EP2084702B1 - Method for generating mechanical waves by creating an interfacial acoustic radiation force - Google Patents

Method for generating mechanical waves by creating an interfacial acoustic radiation force Download PDF

Info

Publication number
EP2084702B1
EP2084702B1 EP07866491.9A EP07866491A EP2084702B1 EP 2084702 B1 EP2084702 B1 EP 2084702B1 EP 07866491 A EP07866491 A EP 07866491A EP 2084702 B1 EP2084702 B1 EP 2084702B1
Authority
EP
European Patent Office
Prior art keywords
medium
waves
acoustic
interface
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07866491.9A
Other languages
German (de)
French (fr)
Other versions
EP2084702A2 (en
Inventor
Mathieu Pernot
David Savery
Jérémy BERCOFF
Claude Cohen-Bacrie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SuperSonic Imagine SA
Original Assignee
SuperSonic Imagine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SuperSonic Imagine SA filed Critical SuperSonic Imagine SA
Publication of EP2084702A2 publication Critical patent/EP2084702A2/en
Application granted granted Critical
Publication of EP2084702B1 publication Critical patent/EP2084702B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses

Definitions

  • the present invention relates to the general field of medical imaging.
  • the invention is concerned with the generation of mechanical waves within a viscoelastic medium, such mechanical waves being capable of being imaged in order to determine the properties of the viscoelastic medium.
  • the present invention thus relates more precisely to the field of elastography.
  • This medical imaging technique makes it possible to map the mechanical properties of a viscoelastic medium and to quantify the rheology of the viscoelastic medium.
  • a mechanical stimulus is generated and causes the displacement of the tissues.
  • the measurement of the spatiotemporal response is advantageously carried out thanks to an imaging modality, for example by ultrasound or magnetic resonance, etc.
  • mechanical excitation In transient elastography, mechanical excitation consists of a short mechanical impulse or a small number of impulses created either on the surface of the body, or even inside the tissue.
  • the quality of transient elastography images crucially depends on the amplitude of the displacements that can be generated by excitatory mechanical stimulation.
  • the displacements resulting from the mechanical excitation must be large enough to be measurable with a minimum of errors, while remaining limited to avoid any harmful effect in the environment, in particular when it is a question of biological tissue.
  • transient elastography where the mechanical stress of the observed medium is created by a force of acoustic radiation.
  • This radiation force is obtained by focusing an ultrasonic beam inside the medium.
  • the focusing of the beam can here take place in a single zone of the medium or successively in a plurality of zones of the medium.
  • the focal point, on which the ultrasonic beam converges, is then moved at a speed greater than the speed of propagation of the elastic waves to generate an elastic wave of displacement of maximum amplitude of the order of 10 to 100 ⁇ m.
  • This displacement wave then propagates in the medium.
  • the measurement of wave propagation properties observed by ultrasound, MRI or another imaging method, makes it possible to determine mechanical quantities characteristic of tissues investigated. It is possible to determine, among other things, a shear modulus or a viscosity, etc.
  • the displacement generated by the acoustic radiation force is linked to the energy deposited in the tissue, and the amplitude of the mechanical wave generated is therefore limited by the maximum acoustic power that can be sent into the environment observed without altering thermally or mechanically the fabric.
  • the ultrasonic solution offers a simplicity of manipulation, a reproducibility of the way in which the stress is generated, an assurance as for the synchronization of the excitation with the imagery and an assurance as for the localization of the excitation, but suffers from a lack of power.
  • US5477736 (A ) describes an ultrasonic transducer which generates waves with a focusing inside a medium to be analyzed.
  • US5903516 (A ) discloses a generator of an acoustic radiation force using two secant waves.
  • DE4229631 (A1 ) relates to a lens comprising a variable focus.
  • the present invention relates to a method for imaging a viscoelastic medium according to claim 1 and an imaging probe according to claim 10.
  • the present disclosure proposes to overcome such drawbacks by proposing a method for generating mechanical waves within a viscoelastic medium according to claim 1 comprising a step of generating an acoustic radiation force within the viscoelastic medium by application of acoustic waves focused on an interface delimiting two zones having distinct acoustic properties.
  • the amplitudes of the induced displacements are higher than with a simple ultrasonic stress by focusing within a tissue.
  • acoustic waves are focused to the depth and towards a surface interface.
  • the interface on which the acoustic waves are focused can be a gel / skin or water / skin separation surface or even water / membrane / skin, etc.
  • the membrane can be a membrane deformable or not.
  • the interface can also be located between a solid medium and a liquid medium inside the imaged tissue, or between two media with different acoustic properties inside the tissue. This is, for example, the case with a biological medium comprising a cyst.
  • the amplitude of the displacements generated is of the order of 100 ⁇ m.
  • the step of generating an acoustic radiation force is coupled with a step of imaging the medium, the coupling being such that the propagation of the mechanical waves generated in the medium is image.
  • Wave propagation imagery can be performed in one, two or three dimensions.
  • an elastography measurement of the medium is carried out. This is the preferred application of the invention, focusing at the interface according to the invention allowing a remarkable improvement in the quality of the imaging thus carried out.
  • the acoustic waves are ultrasonic waves.
  • the ultrasonic frequencies are, in fact, adapted to the generation of a radiation force allowing the creation of shear waves within a medium.
  • shear waves are commonly used in elastography.
  • Such shear waves belong to mechanical waves as generated according to the method of the invention and it is these which are generally imaged according to the elastographic methods.
  • the interface on which the acoustic waves are focused is an interface present between two zones of distinct acoustic properties present within the viscoelastic medium.
  • the interface on which the acoustic waves are focused is an artificial membrane placed in contact with the surface of the viscoelastic medium and surrounding a so-called coupling medium placed between a device intended to apply the acoustic waves and the surface of the viscoelastic medium, the coupling medium and the viscoelastic medium defining two zones of distinct acoustic properties.
  • This characteristic is particularly advantageous in applications where the presence of an artificial medium is necessary. This is the case, in particular, in focused ultrasound therapy methods where a thin membrane surrounding a coupling medium is generally used to make contact with the biological tissue.
  • an elastographic mode is advantageously used where an imaging of the medium and of the propagation of the shear waves is carried out. In this way, the viscoelastic properties of the tissue are then evaluated and monitored during a therapeutic treatment.
  • Such monitoring is particularly relevant because it is well known that the elasticity of biological tissues changes when they are denatured after thermal cell necrosis.
  • the artificial membrane has a composition chosen to minimize the contrast of acoustic impedance while increasing the amplitude of the mechanical waves.
  • the artificial membrane has a thickness chosen to minimize the contrast of acoustic impedance while increasing the amplitude of the mechanical waves.
  • an artificial membrane for example the membrane of a water pocket
  • the technique according to the invention is therefore very advantageous for elastographic imaging of the skin, for example at the level of a melanoma or superficial lesions such as for example certain lesions of the breast.
  • the artificial membrane has a non-uniform composition and determined spatially so as to increase the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.
  • the artificial membrane may have a non-uniform thickness and spatially determined so as to increase the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.
  • acoustic waves focused on an interface delimiting two zones having distinct acoustic properties is carried out successively at a plurality of points of the interface, this plurality of points and the succession of the focal points being determined so increasing the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.
  • the method is coupled with an ultrasonic treatment method to monitor the effect of the treatment.
  • the ultrasonic treatment method is capable of being controlled as a function of the results of the stage of imaging the medium.
  • the disclosure also relates to an imaging probe carrying the transducer according to the invention and an artificial membrane intended to be partially placed in contact with the surface of a viscoelastic medium and intended to surround a so-called coupling medium placed between a generation device. acoustic waves and a viscoelastic medium to serve as an interface during the implementation of a method according to the invention.
  • the figure 1 schematically illustrates the generation of mechanical waves in a medium 11 using a method according to the invention.
  • the method is applied using a transducer 12 applying acoustic waves focused at an interface 13.
  • the focusing of the waves is shown diagrammatically in the plane in a conventional manner by two dotted lines which are substantially hyperbolic symmetrical with respect to the center line of the transducer 12 and which approach each other at the focusing depth. According to the method of the invention, this focusing depth is precisely chosen as corresponding to the depth of the interface.
  • Focused waves are ultrasonic waves.
  • the interface 13 is produced using an artificial membrane surrounding an artificial medium 14.
  • the transfers of momentum between the media 14 and 11 allow the creation of an acoustic radiation force 15 which, pressing on the interface 13 of the medium 11, will push it and generate a mechanical wave within the medium 11 .
  • the medium is therefore mechanically stimulated by using an acoustic radiation force 15 generated at the interface 13 of two media 11 and 14 having different acoustic properties.
  • a surface radiation force 15 is generated locally on the interface 13, which causes the displacement of the medium 11 located nearby.
  • I vs 14 1 + R - 1 - R vs 14 vs 11 , where R is the reflection coefficient (in terms of energy) of the interface 13, c 14 and c 11 are the ultrasonic celerities in the media 14 and 11, and I is the energy of the incident ultrasonic beam.
  • the volume V is then subjected to a volume force F vol due to the acoustic absorption in the medium 11, and subjected to a surface force F surf on the section A due to the contrast between the two media 14 and 11.
  • the surface force F surf is written
  • the volume radiation force created by absorption can be written as a first approximation
  • an elastic membrane for this purpose, in order to increase the speed contrast, one can for example use an elastic membrane.
  • a membrane could, for example, be made from latex, polyurethane, silicone, etc. It can be seen that the latex is particularly well suited for the manufacture of a membrane useful in the implementation of the invention.
  • the transducer 12 is capable of performing a step of ultra fast imaging of the medium 11. Depending on the transducer, the image can be two-dimensional or three-dimensional. It can also be reduced to one dimension (a line of sight) if a simple stationary transducer element is used.
  • This ultra-fast ultrasonic imaging step is coupled with the step of applying ultrasonic waves focused at the membrane 13. The occurrences of these steps are then synchronized as a function of the speed of propagation of the mechanical waves created by application of ultrasonic waves.
  • Such a semi-infinite solid is a medium 11 of isotropic elastic propagation.
  • Four types of waves can then propagate: three volume waves and one surface wave.
  • the volume waves consist of a head wave, a compression wave and a shear wave.
  • the figure 2 schematically illustrates the directivity of the shear waves generated by a source zone 26, on which ultrasonic waves are focused, situated on an interface 23, placed on the surface of a medium 21.
  • the ultrasonic radiation force 25 generates shear waves according to directivity lobes 27 and 27 ′, the maxima of which are located at 35 ° from the normal at the interface 23 and which illustrate these mechanical shear waves.
  • the main lobe is located at 35 ° relative to the normal at the interface 23 when we consider a medium whose mechanical characteristics are typical of biological tissues.
  • the surface wave or Rayleigh R wave, is in reality capable of being detected in volume because it has a normal evanescent component, along the Z axis. This component extends over a depth of about one wavelength, about 1 cm in biological media.
  • the surface wave therefore has a speed almost identical to that of shear waves.
  • the figure 3 presents a first embodiment of an artificial membrane according to the invention.
  • This embodiment is particularly suitable for being combined with a method of focused ultrasound therapy.
  • a therapy method requires the presence of a coupling medium between ultrasonic transducers and a biological medium.
  • a coupling medium is generally a water bag consisting of a membrane filled with water and which can be advantageously used to implement the invention.
  • the embodiment of the invention presented on the figure 3 precisely overcomes this drawback by allowing mechanical shear waves to be generated in a biological medium 31, despite the presence of the water bag.
  • the assembly presented on the figure 3 uses an imaging probe 38 carrying ultrasonic transducers 32.
  • This imaging probe 38 is applied to a water bag, defining a coupling medium 34 surrounded by a membrane 34 '.
  • the water bag is placed on the surface of a biological medium 31, for example a breast, thus defining an interface 33.
  • the method according to the invention uses the interface effect at the level of the membrane 34 ′ to create mechanical waves, more precisely shear waves in the medium 31.
  • Such a scanning probe imaging 38 is then programmed not only to carry out the treatment but also to, punctually, trigger a measure of elasticity by carrying out a step of generating mechanical waves and, successively, in a synchronized manner, a step of imaging the medium 31.
  • the invention makes it possible to adjust the parameters of the interface as a function of the observation that one wishes to make of the medium 31.
  • the radiation force 35 generated on the interface 33 between the two media 34 and 31 depends on other parameters that can be adjusted by the experimenter.
  • the interfacial radiation force depends, in fact, on the ratio of the acoustic impedances, on the ratio of the speeds of sound in the two media or, again, on the thickness of the membrane.
  • the figure 4 illustrates a second embodiment of an artificial membrane according to the invention.
  • the membrane 44 'providing the interface 43 is such that it is possible to confine and amplify the amplitude and directivity of the mechanical waves in an area of interest 66 located in a medium 41 .
  • a non-constant thickness and composition membrane is used. Spatialization of the surface sources can, in fact, be carried out using a membrane whose thickness and / or composition is non-homogeneous at the interface 43 with the medium 41.
  • FIGS. 4a and 4b thus describe a particular embodiment for a membrane 44 'surrounding a coupling medium 44, capable of focusing the mechanical waves on an area of interest 66.
  • the figure 4a is a AA cup and the figure 4b is a partial top view as seen according to section BB.
  • the area of interest 66 is located at a depth Z and the characteristics of the membrane 44 'are determined as a function of this depth Z in terms of thickness or composition.
  • the thickness of the membrane 44 ' is increased over a crown zone 49 represented on the figure 4b , so that the area of interest 66 and the crown 49 form a cone of approximately 35 °.
  • the axial displacements add up and, by propagation, are of a maximum amplitude in the zone of interest 66, placed in each of the main emission lobes of the membrane sources.
  • heterogeneities of the membrane 44 ′ can be produced according to variable geometries, not only in a crown, but also in a rectangle, etc. Instead of a continuous relief surface, spikes can also be arranged in a crown.
  • FIG 5 presents a particular embodiment of the invention where a biological interface 53 present within a biological medium 51 is used according to the method of the invention.
  • transducers 52 are used to apply ultrasonic waves focused at the interface 53, that is to say at the depth of the interface and in the direction of the latter.
  • the ultrasonic waves generate a surface radiation force 55 which induces mechanical shear waves within a biological medium 54 included in the biological medium 51.
  • the transducers 52 are then used to image the propagation of these shear waves and deduce from this observation the mechanical properties of the medium 54.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Surgical Instruments (AREA)

Description

Arrière-plan de l'inventionInvention background

La présente invention se rapporte au domaine général de l'imagerie médicale.The present invention relates to the general field of medical imaging.

Plus particulièrement, l'invention s'intéresse à la génération d'ondes mécaniques au sein d'un milieu viscoélastique, de telles ondes mécaniques étant susceptibles d'être imagées afin de déterminer les propriétés du milieu viscoélastique.More particularly, the invention is concerned with the generation of mechanical waves within a viscoelastic medium, such mechanical waves being capable of being imaged in order to determine the properties of the viscoelastic medium.

La présente invention concerne ainsi plus précisément le domaine de l'élastographie.The present invention thus relates more precisely to the field of elastography.

Cette technique d'imagerie médicale permet de cartographier les propriétés mécaniques d'un milieu viscoélastique et de quantifier la rhéologie du milieu viscoélastique. Selon cette technique, un stimulus mécanique est généré et provoque le déplacement des tissus. On mesure alors la réponse spatiotemporelle du tissu à cette excitation mécanique. La mesure de la réponse spatiotemporelle est avantageusement réalisée grâce à une modalité d'imagerie, par exemple par échographie ou par résonance magnétique, etc.This medical imaging technique makes it possible to map the mechanical properties of a viscoelastic medium and to quantify the rheology of the viscoelastic medium. According to this technique, a mechanical stimulus is generated and causes the displacement of the tissues. We then measure the spatiotemporal response of the tissue to this mechanical excitation. The measurement of the spatiotemporal response is advantageously carried out thanks to an imaging modality, for example by ultrasound or magnetic resonance, etc.

Une fois le mouvement résultant de l'excitation mécanique connu, il est possible de déterminer les propriétés mécaniques du milieu.Once the movement resulting from the mechanical excitation is known, it is possible to determine the mechanical properties of the medium.

En élastographie transitoire, l'excitation mécanique consiste en une impulsion mécanique courte ou en un faible nombre d'impulsions créées soit à la surface du corps, soit à l'intérieur même du tissu.In transient elastography, mechanical excitation consists of a short mechanical impulse or a small number of impulses created either on the surface of the body, or even inside the tissue.

La qualité des images d'élastographie transitoire dépend, de manière cruciale, de l'amplitude des déplacements qu'il est possible de générer par la stimulation mécanique excitatrice.The quality of transient elastography images crucially depends on the amplitude of the displacements that can be generated by excitatory mechanical stimulation.

On constate qu'en élastographie transitoire par sollicitation externe, l'amplitude de déplacement n'est limitée que par la vibration maximale surfacique que l'on peut induire au contact du milieu sans l'endommager. Les déplacements dans le tissu ainsi générés présentent aisément des amplitudes de l'ordre de 100 µm.It can be seen that in transient elastography by external stress, the amplitude of displacement is limited only by the maximum surface vibration which can be induced on contact with the medium without damaging it. The displacements in the tissue thus generated easily exhibit amplitudes of the order of 100 μm.

Ainsi, de manière générale, les déplacements résultant de l'excitation mécanique doivent être suffisamment grands pour être mesurables avec un minimum d'erreurs, tout en restant limités pour éviter tout effet nuisible dans le milieu, notamment lorsqu'il s'agit d'un tissu biologique.Thus, in general, the displacements resulting from the mechanical excitation must be large enough to be measurable with a minimum of errors, while remaining limited to avoid any harmful effect in the environment, in particular when it is a question of biological tissue.

La puissance générée est donc satisfaisante mais on sait que l'utilisation d'une sollicitation externe crée des problèmes techniques, comme l'encombrement du dispositif nécessaire à cette sollicitation, la synchronisation de l'excitation mécanique avec l'imagerie, la localisation de l'excitation mécanique, l'optimisation de l'amplitude de l'onde dans les zones d'intérêt en profondeur, etc.The power generated is therefore satisfactory but it is known that the use of an external stress creates technical problems, such as the size of the device necessary for this stress, the synchronization of the mechanical excitation with the imagery, the location of the mechanical excitation, optimization of the amplitude of the wave in areas of interest at depth, etc.

Il existe aussi une élastographie transitoire où la sollicitation mécanique du milieu observé est créée par une force de radiation acoustique. Cette force de radiation est obtenue en focalisant un faisceau ultrasonore à l'intérieur du milieu. La focalisation du faisceau peut ici avoir lieu en une seule zone du milieu ou successivement en une pluralité de zones du milieu.There is also a transient elastography where the mechanical stress of the observed medium is created by a force of acoustic radiation. This radiation force is obtained by focusing an ultrasonic beam inside the medium. The focusing of the beam can here take place in a single zone of the medium or successively in a plurality of zones of the medium.

Le foyer, sur lequel converge le faisceau ultrasonore, est alors déplacé à une vitesse supérieure à la vitesse de propagation des ondes élastiques pour générer une onde élastique de déplacement d'amplitude maximale de l'ordre de 10 à 100 µm.The focal point, on which the ultrasonic beam converges, is then moved at a speed greater than the speed of propagation of the elastic waves to generate an elastic wave of displacement of maximum amplitude of the order of 10 to 100 μm.

Cette onde de déplacement se propage alors dans le milieu. La mesure des propriétés de propagation de l'onde, observée par échographie, IRM ou une autre modalité d'imagerie, permet de déterminer des grandeurs mécaniques caractéristiques des tissus investigués. Il est possible de déterminer, entre autres, un module de cisaillement ou encore une viscosité, etc.This displacement wave then propagates in the medium. The measurement of wave propagation properties, observed by ultrasound, MRI or another imaging method, makes it possible to determine mechanical quantities characteristic of tissues investigated. It is possible to determine, among other things, a shear modulus or a viscosity, etc.

Le déplacement engendré par la force de radiation acoustique est lié à l'énergie déposée dans le tissu, et l'amplitude de l'onde mécanique générée est donc limitée par la puissance acoustique maximale que l'on peut envoyer dans le milieu observé sans altérer thermiquement ou mécaniquement le tissu.The displacement generated by the acoustic radiation force is linked to the energy deposited in the tissue, and the amplitude of the mechanical wave generated is therefore limited by the maximum acoustic power that can be sent into the environment observed without altering thermally or mechanically the fabric.

La solution ultrasonore offre une simplicité de manipulation, une reproductibilité de la manière dont est générée la contrainte, une assurance quant à la synchronisation de l'excitation avec l'imagerie et une assurance quant à la localisation de l'excitation, mais souffre d'un manque de puissance.The ultrasonic solution offers a simplicity of manipulation, a reproducibility of the way in which the stress is generated, an assurance as for the synchronization of the excitation with the imagery and an assurance as for the localization of the excitation, but suffers from a lack of power.

US5477736 (A ) décrit un transducteur ultrasonore qui génère des ondes avec une focalisation à l'intérieur d'un milieu à analyser. US5477736 (A ) describes an ultrasonic transducer which generates waves with a focusing inside a medium to be analyzed.

US5903516 (A ) divulgue un générateur d'une force de radiation acoustique utilisant deux ondes sécantes. US5903516 (A ) discloses a generator of an acoustic radiation force using two secant waves.

DE4229631 (A1 ) concerne une lentille comprenant un focus variable. DE4229631 (A1 ) relates to a lens comprising a variable focus.

Objet et résumé de l'inventionSubject and summary of the invention

La présente invention concerne un procédé d'imagerie d'un milieu viscoélastique selon la revendication 1 et une sonde d'imagerie selon la revendication 10.The present invention relates to a method for imaging a viscoelastic medium according to claim 1 and an imaging probe according to claim 10.

La présente divulgation propose de pallier de tels inconvénients en proposant un procédé de génération d'ondes mécaniques au sein d'un milieu viscoélastique selon la revendication 1 comprenant une étape de génération d'une force de radiation acoustique au sein du milieu viscoélastique par application d'ondes acoustiques focalisées sur une interface délimitant deux zones possédant des propriétés acoustiques distinctes.The present disclosure proposes to overcome such drawbacks by proposing a method for generating mechanical waves within a viscoelastic medium according to claim 1 comprising a step of generating an acoustic radiation force within the viscoelastic medium by application of acoustic waves focused on an interface delimiting two zones having distinct acoustic properties.

Avec un tel procédé de génération d'ondes mécaniques au sein d'un milieu viscoélastique, les amplitudes des déplacements induits sont plus élevées qu'avec une simple sollicitation ultrasonore par focalisation au sein d'un tissu.With such a method of generating mechanical waves within a viscoelastic medium, the amplitudes of the induced displacements are higher than with a simple ultrasonic stress by focusing within a tissue.

Selon la divulgation, des ondes acoustiques sont focalisées à la profondeur et en direction d'une interface surfacique.According to the disclosure, acoustic waves are focused to the depth and towards a surface interface.

L'interface sur laquelle sont focalisées les ondes acoustiques, peut être une surface de séparation gel/peau ou eau/peau ou encore eau/membrane/peau, etc. La membrane peut être une membrane déformable ou non. L'interface peut aussi être située entre un milieu solide et un milieu liquide à l'intérieur du tissu imagé, ou entre deux milieux de propriétés acoustiques différentes à l'intérieur du tissu. Cela est, par exemple, le cas avec un milieu biologique comprenant un kyste. Avec le procédé selon l'invention, l'amplitude des déplacements générés est de l'ordre de 100 µm.The interface on which the acoustic waves are focused, can be a gel / skin or water / skin separation surface or even water / membrane / skin, etc. The membrane can be a membrane deformable or not. The interface can also be located between a solid medium and a liquid medium inside the imaged tissue, or between two media with different acoustic properties inside the tissue. This is, for example, the case with a biological medium comprising a cyst. With the method according to the invention, the amplitude of the displacements generated is of the order of 100 μm.

Selon un mode de réalisation préférentiel, l'étape de génération d'une force de radiation acoustique est couplée avec une étape d'imagerie du milieu, le couplage étant tel que l'on image la propagation des ondes mécaniques générées dans le milieu.According to a preferred embodiment, the step of generating an acoustic radiation force is coupled with a step of imaging the medium, the coupling being such that the propagation of the mechanical waves generated in the medium is image.

L'imagerie de la propagation des ondes peut être réalisée en une, deux ou trois dimensions. Dans un tel mode de réalisation préférentiel, une mesure d'élastographie du milieu est réalisée. Il s'agit de l'application préférentielle de l'invention, la focalisation à l'interface selon l'invention permettant une amélioration remarquable de la qualité de l'imagerie ainsi effectuée.Wave propagation imagery can be performed in one, two or three dimensions. In such a preferred embodiment, an elastography measurement of the medium is carried out. This is the preferred application of the invention, focusing at the interface according to the invention allowing a remarkable improvement in the quality of the imaging thus carried out.

Selon une caractéristique de l'invention, les ondes acoustiques sont des ondes ultrasonores.According to a characteristic of the invention, the acoustic waves are ultrasonic waves.

Les fréquences ultrasonores sont, en effet, adaptées à la génération d'une force de radiation permettant la création d'ondes de cisaillement au sein d'un milieu. De telles ondes de cisaillement sont communément utilisées en élastographie. De telles ondes de cisaillement appartiennent aux ondes mécaniques telles que générées selon le procédé de l'invention et ce sont elles qui sont imagées en général selon les procédés élastographiques.The ultrasonic frequencies are, in fact, adapted to the generation of a radiation force allowing the creation of shear waves within a medium. Such shear waves are commonly used in elastography. Such shear waves belong to mechanical waves as generated according to the method of the invention and it is these which are generally imaged according to the elastographic methods.

Selon une caractéristique particulière, l'interface sur laquelle sont focalisées les ondes acoustiques est une interface présente entre deux zones de propriétés acoustiques distinctes présentes au sein du milieu viscoélastique.According to a particular characteristic, the interface on which the acoustic waves are focused is an interface present between two zones of distinct acoustic properties present within the viscoelastic medium.

Avec une telle caractéristique, on améliore considérablement la visibilité et la caractérisation des zones interfaciales au sein d'un milieu. En effet, l'observation de la propagation des ondes de cisaillement créées au niveau des interfaces présentes naturellement dans le corps humain, permet de caractériser d'autant mieux ces interfaces et les milieux qu'elles séparent.With such a characteristic, the visibility and the characterization of the interfacial zones within an environment are considerably improved. Indeed, the observation of the propagation of the shear waves created at the level of the interfaces naturally present in the human body, makes it possible to characterize these interfaces all the better.

Cette caractéristique sera donc particulièrement intéressante dans le cas de présence d'un kyste liquide, de vaisseaux sanguins ou encore de structures plus dures que les tissus mous, comme les os et les cartilages.This characteristic will therefore be particularly interesting in the case of the presence of a liquid cyst, blood vessels or even harder structures than soft tissue, such as bones and cartilage.

Selon une autre caractéristique particulière, l'interface sur laquelle sont focalisées les ondes acoustiques est une membrane artificielle placée au contact de la surface du milieu viscoélastique et entourant un milieu dit de couplage placé entre un dispositif destiné à appliquer les ondes acoustiques et la surface du milieu viscoélastique, le milieu de couplage et le milieu viscoélastique définissant deux zones de propriétés acoustiques distinctes.According to another particular characteristic, the interface on which the acoustic waves are focused is an artificial membrane placed in contact with the surface of the viscoelastic medium and surrounding a so-called coupling medium placed between a device intended to apply the acoustic waves and the surface of the viscoelastic medium, the coupling medium and the viscoelastic medium defining two zones of distinct acoustic properties.

Cette caractéristique s'avère particulièrement intéressante dans les applications où la présence d'un milieu artificiel est nécessaire. C'est le cas, en particulier, dans les procédés de thérapie par ultrasons focalisés où une membrane fine entourant un milieu de couplage est généralement utilisée pour réaliser le contact avec le tissu biologique.This characteristic is particularly advantageous in applications where the presence of an artificial medium is necessary. This is the case, in particular, in focused ultrasound therapy methods where a thin membrane surrounding a coupling medium is generally used to make contact with the biological tissue.

Selon la divulgation, il est alors possible de mettre à profit une telle interface pour générer des ondes de cisaillement. Successivement à l'excitation, on utilise avantageusement un mode élastographique où une imagerie du milieu et de la propagation des ondes de cisaillement est réalisée. De la sorte, les propriétés viscoélastiques du tissu sont alors évaluées et suivies pendant un traitement thérapeutique.According to the disclosure, it is then possible to take advantage of such an interface to generate shear waves. Following the excitation, an elastographic mode is advantageously used where an imaging of the medium and of the propagation of the shear waves is carried out. In this way, the viscoelastic properties of the tissue are then evaluated and monitored during a therapeutic treatment.

Un tel suivi est particulièrement pertinent car il est bien connu que l'élasticité des tissus biologiques change lorsqu'ils sont dénaturés après une nécrose thermique cellulaire.Such monitoring is particularly relevant because it is well known that the elasticity of biological tissues changes when they are denatured after thermal cell necrosis.

Selon une caractéristique avantageuse, la membrane artificielle présente une composition choisie pour minimiser le contraste d'impédance acoustique tout en augmentant l'amplitude des ondes mécaniques.According to an advantageous characteristic, the artificial membrane has a composition chosen to minimize the contrast of acoustic impedance while increasing the amplitude of the mechanical waves.

Selon une autre caractéristique avantageuse, la membrane artificielle présente une épaisseur choisie pour minimiser le contraste d'impédance acoustique tout en augmentant l'amplitude des ondes mécaniques.According to another advantageous characteristic, the artificial membrane has a thickness chosen to minimize the contrast of acoustic impedance while increasing the amplitude of the mechanical waves.

Ces deux dernières caractéristiques permettent d'adapter aisément une membrane artificielle selon l'application visée, en modifiant sa composition, sa forme et/ou son épaisseur.These last two characteristics make it possible to easily adapt an artificial membrane according to the intended application, by modifying its composition, its shape and / or its thickness.

Il se trouve que le procédé de génération d'ondes mécaniques selon l'invention présente un grand intérêt pour l'imagerie de l'élasticité des zones superficielles des milieux biologiques.It turns out that the method of generating mechanical waves according to the invention is of great interest for imaging the elasticity of the surface areas of biological media.

En effet, comme les ondes de cisaillement sont générées à l'interface, cela permet d'obtenir des ondes d'amplitude très importante au niveau de la surface du tissu. Cette caractéristique n'est pas possible à réaliser avec la technique de pression de radiation en volume puisque les ondes générées atteignent généralement la surface du milieu très atténuées.Indeed, as the shear waves are generated at the interface, this makes it possible to obtain waves of very large amplitude at the surface of the tissue. This characteristic is not possible to achieve with the volume radiation pressure technique since the waves generated generally reach the surface of the medium very attenuated.

L'utilisation d'une membrane artificielle, par exemple la membrane d'une poche à eau, permet de générer une impulsion mécanique à un endroit prédéterminé de la surface du milieu. La technique selon l'invention est donc très intéressante pour l'imagerie élastographique de la peau, par exemple au niveau d'un mélanome ou des lésions superficielles comme par exemple certaines lésions du sein.The use of an artificial membrane, for example the membrane of a water pocket, makes it possible to generate a mechanical impulse at a predetermined location on the surface of the medium. The technique according to the invention is therefore very advantageous for elastographic imaging of the skin, for example at the level of a melanoma or superficial lesions such as for example certain lesions of the breast.

Cependant, il peut être intéressant de pouvoir générer des ondes de cisaillement en profondeur dans un milieu.However, it may be advantageous to be able to generate shear waves deep in an environment.

Ainsi, selon une caractéristique particulièrement avantageuse de l'invention, la membrane artificielle présente une composition non uniforme et déterminée spatialement de manière à augmenter l'amplitude des ondes mécaniques dans une région d'intérêt du milieu viscoélastique.Thus, according to a particularly advantageous characteristic of the invention, the artificial membrane has a non-uniform composition and determined spatially so as to increase the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.

Alternativement ou en plus de la caractéristique précédente, la membrane artificielle peut présenter une épaisseur non uniforme et déterminée spatialement de manière à augmenter l'amplitude des ondes mécaniques dans une région d'intérêt du milieu viscoélastique.Alternatively or in addition to the preceding characteristic, the artificial membrane may have a non-uniform thickness and spatially determined so as to increase the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.

Avec ces caractéristiques de la membrane, il est possible d'utiliser la directivité des ondes de cisaillement pour concentrer les ondes mécaniques dans une zone d'intérêt. L'amplitude des ondes mécaniques dans cette zone en est donc d'autant augmentée.With these characteristics of the membrane, it is possible to use the directivity of the shear waves to concentrate the mechanical waves in an area of interest. The amplitude of the mechanical waves in this zone is therefore all the more increased.

Il est également possible que l'application d'ondes acoustiques focalisées sur une interface délimitant deux zones possédant des propriétés acoustiques distinctes soit réalisée successivement en une pluralité de points de l'interface, cette pluralité de points et la succession des focalisations étant déterminées de manière à augmenter l'amplitude des ondes mécaniques dans une région d'intérêt du milieu viscoélastique.It is also possible that the application of acoustic waves focused on an interface delimiting two zones having distinct acoustic properties is carried out successively at a plurality of points of the interface, this plurality of points and the succession of the focal points being determined so increasing the amplitude of the mechanical waves in a region of interest of the viscoelastic medium.

Avec cette caractéristique de focalisation dynamique, on peut alors, en quelque sorte, dessiner un motif sur l'interface. Selon la forme de ce motif, on augmente l'amplitude des ondes mécaniques dans une certaine zone d'intérêt par un phénomène d'interférence. Dans la succession dynamique des focalisations des faisceaux ultrasonores, le retard relatif de chaque faisceau ultrasonore focalisé en un point donné est choisi judicieusement de manière à ce que l'interférence soit positive au niveau de la zone d'intérêt. Les ondes mécaniques de cisaillement sont alors comme focalisée dans la zone d'intérêt.With this dynamic focusing characteristic, we can then, in a way, draw a pattern on the interface. Depending on the shape of this pattern, the amplitude of the mechanical waves in a certain area of interest is increased by an interference phenomenon. In the dynamic succession of the focusing of the ultrasonic beams, the relative delay of each ultrasonic beam focused at a given point is judiciously chosen so that the interference is positive at the level of the area of interest. The mechanical shear waves are then focused in the area of interest.

Dans la divulgation, le procédé est couplé avec un procédé de traitement ultrasonore afin de suivre l'effet du traitement.In the disclosure, the method is coupled with an ultrasonic treatment method to monitor the effect of the treatment.

Avantageusement, le procédé de traitement ultrasonore est apte à être contrôlé en fonction des résultats de l'étape d'imagerie du milieu.Advantageously, the ultrasonic treatment method is capable of being controlled as a function of the results of the stage of imaging the medium.

La divulgation concerne aussi une sonde d'imagerie portant le transducteur selon l'invention et une membrane artificielle destinée à être partiellement placée au contact de la surface d'un milieu viscoélastique et destinée à entourer un milieu dit de couplage placé entre un dispositif de génération d'ondes acoustiques et un milieu viscoélastique pour servir d'interface lors de la mise en œuvre d'un procédé selon l'invention.The disclosure also relates to an imaging probe carrying the transducer according to the invention and an artificial membrane intended to be partially placed in contact with the surface of a viscoelastic medium and intended to surround a so-called coupling medium placed between a generation device. acoustic waves and a viscoelastic medium to serve as an interface during the implementation of a method according to the invention.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels :

  • La figure 1 illustre schématiquement une génération d'ondes mécaniques selon le procédé de l'invention,
  • La figure 2 illustre schématiquement la directivité des ondes de cisaillement dans un milieu biologique,
  • La figure 3 représente un premier mode de réalisation d'une membrane artificielle selon l'invention,
  • Les figures 4a et 4b représente en coupe et en vue partielle de dessus un second mode de réalisation d'une membrane artificielle selon l'invention,
  • La figure 5 représente un mode de réalisation particulier de l'invention.
Other characteristics and advantages of the present invention will emerge more clearly on reading the description which follows, given in an illustrative and nonlimiting manner, with reference to the appended drawings in which:
  • The figure 1 schematically illustrates a generation of mechanical waves according to the method of the invention,
  • The figure 2 schematically illustrates the directivity of shear waves in a biological medium,
  • The figure 3 represents a first embodiment of an artificial membrane according to the invention,
  • The Figures 4a and 4b shows in section and in partial view from above a second embodiment of an artificial membrane according to the invention,
  • The figure 5 represents a particular embodiment of the invention.

Description détaillée des modes de réalisation de l'inventionDetailed description of the embodiments of the invention

La figure 1 illustre schématiquement la génération d'ondes mécaniques dans un milieu 11 en utilisant un procédé selon l'invention. Dans cette figure, le procédé est appliqué à l'aide d'un transducteur 12 appliquant des ondes acoustiques focalisées au niveau d'une interface 13. Sur la figure 1, la focalisation des ondes est schématisée dans le plan de manière classique par deux lignes en pointillés sensiblement hyperboliques symétriques par rapport à la ligne médiane du transducteur 12 et se rapprochant l'une de l'autre à la profondeur de focalisation. Selon le procédé de l'invention, cette profondeur de focalisation est précisément choisie comme correspondant à la profondeur de l'interface.The figure 1 schematically illustrates the generation of mechanical waves in a medium 11 using a method according to the invention. In this figure, the method is applied using a transducer 12 applying acoustic waves focused at an interface 13. On the figure 1 , the focusing of the waves is shown diagrammatically in the plane in a conventional manner by two dotted lines which are substantially hyperbolic symmetrical with respect to the center line of the transducer 12 and which approach each other at the focusing depth. According to the method of the invention, this focusing depth is precisely chosen as corresponding to the depth of the interface.

Les ondes focalisées sont des ondes ultrasonores. Dans l'exemple de la figure 1, l'interface 13 est réalisée à l'aide d'une membrane artificielle entourant un milieu artificiel 14.Focused waves are ultrasonic waves. In the example of the figure 1 , the interface 13 is produced using an artificial membrane surrounding an artificial medium 14.

Les transferts de quantité de mouvements entre les milieux 14 et 11 permettent la création d'une force de radiation acoustique 15 qui, appuyant sur l'interface 13 du milieu 11, va pousser celui-ci et générer une onde mécanique au sein du milieu 11.The transfers of momentum between the media 14 and 11 allow the creation of an acoustic radiation force 15 which, pressing on the interface 13 of the medium 11, will push it and generate a mechanical wave within the medium 11 .

Selon l'invention, on stimule donc mécaniquement le milieu en utilisant une force de radiation acoustique 15 générée à l'interface 13 de deux milieux 11 et 14 disposant de propriétés acoustiques différentes.According to the invention, the medium is therefore mechanically stimulated by using an acoustic radiation force 15 generated at the interface 13 of two media 11 and 14 having different acoustic properties.

La force de radiation acoustique est un phénomène caractéristique de toute propagation acoustique. Appliquée à un volume particulaire V, situé dans le milieu de propagation 11, elle est créée suite à un bilan non nul entre les flux rentrant et sortant de quantité de mouvement portée par l'onde acoustique. Ce bilan non nul moyenné sur de nombreux cycles ultrasonores résulte en une force F décrite par : F = V ρ vv n + p n dS ,

Figure imgb0001
où p désigne la densité du milieu, p la pression, v la vitesse particulaire, n le vecteur unitaire normal à un élément dS de la surface du volume V, et les crochets désignent la prise de moyenne temporelle.The force of acoustic radiation is a phenomenon characteristic of all acoustic propagation. Applied to a particle volume V, located in the propagation medium 11, it is created following a non-zero balance between the incoming and outgoing flows of momentum carried by the acoustic wave. This non-zero balance averaged over numerous ultrasonic cycles results in a force F described by: F = - V ρ vv not + p not dS ,
Figure imgb0001
where p denotes the density of the medium, p the pressure, v the particle velocity, n the unit vector normal to an element dS of the surface of volume V, and the square brackets denote the taking of time average.

Ainsi, afin de comparer les amplitudes de la force de radiation acoustique engendrée par une focalisation à l'intérieur d'un milieu et de la force de radiation obtenue avec une focalisation sur une interface, il y a lieu de s'intéresser aux forces de radiation volumiques générées par absorption de l'énergie acoustique et aux forces de radiation surfaciques générées à l'interface de milieux présentant des propriétés de célérité et de densité différentes.Thus, in order to compare the amplitudes of the acoustic radiation force generated by a focusing inside a medium and of the radiation force obtained with a focusing on an interface, it is necessary to be interested in the forces of volume radiation generated by absorption of acoustic energy and surface radiation forces generated at the interface of media with properties of different speed and density.

En considérant la propagation d'une onde acoustique d'intensité I et de vitesse c dans une direction notée Oz dans un milieu dissipatif avec un coefficient d'absorption ultrasonore noté a, il est commun d'exprimer la force de radiation par sa densité volumique f selon la formule : f = 2 αI e z / c .

Figure imgb0002
By considering the propagation of an acoustic wave of intensity I and speed c in a direction noted Oz in a dissipative medium with an ultrasonic absorption coefficient noted a, it is common to express the force of radiation by its density f according to the formula: f = 2 αI e z / vs .
Figure imgb0002

Par ailleurs, on considère la propagation d'une onde ultrasonore dans un premier milieu 14 jusqu'à une interface 13 avec un milieu 11.Furthermore, we consider the propagation of an ultrasonic wave in a first medium 14 to an interface 13 with a medium 11.

Grâce à un effet particulier de l'interface 13, une force surfacique de radiation 15 est générée localement sur l'interface 13, ce qui entraîne le déplacement du milieu 11 situé à proximité.Thanks to a particular effect of the interface 13, a surface radiation force 15 is generated locally on the interface 13, which causes the displacement of the medium 11 located nearby.

Cette poussée de l'interface permet de générer, comme vu précédemment, des ondes mécaniques de forte amplitude qui se propagent dans le milieu biologique 11.This pushing of the interface makes it possible to generate, as seen previously, mechanical waves of high amplitude which propagate in the biological medium 11.

Créée par une onde ultrasonore plane incidente perpendiculairement à l'interface 13, la force de radiation 15 par unité de surface à l'interface 13, notée π, peut s'écrire (selon Shutilov VA, Fundamental Physics of Ultrasound, p 133, CRC, 1988 ) : π = I c 14 1 + R 1 R c 14 c 11 ,

Figure imgb0003
où R est le coefficient de réflexion (en terme d'énergie) de l'interface 13, c14 et c11 sont les célérités ultrasonores dans les milieux 14 et 11, et I est l'énergie du faisceau ultrasonore incident.Created by an incident plane ultrasonic wave perpendicular to the interface 13, the radiation force 15 per unit area at the interface 13, denoted π, can be written (according to Shutilov VA, Fundamental Physics of Ultrasound, p 133, CRC, 1988 ): π = I vs 14 1 + R - 1 - R vs 14 vs 11 ,
Figure imgb0003
where R is the reflection coefficient (in terms of energy) of the interface 13, c 14 and c 11 are the ultrasonic celerities in the media 14 and 11, and I is the energy of the incident ultrasonic beam.

En considérant un volume particulaire V de hauteur H dans le milieu 11, volume particulaire dont une des frontières coïncide avec l'interface 13 sur une section A, il est possible de comparer les contributions relatives des deux types de forces générées lorsqu'une onde plane d'intensité I se propage dans le volume particulaire V du milieu 14.By considering a particle volume V of height H in the medium 11, particle volume of which one of the boundaries coincides with the interface 13 on a section A, it is possible to compare the relative contributions of the two types of forces generated when a plane wave of intensity I propagates in the particle volume V of the medium 14.

Le volume V est alors soumis à une force volumique Fvol due à l'absorption acoustique dans le milieu 11, et soumis à une force surfacique Fsurf sur la section A due au contraste entre les deux milieux 14 et 11. La force surfacique Fsurf s'écrit F surf = πA = IA c 14 1 + R 1 R c 14 c 11 ,

Figure imgb0004
la force de radiation volumique créée par absorption peut s'écrire en première approximation Fvol = fAH = 11 I/c 14 AH(1 - R),The volume V is then subjected to a volume force F vol due to the acoustic absorption in the medium 11, and subjected to a surface force F surf on the section A due to the contrast between the two media 14 and 11. The surface force F surf is written F surf = πA = IA vs 14 1 + R - 1 - R vs 14 vs 11 ,
Figure imgb0004
the volume radiation force created by absorption can be written as a first approximation F vol = fAH = 11 I / c 14 AH (1 - R ),

En réalité, ces ordres de grandeur de force sont appliqués à une demi zone focale centrée axialement sur l'interface 13 présentant une section A égale à l'épaisseur du faisceau acoustique focalisé et présentant une hauteur H égale à une demi profondeur de champ.In reality, these orders of magnitude of force are applied to a half focal zone axially centered on the interface 13 having a section A equal to the thickness of the focused acoustic beam and having a height H equal to a half depth of field.

Le ratio des deux forces agissant sur la zone volumique focale peut alors s'écrire : F surf / F vol = 1 + γ c 1 + R 1 R / 1 + γ c 2 α 11 H 1 R .

Figure imgb0005
The ratio of the two forces acting on the focal volume zone can then be written: F surf / F flight = 1 + γ vs 1 + R - 1 - R / 1 + γ vs 2 α 11 H 1 - R .
Figure imgb0005

En considérant que les contrastes R et c 11 c 14 1 = γ c

Figure imgb0006
sont faibles, alors le ratio des deux forces s'exprime F surf / F vol 2 R γ c 2 α 11 H .
Figure imgb0007
Considering that the contrasts R and vs 11 vs 14 - 1 = γ vs
Figure imgb0006
are weak, then the ratio of the two forces is expressed F surf / F flight 2 R - γ vs 2 α 11 H .
Figure imgb0007

Les valeurs prises par ce ratio dépendent principalement du choix du matériau dans lequel est réalisée l'interface 13. Le terme 2R-γc est en effet fonction de ce choix de matériau d'interface. Quant au terme 2α11H, en prenant la profondeur de champ d'un transducteur à nombre d'ouverture F D = 1

Figure imgb0008
et de fréquence centrale 5 MHz, et en considérant l'atténuation typique dans le sein (1dB/MHz/cm), on trouve 2α11H≈0,12 On voit donc qu'il suffit de choisir le matériau d'interface de manière à ce que 2R-γc soit de l'ordre de 0,25, de manière à ce que la force surfacique soit d'amplitude deux fois plus grande que la force de volume.The values taken by this ratio depend mainly on the choice of material in which the interface 13 is made. The term 2R-γ c is indeed a function of this choice of interface material. As for the term 2α 11 H, taking the depth of field of a transducer with an opening number F D = 1
Figure imgb0008
and with a central frequency of 5 MHz, and considering the typical attenuation in the breast (1dB / MHz / cm), we find 2α 11 H120.12 We therefore see that it suffices to choose the interface material so that 2R-γ c is of the order of 0.25, so that the surface force is of amplitude twice greater than the volume force.

Dans ce but, afin d'augmenter le contraste de célérité, on peut par exemple utiliser une membrane élastique. Une telle membrane pourra être, par exemple, réalisée à partir de latex, de polyuréthane, de silicone, etc. On constate que le latex est particulièrement bien adapté pour la fabrication d'une membrane utile dans la mise en œuvre de l'invention.For this purpose, in order to increase the speed contrast, one can for example use an elastic membrane. Such a membrane could, for example, be made from latex, polyurethane, silicone, etc. It can be seen that the latex is particularly well suited for the manufacture of a membrane useful in the implementation of the invention.

Le transducteur 12 est apte à réaliser une étape d'imagerie ultra rapide du milieu 11. Selon le transducteur, l'image peut être bidimensionnelle ou tridimensionnelle. Elle peut être également réduite à une dimension (une ligne de vue) si l'on utilise un élément simple de transducteur immobile. Cette étape d'imagerie ultra rapide ultrasonore est couplée avec l'étape d'application des ondes ultrasonores focalisées au niveau de la membrane 13. Les occurrences de ces étapes sont alors synchronisées en fonction de la vitesse de propagation des ondes mécaniques créées par application d'ondes ultrasonores.The transducer 12 is capable of performing a step of ultra fast imaging of the medium 11. Depending on the transducer, the image can be two-dimensional or three-dimensional. It can also be reduced to one dimension (a line of sight) if a simple stationary transducer element is used. This ultra-fast ultrasonic imaging step is coupled with the step of applying ultrasonic waves focused at the membrane 13. The occurrences of these steps are then synchronized as a function of the speed of propagation of the mechanical waves created by application of ultrasonic waves.

En vue d'obtenir une image de bonne qualité, il y a donc lieu de veiller à limiter le coefficient de réflexion au niveau de l'interface 13, afin de ne pas nuire à l'imagerie ultrasonore à cause de la perte d'énergie transmise. Cela mène à choisir un milieu entouré par la membrane ayant une impédance proche de celle du milieu à imager, ce qui permet de minimiser la réflexion à l'interface. Des exemples de matériaux convenables sont donnés dans la suite.In order to obtain a good quality image, it is therefore necessary to take care to limit the reflection coefficient at the level of the interface 13, so as not to harm the ultrasound imaging due to the loss of energy. transmitted. This leads to choosing a medium surrounded by the membrane having an impedance close to that of the medium to be imaged, which makes it possible to minimize the reflection at the interface. Examples of suitable materials are given below.

Comme l'invention vise spécialement l'élastographie, il y a lieu de s'intéresser en particulier à la génération, par le procédé selon l'invention, d'ondes de cisaillement à l'interface 13.As the invention specifically targets elastography, it is necessary to pay particular attention to the generation, by the method according to the invention, of shear waves at the interface 13.

Afin de préciser les caractéristiques du champ de déplacement correspondant aux ondes mécaniques résultant d'une excitation surfacique, il y a lieu de s'intéresser à la théorie de la propagation des ondes élastiques induite par une sollicitation à la surface d'un solide semi infini.In order to specify the characteristics of the displacement field corresponding to the mechanical waves resulting from a surface excitation, it is necessary to be interested in the theory of the propagation of the elastic waves induced by a stress on the surface of a semi infinite solid .

Un tel solide semi infini est un milieu 11 de propagation élastique isotrope. Quatre types d'ondes peuvent alors se propager : trois ondes de volume et une onde de surface. Les ondes de volume se composent d'une onde de tête, d'une onde de compression et d'une onde de cisaillement.Such a semi-infinite solid is a medium 11 of isotropic elastic propagation. Four types of waves can then propagate: three volume waves and one surface wave. The volume waves consist of a head wave, a compression wave and a shear wave.

Concernant les ondes de cisaillement, le calcul de la fonction de Green (selon Gakenheimer et Miklowitz, Transient excitation of a half space by a point load traveling on the surface I, J.Appl.Mech., 1969 ) montre que les ondes de cisaillement générées dans le volume présentent des lobes de directivité. Cela provient du comportement dipolaire de la source ponctuelle de cisaillement.Concerning shear waves, the calculation of the Green's function (according to Gakenheimer and Miklowitz, Transient excitation of a half space by a point load traveling on the surface I, J.Appl. Mech., 1969 ) shows that the shear waves generated in the volume have directivity lobes. This comes from the dipolar behavior of the point source of shearing.

La figure 2 illustre schématiquement la directivité des ondes de cisaillement générée par une zone source 26, sur laquelle sont focalisées des ondes ultrasonores, située sur une interface 23, placée à la surface d'un milieu 21.The figure 2 schematically illustrates the directivity of the shear waves generated by a source zone 26, on which ultrasonic waves are focused, situated on an interface 23, placed on the surface of a medium 21.

La force de radiation ultrasonore 25 génère des ondes de cisaillement selon des lobes de directivité 27 et 27', dont les maximas sont situés à 35° de la normale à l'interface 23 et illustrant ces ondes mécaniques de cisaillement.The ultrasonic radiation force 25 generates shear waves according to directivity lobes 27 and 27 ′, the maxima of which are located at 35 ° from the normal at the interface 23 and which illustrate these mechanical shear waves.

En effet, dans un milieu de grande taille, le lobe principal se situe à 35° par rapport à la normale à l'interface 23 quand on considère un milieu dont les caractéristiques mécaniques sont typiques des tissus biologiques.Indeed, in a large medium, the main lobe is located at 35 ° relative to the normal at the interface 23 when we consider a medium whose mechanical characteristics are typical of biological tissues.

On constate ainsi que, pour maximiser l'amplitude de l'onde de cisaillement dans une zone spatiale définie d'intérêt particulier, il est pertinent de placer la source ponctuelle de cisaillement à 35° par rapport à cette zone.It is thus noted that, to maximize the amplitude of the shear wave in a defined spatial area of particular interest, it is relevant to place the point source of shear at 35 ° relative to this area.

On sait par ailleurs que l'onde de compression se propage à très haute célérité et on observe par exemple que cL≈300cT où cT est la vitesse de l'onde de cisaillement et cL celle de l'onde de compression. Dans la mesure où l'impulsion mécanique se doit d'être courte afin de pouvoir être imagée, l'onde de compression aura donc tendance à s'échapper de la région imagée très rapidement.We also know that the compression wave propagates at very high speed and we observe for example that c L ≈300c T where c T is the speed of the shear wave and c L that of the compression wave. Insofar as the mechanical pulse must be short in order to be able to be imaged, the compression wave will therefore tend to escape from the imaged region very quickly.

Il suffit donc d'attendre quelques dizaines de microsecondes, par exemple 30 µs environ pour une zone située à une profondeur de 4 cm, pour que le champ de déplacement ne soit plus que la manifestation des autres ondes de célérités approximativement égales à la célérité des ondes de cisaillement.It therefore suffices to wait a few tens of microseconds, for example about 30 μs for an area located at a depth of 4 cm, so that the field of displacement is no more than the manifestation of the other waves of celerities approximately equal to the celerity of the shear waves.

L'onde de tête assure la continuité des contraintes et présente une amplitude nulle à l'interface. Elle se propage en surface sous la forme d'une onde de compression, en cédant une partie de son énergie en volume sous la forme d'une onde de cisaillement dans une direction déterminée. Cet angle spécifique est donné par la formule : θ = a sin c T c L ,

Figure imgb0009
où cT est la vitesse de l'onde de cisaillement et cL, celle de l'onde de compression.The head wave ensures the continuity of the constraints and has a zero amplitude at the interface. It propagates on the surface in the form of a compression wave, by yielding part of its energy in volume in the form of a shear wave in a determined direction. This specific angle is given by the formula: θ = at sin vs T vs L ,
Figure imgb0009
where c T is the speed of the shear wave and c L , that of the compression wave.

Or, les valeurs de vitesse des ondes de cisaillement et de compression sont respectivement de l'ordre de 5 m/s et 1 500 m/s. Par conséquent, l'angle spécifique est quasi nul et cette onde de tête ne pénètre pas dans le milieu. Elle ne sera donc pas observable dès lors que l'on imagera en profondeur, même faible, dans le milieu.However, the values of speed of shear and compression waves are respectively of the order of 5 m / s and 1,500 m / s. Consequently, the specific angle is almost zero and this head wave does not enter the medium. It will therefore not be observable as soon as we imagine deep, even shallow, in the environment.

L'onde de surface, ou onde de Rayleigh R, est, en réalité, susceptible d'être détectée en volume car elle présente une composante évanescente normale, selon l'axe Z. Cette composante s'étend sur une profondeur d'environ une longueur d'onde, soit environ 1 cm dans les milieux biologiques.The surface wave, or Rayleigh R wave, is in reality capable of being detected in volume because it has a normal evanescent component, along the Z axis. This component extends over a depth of about one wavelength, about 1 cm in biological media.

La vitesse de propagation de cette onde de surface est donnée avec une bonne précision par la formule de Viktorov : c R c T = 0.718 c T / c L 2 0.75 c T / c L 2 = 0.718 5 / 1500 2 0.75 5 / 1500 2 = 0.95 ,

Figure imgb0010
où cR est la vitesse est la vitesse de l'onde de surface.The speed of propagation of this surface wave is given with good precision by Viktorov's formula: vs R vs T = 0.718 - vs T / vs L 2 0.75 - vs T / vs L 2 = 0.718 - 5 / 1500 2 0.75 - 5 / 1500 2 = 0.95 ,
Figure imgb0010
where c R is the speed is the speed of the surface wave.

L'onde de surface a donc une vitesse presque identique à celle des ondes de cisaillement.The surface wave therefore has a speed almost identical to that of shear waves.

On voit, par conséquent, qu'il n'est pas réellement possible de séparer temporellement l'onde R et l'onde de cisaillement. En revanche, ici aussi, dès lors que l'on image en profondeur, même faible, cette onde ne vient pas se superposer aux ondes de cisaillement. De plus, même dans le cas d'une superposition à l'onde de cisaillement, sa présence n'altérera que très peu la mesure de la vitesse cT puisque cR≈cT.It can therefore be seen that it is not really possible to separate the R wave and the shear wave in time. On the other hand, here too, as soon as one images in depth, even a weak one, this wave does not come to be superimposed on the shear waves. In addition, even in the case of a superposition on the shear wave, its presence will only slightly alter the measurement of the speed c T since c R ≈c T.

La figure 3 présente un premier mode de réalisation d'une membrane artificielle selon l'invention.The figure 3 presents a first embodiment of an artificial membrane according to the invention.

Ce mode de réalisation est particulièrement adapté pour être combiné avec un procédé de thérapie par ultrasons focalisés. En effet, un tel procédé de thérapie nécessite la présence d'un milieu couplant entre des transducteurs ultrasonores et un milieu biologique. Un tel milieu couplant est généralement une poche à eau constituée d'une membrane remplie d'eau et qui peut être avantageusement utilisée pour mettre en œuvre l'invention.This embodiment is particularly suitable for being combined with a method of focused ultrasound therapy. Indeed, such a therapy method requires the presence of a coupling medium between ultrasonic transducers and a biological medium. Such a coupling medium is generally a water bag consisting of a membrane filled with water and which can be advantageously used to implement the invention.

Or on sait qu'en présence d'une telle poche à eau, il est quasiment impossible de générer une onde de cisaillement par contact mécanique direct, précisément à cause du milieu couplant.Now we know that in the presence of such a water pocket, it is almost impossible to generate a shear wave by direct mechanical contact, precisely because of the coupling medium.

Cela est préjudiciable quand on veut imager le milieu biologique par élastographie pour en suivre l'évolution des propriétés élastiques liée à la progression du traitement. En outre, même si l'on parvenait à générer une force de radiation volumique au sein du milieu biologique, la pression de radiation volumique qu'il est possible de générer dans le milieu, serait largement diminuée du fait de la perte d'énergie ultrasonore à l'interface entre la poche à eau et le milieu.This is detrimental when one wants to image the biological medium by elastography to follow the evolution of the elastic properties linked to the progression of the treatment. Furthermore, even if it were possible to generate a volume radiation force within the biological medium, the volume radiation pressure which it is possible to generate in the medium, would be greatly reduced due to the loss of ultrasonic energy. at the interface between the water bag and the medium.

Le mode de réalisation de l'invention présenté sur la figure 3 permet précisément de pallier cet inconvénient en permettant de générer des ondes mécaniques de cisaillement dans un milieu biologique 31, et ce malgré la présence de la poche à eau.The embodiment of the invention presented on the figure 3 precisely overcomes this drawback by allowing mechanical shear waves to be generated in a biological medium 31, despite the presence of the water bag.

Le montage présenté sur la figure 3 utilise une sonde d'imagerie 38 portant des transducteurs ultrasonores 32. Cette sonde d'imagerie 38 est appliquée sur une poche à eau, définissant un milieu couplant 34 entouré par une membrane 34'. La poche à eau est placée à la surface d'un milieu biologique 31, par exemple un sein, définissant ainsi une interface 33.The assembly presented on the figure 3 uses an imaging probe 38 carrying ultrasonic transducers 32. This imaging probe 38 is applied to a water bag, defining a coupling medium 34 surrounded by a membrane 34 '. The water bag is placed on the surface of a biological medium 31, for example a breast, thus defining an interface 33.

Le procédé selon l'invention utilise l'effet d'interface au niveau de la membrane 34' pour créer des ondes mécaniques, plus précisément des ondes de cisaillement dans le milieu 31.The method according to the invention uses the interface effect at the level of the membrane 34 ′ to create mechanical waves, more precisely shear waves in the medium 31.

En imageant ensuite ces ondes de cisaillement, il est possible de réaliser une cartographie de l'élasticité du milieu 31 observé à un moment quelconque.By then imaging these shear waves, it is possible to map the elasticity of the medium 31 observed at any time.

Quand le procédé selon l'invention est utilisé durant un traitement par ultrasons focalisés, il devient ainsi possible de suivre aisément la variation de l'élasticité de la zone traitée en utilisant une seule et même sonde d'imagerie 38. Une telle sonde d'imagerie 38 est alors programmée non seulement pour réaliser le traitement mais aussi pour, ponctuellement, déclencher une mesure d'élasticité en réalisant une étape de génération d'ondes mécaniques et, successivement, de manière synchronisée, une étape d'imagerie du milieu 31.When the method according to the invention is used during a focused ultrasound treatment, it therefore becomes possible to easily follow the variation in the elasticity of the area treated using a single imaging probe 38. Such a scanning probe imaging 38 is then programmed not only to carry out the treatment but also to, punctually, trigger a measure of elasticity by carrying out a step of generating mechanical waves and, successively, in a synchronized manner, a step of imaging the medium 31.

En outre, l'invention permet d'ajuster les paramètres de l'interface en fonction de l'observation que l'on souhaite faire du milieu 31.In addition, the invention makes it possible to adjust the parameters of the interface as a function of the observation that one wishes to make of the medium 31.

En effet, contrairement à la force de radiation volumique qui dépend principalement des paramètres acoustiques du milieu 31 et de l'intensité du faisceau ultrasonore, la force de radiation 35 générée sur l'interface 33 entre les deux milieux 34 et 31 dépend d'autres paramètres qui sont susceptibles d'être ajustés par l'expérimentateur. La force de radiation interfaciale dépend, en effet, du ratio des impédances acoustiques, du ratio des vitesses du son dans les deux milieux ou, encore, de l'épaisseur de la membrane.Indeed, unlike the volume radiation force which mainly depends on the acoustic parameters of the medium 31 and the intensity of the ultrasonic beam, the radiation force 35 generated on the interface 33 between the two media 34 and 31 depends on other parameters that can be adjusted by the experimenter. The interfacial radiation force depends, in fact, on the ratio of the acoustic impedances, on the ratio of the speeds of sound in the two media or, again, on the thickness of the membrane.

En particulier, il est possible d'utiliser un matériau de membrane bien choisi pour ajuster ces paramètres afin d'amplifier la pression de radiation à l'interface 33.In particular, it is possible to use a well-chosen membrane material to adjust these parameters in order to amplify the radiation pressure at the interface 33.

Il est également judicieux que les impédances acoustiques des deux milieux 31 et 34 soient voisines, mais que les deux milieux 31 et 34 présentent des vitesses du son très différentes. Cela permet d'obtenir une pression de radiation plus importante tout en évitant les réflexions à l'interface 33 qui sont nuisibles à l'imagerie ultrasonore.It is also judicious that the acoustic impedances of the two media 31 and 34 are close, but that the two media 31 and 34 have very different speeds of sound. This makes it possible to obtain a higher radiation pressure while avoiding reflections at the interface 33 which are detrimental to ultrasound imaging.

Dans un tel but, on utilisera avantageusement une membrane élastique remplie soit de silicone, soit de chloroforme, soit encore de mono chlorobenzène, soit de nitrométhane ou encore de potassium.For this purpose, use will advantageously be made of an elastic membrane filled with either silicone or chloroform, or else mono chlorobenzene, or nitromethane or potassium.

Ces derniers matériaux présentent, en effet, des impédances acoustiques proches de celles des milieux biologiques, mais des vitesses du son très différentes.These latter materials have, in fact, acoustic impedances close to those of biological media, but very different speeds of sound.

La figure 4 illustre un second mode de réalisation d'une membrane artificielle selon l'invention. Dans ce mode de réalisation, la membrane 44' réalisant l'interface 43, est telle qu'il est possible de confiner et d'amplifier l'amplitude et la directivité des ondes mécaniques dans une zone d'intérêt 66 située dans un milieu 41.The figure 4 illustrates a second embodiment of an artificial membrane according to the invention. In this embodiment, the membrane 44 'providing the interface 43 is such that it is possible to confine and amplify the amplitude and directivity of the mechanical waves in an area of interest 66 located in a medium 41 .

En effet, lorsque plusieurs sources de cisaillement vibrant en surface sont disposées de manière adéquate, on définit une région où l'amplitude de l'onde mécanique, plus particulièrement de sa composante axiale, est augmentée.In fact, when several sources of shearing vibrating at the surface are adequately arranged, a region is defined where the amplitude of the mechanical wave, more particularly of its axial component, is increased.

Dans l'exemple de la figure 4, est utilisée une membrane à épaisseur et à composition non constantes. Une spatialisation des sources en surface peut, en effet, être réalisée à l'aide d'une membrane dont l'épaisseur et/ou la composition est non homogène au niveau de l'interface 43 avec le milieu 41.In the example of the figure 4 , a non-constant thickness and composition membrane is used. Spatialization of the surface sources can, in fact, be carried out using a membrane whose thickness and / or composition is non-homogeneous at the interface 43 with the medium 41.

Les figures 4a et 4b décrivent ainsi un mode de réalisation particulier pour une membrane 44' entourant un milieu couplant 44, apte à focaliser les ondes mécaniques sur une zone d'intérêt 66.The Figures 4a and 4b thus describe a particular embodiment for a membrane 44 'surrounding a coupling medium 44, capable of focusing the mechanical waves on an area of interest 66.

La figure 4a est une coupe A-A et la figure 4b est une vue de dessus partielle telle que vue selon la coupe B-B.The figure 4a is a AA cup and the figure 4b is a partial top view as seen according to section BB.

La zone d'intérêt 66 est située à une profondeur Z et les caractéristiques de la membrane 44' sont déterminées en fonction de cette profondeur Z en termes d'épaisseur ou de composition. Dans l'exemple de la figure 4, l'épaisseur de la membrane 44' est accrue sur une zone en couronne 49 représentée sur la figure 4b, de manière à ce que la zone d'intérêt 66 et la couronne 49 forment un cône d'environ 35°.The area of interest 66 is located at a depth Z and the characteristics of the membrane 44 'are determined as a function of this depth Z in terms of thickness or composition. In the example of the figure 4 , the thickness of the membrane 44 'is increased over a crown zone 49 represented on the figure 4b , so that the area of interest 66 and the crown 49 form a cone of approximately 35 °.

Quand une onde acoustique est émise vers la membrane 44', des déplacements axiaux se produisent de manière plus importante, par force de radiation acoustique 45, au niveau de la couronne 49 puisque l'épaisseur membranaire ou la composition membranaire ont localement été optimisées à cette fin.When an acoustic wave is emitted towards the membrane 44 ′, axial displacements occur more significantly, by force of acoustic radiation 45, at the level of the crown 49 since the membrane thickness or the membrane composition have been locally optimized to this end.

Par symétrie autour de l'axe AX de révolution de la couronne 49, les déplacements axiaux s'additionnent et, par propagation, sont d'une amplitude maximale dans la zone d'intérêt 66, placée dans chacun des lobes principaux d'émission des sources membranaires.By symmetry about the axis AX of revolution of the crown 49, the axial displacements add up and, by propagation, are of a maximum amplitude in the zone of interest 66, placed in each of the main emission lobes of the membrane sources.

On constate qu'il existe donc différentes possibilités de constitutions de la membrane visant à atteindre des zones d'intérêt 66 de profondeurs Z distinctes.It can be seen that there are therefore different possibilities of constituting the membrane aimed at reaching zones of interest 66 of distinct depths Z.

On remarque aussi que les hétérogénéités de la membrane 44' peuvent être réalisées suivant des géométries variables, non seulement en couronne, mais également en rectangle, etc. Au lieu d'une surface en relief continue, des picots peuvent aussi être disposés en couronne.It is also noted that the heterogeneities of the membrane 44 ′ can be produced according to variable geometries, not only in a crown, but also in a rectangle, etc. Instead of a continuous relief surface, spikes can also be arranged in a crown.

Enfin, la figure 5 présente un mode de réalisation particulier de l'invention où une interface biologique 53 présente au sein d'un milieu biologique 51 est utilisée selon le procédé de l'invention. Selon l'invention, des transducteurs 52 sont utilisés pour appliquer des ondes ultrasonores focalisées au niveau de l'interface 53, c'est-à-dire à la profondeur de l'interface et en direction de celle-ci.Finally, the figure 5 presents a particular embodiment of the invention where a biological interface 53 present within a biological medium 51 is used according to the method of the invention. According to the invention, transducers 52 are used to apply ultrasonic waves focused at the interface 53, that is to say at the depth of the interface and in the direction of the latter.

Par effet d'interface, les ondes ultrasonores génèrent une force de radiation surfacique 55 qui induit des ondes mécaniques de cisaillement au sein d'un milieu biologique 54 inclus dans le milieu biologique 51. Les transducteurs 52 sont ensuite utilisés pour imager la propagation de ces ondes de cisaillement et déduire de cette observation des propriétés mécaniques du milieu 54.By interface effect, the ultrasonic waves generate a surface radiation force 55 which induces mechanical shear waves within a biological medium 54 included in the biological medium 51. The transducers 52 are then used to image the propagation of these shear waves and deduce from this observation the mechanical properties of the medium 54.

On peut noter que, lorsque le procédé selon l'invention est utilisé, comme représenté sur la figure 5, pour caractériser un milieu biologique 54 présent dans le milieu biologique 51, on peut en déduire aussi des propriétés mécaniques du milieu 51. En effet, non seulement la seconde interface 53' présente dans la direction Oz génère aussi des ondes de cisaillement au sein du milieu 51 mais également la taille du milieu biologique 54 est généralement telle que les ondes de cisaillement générées à l'interface 53 se propage aussi dans le milieu 51. En imageant l'ensemble du milieu, on peut alors déduire des propriétés sur chacun des milieux 51 et 54 et sur leur interface 53, 53'.It can be noted that, when the method according to the invention is used, as shown in figure 5 , to characterize a biological medium 54 present in the biological medium 51, one can also deduce from it mechanical properties of the medium 51. Indeed, not only the second interface 53 'present in the direction Oz also generates shear waves within the medium 51 but also the size of the biological medium 54 is generally such that the shear waves generated at the interface 53 also propagates in the medium 51. By imagining the whole of the medium, we can then deduce properties on each of the mediums 51 and 54 and on their interface 53, 53 '.

On remarque enfin que diverses mises en œuvre peuvent être réalisées selon les principes de l'invention tels que définis dans les revendications suivantes.Finally, it is noted that various implementations can be carried out according to the principles of the invention as defined in the following claims.

Claims (10)

  1. A method for imaging a viscoelastic medium (11) comprising a step for generating an acoustic radiation force (15) within the viscoelastic medium (11) which generates the propagation of the mechanical waves in the medium, and an ultra-rapid imaging step of the medium (21) coupled with the generation step, the step for generating being carried out by application of ultrasound acoustic waves focussed on an interface (13, 33, 53) delimiting two zones (11, 14) having distinct acoustic properties,
    characterized in that the step for generating an acoustic radiation force creates mechanical shearing and compression waves,
    the imaging step of the medium (21) is an ultrasound imaging step, and
    the occurrences of these step for generating the acoustic radiation force (15) and imaging step of the medium (21) being synchronised as a function of the propagation speeds of the mechanical waves generated in the medium (21) such that the propagation of the mechanical waves (27) generated in the medium (21) is imaged.
  2. The method according to Claim 1, characterized in that the interface (53) the acoustic waves on which are focussed is present within the viscoelastic medium (11).
  3. The method according to any of Claims 1 or 2, characterized in that the interface (33) on which the acoustic waves are focussed is an artificial membrane (34') placed in contact with the surface of the viscoelastic medium (31) and enclosing a medium known as coupling medium (34) placed between a device (38, 32) for applying the acoustic waves and the surface of the viscoelastic medium (31), the coupling medium (34) and the viscoelastic medium (31) defining the two zones of distinct acoustic properties.
  4. The method according to Claim 3, characterized in that the artificial membrane (34') has a composition selected to minimise the acoustic impedance contrast while increasing the amplitude of the mechanical waves.
  5. The method according to Claim 3, characterized in that the artificial membrane (34') has thickness selected to minimise the acoustic impedance contrast while increasing the amplitude of the mechanical waves.
  6. The method according to any of Claims 3 to 5, characterized in that the artificial membrane (34') has a non-uniform composition determined spatially so as to increase the amplitude of the mechanical waves (27) in a region of interest of the viscoelastic medium (31).
  7. The method according to any of Claims 3 to 5, characterized in that the artificial membrane (34') has a non-uniform thickness (49) determined spatially so as to increase the amplitude of the mechanical waves (27) in a region of interest (66) of the viscoelastic medium (31).
  8. The method according to any of the preceding Claims, characterized in that the application of acoustic waves focussed on the interface (13, 33, 53) is completed successively at a plurality of points of the interface (13, 33, 53), this plurality of points and the succession of the focussings being determined so as to increase the amplitude of the mechanical waves (27) in a region of interest of the viscoelastic medium (31).
  9. The method according to any of the preceding Claims, characterized in that the ultrasound treatment method is suitable for being controlled as a function of the results of the imaging step of the medium.
  10. A system comprising an imaging probe (38) bearing transducers (32) for generating mechanical waves within a viscoelastic medium (31) which is programmed to apply the method according to any of claims 3 to 7 wherein the occurrences of the step for generating an acoustic radiation force (15) and ultra-rapid ultrasound imaging step of the medium (21) are synchronised as a function of the propagation speeds of the mechanical waves generated in the medium (31) and comprising an artificial membrane (34') intended to be placed partially in contact with the surface of a viscoelastic medium (31) and intended to enclose a medium known as coupling medium (34) placed between the probe (38) for generation of acoustic waves and the viscoelastic medium (31) to serve as interface (33).
EP07866491.9A 2006-10-25 2007-10-25 Method for generating mechanical waves by creating an interfacial acoustic radiation force Active EP2084702B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0654502A FR2907692B1 (en) 2006-10-25 2006-10-25 METHOD FOR GENERATING MECHANICAL WAVES BY GENERATING INFERFACIAL ACOUSTIC RADIATION FORCE
US88323307P 2007-01-03 2007-01-03
PCT/FR2007/052247 WO2008050072A2 (en) 2006-10-25 2007-10-25 Method for generating mechanical waves by creating an interfacial acoustic radiation force

Publications (2)

Publication Number Publication Date
EP2084702A2 EP2084702A2 (en) 2009-08-05
EP2084702B1 true EP2084702B1 (en) 2020-03-18

Family

ID=38372331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07866491.9A Active EP2084702B1 (en) 2006-10-25 2007-10-25 Method for generating mechanical waves by creating an interfacial acoustic radiation force

Country Status (6)

Country Link
US (1) US8037766B2 (en)
EP (1) EP2084702B1 (en)
CN (1) CN101589426B (en)
CA (1) CA2667527C (en)
FR (1) FR2907692B1 (en)
WO (1) WO2008050072A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023287A2 (en) * 2006-08-23 2008-02-28 Koninklijke Philips Electronics N.V. Device containing a fluid refracting ultrasound modality
KR101060345B1 (en) * 2008-08-22 2011-08-29 삼성메디슨 주식회사 Ultrasound System and Method for Forming Elastic Image Using ARRFI
US20100286520A1 (en) * 2009-05-11 2010-11-11 General Electric Company Ultrasound system and method to determine mechanical properties of a target region
WO2010146532A2 (en) 2009-06-19 2010-12-23 Koninklijke Philips Electronics N.V. Imaging system for imaging a viscoelastic medium
CN102481143B (en) 2009-09-04 2014-10-15 株式会社日立医疗器械 Ultrasonic Diagnostic Device
BR112013014423A2 (en) * 2010-12-13 2016-09-13 Koninkl Philips Electronics Nv ultrasonic diagnostic imaging system for shear wave analysis
CA3218014A1 (en) * 2015-04-24 2016-10-27 Les Solutions Medicales Soundbite Inc. Connection device for mechanical waveguides
CN111449629B (en) * 2020-04-28 2023-04-25 北京信息科技大学 Optical coherence elastography method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229631A1 (en) * 1992-09-04 1994-03-10 Siemens Ag Acoustic lens with variable focus - has one ring shaped deformable lens wall with outer edge kept bending moment free and inner area displaced by adjuster for focussing
US5903516A (en) * 1996-05-08 1999-05-11 Mayo Foundation For Medical Education And Research Acoustic force generator for detection, imaging and information transmission using the beat signal of multiple intersecting sonic beams

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452084A (en) * 1982-10-25 1984-06-05 Sri International Inherent delay line ultrasonic transducer and systems
DE4229531A1 (en) * 1992-09-04 1994-03-10 Reinhold Holstein Maintenance-free rain water utilisation system - has opto-electronic monitors detecting whether input water can be treated or has to be rejected
US5477736A (en) * 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US6895820B2 (en) * 2001-07-24 2005-05-24 Sonoscan, Inc. Acoustic micro imaging method and apparatus for capturing 4D acoustic reflection virtual samples
US20030199857A1 (en) * 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
JP2003319939A (en) * 2002-04-26 2003-11-11 Ge Medical Systems Global Technology Co Llc Ultrasonic imaging device
US20050080469A1 (en) * 2003-09-04 2005-04-14 Larson Eugene A. Treatment of cardiac arrhythmia utilizing ultrasound
US20050149008A1 (en) * 2003-09-04 2005-07-07 Crum, Kaminski & Larson, Llc Treatment of cardiac arrhythmia utilizing ultrasound
US7917317B2 (en) * 2006-07-07 2011-03-29 Sonix, Inc. Ultrasonic inspection using acoustic modeling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229631A1 (en) * 1992-09-04 1994-03-10 Siemens Ag Acoustic lens with variable focus - has one ring shaped deformable lens wall with outer edge kept bending moment free and inner area displaced by adjuster for focussing
US5903516A (en) * 1996-05-08 1999-05-11 Mayo Foundation For Medical Education And Research Acoustic force generator for detection, imaging and information transmission using the beat signal of multiple intersecting sonic beams

Also Published As

Publication number Publication date
US20080276709A1 (en) 2008-11-13
CN101589426A (en) 2009-11-25
WO2008050072A2 (en) 2008-05-02
CA2667527A1 (en) 2008-05-02
FR2907692A1 (en) 2008-05-02
US8037766B2 (en) 2011-10-18
FR2907692B1 (en) 2009-10-30
EP2084702A2 (en) 2009-08-05
CA2667527C (en) 2016-06-21
WO2008050072A3 (en) 2008-06-19
CN101589426B (en) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2084702B1 (en) Method for generating mechanical waves by creating an interfacial acoustic radiation force
EP1531733B1 (en) Device and method for measuring elasticity of a human or animal organ
EP0383650B1 (en) Process and apparatus for locating and focusing waves
CA2765203C (en) Ultrasound method and device for characterizing an environment
EP3099240B1 (en) Ultrasonic method and device for characterising weak anisotropic media, and ultrasonic probe assembly for such a characterisation device
EP2691948B1 (en) Method and apparatus for generating focused ultrasonic waves with surface modulation
EP2069821B1 (en) Ultrasound imaging probe for imaging a temporary change in an environment
CA2874836A1 (en) Device and process for impulse focusing
EP3198301B1 (en) Acoustic imaging method and device
WO2007144520A2 (en) Method of measuring viscoelastic properties of biological tissue employing an ultrasonic transducer
WO2019166395A1 (en) Hybrid elastography method, probe, and device for hybrid elastography
FR3072577A1 (en) APPARATUS FOR TREATING VASCULAR THROMBOSIS BY ULTRASOUND
EP3084416B1 (en) Method for processing signals from an ultrasound probe acquisition, corresponding computer program and ultrasound probe device
Hou et al. An integrated optoacoustic transducer combining etalon and black PDMS structures
EP3555659B1 (en) Method of acquiring ultrasonic testing signals, and corresponding computer program and ultrasonic testing device
Roy et al. Photoacoustic image quality improvement from a single cell low frequency pmut
FR3065078B1 (en) METHOD AND DEVICE FOR ULTRASONIC SURVEY BY ADAPTIVE FOCUSING USING A REVERBERANT SOLID OBJECT
WO1999058062A1 (en) Method for evaluating therapy on a tissue
Zhang et al. Broadband transparent ultrasound transducer with polymethyl methacrylate as matching layer for in vivo photoacoustic microscopy
FR3016791B1 (en) METHOD AND DEVICE FOR CHARACTERIZING THE SKIN
WO2005015540A1 (en) Acoustic wave imaging method and device
Torke et al. Annular array detector for large depth of field photoacoustic macroscopy
Pelivanov et al. Focused array transducer for optoacoustic tomography
FR3051657A1 (en) METHOD AND DEVICE FOR CHARACTERIZING THE SKIN
Shirkovskiy Ultrasonic wave phase conjugation for air-coupled velocimetry: investigations of possible application on micro streams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COHEN-BACRIE, CLAUDE

Inventor name: PERNOT, MATHIEU

Inventor name: BERCOFF, JEREMY

Inventor name: SAVERY, DAVID

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUPERSONIC IMAGINE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007060002

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1246835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007060002

Country of ref document: DE

Representative=s name: PAUSTIAN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007060002

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1246835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007060002

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

26N No opposition filed

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201025

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201025

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007060002

Country of ref document: DE

Representative=s name: PAUSTIAN & PARTNER PATENTANWAELTE MBB, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231026

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231023

Year of fee payment: 17

Ref country code: FR

Payment date: 20231025

Year of fee payment: 17

Ref country code: DE

Payment date: 20231027

Year of fee payment: 17