EP2085154B1 - Method, illumination device and system for spectral-based sorting - Google Patents
Method, illumination device and system for spectral-based sorting Download PDFInfo
- Publication number
- EP2085154B1 EP2085154B1 EP20090450021 EP09450021A EP2085154B1 EP 2085154 B1 EP2085154 B1 EP 2085154B1 EP 20090450021 EP20090450021 EP 20090450021 EP 09450021 A EP09450021 A EP 09450021A EP 2085154 B1 EP2085154 B1 EP 2085154B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- illumination
- sensor
- illumination unit
- wavelengths
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005286 illumination Methods 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 23
- 230000003595 spectral effect Effects 0.000 title claims description 23
- 239000000463 material Substances 0.000 claims description 29
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000011521 glass Substances 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 description 8
- 230000002123 temporal effect Effects 0.000 description 6
- 235000019557 luminance Nutrition 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000005315 stained glass Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/3416—Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
- B07C5/3425—Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
Definitions
- the invention relates to a method according to the preamble of claim 1.
- the processing and sorting of bulk solids with color cameras is a common method.
- a common embodiment is in AT410847 described.
- EP 0734789A3 describes this technology.
- Different camera technologies are used, in particular sequential RGB (red-green-blue) color filter line scan cameras, trilinear RGB color filter line scan cameras or even 3 chip cameras.
- the local and temporal resolution of the systems today is at least 1000 local points and 1 kHz line rate per sensor system.
- the EP 0 727 260 A discloses a method for sorting grains using two light sources.
- the WO 2007/110672 A1 relates to a study of glass, wherein a bright field recording and a dark field recording are made using light sources with different wavelengths for the two recordings.
- the object of the invention is therefore to provide a method of the type mentioned above, with which the mentioned disadvantages can be avoided, with which a reliable sorting with a low rejection can be ensured by a sorting and which can be carried out easily and inexpensively.
- the invention further relates to a lighting unit with which the method according to the invention can be carried out particularly simply and to an apparatus for carrying out the method.
- Fig. 1 schematically a device for the spectral-based sorting of transparent and semi-transparent bulk materials 9 is shown with one with a lighting unit 2 and a sensor 1, wherein the sensor 1 is designed to receive transmission signals.
- the illumination unit 2 is designed for illumination with predeterminable wavelengths ⁇ , wherein illumination with these wavelengths ⁇ is temporally or locally discretely feasible.
- the sensor 1 may be a monochrome sensor, which may be designed in particular as a camera. In particular surface cameras or line scan cameras appear advantageous.
- the spatial and temporal resolution of the sensor 1 can be at least 1000 local points and at least 1 kHz line rate, with ever higher line rates are possible.
- the line rate may be in the range of 4 to 20 kHz.
- An evaluation device is connected on the input side to the sensor 1 and on the output side to a sorting device, wherein the sorting device - viewed in the direction of the material flow - is subsequently arranged on the sensor 1.
- the bulk materials 9 are moved through in a material flow between the illumination unit 2 and the sensor 1, with the illumination unit 2, the illumination with predetermined wavelengths ⁇ temporally or locally discretely performed, recorded with the sensor 1 transmission signals , the transmission signals evaluated and sorted the bulk materials 9 according to the evaluation.
- An advantageous embodiment of the method relates to the sorting of waste glass.
- At least one wavelength ⁇ of the illumination in the UV range, at least one wavelength 1 in the VIS range and at least one wavelength ⁇ in the NIR range is specified.
- foreign substances can be reliably separated out in the case of the bulk goods 9.
- One possible application may be the sorting of plastics. The advantages listed below - with the exception of a complete color sorting - can be achieved in an analogous manner.
- RGB cameras have no distinction between yellow and brown objects, since their spectral resolution in the spectral range is limited to two side channels, namely green and red.
- wavelengths ⁇ are specified in the VIS range, whereby the determination of the colors is further improved can be and especially for common colors a particularly good visibility can be ensured.
- Transmission curves ⁇ are shown with respect to the wavelength ⁇ .
- additional wavelengths ⁇ can enable a distinction between yellow and deciduous sherds.
- Fig. 2 the transmission curves ⁇ of two different materials are shown as continuous curves over the wavelength ⁇ . Furthermore, six vertical bars are shown, which represent possible predefinable wavelengths ⁇ . Due to the values at these predetermined wavelengths ⁇ , the two illustrated materials can be distinguished easily and reliably.
- a UV wavelength ⁇ of 370 nm, visible wavelengths ⁇ of 460 nm, 530 nm and 630 nm and an NIR wavelength ⁇ of 940 nm are used.
- the wavelengths ⁇ are selected from the sensitivity range of camera sensors based on CMOS or CCD, whereby they are typically limited to the range from 300 nm to 1200 nm, in particular from 350 nm to 1050 nm.
- the spectral ranges assigned to the predeterminable wavelengths ⁇ can be spatially or temporally separated.
- High-power LEDs that is to say LEDs greater than or approximately equal to 1 mm 2 , which are available in the spectral range from 300 nm to 1200 nm in a central wavelength graduation of approximately 20 nm, can preferably be used as the luminous means 3.
- sensor 1 offers surface-scan camera sensors.
- line sensor only the temporal separation appears appropriate, the monochrome lines are recorded sequentially and the monochrome signals can be superimposed line by line by interpolation.
- CMOS-based sensors 1 are advantageous, since the read-out areas are adjustable here and the entire sensor does not have to be read out. With today's technology, for example, a CMOS sensor with 2200x 3000 pixels can be used.
- the spectral illumination areas in the sorting system can be separated in the direction of material travel and the reception areas on the sensor 1 can be limited to these. Subsequently, a time overlay of the partial images can be made.
- the more advantageous embodiment appears to be the temporal separation of the signals.
- LED lighting can be flashed very fast, with individual flashes of light only taking a few microseconds.
- sub-images of the traversing objects at different wavelengths ⁇ can be sequentially recorded at the same location. Since the exact times of the flashes of light are known, these spectral fields can be composed in time.
- a lighting unit 2 For the construction of an advantageous embodiment of a lighting unit 2, the use of UV (370 nm or 405 nm), red (typically 630 nm), green (typically 530 nm) and blue (typically 460 nm) and NIR (typically 840 or 940 nm) LED Dies (typical AlGaInP and InGaN technology) proposed without color conversion layer.
- An advantageous arrangement is in FIG. 4 shown.
- the five LEDs are preferably integrated very closely together in an LED module 31.
- chip on board technology can be applied to standard, metal core or ceramic circuit boards to further increase luminance.
- the LED lighting units can be used single-row or multi-row lighting amplification.
- the shards have sharp break edges in all orientations and often have no plane-parallel surfaces in the object, but lenticular ones. Furthermore, the pigments are incorporated in the volume and the surfaces are often filled with labels or soiling.
- the lighting is designed as partial dark field lighting.
- a partial dark field illumination is an illumination that includes both dark field illumination and bright field illumination.
- the described arrangement which has a high proportion of indirect lighting (dark field), by the front terminating diffuser 5 but also a smaller proportion of bright field illumination.
- the dark field illumination is realized in that the illumination units 2 are outside the viewing window 11 of the sensor 1 and the sensor 1 looks directly at a dark strip 4 in the illumination unit 2.
- the light of the LEDs is homogenized by means of specular or diffusely highly reflecting walls 6, for example anodized aluminum sheets, and conducted to the exit plane of the lighting unit 2.
- the diffuser 5 is mounted, which generates the bright field component of the lighting unit 2. This diffuser 5 is necessary in practice, since the area in which the objects move is very dirty and therefore an additional variable diffuse proportion is to be expected from the soils in each type of lighting.
- the sensor 1 Due to the scattering on the diffuser 5, the sensor 1 receives a constant amount of light. Thus, the sensor 1 can also be adjusted for a long time to the light and the color.
- the diffuser 5 can be covered with a cover 7, which is transparent over the entire spectral range, for protecting the lighting unit 2.
- a passive cooling 9 can be realized via heat-conducting mounting materials.
- the viewing window 11 of the sensor 1 can be aligned with a viewing area 4 of the lighting unit 2, wherein all the lighting elements 3 of the lighting unit 2 are arranged outside the viewing area 4 and wherein the bright field component of the partial dark field illumination is effected by a passive light-diffusing element 5 on the side facing the sensor 1 side of the illumination unit 2.
- a particularly advantageous embodiment of the lighting unit 2 comprises a plurality of lighting elements 3, the viewing area 4 for interacting with the viewing window 11 of the sensor 1, wherein all lighting elements 3 are arranged outside the field of view 4, and the passive light-diffusing element 5 for forming the bright field component of Operadunkelfeldbeleuchtung.
- the sensor 1 does not see the lighting elements 3 directly in the beam path, but a direct illumination arises only through the passive diffuser 5.
- the light-diffusing element 5 may be formed of glass or plastic.
- the light-diffusing element 5 is preferably surface-or volume-frosted and has only low absorption losses.
- the space between the light-emitting elements 3 and the light-diffusing element 5 may be bounded by lateral boundaries 6, wherein the lateral boundaries 6 are formed mirror-like or diffuse highly reflective, whereby a good homogenization of the dark field illumination can be achieved. Furthermore, it can be ensured that a high proportion of the light energy reaches the sensor 1, whereby the required power of the lighting unit 2 kept as low as possible and a high efficiency can be achieved.
- LEDs can be used, whereby a high luminance can be provided.
- An LED based lighting system will be installed in AT004889U1 described.
- An embodiment for increasing the light intensity is in the DE202004019684U1 described.
- Systems with LEDs can work with standard LEDs, with the standard being the 0.3 mm die technology, beam-focusing optics and, above all, the white light generation with blue LED die and combined yellow fluorescent dye (white light LEDs).
- the luminance can be increased by using high power LEDs (1mm LED die or larger). Due to the color conversion, this type of lighting requires General but active cooling, which is accomplished for example with water cooling.
- monochrome light flashes are generated with the illumination unit 2, wherein sequentially light flashes are generated in all predeterminable wavelengths ⁇ .
- a predetermined sequence of the predefinable wavelengths can be repeated in an endless loop during the implementation of the method.
- Labels are thus illuminated indirectly. Fracture edges and lenticular shapes have a significantly increased signal intensity due to the indirect "partial dark field illumination". Therefore, paper is different from non-transparent materials (ceramics and stones). Thin porcelain, which may be somewhat white in volume and semitransparent, falls into its own color intensity range. In connection with an object evaluation, a distinction can be made in this way. Straight labels on colored glass are recognizable by the combination of white paper with the volume color pigments. Thick, dark shards of color result in very intense color signals due to the high proportion of dark field illumination.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Sorting Of Articles (AREA)
- Spectrometry And Color Measurement (AREA)
Description
Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method according to the preamble of claim 1.
Die Aufbereitung und Sortierung von Schüttgütern mit Farbkameras (hauptsächlich Farbzeilenkameras) ist eine gängige Methode. Eine übliche Ausführungsvariante wird in
Diese Kameratechnologien werden auch im Recyclingbereich eingesetzt. Bei der Durchlicht Sortierung werden überwiegend Glas und transparente Kunststoffprodukte aufgearbeitet Weiterhin werden Geräte mit einzelnen optischen Anregern und Sensoren im NIR Bereich für die Sortierung von nicht transparenten Störstoffen wie Keramik, Steine und Porzellan (KSP) eingesetzt. Diese weisen in der Praxis eine gute Erkennung auf, ermöglichen aber keine Farbsortierung und haben eine niedrige Ortsauflösung.These camera technologies are also used in the recycling sector. In the case of transmitted-light sorting, mainly glass and transparent plastic products are processed. Furthermore, devices with individual optical stimulators and sensors in the NIR range are used for the sorting of non-transparent impurities such as ceramics, stones and porcelain (CSP). These have a good recognition in practice, but do not allow color sorting and have a low spatial resolution.
Bei der Farbkameratechnologie sind gerade Etiketten ein großes Hindernis, so dass sogar aufwendige mechanische Methoden, wie unter
Aus der
Die
Die
Aufgabe der Erfindung ist es daher ein Verfahren der eingangs genannten Art anzugeben, mit welchem die genannten Nachteile vermieden werden können, mit welchem eine zuverlässige Sortierung mit einem geringen Ausschuss durch eine Übersortierung sichergestellt werden kann und welches einfach und kostengünstig durchgeführt werden kann.The object of the invention is therefore to provide a method of the type mentioned above, with which the mentioned disadvantages can be avoided, with which a reliable sorting with a low rejection can be ensured by a sorting and which can be carried out easily and inexpensively.
Erfingdungsgemäß wird dies durch die Merkmale des Patentanspruches 1 erreicht.According to the invention this is achieved by the features of claim 1.
Dadurch ergibt sich der Vorteil, dass transparente Stoffe trotz einer Behaftung mit Etiketten erkannt und sortiert werden können. Weiters kann auch dunkles und dickes Farbglas zuverlässig erkannt werden. Dabei können auch gewölbte Objekte mit vielen Bruchkanten, welche eine hohe Streuung des einfallenden Lichts bewirken, zuverlässig erkannt werden.This results in the advantage that transparent substances can be recognized and sorted despite being affixed with labels. Furthermore, even dark and thick colored glass can be reliably detected. In this case, arched objects with many breaklines, which cause a high scattering of the incident light, can be reliably detected.
Durch die bessere Identifikation der Stückgüter kann auch eine bessere anschließende Sortierung erreicht werden.By better identification of the piece goods, a better subsequent sorting can be achieved.
Die Erfindung betrifft weiters eine Beleuchtungseinheit, mit der das erfindungsgemäße Verfahren besonders einfach durchgeführt werden kann und eine Vorrichtung zur Durchführung des Verfahrens.The invention further relates to a lighting unit with which the method according to the invention can be carried out particularly simply and to an apparatus for carrying out the method.
Die Unteransprüche, welche ebenso wie die unabhängigen Patentansprüche gleichzeitig einen Teil der Beschreibung bilden, betreffen weitere vorteilhafte Ausgestaltungen der Erfindung.The dependent claims, which as well as the independent claims simultaneously form part of the description, relate to further advantageous embodiments of the invention.
Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen lediglich bevorzugte Ausführungsformen beispielhaft dargestellt sind, näher beschrieben. Dabei zeigt:
-
Fig. 1 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zum spektralbasierten Sortieren; -
Fig. 2 Transmissionskurven gegenüber der Wellenlänge; -
Fig. 3 eine schematische Darstellung einer Vorrichtung bei Verwendung eines monochromen Sensors; und -
Fig. 4 eine schematische Darstellung des Aufbaus einer vorteilhaften Ausführung einer Beleuchtungseinheit.
-
Fig. 1 a schematic representation of an apparatus for performing the method for spectral-based sorting according to the invention; -
Fig. 2 Transmission curves versus wavelength; -
Fig. 3 a schematic representation of a device using a monochrome sensor; and -
Fig. 4 a schematic representation of the structure of an advantageous embodiment of a lighting unit.
In
Der Sensor 1 kann ein monochromer Sensor sein, welcher insbesondere als Kamera ausgebildet sein kann. Hierbei erscheinen insbesondere Flächenkameras oder Zeilenkameras vorteilhaft. Die örtliche und zeitliche Auflösung des Sensors 1 kann bei mindestens 1000 Ortspunkten und mindestens 1kHz Zeilenrate liegen, wobei immer höhere Zeilenraten möglich sind. Beispielsweise kann die Zeilenrate im Bereich von 4 bis 20 kHz liegen. Mit einem monochromen Sensor 1 kann eine einfache und zuverlässige Ausgestaltung des Sensors 1 bereitgestellt werden.The sensor 1 may be a monochrome sensor, which may be designed in particular as a camera. In particular surface cameras or line scan cameras appear advantageous. The spatial and temporal resolution of the sensor 1 can be at least 1000 local points and at least 1 kHz line rate, with ever higher line rates are possible. For example, the line rate may be in the range of 4 to 20 kHz. With a monochrome sensor 1, a simple and reliable design of the sensor 1 can be provided.
In dem Raum zwischen der Beleuchtungseinheit 2 und dem Sensor 1 ist vorgesehen, dass der Materialstrom durchgeführt wird.In the space between the
Eine Auswerteeinrichtung ist eingangsseitig mit dem Sensor 1 und ausgangsseitig mit einer Sortiereinrichtung verbunden, wobei die Sortiereinrichtung - in Richtung des Materialstromes gesehen - nachfolgend an den Sensor 1 angeordnet ist.An evaluation device is connected on the input side to the sensor 1 and on the output side to a sorting device, wherein the sorting device - viewed in the direction of the material flow - is subsequently arranged on the sensor 1.
Bei dem Verfahren zum spektralbasierten Sortieren transparenter und semitransparenter Schüttgüter 9 werden die Schüttgüter 9 in einem Materialstrom zwischen der Beleuchtungseinheit 2 und dem Sensor 1 hindurchbewegt, mit der Beleuchtungseinheit 2 die Beleuchtung mit vorgebbaren Wellenlängen λ zeitlich oder örtlich diskret durchgeführt, mit dem Sensor 1 Transmissionssignale aufgenommen, die Transmissionssignale ausgewertet und die Schüttgüter 9 gemäß der Auswertung sortiert.In the method for the spectral-based sorting of transparent and
Eine vorteilhafte Ausführung des Verfahrens betrifft die Sortierung von Altglas.An advantageous embodiment of the method relates to the sorting of waste glass.
Die spektralen Eigenschaften von allen in der Praxis relevanten Materialien sind heute bekannt. Daher kann durch eine präzise Spektralmessung eine sehr zuverlässige Materialzuordnung getroffen werden. In der Praxis wird dieses zur Erreichung der notwendigen Sortierauflösung sinnvoll eingeschränkt werden. Daher erscheint für eine Auswertung und Sortierung zum einen wichtig, dass nicht nur die Gesamttransmission des Materials bekannt ist, sondern vor allem die Absorptionsverhältnisse bei unterschiedlichen Wellenlängenbereichen. Weiterhin soll die Transmission immer noch so hoch sein, das eine technische Auswertung möglich ist. Dieses ist in vielen Spektralbereichen bei unterschiedlichen Materialstärken und Pigmentkonzentrationen allerdings nicht oder nur ungenügend gegeben. Somit erscheint es zweckmäßig, Spektralbereiche zu integrieren, bei denen eine hohe Transmission gegeben ist und auch Bereiche zur Beurteilung heranzuziehen, wo geringe oder keine Transmission gegeben ist.The spectral properties of all materials relevant in practice are known today. Therefore, a very reliable material allocation can be made by a precise spectral measurement. In practice, this will be meaningfully limited to achieve the necessary sorting resolution. Therefore, it seems important for an evaluation and sorting on the one hand, that not only the total transmission of the material is known, but above all the absorption ratios at different wavelength ranges. Furthermore, the transmission should still be so high that a technical evaluation is possible. However, this is not or only insufficiently given in many spectral ranges with different material thicknesses and pigment concentrations. Thus, it seems appropriate to integrate spectral ranges in which a high transmission is given and also to use ranges for the assessment, where little or no transmission is given.
Bei der Beleuchtung mit der Beleuchtungseinheit 2 erscheint es vorteilhaft, wenn zumindest eine Wellenlänge λ der Beleuchtung im UV-Bereich, zumindest eine Wellenlänge 1 im VIS-Bereich und zumindest eine Wellenlänge λ im NIR-Bereich vorgegeben wird. Dabei können bei den Schüttgütern 9 zuverlässig Fremdstoffe ausgesondert werden. Bei einer geeigneten Wahl der Wellenlängen λ kann auch eine Unterscheidung in zwei oder mehr Materialen und gegebenenfalls Fremdstoffe möglich sein. Eine mögliche Anwendung kann die Sortierung von Kunststoffen sein. Dabei können die unten angeführten Vorteile - mit Ausnahme einer vollständigen Farbsortierung - in analoger Weise erzielt werden.When lighting with the
Werden wenigstens drei Wellenlängen λ im VIS-Bereich vorgegeben, so kann einfach die Farbe der Schüttgüter 9 im sichtbaren Bereich ermittelt werden. Dies erscheint insbesondere bei der Sortierung von Altglas geeignet. Dabei kann ein hochauflösendes spektralbasiertes Sortierverfahren (semi)transparenter Schüttgüter 9 bereitgestellt werde, bei dem mindestens fünf Wellenlängenbereiche im UV-VIS-NIR zur Farb- und Materialcharakterisierung ausgewertet werden. Diese Auswertung kann mittels des Sensors 1, beispielsweise einer Monochromkamera, welche eine Flächen- oder eine Zeilenkamera sein kann, und örtlich oder vorteilhafter zeitlich gepulsten monochromen Lichtquellen, integriert in der Beleuchtungseinheit 2, erfolgen. Dabei können mit dem Sensor 1 mindestens fünf spektrale Bereiche abgetastet und nach Farb- und Materialkriterien ausgewertet werden. Die Wellenlängen λ liegen hierbei im sichtbaren Bereich (VIS) für die Farbauswertung und im ultravioletten (UV) und nahinfraroten (NIR) Bereich zur Materialauswertung anhand der Transmissionseigenschaften der Sortierproben.If at least three wavelengths λ are specified in the VIS range, it is easy to determine the color of the
Die spektralen Eigenschaften im UV-VIS- NIR Bereich von allen in der Praxis relevanten Materialien sind heute bekannt. Daher kann durch eine präzise Spektralmessung eine sehr zuverlässige Materialzuordnung getroffen werden. Insbesondere bei den Wellenlängen λ im NIR Bereich kann ausgenützt werden, dass die Farbpigmente von transparenten Proben einen geringeren Einfluss haben und die Transmission von Papier, welcher ein häufiger Störstoff bei der Sortierung von Altglas ist, erhöht ist.The spectral properties in the UV-VIS-NIR range of all materials relevant in practice are known today. Therefore, a very reliable material allocation can be made by a precise spectral measurement. In particular, at the wavelengths λ in the NIR range can be exploited that the color pigments of transparent samples have a smaller influence and the transmission of paper, which is a common impurity in the sorting of waste glass, is increased.
Übliche RGB Kameras weisen keine Unterscheidungsmöglichkeit zwischen gelben und laubbraunen Objekten auf, da ihre spektrale Auflösung in dem Spektralbereich auf zwei Seitenkanäle beschränkt ist, nämlich grün und rot.Conventional RGB cameras have no distinction between yellow and brown objects, since their spectral resolution in the spectral range is limited to two side channels, namely green and red.
Dunkle grüne Scherben weisen im blauen und roten Spektralbereich keine Transmission auf und im grünen eine so niedrige, das sie technisch häufig einem nichttransparenten Störstoff zugeordnet werden müssen. Im UV und NIR Bereich weisen Sie aber eine hohe Transparenz auf, sodass sie von Keramik und Steinen unterscheidbar sind. Bei Papieretiketten nimmt die Transmission im NIR Bereich ebenfalls zu, so dass auch etikettenbehaftete Scherben leichter als diese erkannt werden können. Zusätzlich weisen die Pigmente von dunklen Farbglasscherben im NIR Bereich eine höhere Transmission auf, so dass auch hier eine einfache Beurteilung möglich ist. Störstoffe wie KSP und Metalle weisen aber in dem gesamten Spektralbereich keine Transmission auf. Daher kann insbesondere durch die Verwendung von Wellenlängen λ im UV, im VIS und im NIR-Bereich eine zuverlässige Zuordnung der Schüttgüter 9 erfolgen und eine effiziente Sortierung erzielt werden.Dark green shards have no transmission in the blue and red spectral range and so low in the green that they technically often have to be assigned to a nontransparent impurity. In the UV and NIR range, however, they have a high transparency so that they are distinguishable from ceramics and stones. With paper labels, the transmission in the NIR range also increases, so that even label-related shards can be detected more easily than these. In addition, the pigments of dark stained glass shards in the NIR range have a higher transmission, so that a simple assessment is also possible here. However, contaminants such as KSP and metals have no transmission in the entire spectral range. Therefore, in particular by the use of wavelengths λ in the UV, in the VIS and in the NIR range, a reliable assignment of the
Bei anderen Ausführungsformen kann auch vorgesehen sein, dass mehr als drei Wellenlängen λ im VIS-Bereich vorgegeben werden, wodurch die Bestimmung der Farben weiter verbessert werden kann und insbesondere für häufig vorkommende Farben eine besonders gute Erkennbarkeit sichergestellt werden kann.In other embodiments, it can also be provided that more than three wavelengths λ are specified in the VIS range, whereby the determination of the colors is further improved can be and especially for common colors a particularly good visibility can be ensured.
In
In
Bei bestimmten Materialien, zum Beispiel bestimmten Kunststoffen, ist es sinnvoll, mehr Wellenlängen λ im UV oder NIR Bereich einzusetzen.For certain materials, for example certain plastics, it makes sense to use more wavelengths λ in the UV or NIR range.
Bei einem Ausführungsbeispiel des Sortierverfahren wird eine UV Wellenlänge λ von 370 nm, sichtbare Wellenlängen λ von 460nm, 530nm und 630nm und eine NIR Wellenlänge λ von 940nm verwendet.In one embodiment of the sorting method, a UV wavelength λ of 370 nm, visible wavelengths λ of 460 nm, 530 nm and 630 nm and an NIR wavelength λ of 940 nm are used.
Vorteilhaft erscheint, wenn die Wellenlängen λ aus dem Empfindlichkeitsbereich von Kamerasensoren auf CMOS oder CCD Basis ausgewählt werden, wodurch sie typisch auf den Bereich von 300nm bis 1200nm, insbesondere von 350nm bis 1050nm, begrenzt sind.It appears advantageous if the wavelengths λ are selected from the sensitivity range of camera sensors based on CMOS or CCD, whereby they are typically limited to the range from 300 nm to 1200 nm, in particular from 350 nm to 1050 nm.
Bei der Beleuchtungseinheit 2 können die den vorgebbaren Wellenlängen λ zugeordneten Spektralbereiche örtlich oder zeitlich separiert werden. Als Leuchtmittel 3 können vorzugsweise Hochleistungs-LED's, also LED Die größer oder ungefähr gleich 1mm2, eingesetzt werden, welche im Spektralbereich von 300 nm bis 1200nm in einer Zentralwellenlängenabstufung von ca. 20 nm verfügbar sind.In the
Bei Verwendung eines Sensor 1, der monochrom ist, erscheint es zweckmäßig die den vorgebbaren Wellenlängen λ zugeordneten Aufnahmen örtlich oder zeitlich zu trennen. Dieses ist in
Bei beiden Möglichkeiten bieten sich als Sensor 1 Flächenkamerasensoren an. Bei dem Einsatz eines Zeilensensors erscheint nur die zeitliche Trennung zweckmäßig, wobei die monochromen Zeilen sequenziell aufgenommen werden und durch Interpolation die monochromen Signale zeilenmäßig überlagert werden können.For both options, sensor 1 offers surface-scan camera sensors. When using a line sensor, only the temporal separation appears appropriate, the monochrome lines are recorded sequentially and the monochrome signals can be superimposed line by line by interpolation.
Bei den Flächenkameras sind CMOS basierte Sensoren 1 vorteilhaft, da die Auslesebereiche hier einstellbar sind und nicht der gesamte Sensor ausgelesen werden muss. Bei heutigem technischen Stand kann zum Beispiel ein CMOS-Sensor mit 2200x 3000 Pixeln eingesetzt werden.In the area cameras, CMOS-based sensors 1 are advantageous, since the read-out areas are adjustable here and the entire sensor does not have to be read out. With today's technology, for example, a CMOS sensor with 2200x 3000 pixels can be used.
Bei einer örtlichen Trennung können die spektralen Beleuchtungsbereiche im Sortiersystem in Materiallaufrichtung getrennt werden und die Aufnahmebereiche auf dem Sensor 1 zu diesen eingeschränkt werden. Anschließend kann eine zeitliche Überlagerung der Teilbilder vorgenommen werden.In the case of a local separation, the spectral illumination areas in the sorting system can be separated in the direction of material travel and the reception areas on the sensor 1 can be limited to these. Subsequently, a time overlay of the partial images can be made.
Die vorteilhaftere Ausführung erscheint die zeitliche Trennung der Signale zu sein. LED Beleuchtungen können sehr schnell geblitzt werden, wobei einzelne Lichtblitze lediglich wenige Mikrosekunden dauern können. Somit können sequenziell Teilbilder der durchlaufenden Objekte bei unterschiedlichen Wellenlängen λ an der selben Stelle aufgenommen werden. Da die genauen Zeitpunkte der Lichtblitze bekannt ist, können diese spektralen Teilbilder zeitlich zusammengesetzt werden.The more advantageous embodiment appears to be the temporal separation of the signals. LED lighting can be flashed very fast, with individual flashes of light only taking a few microseconds. Thus, sub-images of the traversing objects at different wavelengths λ can be sequentially recorded at the same location. Since the exact times of the flashes of light are known, these spectral fields can be composed in time.
Für den Aufbau einer vorteilhaften Ausführung einer Beleuchtungseinheit 2 wird der Einsatz von UV (370 nm oder 405nm), roten (typ. 630nm), grünen (typ. 530nm) und blauen (typ. 460nm) und NIR (typ. 840 oder 940nm) LED-Dies (typisch AlGaInP und InGaN Technologie) ohne Farbkonversionsschicht vorgeschlagen. Eine vorteilhafte Anordnung ist in
Eine Anordnung der LEDs in den Seitenwänden 6 und Verspiegelung der übrigen Flächen ist möglich.An arrangement of the LEDs in the
Für die Glassortierung sind heute direkte Beleuchtungssysteme üblich, welche eine Hellfeldbeleuchtung darstellen. Dabei ist der Anteil zwischen direkter und diffuser Beleuchtung unterschiedlich. Bei der Anwendung im Glassortierbereich werden gebrochene und geformte Objekte bewertet, welche durch folgende Eigenschaften gekennzeichnet sind:For the glass sorting today direct lighting systems are common, which represent a bright field illumination. The proportion between direct and diffuse lighting is different. When used in the glass sorting area, broken and shaped objects are characterized, which are characterized by the following properties:
Die Scherben weisen zum einen scharfe Bruchkanten in allen Ausrichtungen auf und haben im Objekt häufig keine planparallelen Oberflächen, sondern linsenförmige. Weiterhin sind die Pigmente im Volumen eingebracht und die Oberflächen häufig mit Etiketten oder Verschmutzungen besetzt.On the one hand, the shards have sharp break edges in all orientations and often have no plane-parallel surfaces in the object, but lenticular ones. Furthermore, the pigments are incorporated in the volume and the surfaces are often filled with labels or soiling.
In einer Hellfeld Beleuchtung, gerade mit hohem direkten Anteil, erzeugen diese beschriebenen Eigenschaften große Probleme in der Bewertung der Objekte. Eine reine Dunkelfeldbeleuchtung ist technisch auch nicht vorteilhaft, da hier ein kontinuierlicher Abgleich der Kamera nicht möglich ist.In a bright field illumination, especially with a high direct proportion, these described properties create great problems in the evaluation of the objects. A pure dark field illumination is technically not advantageous, since a continuous adjustment of the camera is not possible here.
Die Beleuchtung ist als Teildunkelfeldbeleuchtung ausgebildet. Eine Teildunkelfeldbeleuchtung ist eine Beleuchtung, welche sowohl eine Dunkelfeldbeleuchtung als auch eine Hellfeldbeleuchtung umfasst.The lighting is designed as partial dark field lighting. A partial dark field illumination is an illumination that includes both dark field illumination and bright field illumination.
Daher wird die beschriebene Anordnung vorgeschlagen, welche einen hohen Anteil an indirekter Beleuchtung (Dunkelfeld) hat, durch den vorderen abschließenden Diffusor 5 aber auch einen geringeren Anteil einer Hellfeldbeleuchtung. Die Dunkelfeldbeleuchtung wird dadurch realisiert, dass die Beleuchtungseinheiten 2 außerhalb des Sichtfensters 11 des Sensors 1 liegen und der Sensor 1 direkt auf einen dunklen Streifen 4 in der Beleuchtungseinheit 2 sieht. Das Licht der LED's wird über spiegelnd oder diffus hochreflektierende Wände 6, beispielsweise anodisierte Aluminiumbleche, homogenisiert und bis zur Austrittsebene der Beleuchtungseinheit 2 geleitet. Dort ist der Diffusor 5 angebracht, der den Hellfeldanteil der Beleuchtungseinheit 2 erzeugt. Dieser Diffusor 5 ist in der Praxis notwendig, da der Bereich, in welchem sich die Objekte bewegen, stark verschmutz ist und somit bei jeder Beleuchtungsart ein zusätzlicher variabler diffuser Anteil durch die Verschmutzungen zu erwarten ist.Therefore, the described arrangement is proposed, which has a high proportion of indirect lighting (dark field), by the
Durch die Streuung am Diffusor 5 erhält der Sensor 1 einen konstanten Anteil an Licht. Somit kann der Sensor 1 auch langzeitig auf das Licht und die Farbe abgeglichen werden. Der Diffusor 5 kann mit einer über den gesamten Spektralbereich transparenten Abdeckung 7 zum Schutz der Beleuchtungseinheit 2 abgedeckt.Due to the scattering on the
Durch die kompakte Ausführung der Beleuchtungseinheit 2 und den effizienten Einsatz der Leuchtelemente 3 lässt sich eine passive Kühlung 9 über wärmeleitende Halterungsmaterialien realisieren.Due to the compact design of the
Das Sichtfenster 11 des Sensors 1 kann auf einen Sichtbereich 4 der Beleuchtungseinheit 2 ausgerichtet sein, wobei sämtliche Leuchtelemente 3 der Beleuchtungseinheit 2 außerhalb des Sichtbereiches 4 angeordnet sind und wobei der Hellfeldanteil der Teildunkelfeldbeleuchtung durch ein passives lichtdiffusierendes Element 5 an der dem Sensor 1 zugewandten Seite der Beleuchtungseinheit 2 bewirkt wird.The
Eine besonders vorteilhafte Ausgestaltung der Beleuchtungseinheit 2 umfasst mehrere Leuchtelemente 3, den Sichtbereich 4 zum Zusammenwirken mit dem Sichtfenster 11 des Sensors 1, wobei sämtliche Leuchtelemente 3 außerhalb des Sichtbereiches 4 angeordnet sind, und das passive lichtdiffusierende Element 5 zur Ausbildung des Hellfeldanteils der Teildunkelfeldbeleuchtung. Dabei sieht der Sensor 1 die Leuchtelemente 3 nicht direkt im Strahlengang, sondern eine direkte Beleuchtung entsteht nur durch den passiven Diffusor 5.A particularly advantageous embodiment of the
Das lichtdiffusierende Element 5 kann aus Glas oder Kunststoff ausgebildet sein. Dabei ist das lichtdiffusierende Element 5 vorzugsweise oberflächen- oder volumensatiniert und weist lediglich geringe Absorptionsverluste auf.The light-diffusing
Der Raum zwischen den Leuchtelementen 3 und dem lichtdiffusierenden Element 5 kann von seitlichen Begrenzungen 6 begrenzt sein, wobei die seitlichen Begrenzungen 6 spiegelnd oder diffus hochreflektierend ausgebildet sind, wodurch eine gute Homogenisierung der Dunkelfeldbeleuchtung erreicht werden kann. Weiters kann sichergestellt werden, dass ein hoher Anteil der Lichtenergie den Sensor 1 erreicht, wodurch die erforderliche Leistung der Beleuchtungseinheit 2 möglichst gering gehalten und ein hoher Wirkungsgrad erzielt werden kann.The space between the light-emitting
Bei immer kürzeren Aufnahmezeiten des Sensors 1, insbesondere bei höheren Zeilenraten, sind immer kürzere Belichtungszeiten und somit höhere Leuchtdichten erforderlich. Beispielsweise sind Leuchtdichten für Systeme mit 4-20 kHz Zeilenrate mit Leuchtstoffröhren oder thermischen Leuchtmitteln nur schwer erreichbar.With ever shorter recording times of the sensor 1, in particular at higher line rates, shorter and shorter exposure times and thus higher luminances are required. For example, luminances for systems with 4-20 kHz line rate with fluorescent tubes or thermal light sources are difficult to achieve.
Für die Leuchtelemente 3 können LEDs verwendet werden, wodurch eine hohe Leuchtdichte bereitgestellt werden kann. Ein LED basiertes Beleuchtungssystem wird in
Eine Ausführung zur Erhöhung der Lichtintensität ist in der
Systeme mit LED's können mit Standard LED's arbeiten, wobei als Standard die 0,3 mm Die-Technologie, strahlbündelnde Optiken und vor allem die Weißlichterzeugung mit blauem LED Die und kombiniertem gelben Fluoreszenzfarbstoff (Weißlicht-LED's) angesehen wird. Die Leuchtdichte kann durch die Verwendung von Hochleistungs-LED's (1mm LED-Die oder größer) erhöht werden. Durch die Farbkonversion erfordert diese Art der Beleuchtung im Allgemeinen aber aktive Kühlung, welche zum Beispiel mit Wasserkühlungen bewerkstelligt wird.Systems with LEDs can work with standard LEDs, with the standard being the 0.3 mm die technology, beam-focusing optics and, above all, the white light generation with blue LED die and combined yellow fluorescent dye (white light LEDs). The luminance can be increased by using high power LEDs (1mm LED die or larger). Due to the color conversion, this type of lighting requires General but active cooling, which is accomplished for example with water cooling.
Es kann vorgesehen sein, dass mit der Beleuchtungseinheit 2 monochrome Lichtblitze erzeugt werden, wobei sequenziell Lichtblitze in sämtlichen vorgebbaren Wellenlängen λ erzeugt werden. Dabei kann eine vorbestimmte Reihenfolge der vorgebbaren Wellenlängen in einer Endlosschleife während der Durchführung des Verfahrens wiederholt werden.It can be provided that monochrome light flashes are generated with the
Etiketten werden somit indirekt beleuchtet. Bruchkanten und linsenförmige Formen haben durch die indirekte "Teildunkelfeldbeleuchtung" eine deutlich erhöhte Signalintensität. Daher unterscheidet sich Papier von nichttransparenten Materialien (Keramik und Steine). Dünnes Porzellan, welches im Volumen etwas weiß und semitransparent sein kann, fällt in einen eigenen Farb-Intensitäts-Bereich. In Zusammenhang mit einer Objektauswertung kann so eine Unterscheidung vorgenommen werden. Gerade Etiketten auf Farbgläsern sind durch die Kombination von weißem Papier mit den Volumenfarbpigmenten erkennbar. Dicke dunkle Farbscherben ergeben durch den hohen Anteil an Dunkelfeldbeleuchtung sehr intensive Farbsignale.Labels are thus illuminated indirectly. Fracture edges and lenticular shapes have a significantly increased signal intensity due to the indirect "partial dark field illumination". Therefore, paper is different from non-transparent materials (ceramics and stones). Thin porcelain, which may be somewhat white in volume and semitransparent, falls into its own color intensity range. In connection with an object evaluation, a distinction can be made in this way. Straight labels on colored glass are recognizable by the combination of white paper with the volume color pigments. Thick, dark shards of color result in very intense color signals due to the high proportion of dark field illumination.
Die Farb- und materialbasierte Auswertung der durch die Teildunkelfeldbeleuchtung sehr intensiven Transmissionssignale ermöglich somit eine sehr effektive und präzise Sortierung der semitransparenten Schüttgüter.The color and material-based evaluation of the very intense by the partial dark field illumination transmission signals thus allows a very effective and accurate sorting of semitransparent bulk materials.
Weitere erfindungsgemäße Ausführungsformen weisen lediglich einen Teil der beschriebenen Merkmale auf, wobei jede Merkmalskombination, insbesondere auch von verschiedenen beschriebenen Ausführungsformen, vorgesehen sein kann.Further embodiments according to the invention have only a part of the features described, wherein each feature combination, in particular also of various described embodiments, can be provided.
Claims (14)
- A method for spectral-based sorting of transparent and semi-transparent bulk goods (9), with the bulk goods (9) being moved in a stream of material between an illumination unit (2) and a sensor (1), with an illumination being performed with the illumination unit (2) with predeterminable wavelengths (λ) in a temporally or locally discrete manner, with transmission signals being received by the sensor (I), with the transmission signals being evaluated and the bulk goods (9) being sorted according to the evaluation, characterized in that the illumination is arranged as a partial dark field illumination.
- A method according to claim 1, characterized in that at least one wavelength (λ) of the illumination is predetermined in the UV range, at least one wavelength (λ) of the illumination in the VIS range, and at least one wavelength (λ) in the NIR range.
- A method according to claim 1 or 2, characterized in that at least three wavelengths (λ) of the illumination are predetermined in the VIS range.
- A method according to claim 1, 2 or 3, characterized in that the inspection window (II) of the sensor (1) is aligned to a visible zone (4) of the illumination unit (2), that all lighting elements (3) of the illumination unit (2) are arranged outside of the visible zone (4), and that a bright field portion of the partial dark field illumination is effected by a passive light-diffusing element (5) on the side of the illumination unit (2) facing the sensor (1).
- A method according to one of the claims 1 to 4, characterized in that a monochrome sensor is used as a sensor (1).
- A method according to one of the claims 1 to 5, characterized in that monochrome light flashes are generated with the illumination unit (2), with light flashes being generated sequentially in all of the predeterminable wavelengths (λ).
- An illumination unit (2) for a method according to one of the claims 1 to 6 for cooperation with an optical sensor (1), comprising several lighting elements (3) and a visible zone (4) for cooperation with the inspection window (11) of the sensor (1), characterized in that all lighting elements (3) are arranged outside of the visible zone (4), and that the illumination unit (2) for forming a partial dark field illumination comprises a passive light-diffusing element (5) for forming a bright field portion.
- An illumination unit according to claim 7, characterized in that the light-diffusing element (5) made of glass or plastic is arranged in a surface or volume satin-frosted manner with low absorption losses.
- An illumination unit according to claim 7 or 8, characterized in that the space between the lighting elements (3) and the light-diffusing element (5) is delimited by lateral boundaries (6), and that the lateral boundaries (6) are arranged in a mirroring or diffusely highly reflective way for homogenizing the dark field illumination.
- An illumination unit according to one of the claims 7 to 9, characterized in that it is arranged for a temporally or locally discrete illumination with predeterminable wavelengths (λ).
- An illumination unit according to claim 10, characterized in that at least one of the predeterminable wavelengths (λ) is in the UV range, that at least one, preferably three, of the predeterminable wavelengths (λ) is in the VIS range, and that at least one of the predeterminable wavelengths (λ) is in the NIR range.
- An illumination unit according to one of the claims 7 to 11, characterized in that the lighting elements (3) are LEDs.
- An apparatus for spectral-based sorting of transparent and semi-transparent bulk goods (9), comprising an illumination unit (2) and a sensor (1) for recording transmission signals, characterized in that the illumination unit (2) is arranged according to one of the claims 7 to 12.
- An apparatus according to claim 13, characterized in that the sensor (1) is a monochrome sensor.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT1482008 | 2008-01-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2085154A2 EP2085154A2 (en) | 2009-08-05 |
EP2085154A3 EP2085154A3 (en) | 2009-09-09 |
EP2085154B1 true EP2085154B1 (en) | 2012-06-06 |
Family
ID=40568435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090450021 Active EP2085154B1 (en) | 2008-01-31 | 2009-01-28 | Method, illumination device and system for spectral-based sorting |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2085154B1 (en) |
AT (1) | AT10869U1 (en) |
ES (1) | ES2390845T3 (en) |
HK (1) | HK1137383A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3263233A1 (en) | 2016-06-28 | 2018-01-03 | Buhler Sortex Ltd. | Illumination devices |
DE102017119137A1 (en) * | 2017-08-22 | 2019-02-28 | Sesotec Gmbh | Method for the detection and separation of special glass from recycled glass |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07155702A (en) * | 1993-12-01 | 1995-06-20 | Satake Eng Co Ltd | Grain color sorting device |
DE19511901A1 (en) | 1995-03-31 | 1996-10-02 | Commodas Gmbh | Device and method for sorting bulk goods |
US6144004A (en) * | 1998-10-30 | 2000-11-07 | Magnetic Separation Systems, Inc. | Optical glass sorting machine and method |
AT4889U1 (en) | 2000-11-07 | 2001-12-27 | Binder Co Ag | DIODE LIGHT SOURCE FOR A LINE CAMERA |
AT410847B (en) | 2001-02-20 | 2003-08-25 | Binder Co Ag | Arrangement for detecting and recognizing objects has camera in dust-tight encapsulated chambers behind housing structure forming fore-chamber with openings on object, objective sides |
DE202004019684U1 (en) | 2004-12-17 | 2006-02-09 | Commodas Daten- Und Systemtechnik Nach Mass Gmbh | Device for light analysis of particles |
AT503036B1 (en) | 2005-05-25 | 2007-07-15 | Binder Co Ag | Label Remover |
GB0606217D0 (en) * | 2006-03-29 | 2006-05-10 | Pilkington Plc | Glazing inspection |
-
2009
- 2009-01-22 AT AT0800609U patent/AT10869U1/en not_active IP Right Cessation
- 2009-01-28 EP EP20090450021 patent/EP2085154B1/en active Active
- 2009-01-28 ES ES09450021T patent/ES2390845T3/en active Active
-
2010
- 2010-02-04 HK HK10101249.5A patent/HK1137383A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
ES2390845T3 (en) | 2012-11-19 |
AT10869U1 (en) | 2009-11-15 |
EP2085154A2 (en) | 2009-08-05 |
HK1137383A1 (en) | 2010-07-30 |
EP2085154A3 (en) | 2009-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2290355B1 (en) | Device and method for inspecting labelled containers | |
DE69817580T2 (en) | DEVICE FOR THE OPTICAL INSPECTION OF PACKAGING FILMS | |
AT505671B1 (en) | METHOD FOR OPTICAL DETECTING OF MOVING OBJECTS | |
DE60204567T2 (en) | OVERLAPPING MOSAIC IMAGINATING RAIN SENSOR | |
EP2089168B1 (en) | Device and method for optically sorting bulk material | |
DE602006000559T2 (en) | Optical method and apparatus for detecting defects in the surface and structure of a hot, continuously moving product | |
EP3107664A1 (en) | Segregation of mineral-containing objects or plastic objects | |
EP2879919B1 (en) | Detection of rain drops on a plate by means of a camera and illumination | |
EP0932826B1 (en) | Method for detecting optical errors in large surface panels | |
DE102017008406A1 (en) | Inspection device with color illumination | |
DE102014220598A1 (en) | Inspection device and method for the transmitted light inspection of containers | |
DE102010055523A1 (en) | Apparatus in the spinning preparation for the detection of foreign parts made of plastic, such as polypropylene tapes, fabrics and films u. like. | |
DE19955292A1 (en) | Fiber processing, e.g. separation of impurities in blowroom, includes sorting by color of reflected light using multi-colored light source | |
DE102015119444A1 (en) | Device and method for monitoring a running web | |
EP1205745B1 (en) | Diode light source for a line scan camera | |
EP2085154B1 (en) | Method, illumination device and system for spectral-based sorting | |
AT508060B1 (en) | METHOD, ILLUMINATION DEVICE AND SYSTEM FOR OPTICAL DETECTING OF MOVING OBJECTS | |
EP2253948A1 (en) | Device for optical examination of an object | |
EP1829373B1 (en) | Device for continuously observing objects independently from ambient light | |
DE102004039334B4 (en) | Device for improving the visibility in vehicles and vehicles | |
WO2010133393A2 (en) | Optical recording device for recording an image | |
DE10046354C1 (en) | Detecting defects during electronic image processing involves forming visible image for defect image by directing light to original image at different angles in addition to axis parallel light | |
DE10137477A1 (en) | Filtering of scattered light in the blue and green wavelength ranges originating form foreground objects incident on a camera or video device for use in TV, film and photo-electronic applications | |
DE102007054602A1 (en) | Condition parameter's distribution detecting method for use in e.g. medical diagnosis, involves registering signals with different wavelengths from probes by using camera, and separately detecting signals based on output signals of camera | |
DE102006057182A1 (en) | Multi-sensorial line image sensor for use in multi-sensorial camera, has image lines attached on semiconductor component and covered with material in linear line arrangement, where signal of sensor is emitted as two-channel image signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100309 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1137383 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 560745 Country of ref document: AT Kind code of ref document: T Effective date: 20120615 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009003741 Country of ref document: DE Effective date: 20120802 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120606 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1137383 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120906 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2390845 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121119 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120907 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121008 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
26N | No opposition filed |
Effective date: 20130307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009003741 Country of ref document: DE Effective date: 20130307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090128 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130128 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240216 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20231107 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 16 Ref country code: GB Payment date: 20240124 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240123 Year of fee payment: 16 Ref country code: BE Payment date: 20240122 Year of fee payment: 16 |