EP2089617A1 - Element which generates a magnetic field - Google Patents

Element which generates a magnetic field

Info

Publication number
EP2089617A1
EP2089617A1 EP07820506A EP07820506A EP2089617A1 EP 2089617 A1 EP2089617 A1 EP 2089617A1 EP 07820506 A EP07820506 A EP 07820506A EP 07820506 A EP07820506 A EP 07820506A EP 2089617 A1 EP2089617 A1 EP 2089617A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
sleeve
generating element
field generating
compressor wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820506A
Other languages
German (de)
French (fr)
Inventor
Johannes Ante
Stephan Heinrich
Andreas Ott
Denny SCHÄDLICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2089617A1 publication Critical patent/EP2089617A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to a magnetic field generating element for fastening a compressor wheel to a turbo shaft of an exhaust gas turbocharger, with a base body and a thread.
  • the power generated by an internal combustion engine depends on the air mass and fuel quantity supplied to the internal combustion engine. To increase performance, it is necessary for the internal combustion engine to supply an increased amount of combustion air and fuel.
  • the increase in performance is achieved in a naturally aspirated engine by increasing the displacement or by increasing the speed.
  • An increase in displacement generally leads to heavier in size larger and therefore more expensive internal combustion engines.
  • the increase in the speed brings significant problems and disadvantages, especially for larger internal combustion engines.
  • An exhaust gas turbocharger consists essentially of a compressor and a turbine, which are connected to a common shaft and rotate at the same speed.
  • the turbine converts the normally useless exhaust energy of the exhaust into rotational energy and drives the compressor.
  • the compressor which is also referred to as a compressor in this context, draws in fresh air and promotes the pre-compressed air to the cylinders of the engine.
  • the larger amount of air in the cylinders can be fed an increased amount of fuel, whereby the internal combustion engine gives more power.
  • the combustion process is also favorably influenced so that the internal combustion engine has a better overall effect. achieved.
  • the torque curve of a charged with a turbocharger internal combustion engine can be made extremely low.
  • a very accurate measurement of the rotational speed of turbochargers takes place with a magnetic field generating element which is arranged on the turbo shaft and rotates with it, wherein the magnetic field generating element caused by the magnetic field is detected by a sensor which is one to the speed of the turbo shaft generates proportional electrical signal.
  • the object of the present invention is therefore to specify a magnetic field-generating element for fastening a compressor wheel on a turboshaft of an exhaust gas turbocharger, which generates the highest possible magnetic field strength and yet the forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft , can be taken harmless.
  • the magnetic field generating element can generate a magnetic field with high field strength and it is also suitable to absorb the forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft, harmless.
  • the magnetic field generating element according to the invention combines two properties which are not available with a magnetic field generating element according to the prior art.
  • the sleeve is formed as a press-fit.
  • the press-fit sleeve can be quickly and easily connected to the base body, which saves costs and production time.
  • the base body has an internal toothing, by which the sleeve is positively connected to the base body.
  • the sleeve is firmly anchored in the body.
  • the sleeve consists of a non-magnetic metal.
  • a metal sleeve is well suited for pressing into the body and it can absorb high forces and torques without damage.
  • the sleeve is made of a plastic. Even modern plastics can absorb high forces and torques unscathed and it is even conceivable to produce the sleeve in the injection molding in the base body.
  • the sleeve is connected to at least one crimping with the base body.
  • a sleeve can be crimped easily and without much effort on the edges, which also produces a secure and durable connection of the sleeve with the body.
  • the sleeve is made of austenitic steel.
  • Austhenitic steel is particularly strong and thus the sleeve can absorb the high forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft, particularly well.
  • FIG. 1 shows an exhaust gas turbocharger with a turbine and a compressor
  • FIG. 3 shows the main body of the magnetic field generating element
  • FIG. 4 the basic body known from FIG. 3 from a different perspective
  • FIG. 5 a sleeve
  • FIG. 6 the magnetic field generating element
  • FIG. 7 again the magnetic field generating element
  • FIG. 8 is a sectional view of the magnetic field generating element
  • Figure 9 the magnetic field generating element for mounting a compressor wheel on a turbo shaft in its installation situation in the exhaust gas turbocharger.
  • FIG. 1 shows an exhaust gas turbocharger 1 with a turbine 2 and a compressor 3.
  • the compressor wheel 9 is rotatably mounted and connected to the turbo shaft 5.
  • the turbo shaft 5 is rotatably mounted and connected at its other end to the turbine wheel 4.
  • the combination of compressor wheel 9, turbo shaft 5 and turbine wheel 4 is also referred to as a running tool.
  • Hot exhaust gas is admitted into the turbine 2 via the turbine inlet 7 by an internal combustion engine (not shown here), with the turbine wheel 4 being set in rotation.
  • the exhaust gas flow leaves the turbine 2 through the turbine outlet 8.
  • the turbine wheel 4 is connected to the compressor wheel 9.
  • the turbine 2 drives the compressor 3.
  • air is sucked through the air inlet 16, which is then compressed in the compressor 3 and supplied via the air outlet 6 of the internal combustion engine.
  • FIG. 2 shows the compressor 3 in a sectional view.
  • the compressor wheel 9 In the compressor housing the compressor wheel 9 can be seen.
  • the compressor wheel 9 is mounted on the turbo shaft 5 with the magnetic field generating element 17.
  • the magnetic field generating element 17 is thus in the air inlet 16 of the compressor 3.
  • the magnetic field generating element 17 may be formed for example as a cap nut which is screwed onto a thread applied to the turbo shaft 5, the compressor wheel 9 against a collar of the turbo shaft fifth with this firmly tense.
  • the magnetic field generating element 17 for fastening the compressor wheel 9 to the turbo shaft 5 consists of a permanent magnet 13, which forms the main body 11 of the magnetic field generating element 17.
  • the magnet 13 rotates during rotation of the turbo shaft 5 with this about the axis of rotation of the turbo shaft 5.
  • the magnet 13 generates a change in the magnetic field strength or the magnetic field gradient in the sensor 15. This change of the magnetic field or the field gradient generated in Sensor 15 an electronically processed signal that is proportional to the speed of the turbo
  • the main body 11 of the magnetic field generating element 17 is formed entirely of magnetic material, whereby from the main body 11 emanates a magnetic field with a high magnetic field strength.
  • the base body 11 On the main body 11 of the north pole N and the south pole S of the magnet 13 can be seen.
  • the base body 11 for example, a hexagon 14 on which a tool can attack.
  • an internal toothing 12 In the main body 11, an internal toothing 12 can be seen.
  • FIG. 4 shows the basic body 11 known from FIG. 3 from a different perspective.
  • the main body 11 is formed entirely of magnetic material and it can thus produce a high magnetic field strength.
  • the north pole N and the south pole S of the magnet 13 can be seen on the main body 11.
  • the internal toothing 12 in the base body 11 is also clearly visible in FIG.
  • Figure 5 shows a sleeve 10 which is formed of a non-magnetic material.
  • This sleeve 10 may, for. B. be made of a high-strength, austenitic steel or a plastic.
  • FIG. 5 shows a crimp 20 on the sleeve 10.
  • Figure 6 shows the magnetic field generating element 17.
  • the magnetic field generating element 17 consists of the main body 11, which has been shown in Figures 3 and 4 and the sleeve 10 disposed therein, which is known from Figure 5.
  • the sleeve 10 may be pressed into the base body 11, wherein a positive connection of the sleeve 10 with the internal toothing 12 of the base body 11 is formed.
  • the z. B. may consist of high-strength austenitic steel, a thread 18 can easily be introduced, which is screwed with a mating thread 19 on the turbo shaft 5.
  • Figure 7 shows again the magnetic field generating element 17, in which case the crimp 20 is clearly visible on the sleeve 10.
  • the main body 11 and the sleeve 20 forms a flat upper surface which can be screwed against the compressor wheel 9.
  • FIG 8. A sectional view of the magnetic field generating element 17 is shown in FIG 8. Again, the main body 11 can be seen, in which the sleeve 10 is pressed.
  • the main body 11 is made of magnetic material and due to its high volume, the magnet 13 generates a high magnetic field strength.
  • the sleeve 10 is arranged made of high-strength steel.
  • the sleeve 10 is positively connected to the internal toothing 12 of the base body 11, and in addition fixed by the crimps 20 fixed in the base body 11.
  • the magnetic field generating element 17 obtains two essential properties.
  • FIG. 9 shows the magnetic field-generating element 17 for fastening a compressor wheel 9 to a turbo shaft 5 in its installation situation in the exhaust gas turbocharger 1.
  • the magnetic field generating element 17 consists of the main body 11 and the mechanical or / and anchored by bonding sleeve 10. It should be noted that the sleeve is made not only of a high strength steel but z. B. can also consist of a plastic.
  • the thread 8 can be seen, which is bolted to the mating thread 19 on the turbo shaft 5.
  • the base body for example, a hexagon 14 on which a wrench can attack.
  • the resulting torques and forces are transmitted completely to the sleeve 10, which is formed of high-strength material.
  • the sleeve 10 absorbs all mechanical forces, whereby the compressor wheel 9 is securely fixed to the turbo shaft 5. With the crimp 20, the sleeve 10 is pressed against the compressor wheel 9.
  • the large volume magnet 13 constituting the magnetic field generating element 17 can generate a field of high magnetic field intensity, thereby making it possible to place the sensor 15 at a relatively large distance from the magnetic field generating element 17.
  • the magnet 13 is z. B. able to generate a magnetic field with a field strength that is measurable through the outer wall of the compressor housing. This has the advantage that the sensor

Abstract

The invention relates to an element which generates a magnetic field for fastening a compressor wheel to a turboshaft of an exhaust-gas turbocharger, having a basic body and a thread. In order to specify an element which generates a magnetic field for fastening a compressor wheel to a turboshaft, which element generates as high a magnetic field strength as possible and nevertheless can absorb without damage the forces and the tightening torques which occur during fastening of the compressor wheel to the turboshaft, the entire basic body comprises a magnetic material and a sleeve is arranged in the basic body, which sleeve comprises a non-magnetic material and has the thread which can be screwed to a mating thread of the turboshaft.

Description

Beschreibungdescription
Magnetfeld erzeugendes ElementMagnetic field generating element
Die Erfindung betrifft ein Magnetfeld erzeugendes Element zur Befestigung eins Kompressorrades an einer Turbowelle eines Abgasturboladers, mit einem Grundkörper und einem Gewinde.The invention relates to a magnetic field generating element for fastening a compressor wheel to a turbo shaft of an exhaust gas turbocharger, with a base body and a thread.
Die von einer Brennkraftmaschine erzeugte Leistung hängt von der der Brennkraftmaschine zugeführten Luftmasse und Kraft- stoffmenge ab. Zur Leistungssteigerung ist es notwendig der Brennkraftmaschine eine erhöhte Menge Verbrennungsluft und Kraftstoff zuzuführen. Die Leistungssteigerung wird bei einem Saugmotor durch eine Hubraumvergrößerung oder durch die Erhöhung der Drehzahl erreicht. Eine Hubraumvergrößerung führt aber grundsätzlich zu schwereren in den Abmessungen größeren und damit teureren Brennkraftmaschinen. Die Steigerung der Drehzahl bringt besonders bei größeren Brennkraftmaschinen erhebliche Probleme und Nachteile mit sich.The power generated by an internal combustion engine depends on the air mass and fuel quantity supplied to the internal combustion engine. To increase performance, it is necessary for the internal combustion engine to supply an increased amount of combustion air and fuel. The increase in performance is achieved in a naturally aspirated engine by increasing the displacement or by increasing the speed. An increase in displacement, however, generally leads to heavier in size larger and therefore more expensive internal combustion engines. The increase in the speed brings significant problems and disadvantages, especially for larger internal combustion engines.
Eine viel genutzte technische Lösung zur Steigerung der Leistung einer Brennkraftmaschine ist die Aufladung. Damit bezeichnet man die Vorverdichtung der Verbrennungsluft durch einen Abgasturbolader oder auch mittels eines vom Motor mechanisch angetriebenen Verdichters. Ein Abgasturbolader besteht im Wesentlichen aus einem Verdichter und einer Turbine, die mit einer gemeinsamen Welle verbunden sind und mit gleicher Drehzahl rotieren. Die Turbine setzt die normalerweise nutzlos verpuffende Energie des Abgases in Rotationsenergie um und treibt den Verdichter an. Der Verdichter, der in diesem Zusammenhang auch als Kompressor bezeichnet wird, saugt Frischluft an und fördert die vorverdichtete Luft zu den Zylindern des Motors. Der größeren Luftmenge in den Zylindern kann eine erhöhte Kraftstoffmenge zugeführt werden, wodurch die Verbrennungskraftmaschine mehr Leistung abgibt. Der Verbrennungsvorgang wird zudem günstig beeinflusst, so dass die Verbrennungskraftmaschine einen besseren Gesamtwirkungs- grad erzielt. Darüber hinaus kann der Drehmomentverlauf einer mit einem Turbolader aufgeladenen Brennkraftmaschine äußerst günstig gestaltet werden.A much-used technical solution for increasing the performance of an internal combustion engine is the charging. This refers to the pre-compression of the combustion air through an exhaust gas turbocharger or by means of a mechanically driven by the engine compressor. An exhaust gas turbocharger consists essentially of a compressor and a turbine, which are connected to a common shaft and rotate at the same speed. The turbine converts the normally useless exhaust energy of the exhaust into rotational energy and drives the compressor. The compressor, which is also referred to as a compressor in this context, draws in fresh air and promotes the pre-compressed air to the cylinders of the engine. The larger amount of air in the cylinders can be fed an increased amount of fuel, whereby the internal combustion engine gives more power. The combustion process is also favorably influenced so that the internal combustion engine has a better overall effect. achieved. In addition, the torque curve of a charged with a turbocharger internal combustion engine can be made extremely low.
Bei zunehmender Abgasmenge kann die maximal zulässige Drehzahl der Kombination aus dem Turbinenrad, dem Kompressorrad und der Turbowelle, die auch als Laufzeug des Abgasturboladers bezeichnet wird, überschritten werden. Bei einer unzulässigen Überschreitung der Drehzahl des Laufzeuges würde dieses zerstört werden, was einem Totalschaden des Turboladers gleichkäme. Gerade moderne und kleine Turbolader mit deutlich kleineren Turbinen- und Kompressorraddurchmessern, die durch ein erheblich kleineres Massenträgheitsmoment ein verbessertes Drehbeschleunigungsverhalten aufweisen, werden vom Problem der Überschreitung der zulässigen Höchstdrehzahl betroffen. Je nach Auslegung des Turboladers führt schon eine Überschreitung der Drehzahlgrenze um etwa 5 % zur kompletten Zerstörung des Turboladers.With increasing exhaust gas amount, the maximum allowable speed of the combination of the turbine wheel, the compressor wheel and the turbo shaft, which is also referred to as a running gear of the exhaust gas turbocharger, are exceeded. In an inadmissible exceeding the speed of the running gear this would be destroyed, which would amount to a total loss of the turbocharger. Especially modern and small turbochargers with significantly smaller turbine and Kompressorraddurchmessern, which have a significantly lower moment of inertia improved spin performance are affected by the problem of exceeding the maximum permissible speed. Depending on the design of the turbocharger, exceeding the speed limit by approximately 5% already leads to complete destruction of the turbocharger.
Eine sehr genaue Messung der Drehzahl von Turboladern erfolgt mit einem Magnetfeld erzeugenden Element, das auf der Turbowelle angeordnet ist und sich mit dieser dreht, wobei das vom rotierenden Magnetfeld erzeugenden Element hervorgerufene Magnetfeld von einem Sensor erfasst wird, der ein zur Dreh- zahl der Turbowelle proportionales elektrisches Signal erzeugt .A very accurate measurement of the rotational speed of turbochargers takes place with a magnetic field generating element which is arranged on the turbo shaft and rotates with it, wherein the magnetic field generating element caused by the magnetic field is detected by a sensor which is one to the speed of the turbo shaft generates proportional electrical signal.
Aus der JP 10206447 A2 ist eine magnetisierte Mutter zur Befestigung des Kompressorrades an der Turbowelle bekannt. In dieser Mutter ist ein Stabmagnet angeordnet, der von einemFrom JP 10206447 A2 a magnetized nut for mounting the compressor wheel on the turbo shaft is known. In this mother, a bar magnet is arranged by a
Grundkörper getragen wird. Um ein gut messbares Magnetfeld im Sensor zu erzeugen, muss der rotierende Magnet einerseits möglichst groß sein und eine ausreichende Feldstärke produzieren, andererseits sind alle Magnete aus sehr sprödem Mate- rial gebildet, so dass sie sich als Element zur Befestigung des Kompressorrades an der Turbowelle nur sehr schlecht eignen, da das spröde Magnetmaterial die Kräfte und Anzugsdreh- momente, die bei der Befestigung des Kompressorrades an der Turbowelle auftreten, nur bedingt oder nicht ausreichend aufnehmen kann.Basic body is worn. In order to generate a good measurable magnetic field in the sensor, the rotating magnet on the one hand must be as large as possible and produce a sufficient field strength, on the other hand, all magnets are made of very brittle material, so that they are used as an element to attach the compressor wheel to the turbo shaft only very poorly suited because the brittle magnet material absorbs the forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft, can absorb only limited or insufficient.
Die Aufgabe der vorliegenden Erfindung ist es daher, ein Magnetfeld erzeugendes Element zur Befestigung eines Kompressorrades an einer Turbowelle eines Abgasturboladers anzugeben, das eine möglichst hohe magnetische Feldstärke erzeugt und dennoch die Kräfte und Anzugsdrehmomente, die bei der Befes- tigung des Kompressorrades an der Turbowelle auftreten, schadlos aufnehmen kann.The object of the present invention is therefore to specify a magnetic field-generating element for fastening a compressor wheel on a turboshaft of an exhaust gas turbocharger, which generates the highest possible magnetic field strength and yet the forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft , can be taken harmless.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Anspruchs 1 gelöst.This object is achieved by the features of independent claim 1.
Wenn der gesamte Grundkörper aus einem magnetischen Material besteht und in dem Grundkörper eine Hülse angeordnet ist, die aus einem nichtmagnetischen Material besteht und die das Gewinde aufweist, das mit einem Gegengewinde der Turbowelle verschraubbar ist, kann das Magnetfeld erzeugende Element ein Magnetfeld mit hoher Feldstärke erzeugen und es ist zudem geeignet, die Kräfte und Anzugsdrehmomente, die bei der Befestigung des Kompressorrades an der Turbowelle auftreten, schadlos aufzunehmen. Damit vereint das erfindungsgemäße Mag- netfeld erzeugende Element zwei Eigenschaften in sich, die bei einem Magnetfeld erzeugenden Element nach dem Stand der Technik nicht verfügbar sind.If the entire base body is made of a magnetic material and in the base body a sleeve is arranged, which consists of a non-magnetic material and having the thread which is screwed to a mating thread of the turbo shaft, the magnetic field generating element can generate a magnetic field with high field strength and it is also suitable to absorb the forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft, harmless. Thus, the magnetic field generating element according to the invention combines two properties which are not available with a magnetic field generating element according to the prior art.
Bei einer Ausgestaltung ist die Hülse als Einpresshülse aus- gebildet. Die Einpresshülse lässt sich schnell und mit geringem Aufwand mit dem Grundkörper verbinden, was Kosten und Produktionszeit spart.In one embodiment, the sleeve is formed as a press-fit. The press-fit sleeve can be quickly and easily connected to the base body, which saves costs and production time.
Bei einer nächsten Ausgestaltung weist der Grundkörper eine Innenverzahnung auf, durch die die Hülse formschlüssig mit dem Grundkörper verbunden ist. Hierdurch wird die Hülse fest in dem Grundkörper verankert. Bei einer Weiterbildung besteht die Hülse aus einem nichtmagnetischen Metall. Eine Hülse aus Metall eignet sich gut zum Einpressen in den Grundkörper und sie kann hohe Kräfte und Drehmomente unbeschadet aufnehmen. Alternativ dazu besteht die Hülse aus einem Kunststoff. Auch moderne Kunststoffe können hohe Kräfte und Drehmomente unbeschadet aufnehmen und es ist sogar denkbar die Hülse im Spritzgießverfahren in dem Grundkörper zu erzeugen.In a next embodiment, the base body has an internal toothing, by which the sleeve is positively connected to the base body. As a result, the sleeve is firmly anchored in the body. In a further development, the sleeve consists of a non-magnetic metal. A metal sleeve is well suited for pressing into the body and it can absorb high forces and torques without damage. Alternatively, the sleeve is made of a plastic. Even modern plastics can absorb high forces and torques unscathed and it is even conceivable to produce the sleeve in the injection molding in the base body.
Bei einer nächsten Weiterbildung ist die Hülse mit mindestens einer Krimpung mit dem Grundkörper verbunden. Eine Hülse lässt sich leicht und ohne großen Aufwand an den Rändern krimpen, womit ebenfalls eine sichere und dauerhafte Verbindung der Hülse mit dem Grundkörper erzeugt wird.In a next development, the sleeve is connected to at least one crimping with the base body. A sleeve can be crimped easily and without much effort on the edges, which also produces a secure and durable connection of the sleeve with the body.
Bei einer nächsten Ausgestaltung ist die Hülse aus austheni- tischem Stahl gebildet. Austhenitischer Stahl ist besonders fest und damit kann die Hülse die hohen Kräfte und Anzugsdrehmomente, die bei der Befestigung des Kompressorrades an der Turbowelle auftreten, besonders gut aufnehmen.In a next embodiment, the sleeve is made of austenitic steel. Austhenitic steel is particularly strong and thus the sleeve can absorb the high forces and tightening torques that occur when attaching the compressor wheel to the turbo shaft, particularly well.
Ausführungsformen der Erfindung werden in den Figuren beispielhaft dargestellt. Es zeigt:Embodiments of the invention are exemplified in the figures. It shows:
Figur 1: einen Abgasturbolader mit einer Turbine und einem Kompressor,1 shows an exhaust gas turbocharger with a turbine and a compressor,
Figur 2: den Kompressor in einer Schnittdarstellung,2: the compressor in a sectional view,
Figur 3: den Grundkörper des Magnetfeld erzeugenden Elements,FIG. 3 shows the main body of the magnetic field generating element,
Figur 4 : den aus Figur 3 bekannten Grundkörper aus einer anderen Perspektive,FIG. 4: the basic body known from FIG. 3 from a different perspective,
Figur 5: eine Hülse, Figur 6: das Magnetfeld erzeugende Element,FIG. 5: a sleeve, FIG. 6: the magnetic field generating element,
Figur 7: erneut das Magnetfeld erzeugende Element,FIG. 7: again the magnetic field generating element,
Figur 8: eine Schnittdarstellung des Magnetfeld erzeugenden Elements,FIG. 8 is a sectional view of the magnetic field generating element;
Figur 9: das Magnetfelderzeugende Element zur Befestigung eines Kompressorrades an einer Turbowelle in seiner Einbausituation im Abgasturbolader.Figure 9: the magnetic field generating element for mounting a compressor wheel on a turbo shaft in its installation situation in the exhaust gas turbocharger.
Figur 1 zeigt einen Abgasturbolader 1 mit einer Turbine 2 und einem Kompressor 3. In dem Kompressor 3 ist das Kompressorrad 9 drehbar gelagert und mit der Turbowelle 5 verbunden. Auch die Turbowelle 5 ist drehbar gelagert und an ihrem anderen Ende mit dem Turbinenrad 4 verbunden. Die Kombination aus Kompressorrad 9, Turbowelle 5 und Turbinenrad 4 wird auch als Laufzeug bezeichnet. Über den Turbineneinlass 7 wird heißes Abgas von einer hier nicht dargestellten Verbrennungskraftma- schine in die Turbine 2 eingelassen, wobei das Turbinenrad 4 in Drehung versetzt wird. Der Abgasstrom verlässt die Turbine 2 durch den Turbinenauslass 8. Über die Turbowelle 5 ist das Turbinenrad 4 mit dem Kompressorrad 9 verbunden. Damit treibt die Turbine 2 den Kompressor 3 an . In den Kompressor 3 wird Luft durch den Lufteinlass 16 eingesaugt, die dann im Kompressor 3 verdichtet und über den Luftauslass 6 der Verbrennungskraftmaschine zugeführt wird.1 shows an exhaust gas turbocharger 1 with a turbine 2 and a compressor 3. In the compressor 3, the compressor wheel 9 is rotatably mounted and connected to the turbo shaft 5. Also, the turbo shaft 5 is rotatably mounted and connected at its other end to the turbine wheel 4. The combination of compressor wheel 9, turbo shaft 5 and turbine wheel 4 is also referred to as a running tool. Hot exhaust gas is admitted into the turbine 2 via the turbine inlet 7 by an internal combustion engine (not shown here), with the turbine wheel 4 being set in rotation. The exhaust gas flow leaves the turbine 2 through the turbine outlet 8. Via the turbo shaft 5, the turbine wheel 4 is connected to the compressor wheel 9. Thus, the turbine 2 drives the compressor 3. In the compressor 3, air is sucked through the air inlet 16, which is then compressed in the compressor 3 and supplied via the air outlet 6 of the internal combustion engine.
Figur 2 zeigt den Kompressor 3 in einer Schnittdarstellung. In dem Kompressorgehäuse ist das Kompressorrad 9 zu erkennen. Das Kompressorrad 9 ist auf der Turbowelle 5 mit dem Magnetfeld erzeugenden Element 17 befestigt. Das Magnetfeld erzeugende Element 17 befindet sich damit im Lufteinlass 16 des Kompressors 3. Das Magnetfeld erzeugende Element 17 kann zum Beispiel als Hutmutter ausgebildet sein, die auf ein auf der Turbowelle 5 aufgebrachtes Gewinde aufgeschraubt ist, um das Kompressorrad 9 gegen einen Bund der Turbowelle 5 mit dieser fest zu verspannen. Das Magnetfeld erzeugende Element 17 zur Befestigung des Kompressorrad 9 an der Turbowelle 5 besteht aus einem Permanentmagnet 13, der den Grundkörper 11 des Magnetfeld erzeugenden Elements 17 bildet. Der Magnet 13 dreht sich bei der Rotation der Turbowelle 5 mit dieser um die Rotationsachse der Turbowelle 5. Dabei erzeugt der Magnet 13 eine Änderung der magnetischen Feldstärke bzw. des magnetischen Feldgradienten in dem Sensor 15. Diese Änderung des Magnetfeldes bzw. des Feldgradienten erzeugt im Sensor 15 ein elektronisch verarbeitbares Signal, das proportional zur Drehzahl der Turbowelle 5 ist.Figure 2 shows the compressor 3 in a sectional view. In the compressor housing the compressor wheel 9 can be seen. The compressor wheel 9 is mounted on the turbo shaft 5 with the magnetic field generating element 17. The magnetic field generating element 17 is thus in the air inlet 16 of the compressor 3. The magnetic field generating element 17 may be formed for example as a cap nut which is screwed onto a thread applied to the turbo shaft 5, the compressor wheel 9 against a collar of the turbo shaft fifth with this firmly tense. The magnetic field generating element 17 for fastening the compressor wheel 9 to the turbo shaft 5 consists of a permanent magnet 13, which forms the main body 11 of the magnetic field generating element 17. The magnet 13 rotates during rotation of the turbo shaft 5 with this about the axis of rotation of the turbo shaft 5. The magnet 13 generates a change in the magnetic field strength or the magnetic field gradient in the sensor 15. This change of the magnetic field or the field gradient generated in Sensor 15 an electronically processed signal that is proportional to the speed of the turbo shaft 5.
Figur 3 zeigt den Grundkörper 11 des Magnetfeld erzeugenden Elements 17. Der Grundkörper 11 des Magnetfeld erzeugenden Elements 17 ist vollständig aus magnetischem Material gebildet, wodurch von dem Grundkörper 11 ein magnetisches Feld mit einer hohen Magnetfeldstärke ausgeht. Am Grundkörper 11 ist der Nordpol N und der Südpol S des Magneten 13 zu erkennen. Weiterhin weist der Grundkörper 11 beispielsweise einen Sechskant 14 auf, an dem ein Werkzeug angreifen kann. Im Grundkörper 11 ist eine Innenverzahnung 12 zu erkennen.3 shows the main body 11 of the magnetic field generating element 17. The main body 11 of the magnetic field generating element 17 is formed entirely of magnetic material, whereby from the main body 11 emanates a magnetic field with a high magnetic field strength. On the main body 11 of the north pole N and the south pole S of the magnet 13 can be seen. Furthermore, the base body 11, for example, a hexagon 14 on which a tool can attack. In the main body 11, an internal toothing 12 can be seen.
Figur 4 zeigt den aus Figur 3 bekannten Grundkörper 11 aus einer anderen Perspektive. Wiederum ist der Grundkörper 11 vollständig aus magnetischem Material gebildet und er kann damit eine hohe Magnetfeldstärke erzeugen. Der Nordpol N und der Südpol S des Magneten 13 sind am Grundkörper 11 zu erkennen. Darüber hinaus ist auch in Figur 4 die Innenverzahnung 12 im Grundkörper 11 gut sichtbar.FIG. 4 shows the basic body 11 known from FIG. 3 from a different perspective. Again, the main body 11 is formed entirely of magnetic material and it can thus produce a high magnetic field strength. The north pole N and the south pole S of the magnet 13 can be seen on the main body 11. In addition, the internal toothing 12 in the base body 11 is also clearly visible in FIG.
Figur 5 zeigt eine Hülse 10, die aus einem nicht magnetischen Material gebildet ist. Diese Hülse 10 kann z. B. aus einem hochfesten, austhenitischen Stahl oder einem Kunststoff hergestellt sein. Weiterhin zeigt die Figur 5 an der Hülse 10 eine Krimpung 20. Figur 6 zeigt das Magnetfeld erzeugende Element 17. Das Magnetfeld erzeugende Element 17 besteht aus dem Grundkörper 11, der in Figur 3 und 4 dargestellt wurde und der darin angeordneten Hülse 10, die aus Figur 5 bekannt ist. Die Hülse 10 kann in den Grundkörper 11 eingepresst sein, wobei eine formschlüssige Verbindung der Hülse 10 mit der Innenverzahnung 12 des Grundkörpers 11 entsteht. Die formflüssige Verbindung der Innenverzahnung 12 mit der Hülse 10 sowie die Krimpungen 20 führen zu einer unlösbaren Fixierung der Hülse 10 in dem Grundkörper 11. In die Hülse 10, die z. B. aus hochfestem austhenitischen Stahl bestehen kann, kann leicht ein Gewinde 18 eingebracht werden, das mit einem Gegengewinde 19 auf der Turbowelle 5 verschraubbar ist.Figure 5 shows a sleeve 10 which is formed of a non-magnetic material. This sleeve 10 may, for. B. be made of a high-strength, austenitic steel or a plastic. Furthermore, FIG. 5 shows a crimp 20 on the sleeve 10. Figure 6 shows the magnetic field generating element 17. The magnetic field generating element 17 consists of the main body 11, which has been shown in Figures 3 and 4 and the sleeve 10 disposed therein, which is known from Figure 5. The sleeve 10 may be pressed into the base body 11, wherein a positive connection of the sleeve 10 with the internal toothing 12 of the base body 11 is formed. The form-liquid connection of the internal teeth 12 with the sleeve 10 and the crimping 20 lead to an insoluble fixation of the sleeve 10 in the base body 11. In the sleeve 10, the z. B. may consist of high-strength austenitic steel, a thread 18 can easily be introduced, which is screwed with a mating thread 19 on the turbo shaft 5.
Figur 7 zeigt erneut das Magnetfeld erzeugende Element 17, wobei hier die Krimpung 20 an der Hülse 10 gut zu erkennen ist. Damit bildet der Grundkörper 11 und die Hülse 20 eine ebene obere Fläche, die gegen das Kompressorrad 9 geschraubt werden kann.Figure 7 shows again the magnetic field generating element 17, in which case the crimp 20 is clearly visible on the sleeve 10. Thus, the main body 11 and the sleeve 20 forms a flat upper surface which can be screwed against the compressor wheel 9.
Eine Schnittdarstellung des Magnetfeld erzeugenden Elements 17 zeigt Figur 8. Wiederum ist der Grundkörper 11 zu erkennen, in den die Hülse 10 eingepresst ist. Der Grundkörper 11 besteht aus magnetischem Material und auf Grund seines hohen Volumens erzeugt der Magnet 13 eine hohe Magnetfeldstärke. Im Grundkörper 11 ist die Hülse 10 aus hochfestem Stahl angeordnet. Die Hülse 10 ist mit der Innenverzahnung 12 des Grundkörpers 11 formschlüssig verbunden, und darüber hinaus durch die Krimpungen 20 fest im Grundkörper 11 fixiert. Durch diese Anordnung erhält das Magnetfeld erzeugende Element 17 zwei wesentliche Eigenschaften. Zum einen erzeugt das Magnetfeld erzeugende Element 17 auf Grund des hohen Volumens des Magneten 13 eine hohe Magnetfeldstärke und zum anderen bildet die Hülse 10 mit dem darauf aufgebrachten Gewinde 18 ein mecha- nisch sehr stabiles Bauteil, das problemlos zur Befestigung des Kompressorrades 9 an der Turbowelle 5 verwendet werden kann . In Figur 9 ist das Magnetfeld erzeugende Element 17 zur Befestigung eines Kompressorrades 9 an einer Turbowelle 5 in seiner Einbausituation im Abgasturbolader 1 dargestellt. Zu erkennen ist zunächst das Kompressorrad 9, das mit dem Mag- netfeld erzeugenden Element 17 an der Turbowelle befestigt ist. Das Magnetfeld erzeugende Element 17 besteht aus dem Grundkörper 11 und der darin mechanisch oder/und durch Verklebung verankerten Hülse 10. Hierbei sei darauf hingewiesen, dass die Hülse nicht nur aus einem hochfesten Stahl sondern z. B. auch aus einem Kunststoff bestehen kann.A sectional view of the magnetic field generating element 17 is shown in FIG 8. Again, the main body 11 can be seen, in which the sleeve 10 is pressed. The main body 11 is made of magnetic material and due to its high volume, the magnet 13 generates a high magnetic field strength. In the main body 11, the sleeve 10 is arranged made of high-strength steel. The sleeve 10 is positively connected to the internal toothing 12 of the base body 11, and in addition fixed by the crimps 20 fixed in the base body 11. By this arrangement, the magnetic field generating element 17 obtains two essential properties. On the one hand generates the magnetic field generating element 17 due to the high volume of the magnet 13, a high magnetic field strength and on the other hand, the sleeve 10 with the thread 18 applied thereto a mechanically very stable component that easily for attachment of the compressor wheel 9 on the turbo shaft 5 can be used. FIG. 9 shows the magnetic field-generating element 17 for fastening a compressor wheel 9 to a turbo shaft 5 in its installation situation in the exhaust gas turbocharger 1. First, the compressor wheel 9, which is fastened to the turbo shaft with the magnetic field generating element 17, can be seen. The magnetic field generating element 17 consists of the main body 11 and the mechanical or / and anchored by bonding sleeve 10. It should be noted that the sleeve is made not only of a high strength steel but z. B. can also consist of a plastic.
In der Hülse ist das Gewinde 8 zu erkennen, das mit dem Gegengewinde 19 auf der Turbowelle 5 verschraubt ist. Auch hier weist der Grundkörper 11 beispielsweise einen Sechskant 14 auf, an dem ein Schraubenschlüssel angreifen kann. Die entstehenden Drehmomente und Kräfte werden vollständig auf die Hülse 10 übertragen, die aus hochfestem Material gebildet ist. Damit nimmt die Hülse 10 alle mechanischen Kräfte auf, womit das Kompressorrad 9 sicher an der Turbowelle 5 fixiert ist. Mit der Krimpung 20 wird die Hülse 10 gegen das Kompressorrad 9 gepresst.In the sleeve, the thread 8 can be seen, which is bolted to the mating thread 19 on the turbo shaft 5. Again, the base body 11, for example, a hexagon 14 on which a wrench can attack. The resulting torques and forces are transmitted completely to the sleeve 10, which is formed of high-strength material. Thus, the sleeve 10 absorbs all mechanical forces, whereby the compressor wheel 9 is securely fixed to the turbo shaft 5. With the crimp 20, the sleeve 10 is pressed against the compressor wheel 9.
Der großvolumige Magnet 13 hingegen, der Bestandteil des Magnetfeld erzeugenden Elementes 17 ist, kann ein Feld mit hoher magnetischer Feldstärke erzeugen, wodurch es möglich wird, den Sensor 15 auch in relativ großer Entfernung vom Magnetfeld erzeugenden Element 17 zu platzieren. Der Magnet 13 ist z. B. in der Lage, ein magnetisches Feld mit einer Feldstärke zu erzeugen, dass durch die Außenwand des Kompressorgehäuses hindurch messbar ist. Dies hat den Vorteil, dass der SensorOn the other hand, the large volume magnet 13 constituting the magnetic field generating element 17 can generate a field of high magnetic field intensity, thereby making it possible to place the sensor 15 at a relatively large distance from the magnetic field generating element 17. The magnet 13 is z. B. able to generate a magnetic field with a field strength that is measurable through the outer wall of the compressor housing. This has the advantage that the sensor
15 außerhalb des Kompressorgehäuses angebracht sein kann, wodurch ein Eingriff in den Aufbau des Kompressorgehäuses nicht notwendig ist. 15 may be mounted outside of the compressor housing, whereby an intervention in the construction of the compressor housing is not necessary.

Claims

Patentansprüche claims
1. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) an einer Turbowelle (5) eines Abgas- turboladers (1), mit einem Grundkörper (11) und einem Ge¬ winde (18) , d a d u r c h g e k e n n z e i c h n e t , dass der gesamte Grundkörper (11) aus einem magnetischen Material besteht und in dem Grundkörper (11) eine Hülse (10) angeordnet ist, die aus einem nichtmagnetischen Mate- rial besteht und die das Gewinde (18) aufweist, das mit einem Gegengewinde (19) der Turbowelle (5) verschraubbar ist.1. magnetic field generating element (17) for fastening a compressor wheel (9) on a turbo shaft (5) of an exhaust gas turbocharger (1), with a base body (11) and a Ge ¬ winch (18), characterized in that the entire body (11) consists of a magnetic material and in the base body (11) a sleeve (10) is arranged, which consists of a non-magnetic mate- rial and having the thread (18) which with a mating thread (19) of the turbo shaft ( 5) can be screwed.
2. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , dass die Hülse (10) als Ein¬ presshülse ausgebildet ist.2. magnetic field generating element (17) for fastening a compressor wheel (9) according to claim 1, dadurchge ¬ indicates that the sleeve (10) is formed as a ¬ press sleeve.
3. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Grundkörper eine In¬ nenverzahnung (12) aufweist, durch die die Hülse (10) formschlüssig mit dem Grundkörper (11) verbunden ist.3. magnetic field generating element (17) for fastening a Kompressorrades (9) according to claim 1 or 2, characterized in that the main body has a In ¬ nenverzahnung (12) through which the sleeve (10) positively connected to the base body (11) is.
4. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) nach Anspruch 1, 2 oder 3, d a ¬ d u r c h g e k e n n z e i c h n e t , dass die Hülse (10) aus einem nichtmagnetischen Metall besteht.4. magnetic field generating element (17) for fastening a compressor wheel (9) according to claim 1, 2 or 3, since ¬ characterized in that the sleeve (10) consists of a non-magnetic metal.
5. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) nach Anspruch 1, 2 oder 3, d a ¬ d u r c h g e k e n n z e i c h n e t , dass die Hülse (10) aus einem Kunststoff besteht.5. magnetic field generating element (17) for fastening a compressor wheel (9) according to claim 1, 2 or 3, since ¬ characterized in that the sleeve (10) consists of a plastic.
6. Magnetfeld erzeugendes Element (17) zur Befestigung eins6. magnetic field generating element (17) for fixing one
Kompressorrades (9) nach mindestens einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Hülse (10) mit mindestens einer Krimpung (20) mit dem Grundkörper (11) verbunden ist.Compressor wheel (9) according to at least one of the preceding claims, characterized the sleeve (10) is connected to the base body (11) with at least one crimp (20).
7. Magnetfeld erzeugendes Element (17) zur Befestigung eins Kompressorrades (9) nach mindestens einem der Ansprüche 4 oder 6, d a du r c h g e k e n n z e i c h n e t , dass Hülse (11) aus austhenitischem Stahl gebildet ist. 7. Magnetic field generating element (17) for fastening a compressor wheel (9) according to at least one of claims 4 or 6, characterized in that sleeve (11) is formed from austenitic steel.
EP07820506A 2006-09-26 2007-09-24 Element which generates a magnetic field Withdrawn EP2089617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006045772A DE102006045772A1 (en) 2006-09-26 2006-09-26 Magnetic field generating element
PCT/EP2007/060099 WO2008037689A1 (en) 2006-09-26 2007-09-24 Element which generates a magnetic field

Publications (1)

Publication Number Publication Date
EP2089617A1 true EP2089617A1 (en) 2009-08-19

Family

ID=38926116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820506A Withdrawn EP2089617A1 (en) 2006-09-26 2007-09-24 Element which generates a magnetic field

Country Status (6)

Country Link
US (1) US20090290988A1 (en)
EP (1) EP2089617A1 (en)
KR (1) KR20090069180A (en)
CN (1) CN101517210A (en)
DE (1) DE102006045772A1 (en)
WO (1) WO2008037689A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027235B4 (en) * 2007-06-13 2010-08-19 Continental Automotive Gmbh Magnetized nut for mounting a compressor wheel of an exhaust gas turbocharger on the turbo shaft and method for producing such
DE102007041901A1 (en) * 2007-09-04 2009-03-05 Continental Automotive Gmbh Magnetfed generating element
CN103713149A (en) * 2012-09-29 2014-04-09 博世电动工具(中国)有限公司 Speed measuring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936890A (en) * 1957-05-16 1960-05-17 Dietrich W Botstiber Magnetic chip detector
DE3834994A1 (en) * 1988-10-14 1990-04-19 Mtu Friedrichshafen Gmbh Device for detecting the rotational speed of a shaft
JPH10206447A (en) * 1997-01-24 1998-08-07 Ishikawajima Harima Heavy Ind Co Ltd Magnetic detected body of rotary detecting mechanism
DE19724880A1 (en) * 1997-02-08 1998-08-13 Fraunhofer Ges Forschung Producing a thread insert in a component, for high-duty threaded joints
JP4407288B2 (en) * 2004-01-15 2010-02-03 株式会社デンソー Supercharger position detection device
DE102005010921A1 (en) * 2004-07-15 2006-02-09 Siemens Ag turbocharger
DE102004052695A1 (en) * 2004-10-29 2007-05-10 Siemens Ag turbocharger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008037689A1 *

Also Published As

Publication number Publication date
KR20090069180A (en) 2009-06-29
CN101517210A (en) 2009-08-26
US20090290988A1 (en) 2009-11-26
DE102006045772A1 (en) 2008-03-27
WO2008037689A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
EP2059662B1 (en) Waste gate actuator for an exhaust gas turbocharger
DE112005001127B4 (en) turbocharger
DE102005029764B4 (en) Sensor for measuring the speed of a turbo shaft
DE102004052695A1 (en) turbocharger
DE102006044668B4 (en) Element for generating a magnetic field
DE102011118895B4 (en) Electric wastegate actuator for a turbocharger
EP1977086B1 (en) Compressor casing for an exhaust gas turbocharger
DE102007027235B4 (en) Magnetized nut for mounting a compressor wheel of an exhaust gas turbocharger on the turbo shaft and method for producing such
WO2006029965A1 (en) Exhaust gas turbo charger
EP2089617A1 (en) Element which generates a magnetic field
WO2011054514A1 (en) Compressor comprising an insert in the inlet region
DE102010016420B4 (en) injector
DE102007041901A1 (en) Magnetfed generating element
WO2014032825A1 (en) Turbine rotor of an exhaust-gas turbocharger
WO2009013092A2 (en) Inductive rotation-speed sensor for an exhaust-gas turbocharger
EP2569525A1 (en) Device for driving an auxiliary unit
DE102007030836B4 (en) Magnetic field generating element
DE102006044667B4 (en) Magnetic field generating element
DE102005045457A1 (en) Method for monitoring the speed of a turbo shaft
WO2007057257A1 (en) Compressor wheel for an exhaust gas turbocharger
WO2020114661A1 (en) Rotor for an electric drive machine for driving a compressor, a turbine or a charger shaft of a turbocharger, electric drive machine comprising such a rotor, and method for manufacturing such a rotor
DE102011117334B4 (en) Compressor device with an acceleration sensor and internal combustion engine with such a compressor device
DE102012013198A1 (en) Assembly for holding turbo-supercharger at e.g. crankcase of reciprocating internal combustion engine of motor vehicle, has holding element partially made of material that has larger thermal expansion coefficient than another material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR HU IT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110401