et basse B de la cellule, pour le rayonnement lumineux de longueur d'onde λ, en utilisant un dispositif de mesure de contraste. La coïncidence de cette courbe de mesure avec une parmi la pluralité des courbes de simulation donne la valeur de l'angle de pré-tilt de cette cellule.
Telle que revendiquée, l'invention concerne donc un procédé d'évaluation d'un angle de pré-tilt dans une cellule à cristaux liquides, ladite cellule comprenant une cavité entre deux substrats contenant des molécules de cristal liquide, chaque face des substrats à l'intérieur de la cavité comprenant une couche d'alignement telles que les molécules de cristal liquide sont chacune inclinées par rapport au plan des substrats dudit angle de pré-tilt, ledit cristal liquide étant de type nématique en hélice avec un angle de torsion déterminé, et ladite cellule ayant des positions haute et basse définissant un axe vertical médian en vue de face, caractérisé en ce qu'il comprend l'utilisation d'un appareil de mesure de contraste pour établir une courbe de mesure le long dudit axe vertical de la cellule de la transmission d'un rayonnement lumineux à une longueur d'onde déterminée de la dite cellule en fonction d'un angle d'incidence d'un rayonnement lumineux sur ladite cellule, et une comparaison de ladite courbe de mesure à une pluralité de courbes de simulation de la transmission de ladite cellule en fonction de l'angle d'incidence du rayon lumineux le long dudit axe vertical de la cellule, chacune de ladite pluralité de courbes de simulation étant calculée pour une valeur de pré-tilt déterminée et ladite pluralité de courbes étant calculée en prenant des valeurs apparentes de l'épaisseur d de la cavité de cristal liquide entre les deux substrats, de l'indice extraordinaire ne des cristaux liquides et de l'angle de torsion de la cellule déterminées par les formules suivantes:
daPP = > θ,,,s,~a = où γ est l'angle de transmission du rayon lumineux dans le cristal liquide, fonction de la valeur de l'angle d'incidence, et no l'indice ordinaire des cristaux liquides, d et ne étant l'épaisseur de la cavité et l'indice extraordinaire en incidence normale.
L'évaluation de l'angle de pré-tilt de ladite cellule est donnée par la sélection d'une courbe de simulation parmi ladite pluralité de courbes qui coïncide sensiblement avec ladite courbe de mesure.
D'autres avantages et caractéristiques de l'invention sont détaillés dans la description suivante en référence aux dessins illustrés d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif. Dans ces dessins :
-les figures 1a et 1 b illustrent en vue de face et en vue transversale un afficheur à cellule à cristaux liquides du type matrice active à filtres colorés; -les figures 2a à 2d illustrent les montages de mesure de contraste utilisés dans l'invention pour mesurer la réponse en transmission d'une cellule; -la figure 3 donne un exemple des images optiques montrant la réponse en blanc et en noir d'une cellule obtenues avec un montage de mesure du contraste fonction de l'angle d'incidence;
-la figure 4 illustre les angles d'incidence et de réfraction dans la cellule d'un rayon lumineux; -la figure 5 illustre le parcours de l'angle de réfraction γ du rayon lumineux dans la cavité à cristaux liquides, en fonction de l'angle α d'incidence du rayon sur la cellule;
-la figure 6 est un schéma illustrant la variation de l'angle dit de twist avec l'angle d'incidence α, par rapport à une incidence normale par rapport au plan de surface de la cellule;
-les figures 7 et 8 illustrent une méthode de comparaison entre la mesure de la transmission à partir des mesures de contraste et les courbes théoriques approximées de cette réponse, permettant une évaluation de la valeur moyenne de l'angle de pré-tilt d'une cellule.
On notera que dans la description qui suit les différents éléments sont chacun désignés par la même référence dans toutes les figures.
L'invention s'applique de façon générale aux cellules à cristaux liquides du type nématique en hélice TN : à matrice passive ou active, à filtres colorés ou non. L'invention est plus particulièrement décrite pour un angle de twist de 90° (π/2 rad), mais elle s'applique de manière générale quelle que soit la valeur de l'angle de twist.
A simple titre d'illustration, les figures 1a et 1 b illustrent une cellule à cristaux liquides, du type à matrice active et filtres colorés, à laquelle peut s'appliquer l'invention.
La figure 1a est une vue de face, et la figure 1 b une vue en coupe transversale. Elles illustrent une structure classique d'une cellule C : deux substrats transparents 1 et 2 assemblés l'un à l'autre de façon à former une cavité 3 dans laquelle les cristaux liquides Xl sont injectés. Le substrat 1 est celui qui comporte les électrodes pixels et des dispositifs de commutation associés pour l'adressage, typiquement des TFT dans le cas d'une matrice active. Le substrat 2 est celui qui comporte la contre-électrode commune à tous les points image de la cellule. A noter que dans le cas d'une cellule du type à matrice passive, on aurait non pas une contre-électrode commune mais un réseau d'électrodes pixel, et des dispositifs de commutation associés. Le substrat 2 comporte aussi un réseau de filtres colorés, ce qui est illustré symboliquement sur la figure par un damier noir et blanc. Chaque substrat est recouvert côté cavité d'une couche d'alignement, typiquement un polyimide, frottée : c'est la couche 1.1 , respectivement 2.1 du substrat 1 , respectivement 2. Le sens de frottement sur chaque couche 1.1 , 2.1 est indiqué sur les figures par une flèche correspondante, F1 et F2 respectivement. En pratique, le substrat 1 reçoit le rayonnement incident L à transmettre par la cellule.
De manière connue, les directions l'une par rapport à l'autre des axes de frottement F1 et F2 dans la cellule assemblée déterminent les positions haute T et basse B, dites Top et Bottom, de la cellule, telle qu'elle devra être positionnée dans un afficheur en vue de face. Ces positions T et B sont indiquées sur ces figures et les figures suivantes. En pratique, sur un afficheur, ces positions définissent un axe vertical YY' médian de la cellule en vue de face, typiquement sur le plan de surface du substrat 2 (figures 1a et 1b).
Les figures 2a à 2d et 3 illustrent des étapes d'une première phase d'un procédé d'évaluation de l'angle de tilt d'une cellule à cristaux liquides C de tout type, et par exemple d'une cellule à matrice active et filtres colorés comme décrit ci-dessus en relation avec les figures 1a et 1 b. Dans cette phase, on mesure la transmission de la cellule au moyen d'un dispositif de mesure de contraste 4 du commerce, qui fournit des mesures de luminance recueillies en chaque point, simultanément pour différentes incidences α du faisceau lumineux arrivant sur le plan de surface du substrat 1. Les figures optiques fournies par le dispositif montrent des cartes de contraste ou diagrammes d'isocontrastes correspondants. On pourra par exemple utiliser un appareil ELDIM-EZContrast, commercialisé par la société ELDIM SA.
Deux séries de deux mesures sont réalisées, au moyen d'un dispositif d'affichage selon quatre configurations A1 à A4 illustrées sur les figures 2a à 2d. Les deux premières configurations A1 et A2 sont respectivement les mesures de contraste de la cellule quand le dispositif d'affichage vise à obturer la lumière (configuration A1 ) ou laisse passer toute la lumière (configuration A2). Plus précisément dans la configuration A1 , le dispositif d'affichage comprend la boîte à lumière LED, un polariseur d'entrée Pin, la cellule C, un polariseur de sortie Pout. La cellule est éclairée par la face arrière du substrat 1. Les polariseurs Pin et Pout sont à polarisation parallèle et la cellule est utilisée sans tension appliquée : Dans ces conditions, si on prend l'exemple d'une cellule C à cristaux liquides TN, la polarisation de la lumière subit une rotation de π/2 à travers la cavité de cristaux liquides : comme le polariseur de sortie est identique au polariseur d'entrée, la lumière polarisée selon un axe différent ne passe pas le polariseur de sortie. Dans cette configuration A1 , on effectue une mesure de transmission pour l'état "noir". Pour effectuer la mesure de transmission de l'état "blanc" (toute la lumière polarisée passe), il suffit d'enlever le polariseur de sortie Pout de la configuration précédente A1 : c'est la configuration A2 illustrée sur la figure 2b.
La figure 3 montre un exemple des images optiques obtenues pour l'état noir (Mb) et pour l'état blanc (Mw). La transmission totale T de la cellule est obtenue en faisant le rapport des deux, pour tous les points situés sur la section verticale Y et Y", c'est à dire entre le haut T et le bas B de la cellule. La mire indicée de 0 au centre jusqu'à 60 sur le cercle extérieur donne la valeur de l'angle d'incidence (ou d'observation) α. L'angle d'orientation φ variant de 0° à 360° dans les sens des aiguilles d'une montre permet de repérer les variations de luminosité observées. On s'intéresse plus particulièrement aux variations observées sur l'axe vertical YY' (90°-270°) correspondant aux positions haute T et basse B de l'écran : la carte de contraste montre ainsi la variation observée sur cet axe en variant l'angle d'observation de -60° (pour φ = 270 °) à +60° (pour φ = 90 °). Au centre 0 de la mire, on a le contraste observé en incidence normale N sur la surface du substrat 1 (figure 1a), c'est à dire avec un angle d'incidence α=0° par rapport à la normale N.
Dans l'exemple on observe pour l'état noir, une concentration en noir suivant une zone en papillon décalée du point central. Pour l'état noir, on a une luminosité plus faible pour des angles d'incidence les plus élevés.
La transmission de la cellule en fonction de l'angle d'incidence est obtenue en faisant le rapport en chaque point des luminosités obtenues entre l'état "noir" et l'état "blanc", pour un rayonnement incident à une longueur d'onde donnée. Cependant il faut corriger cette transmission de la contribution propre du polariseur de sortie Pout. En effet, la transmission dans le polariseur varie en pratique avec l'angle d'incidence. La transmission du polariseur est mesurée selon le même principe que précédemment, c'est à dire avec et sans le polariseur de sortie Pout, mais sans la cellule, et à la même longueur d'onde : ce sont les configurations A3 et A4 illustrées sur les figures 2c et 2d.
Ainsi, dans cette phase du procédé de l'invention, après avoir relevé les cartes de luminosité relatives aux configurations A1 à A4, on relève les valeurs de luminosité en chacun des points de la portion de droite [T;B] en fonction de l'angle d'incidence par rapport à la normale. Pour chacun des points, on effectue le rapport ( Etat noir/Etat blanc) obtenu pour la cellule en ce point, que l'on divise par le rapport ( Etat noir/Etat blanc) obtenu en ce même point pour le polariseur de sortie Pout. On obtient une courbe de transmission M(C) en fonction de l'angle d'incidence α comme illustrée sur les figures 7 et 8, avec α variant de -60° à + 60°.
On notera que la mesure de la transmission pour le polariseur se fait une seule fois pour un polariseur de sortie déterminé, particulier. On n'est amené à refaire cette mesure que si l'on doit changer de polariseur de sortie. Les figures 4 à 8 illustrent une autre phase du procédé qui peut être réalisée en parallèle, avant ou après la phase de mesure de la transmission de la cellule C en fonction de l'anale d'incidence. Cette autre phase est une phase essentiellement de calcul théorique de la transmission T en fonction de l'angle d'incidence, sur l'axe vertical entre la position haute T et la position basse B sur la cellule. Dans cette phase, on part de la formule théorique générale de M. H. L. Ong donnant la transmission de la cellule pour une incidence normale, c'est à dire pour α=0°. Cette formule bien connue de l'homme de l'art est la suivante :
r ))2 cos(2#Am/ ) Eq. 1
Dans cette formule, λ représente la longueur d'onde du rayonnement incident, θtwist l'angle de twist, d l'épaisseur de la cavité de cristal liquide entre les deux substrats 1 et 2 et no et ne sont les indices ordinaire et extraordinaire caractéristiques des cristaux liquides utilisés.
La formule donnée par Eq 1 n'est cependant pas valide pour une incidence non normale, quelconque. Dans le cas d'une incidence non normale, on a, comme illustré sur la figure 4, une réfraction dans les différents milieux traversés, en fonction des différences d'indices entre les milieux, ce qui modifie la valeur apparente de certaines caractéristiques, et par suite la transmission. Sur la figure 4 on a représenté une molécule de cristal liquide xl.
Elle a de manière connue une forme allongée, et l'axe longitudinal de cette molécule forme avec le plan de surface un angle de pré-tilt θtitt-
Un rayon lumineux incident Fjnc arrive sur la face arrière du substrat 1 avec un angle d'incidence α≠0° par rapport à la normale N à cette face. Il traverse le substrat 1 en formant un angle β avec la normale. Dans la cavité de cristaux liquides 3, le faisceau Fms obtenu forme un angle γ avec la normale. Il traverse le substrat 2 en formant un angle β' avec la normale, et en ressort (Fout) en faisant un angle α' avec la normale. On considère un cristal liquide nématique en hélice tel que le sens de rotation de l'hélice est vers la droite.
Comme illustré sur la figure 5, en variant l'angle d'incidence α du rayon lumineux Fιnc, on a une variation de l'angle γ du faisceau Fιns dans la cavité. Cette variation a une influence sur les indices extraordinaire ne, l'angle de twist ainsi que l'épaisseur de la cellule.
L'idée de l'invention est d'approximer la valeur apparente de ces paramètres, par des équations fonction de l'angle d'incidence α, pour obtenir une valeur approximée de la transmission en fonction de l'angle d'incidence α à partir de la formule Eq 1 rappelée plus haut.
Dans l'invention, on réalise les approximations suivantes : Pour l'indice extraordinaire ne, on montre que la valeur apparente neapp de cet indice en fonction de la valeur de l'angle d'incidence peut s'écrire : ne neapp = "
+ ( — τ - \)sm(γ- tilt) nυ~ ce qui amène une valeur apparente Δnapp de la différence entre les indices extraordiaire et ordinaire qui s'écrit : Δnapp= neapp-no.
On montre que la valeur apparente de l'angle de twist est aussi modifiée, ce qui est illustré sur la figure 5 pour un angle de twist prévu de π/2 sous incidence normale. On considère l'axe de réfraction RN dans un cristal liquide de type TN correspondant à l'incidence normale. Dans ce cas l'angle de twist θtwist est de π/2. Si l'on bascule cet axe d'un angle γ, vers l'arrière dans l'exemple, l'angle de twist apparent est différent, dans l'exemple il est supérieur. On montre que cette valeur apparente θtWιst-a de l'angle de twist peut s'écrire en fonction de l'angle de réfraction γ dans le cristal liquide :
0Λm,_,, = 2.Arctg(—±—) . cos(γ) La valeur apparente dapp de l'épaisseur d de la cavité peut s'écrire d - _iL_
""' cos(/) ' On montre que la relation entre les angles α et γ peut être approximée en considérant que l'indice de réfraction pour le cristal liquide dans la section verticale (selon YY') peut être approximée par la valeur apparente de l'indice extraordinaire, ce qui donne :
γ≈ arcsin( sin(βr)) . ne"PP
On en déduit une formule d'approximation de la transmission en fonction de l'angle d'incidence, en utilisant ces valeurs apparentes T(α), en remplaçant dans la formule Eq 1 , ne, θtWιst, et d par leurs valeurs apparentes, soit :
T (a) = cos2twnt_a ) + ±- sm(2v.θtmt_a ) sm(2θm,,_a ) - ^sm(v.θtmt_a ))2 cos(20/im,_fl )
2v v
avec v = Vl + M et w - no Pour une cellule donnée, on connaît d, ne et no, qui sont des paramètres de fabrication.
En pratique, d est mesurée à l'aide d'un dispositif classique à polariseur tournant, d peut être ajustée pour parfaire la coïncidence entre les courbes simulées théoriques et de mesures : on fait varier la valeur d en incidence normale de l'épaisseur de la cavité, et la valeur pour laquelle la meilleure coïncidence est obtenue entre la courbe de simulation calculée avec cette valeur et la courbe de mesure, donne la valeur de l'épaisseur de la cellule. Le procédé selon l'invention permet ainsi avantageusement de déterminer à la fois l'angle de pré-tilt et l'épaisseur de la cellule testée. On prend λ égal à la valeur utilisée pour la mesure de la réponse de la cellule dans la phase précédente, avec un dispositif de mesure de contraste. Alors pour une valeur de l'angle de pré-tilt donnée θmt, on peut simuler une courbe T(α) correspondante, par exemple pour α variant -60° à +60°. En pratique, et parce que l'angle β est proche de l'angle γ, il est avantageux de faire l'approximation : γ≈β dans la formule donnant la valeur ne apparente de l'indice extraordinaire, soit : ne
Cette approximation permet de réduire le nombre d'itérations pour calculer T pour chaque valeur de α.
Les figures 7 et 8 illustrent les courbes mesurées pour un rayonnement à λ = 550 nm, et les courbes simulées calculées pour cette même longueur d'onde, pour différentes valeurs de pré-tilt pour des cellules différentes. A chaque fois, la valeur de pré-tilt de la cellule C est déduite par la coïncidence entre la courbe mesurée et une courbe simulée déterminée.
Plus précisément, la figure 7 concerne une cellule définie notamment par un cristal liquide de référence 6694-015, et des couches d'alignement en polyimide Pl de la référence NISSAN7492, par lesquelles un petit angle de pré-tilt est obtenu, typiquement compris entre 3° et 4°. Les valeurs typiques de d, ne, no et dn=nθ-ne pour cette cellule sont indiquées sur la figure. Dans cet exemple, quatre courbes de simulation Sim1 à Sim4 ont été calculées, pour quatre valeurs d'angle de prétilt différentes. La coïncidence est réalisée entre la courbe mesurée M(C) et la courbe simulée Sim2 calculée pour un angle de pré-tilt θit=3,4°, ce qui donne l'évaluation de cet angle pour la cellule considérée.
La figure 8 concerne une cellule définie notamment par un cristal liquide de référence 6694-070, et des couches d'alignement en polyimide Pl de la référence NISSAN7792, par lesquelles un angle de pré-tilt plus grand que dans le cas précédent est obtenu, typiquement compris entre 6° et 8°. Les valeurs typiques de dn, d, ne et no pour cette cellule sont indiquées sur la figure.
Dans ce deuxième exemple, trois courbes de simulation Sim4 à Sim6 ont été calculées, pour trois valeurs d'angle de prétilt différentes. La coïncidence est réalisée entre la courbe mesurée M(C) et la courbe simulée Sim5 calculée pour un angle de pré-tilt θit=7,5°, ce qui donne l'évaluation de cet angle pour la cellule considérée.
En pratique, si la courbe M(C) mesurée ne correspond pas tout à fait bien avec une courbe simulée, il suffit de varier légèrement la valeur de d. En effet, cette valeur a une grande influence sur la transmission, et la valeur d typique donnée pour le procédé de fabrication de la cellule concernée, est donnée avec un intervalle de tolérance.
Par exemple, pour l'exemple de la figure 5, on a réalisé la mesure de l'épaisseur d de la cavité, ce qui a donné 4,35μm, alors que la valeur typique d donnée pour le procédé et utilisée pour le calcul des courbes simulées Sim1 à Sim4 était d=4,33μm comme indiqué sur la figure.
En pratique, en variant la valeur de d, on translate la courbe simulée selon l'axe vertical. En variant l'angle de pré-tilt, et comme on peut le constater sur les figures 7 et 8, les courbes simulées passent d'une forme symétrique en 0 par rapport à l'axe vertical, à des formes non symétriques.
Le procédé d'évaluation qui vient d'être décrit est simple à mettre en œuvre et a montré en pratique une bonne répétabilité et une précision suffisante, meilleure que 0.5°, ce qui est suffisant pour détecter un problème important dans le procédé de fabrication ou dans les matériaux polyimides utilisés. Il est utilisé à chaque fois qu'un défaut d'affichage est constaté sur une cellule à cristaux liquides est constaté en sortie de fabrication.

Claims

REVENDICATIONS
1. Procédé d'évaluation d'un angle de pré-tilt θtfit dans une cellule à cristaux liquides, ladite cellule (C) comprenant une cavité (3) entre deux substrats (1 ,2) contenant des molécules (Xl) de cristal liquide, chaque face des substrats (1 , 2) à l'intérieur de la cavité comprenant une couche d'alignement (1.1 , 2.2) telles que les molécules de cristal liquide sont chacune inclinées par rapport au plan des substrats dudit angle de pré-tilt, ledit cristal liquide étant de type nématique en hélice avec un angle de torsion (θtWist) déterminé, et ladite cellule ayant des positions haute (T) et basse (B) définissant un axe vertical médian (YY') en vue de face, caractérisé en ce qu'il comprend l'utilisation d'un appareil de mesure de contraste (4) pour établir une courbe de mesure (M(C)) le long dudit axe vertical (YY') de la cellule de la transmission d'un rayonnement lumineux à une longueur d'onde déterminée (λ) de la dite cellule en fonction d'un angle d'incidence (α) d'un rayonnement lumineux sur ladite cellule, et une comparaison de ladite courbe de mesure (M(C)) à une pluralité de courbes de simulation (Sim1 , Sim2, Sim3) de la transmission de ladite cellule à la même longueur d'onde (λ) en fonction de l'angle d'incidence du rayon lumineux le long dudit axe vertical (YY') de la cellule, chacune de ladite pluralité de courbes de simulation (Sim1 ) étant calculée pour une valeur de pré-tilt déterminée et ladite pluralité de courbes de simulation étant calculée en prenant des valeurs apparentes de l'épaisseur d de la cavité (3) de cristal liquide entre les deux substrats, de l'indice extraordinaire ne des cristaux liquides et de l'angle de torsion (θtwist) de la cellule déterminées par les formules suivantes:
daPP = ) où γ est l'angle de transmission du rayon lumineux dans le cristal liquide, fonction de la valeur de l'angle d'incidence (α), no l'indice ordinaire des cristaux liquides, d et ne étant l'épaisseur de la cavité et l'indice extraordinaire en incidence normale.
2. Procédé selon la revendication 1 , caractérisé en ce que l'évaluation de l'angle de pré-tilt de ladite cellule est donnée par la sélection d'une courbe de simulation parmi ladite pluralité de courbes qui coïncide sensiblement avec ladite courbe de mesure.
3. Procédé selon la revendication 2, caractérisé en ce que la coïncidence est obtenue en faisant varier la valeur de l'épaisseur (d) de la cavité en incidence normale dans le calcul de ladite pluralité de courbes de simulation, pour obtenir une valeur d de l'épaisseur de la cavité pour laquelle la meilleure coïncidence est obtenue.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'obtention de la courbe de mesure de la transmission en fonction de l'angle d'incidence comprend une première mesure et une deuxième mesure de contraste sur la dite cellule respectivement à l'état blanc et à l'état noir, et le rapport entre les deux mesures le long de l'axe vertical (YY'), ladite première mesure étant obtenue en plaçant ladite cellule dans un dispositif d'affichage comprenant une boite à lumière (LED) émettant un rayonnement dans ladite longueur d'onde déterminée, ladite cellule (C) étant placée pour la première mesure entre un polariseur d'entrée (Pin) et un polariseur de sortie (Pout) à polarisations parallèles, la deuxième mesure étant effectuée en retirant ledit polariseur de sortie du dispositif d'affichage.
5. Procédé selon la revendication 4, caractérisé en ce que l'obtention de ladite courbe de mesure comprend en outre une correction dudit rapport par la transmission dudit polariseur de sortie, obtenue en réalisant une première mesure et une deuxième mesure de contraste sur ledit polariseur de sortie respectivement à l'état blanc et à l'état noir, et le rapport entre les deux mesures le long de l'axe vertical (YY'), ladite première mesure étant obtenue avec un dispositif d'affichage comprenant une boite à lumière (LED) émettant un rayonnement dans ladite longueur d'onde déterminée, ledit polariseur d'entrée (Pin) et ledit polariseur de sortie (Pout), la deuxième mesure étant effectuée en retirant ledit polariseur de sortie du dispositif d'affichage.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les dites courbes de simulation sont obtenues par l'équation suivante de la transmission pour un rayon lumineux d'incidence α normale au plan de la cellule, fonction de l'angle de pré-tilt θtiit :
T = cos2mnl ) + ^-sin(2v.0ftm, ) sin(20/ιm, ) - (-sin(v.^I4, ))2 cos(20,ιm, )
2v v avec v =
λ étant la longueur d'onde du rayonnement incident, θtWιst étant l'angle de twist, v = 2πλ, d étant l'épaisseur de la cavité de cristal liquide entre lesdits premier et deuxième substrat, en remplaçant dans cette formule les valeurs apparentes de l'épaisseur (d), de l'indice extraordinaire (ne), de l'angle de torsion (θtwist) fonctions dudit angle d'incidence (α).
7. Procédé d'évaluation selon l'une quelconque des revendications 2 à 5, caractérisé en ce que l'on prend comme valeur apparente de l'indice extaraordinaire, la valeur obtenue par la formule suivante :
HC neapp = où β est l'angle de transmission du rayon d'incidence α dans le substrat (1 ) recevant le rayonnement incident à transmettre.
8. Procédé selon l'une quelconque des revendications précédentes appliqué pour détecter un défaut d'angle de pré-tilt dans une cellule à cristaux liquides.
9. Procédé selon l'une quelconque des revendications précédentes appliqué pour mesurer une épaisseur de cavité dans une cellule à cristaux liquides.
EP07822738A 2006-11-28 2007-11-20 Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides Withdrawn EP2089758A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0610401A FR2909193B1 (fr) 2006-11-28 2006-11-28 Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides.
PCT/EP2007/062561 WO2008065025A1 (fr) 2006-11-28 2007-11-20 Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides

Publications (1)

Publication Number Publication Date
EP2089758A1 true EP2089758A1 (fr) 2009-08-19

Family

ID=38245891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07822738A Withdrawn EP2089758A1 (fr) 2006-11-28 2007-11-20 Procede d'evaluation de l'angle de pre-tilt dans une cellule a cristaux liquides

Country Status (4)

Country Link
US (1) US7855787B2 (fr)
EP (1) EP2089758A1 (fr)
FR (1) FR2909193B1 (fr)
WO (1) WO2008065025A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282999B1 (ko) * 2014-11-25 2021-07-29 삼성디스플레이 주식회사 액정의 프리틸트각 측정 장치 및 방법
CN106200050B (zh) * 2016-08-31 2019-07-23 深圳市华星光电技术有限公司 液晶显示器液晶预倾角量测方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2638281A1 (fr) 1988-10-25 1990-04-27 Thomson Csf Tube electronique de construction compacte
JPH04307312A (ja) * 1991-04-03 1992-10-29 Otsuka Denshi Kk 液晶セルのギャップ厚測定方法
US5552912A (en) * 1991-11-14 1996-09-03 Board Of Regents Of The University Of Colorado Chiral smectic liquid crystal optical modulators
US5493426A (en) * 1991-11-14 1996-02-20 University Of Colorado Foundation, Inc. Lateral electrode smectic liquid crystal devices
US5585950A (en) * 1993-04-12 1996-12-17 Casio Computer Co., Ltd. STN LCD device displaying multiple colors in response to different voltages which includes a retardation plate
US5825448A (en) * 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US6181400B1 (en) * 1999-11-19 2001-01-30 International Business Machines Corporation Discotic-type twist-film compensated single-domain or two-domain twisted nematic liquid crystal displays
JP3910352B2 (ja) 2000-04-11 2007-04-25 三菱電機株式会社 プレチルト角検出方法及び検出装置
US7149173B2 (en) * 2000-10-17 2006-12-12 Thales Medium for recording optically readable data, method for making same and optical system reproducing said data
JP4382317B2 (ja) * 2001-12-06 2009-12-09 シチズンホールディングス株式会社 液晶可変波長フィルタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008065025A1 *

Also Published As

Publication number Publication date
US20100045992A1 (en) 2010-02-25
FR2909193A1 (fr) 2008-05-30
FR2909193B1 (fr) 2008-12-26
US7855787B2 (en) 2010-12-21
WO2008065025A1 (fr) 2008-06-05

Similar Documents

Publication Publication Date Title
FR2764085A1 (fr) Procede de production de deux domaines au sein d&#39;une couche de cristal liquide, et dispositif d&#39;affichage a cristal liquide et son procede de fabrication
EP1281104B1 (fr) Dispositif bistable d&#39;affichage en reflexion avec contraste inverse
FR2693020A1 (fr) Dispositif d&#39;affichage à cristal liquide nématique en hélice.
EP2917688B1 (fr) Procede de mesure des variations d&#39;epaisseur d&#39;une couche d&#39;une structure semi-conductrice multicouche
EP3120134B1 (fr) Dispositif et méthode de caractérisation polarimétrique déportée
EP0162775A2 (fr) Cellule à cristal liquide susceptible de présenter une structure homéotrope, à biréfringence compensée pour cette structure
FR2937732A1 (fr) Dispositif et procede de mesures polarimetriques spectroscopiques dans le domaine visible et proche infrarouge
EP2596325A1 (fr) Dispositif et procède de mesure polarimétrique a résolution microscopique, accessoire de polarimétrie pour microscope, ellipso-microscope et microscope a contraste ellipsométrique
WO2014087099A1 (fr) Dispositif de mesure et de controle du front d&#39;onde d&#39;un faisceau lumineux coherent
FR2526177A1 (fr) Perfectionnements aux cellules optiques utilisant des cristaux liquides
FR2843822A1 (fr) Dispositif d&#39;affichage a cristaux liquides utilisant un cristal liquide cholesterique
EP1281169B1 (fr) Dispositif bistable d&#39;affichage en reflexion
EP2089758A1 (fr) Procede d&#39;evaluation de l&#39;angle de pre-tilt dans une cellule a cristaux liquides
EP2545409B1 (fr) Modulateur de phase à base de cristal liquide à structure hélicoïdale
JP2001290118A (ja) 液晶層の厚み測定方法および厚み測定装置
EP3394667B1 (fr) Dispositif électro-optique pour la détection de la modification locale d&#39;un champ électrique
FR2803940A1 (fr) Dispositif d&#39;affichage a cristaux liquides multi-domaines
FR2863062A1 (fr) Dispositif d&#39;affichage a ecran de type nematique bistable optimisant le noir et procede de definition de ce dispositif
CN109696419A (zh) 一种检测深度可调的lrspr传感器及折射率变化测量方法
FR2914755A1 (fr) Procede de fabrication d&#39;une cellule electro-optique a base de psflc et/ou psaflc, cellule electro-optique, dispositif et casque correspondants
FR2863061A1 (fr) Dispositif d&#39;affichage a ecran de type nematique optimisant le blanc et procede de definition de ce dispositif
Tanaka et al. Determination of the anisotropic refractive indices of twisted nematic liquid crystals by means of renormalized transmission ellipsometry
JP2565147B2 (ja) ツイスト角およびセルギャップの測定方法
FR2584521A1 (fr) Dispositif d&#39;affichage electro-optique a cristal liquide
EP1073932A1 (fr) Dispositif de visualisation a cristal liquide a compensateur de birefringence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110406

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160427