EP2071136B1 - Gas turbine motor with a braking device in the event of shaft breakage - Google Patents

Gas turbine motor with a braking device in the event of shaft breakage Download PDF

Info

Publication number
EP2071136B1
EP2071136B1 EP08156698.6A EP08156698A EP2071136B1 EP 2071136 B1 EP2071136 B1 EP 2071136B1 EP 08156698 A EP08156698 A EP 08156698A EP 2071136 B1 EP2071136 B1 EP 2071136B1
Authority
EP
European Patent Office
Prior art keywords
braking member
braking
engine
turbine
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08156698.6A
Other languages
German (de)
French (fr)
Other versions
EP2071136A2 (en
EP2071136A3 (en
Inventor
Jacques René Bart
Didier René André Escure
Claude Marcel Mons
Stéphane Rousselin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2071136A2 publication Critical patent/EP2071136A2/en
Publication of EP2071136A3 publication Critical patent/EP2071136A3/en
Application granted granted Critical
Publication of EP2071136B1 publication Critical patent/EP2071136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/006Arrangements of brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking
    • F05D2260/902Braking using frictional mechanical forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2102Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/44Resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/601Fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/614Fibres or filaments

Definitions

  • the present invention relates to the field of gas turbine engines, in particular multiflux turbojet engines, and relates to a system which makes it possible, in the event of the breakage of a shaft of the machine, to stop it as quickly as possible. .
  • a turbojet turbojet turbofan In a turbojet turbojet turbofan, the latter is driven by the low pressure turbine.
  • the shaft connecting the fan rotor to that of the turbine breaks, the resistance torque on the turbine is abruptly canceled while the flow of engine gas continues to transmit energy to the rotor. This results in a rapid increase in the rotational speed of the rotor which is likely to reach its limit of resistance and burst with the resulting catastrophic consequences.
  • US2006 / 0042226A1 discloses a gas turbine engine equipped with a braking device with a first braking member, integral with the stator, and a second member secured to an extension of the axis of the turbine.
  • the present invention aims at a simple, effective and inexpensive solution for reducing the speed of rotation, in a gas turbine engine, of a turbine comprising a rotor driving a shaft and movable in rotation inside a stator, in case of rupture of said shaft.
  • the invention relates to a gas turbine engine equipped with a braking device according to independent claim 1.
  • the solution of the invention is therefore to dissipate the energy of the rotor between two members which are specifically designed for braking. These means make it possible to increase the contact surface according to the objective aimed at and to ensure a high coefficient of friction.
  • the advantage is also to reduce the maximum speed at which the rotor must resist without bursting.
  • This diet is the one that is likely to be reached when the tree breaks.
  • the first member is secured to the stator and the second member is secured to the rotor; more particularly the rotor comprising at least one disk with a rim, the second member is integral with the rim and the first member is secured to the stator downstream of the rim.
  • the second member is integral with the last turbine stage of the rotor and the first member of the engine exhaust casing.
  • the first member comprises a plurality of abrasive elements distributed around the axis of the motor.
  • the abrasive elements consist of abrasive aggregates reported, for example by sintering, on a fabric, for example glass fibers, impregnated with resin resistant to high temperature.
  • the engine is a double-body gas turbine engine with a low-pressure turbine section whose section is equipped with such a braking device.
  • the turbine section 1 comprises a high-pressure turbine upstream and not visible in the figure, which receives the hot gases from the combustion chamber.
  • the gases after having passed through the vane of the high-pressure turbine wheel are directed, through a fixed distributor wheel 3, onto the low-pressure turbine section 5.
  • This section 5 is composed of a rotor 6 formed here in a drum the assembly of several disks 61, 62, 63 bladed, three in this example.
  • the blades, comprising a blade and a foot, are mounted, generally individually, at the periphery of the discs in housings formed on the rim.
  • Stationary distributor wheels 7 are interposed between the turbine stages, each to properly orient the gas flow relative to the downstream moving blade.
  • This assembly forms the low pressure turbine section 5.
  • the rotor 6 of the low-pressure turbine is mounted on a shaft 8, concentric with the high-pressure shaft 9, which extends axially towards the front of the engine where it is integral with the fan rotor.
  • the rotating assembly is supported by appropriate bearings located in the front and rear parts of the engine.
  • the shaft 8, supported by a bearing 81 is seen in the structural casing, designated exhaust casing 10.
  • the exhaust casing is provided with fastening means for mounting on an aircraft.
  • the turbine rotor is racing and its speed reaches the maximum permitted speed before bursting, a braking device is incorporated in the turbine section.
  • This device 100 is represented on the figure 2 which is a partial perspective view of the turbine disk 63 'and the exhaust casing.
  • the disk 63 ' corresponds to the disk 63 of the figure 1 modified according to the invention.
  • the disc 63 ' has a conventional shape or the like, according to this example with a hub 63'A, a rim 63'B at its periphery and a thin radial sail 63'C between the hub and the rim.
  • the rim 63'B is provided with means for attaching the vanes which extend in a radial direction in the annular channel traversed by the engine gas.
  • the vanes and their attachment means are not part of the invention and have not been represented in their entirety in the figure a single silhouette in the section plane is visible.
  • the exhaust casing 10 is shown in its part which is vis-à-vis the disc 63 '.
  • annular platform 10A forming the inner wall of the gas channel in the extension of the platforms at the periphery of the disk 63 'of the last turbine stage.
  • Rectifier vanes 10B which are not visible, extend radially in the annular channel.
  • the platform 10A extends axially upstream towards the disc 63 'by an annular sealing tongue 10A'.
  • the braking device 100 of the invention comprises a first braking member 110 which consists of abrasive elements 110A.
  • the first braking member 110 is mounted on a stator support formed by the exhaust casing 10.
  • the support comprises an annular flange 110D with a radial flange 110B by which it is bolted to an annular rib of the casing 10 under the tongue 10A .
  • the flange 110D comprises a radial flange 110C positioned downstream of the second braking member 120.
  • the abrasive elements 110A are integral with the flange 110C.
  • the second braking member 120 is secured to the rim 63'B. More specifically for this example, the member 120 is secured to a flange 63'B1 downstream at the rim. It comprises a ring-shaped element with a radial surface 120A opposite the abrasive element 110A.
  • This second braking member 120 may be attached to the flange 63'B1 of the rim 63'B, but it may also be obtained by machining together with the rim from a cast blank. In this case it is made of the same metal as the rim. Its hardness corresponds to it.
  • the turbine disk rotates about its axis and the braking member 120 moves in rotation around the motor axis, parallel to the front face of the abrasive element 110A of the braking member without the touch preferably.
  • the combination of the elements 110A and 120A must allow, when the disk moves axially downstream due to the rupture of the shaft 8, the abrasive elements 110A to rub against the surface 120A.
  • the rotation associated with the pressure leads to wear of the braking member 120 by the abrasive elements 110A in the manner of a conventional abrasive tool.
  • the energy is supplied by the rotating rotor and is thus dissipated.
  • the structure and materials of the abrasive elements 110A; aggregates, substrate are determined jointly and in relation to the material of the braking member 120.
  • the abrasive material may consist of abrasive aggregates such as those known in the industry. It may be grains of ceramic material or zirconium. These are fixed, for example by sintering on a substrate such as a glass fiber cloth impregnated with resin resistant to high temperature.
  • An epoxy resin of the Pyrotek type F 51 ® and manufactured by Pyrotek is suitable for this application and withstands a temperature of up to 700 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Braking Arrangements (AREA)

Description

La présente invention concerne le domaine des moteurs à turbine à gaz, en particulier des turboréacteurs multiflux, et porte sur un système permettant en cas de rupture d'un arbre de la machine d'en obtenir l'arrêt dans un délai aussi bref que possible.The present invention relates to the field of gas turbine engines, in particular multiflux turbojet engines, and relates to a system which makes it possible, in the event of the breakage of a shaft of the machine, to stop it as quickly as possible. .

Dans un turboréacteur multiflux à turbo soufflante, cette dernière est entraînée par la turbine basse pression. Lorsque l'arbre reliant le rotor de soufflante à celui de la turbine se rompt, le couple résistant sur la turbine est brutalement annulé alors que le flux de gaz moteur continue à transmettre son énergie au rotor. Il s'ensuit une augmentation rapide de la vitesse de rotation du rotor qui est susceptible d'atteindre sa limite de résistance et d'éclater avec les conséquences catastrophiques qui en résultent.In a turbojet turbojet turbofan, the latter is driven by the low pressure turbine. When the shaft connecting the fan rotor to that of the turbine breaks, the resistance torque on the turbine is abruptly canceled while the flow of engine gas continues to transmit energy to the rotor. This results in a rapid increase in the rotational speed of the rotor which is likely to reach its limit of resistance and burst with the resulting catastrophic consequences.

On a proposé d'interrompre l'arrivée de carburant alimentant la chambre de combustion afin d'éliminer la source d'énergie par laquelle le rotor est accéléré. Une solution consiste à surveiller la vitesse de rotation des arbres par des moyens de mesure redondants et à commander l'interruption de l'alimentation en carburant lorsqu'une survitesse est détectée. Selon le brevet US6494046 , on mesure les fréquences de rotation aux deux extrémités de l'arbre au niveau des paliers et on les compare en continue et en temps réel.It has been proposed to interrupt the fuel supply to the combustion chamber in order to eliminate the energy source by which the rotor is accelerated. One solution is to monitor the speed of rotation of the shafts by redundant measuring means and to control the interruption of the fuel supply when an overspeed is detected. According to the patent US6494046 the rotation frequencies at both ends of the shaft are measured at the bearings and are continuously and real-time compared.

Des moyens assurant le freinage du rotor lorsque survient un tel incident ont aussi été proposés. Le déplacement axial du rotor consécutif à la rupture de l'arbre déclenche l'actionnement de mécanismes visant à en dissiper l'énergie cinétique. Il s'agit par exemple d'ailettes fixes de la roue adjacente de distributeurs qui sont basculées en direction des aubes du rotor de manière à venir s'interposer entre elles et couper leur trajectoire. L'énergie cinétique est dissipée par le frottement des pièces entre elles, leur déformation, voire leur rupture. Une solution de ce type est décrite dans la demande de brevet EP 1640564 au nom du présent déposant. Selon cette solution des moyens de destruction sont montés sur une roue fixe adjacente à une roue de la turbine à freiner et sont agencés pour cisailler les échasses des aubes du rotor amont en début de déplacement vers l'aval du rotor.Means for braking the rotor when such an incident occurs have also been proposed. The axial displacement of the rotor following the rupture of the shaft triggers the actuation of mechanisms to dissipate the kinetic energy. It is for example fixed fins of the adjacent wheel distributors that are tilted towards the blades of the rotor so as to come between them and cut their path. The kinetic energy is dissipated by the friction of the parts between them, their deformation, even their rupture. A solution of this type is described in the patent application EP 1640564 on behalf of the present applicant. According to this solution destruction means are mounted on a fixed wheel adjacent to a wheel of the turbine to be braked and are arranged to shear the stilts of the blades of the upstream rotor at the beginning of displacement downstream of the rotor.

Cette solution quoique efficace, entraîne des coûts de réparation importants en raison des dégâts occasionnés sur les aubages.This solution, although effective, entails significant repair costs because of damage to the blades.

US2006/0042226A1 divulgue un moteur à turbine à gaz équipé d'un dispositif de freinage avec un premier organe de freinage, solidaire du stator, et un second organe, solidaire d'un prolongement de l'axe de la turbine. La présente invention vise une solution simple, efficace et peu onéreuse pour réduire la vitesse de rotation, dans un moteur à turbine à gaz, d'une turbine comprenant un rotor entraînant un arbre et mobile en rotation à l'intérieur d'un stator, en cas de rupture dudit arbre. L'invention concerne un moteur à turbine à gaz équipé d'un dispositif de freinage selon la revendication indépendante 1. La solution de l'invention consiste donc à dissiper l'énergie du rotor entre deux organes qui sont agencés spécifiquement pour le freinage. Ces moyens permettent d'augmenter la surface de contact en fonction de l'objectif visé et d'assurer un coefficient de frottement important. US2006 / 0042226A1 discloses a gas turbine engine equipped with a braking device with a first braking member, integral with the stator, and a second member secured to an extension of the axis of the turbine. The present invention aims at a simple, effective and inexpensive solution for reducing the speed of rotation, in a gas turbine engine, of a turbine comprising a rotor driving a shaft and movable in rotation inside a stator, in case of rupture of said shaft. The invention relates to a gas turbine engine equipped with a braking device according to independent claim 1. The solution of the invention is therefore to dissipate the energy of the rotor between two members which are specifically designed for braking. These means make it possible to increase the contact surface according to the objective aimed at and to ensure a high coefficient of friction.

L'avantage est aussi de permettre de réduire le régime maximal auquel le rotor doit résister sans éclater. Ce régime est celui qui est susceptible d'être atteint lors de la rupture de l'arbre. Le premier organe est solidaire du stator et le second organe est solidaire du rotor ; plus particulièrement le rotor comprenant au moins un disque avec une jante, le second organe est solidaire de la jante et le premier organe est solidaire du stator en aval de la jante. En disposant les organes de freinage en dehors de la veine de gaz, on préserve les aubes et on peut localiser la zone où se produit cette dissipation d'énergie. Le second organe est solidaire du dernier étage de turbine du rotor et le premier organe du carter d'échappement du moteur. Conformément à un mode de réalisation le premier organe comprend une pluralité d'éléments abrasifs répartis autour de l'axe du moteur. Les éléments abrasifs consistent en des granulats abrasifs rapportés, par frittage par exemple, sur une toile, par exemple en fibres de verre, imprégnée de résine résistante à haute température. Avantageusement, le moteur est un moteur à turbine à gaz à double corps avec une section de turbine basse pression dont ladite section est équipée d'un tel dispositif de freinage.The advantage is also to reduce the maximum speed at which the rotor must resist without bursting. This diet is the one that is likely to be reached when the tree breaks. The first member is secured to the stator and the second member is secured to the rotor; more particularly the rotor comprising at least one disk with a rim, the second member is integral with the rim and the first member is secured to the stator downstream of the rim. By arranging the braking members outside the gas stream, the blades are preserved and the zone where this energy dissipation occurs can be located. The second member is integral with the last turbine stage of the rotor and the first member of the engine exhaust casing. According to one embodiment, the first member comprises a plurality of abrasive elements distributed around the axis of the motor. The abrasive elements consist of abrasive aggregates reported, for example by sintering, on a fabric, for example glass fibers, impregnated with resin resistant to high temperature. Advantageously, the engine is a double-body gas turbine engine with a low-pressure turbine section whose section is equipped with such a braking device.

D'autres caractéristiques et avantages ressortiront de la description d'un mode de réalisation non limitatif de l'invention en référence aux dessins sur lesquels

  • La figure 1 montre une demi-coupe axiale de la section de turbine d'un moteur à turbine à gaz double corps,
  • La figure 2 montre un dispositif de freinage aménagé sur la section de turbine basse pression du moteur à turbine à gaz.
Other features and advantages will emerge from the description of a non-limiting embodiment of the invention with reference to the drawings in which
  • The figure 1 shows an axial half-section of the turbine section of a double-body gas turbine engine,
  • The figure 2 shows a braking device arranged on the low-pressure turbine section of the gas turbine engine.

On voit sur la figure 1, une partie de la section de turbine 1 d'un moteur à turbine à gaz. Dans un moteur à double corps et double flux, la section de turbine 1 comprend une turbine haute pression en amont et non visible sur la figure, qui reçoit les gaz chauds de la chambre de combustion. Les gaz après avoir traversé l'aubage de la roue de turbine haute pression sont dirigés, à travers une roue de distributeurs 3 fixes, sur la section de turbine basse pression 5. Cette section 5 est composée d'un rotor 6 formé ici en tambour de l'assemblage de plusieurs disques 61, 62, 63 aubagés, trois dans cet exemple. Les aubes, comprenant une pale et un pied, sont montées, généralement individuellement, à la périphérie des disques dans des logements ménagés sur la jante. Des roues de distributeurs 7 fixes sont interposées entre les étages de turbine, chacune pour orienter convenablement le flux gazeux par rapport à l'aubage mobile aval. Cet ensemble forme la section 5 de turbine basse pression. Le rotor 6 de la turbine basse pression est monté sur un arbre 8, concentrique à l'arbre haute pression 9, qui se prolonge axialement vers l'avant du moteur où il est solidaire du rotor de soufflante. L'ensemble tournant est supporté par des paliers appropriés situés dans les parties avant et arrière du moteur. Sur la figure 1, on voit l'arbre 8 supporté par un palier 81, dans le carter structural, désigné carter d'échappement 10. Le carter d'échappement est pourvu de moyens d'attaches pour un montage sur un aéronef.We see on the figure 1 , part of the turbine section 1 of a gas turbine engine. In a double-body, double-flow motor, the turbine section 1 comprises a high-pressure turbine upstream and not visible in the figure, which receives the hot gases from the combustion chamber. The gases after having passed through the vane of the high-pressure turbine wheel are directed, through a fixed distributor wheel 3, onto the low-pressure turbine section 5. This section 5 is composed of a rotor 6 formed here in a drum the assembly of several disks 61, 62, 63 bladed, three in this example. The blades, comprising a blade and a foot, are mounted, generally individually, at the periphery of the discs in housings formed on the rim. Stationary distributor wheels 7 are interposed between the turbine stages, each to properly orient the gas flow relative to the downstream moving blade. This assembly forms the low pressure turbine section 5. The rotor 6 of the low-pressure turbine is mounted on a shaft 8, concentric with the high-pressure shaft 9, which extends axially towards the front of the engine where it is integral with the fan rotor. The rotating assembly is supported by appropriate bearings located in the front and rear parts of the engine. On the figure 1 the shaft 8, supported by a bearing 81, is seen in the structural casing, designated exhaust casing 10. The exhaust casing is provided with fastening means for mounting on an aircraft.

Lorsque l'arbre 8 se rompt accidentellement, l'ensemble mobile de la turbine basse pression se déplace vers l'arrière, vers la droite sur la figure, en raison de la pression exercée par les gaz. Par ailleurs, il est accéléré en rotation en raison de la disparition de son couple résistant combinée à la poussée tangentielle que les gaz chauds continuent d'exercer sur les aubages mobiles pendant leur traversée de la turbine.When the shaft 8 breaks accidentally, the movable assembly of the low pressure turbine moves backwards, to the right in the figure, due to the pressure exerted by the gases. Moreover, it is accelerated in rotation because of the disappearance of its resistant torque combined with the Tangential thrust that the hot gases continue to exert on the mobile blades during their crossing of the turbine.

Pour empêcher, conformément à l'invention, que le rotor de turbine s'emballe et que sa vitesse atteigne le régime maximal autorisé avant d'éclater, un dispositif de freinage est incorporé à la section de turbine.To prevent, according to the invention, the turbine rotor is racing and its speed reaches the maximum permitted speed before bursting, a braking device is incorporated in the turbine section.

Ce dispositif 100 est représenté sur la figure 2 qui est une vue partielle en perspective du disque de turbine 63' et du carter d'échappement.This device 100 is represented on the figure 2 which is a partial perspective view of the turbine disk 63 'and the exhaust casing.

Le disque 63' correspond au disque 63 de la figure 1 modifié conformément à l'invention. Le disque 63' a une forme conventionnelle ou autre, selon cet exemple avec un moyeu 63'A, une jante 63'B à sa périphérie et un voile radial 63'C de faible épaisseur entre le moyeu et la jante. La jante 63'B est pourvue de moyens d'attache des aubes qui s'étendent en direction radiale dans le canal annulaire parcouru par le gaz moteur. Les aubes et leur moyen d'attache ne font pas partie de l'invention et n'ont pas été représentés dans leur ensemble sur la figure une silhouette seule dans le plan de coupe est visible. Le carter d'échappement 10 est représenté dans sa partie qui est en vis-à-vis du disque 63'. Il comprend une plateforme annulaire 10A formant la paroi intérieure du canal des gaz dans le prolongement des plateformes à la périphérie du disque 63' du dernier étage de turbine. Des aubes de redresseur 10B, non visibles s'étendent radialement dans le canal annulaire. La plateforme 10A s'étend axialement en amont vers le disque 63' par une languette annulaire 10A' d'étanchéité.The disk 63 'corresponds to the disk 63 of the figure 1 modified according to the invention. The disc 63 'has a conventional shape or the like, according to this example with a hub 63'A, a rim 63'B at its periphery and a thin radial sail 63'C between the hub and the rim. The rim 63'B is provided with means for attaching the vanes which extend in a radial direction in the annular channel traversed by the engine gas. The vanes and their attachment means are not part of the invention and have not been represented in their entirety in the figure a single silhouette in the section plane is visible. The exhaust casing 10 is shown in its part which is vis-à-vis the disc 63 '. It comprises an annular platform 10A forming the inner wall of the gas channel in the extension of the platforms at the periphery of the disk 63 'of the last turbine stage. Rectifier vanes 10B, which are not visible, extend radially in the annular channel. The platform 10A extends axially upstream towards the disc 63 'by an annular sealing tongue 10A'.

Le dispositif de freinage 100 de l'invention est décrit ci-après. Il comprend un premier organe de freinage 110 qui est constitué d'éléments abrasifs 110A. Le premier organe de freinage 110 est monté sur un support de stator formé par le carter d'échappement 10. Le support comprend un flasque annulaire 110D avec une bride radiale 110B par laquelle il est boulonné sur une nervure annulaire du carter 10 sous la languette 10A'. Le flasque 110D comprend une bride radiale 110C positionnée en aval du second organe de freinage 120. Les éléments abrasifs 110A sont solidaires de la bride 110C.The braking device 100 of the invention is described below. It comprises a first braking member 110 which consists of abrasive elements 110A. The first braking member 110 is mounted on a stator support formed by the exhaust casing 10. The support comprises an annular flange 110D with a radial flange 110B by which it is bolted to an annular rib of the casing 10 under the tongue 10A . The flange 110D comprises a radial flange 110C positioned downstream of the second braking member 120. The abrasive elements 110A are integral with the flange 110C.

Le second organe de freinage 120 est solidaire de la jante 63'B. Plus précisément pour cet exemple, l'organe 120 est solidaire d'une bride 63'B1 en aval au niveau de la jante. Il comprend un élément en forme d'anneau à surface radiale 120A en vis-à-vis de l'élément abrasif 110A. Ce second organe de freinage 120 peut être rapporté sur la bride 63'B1 de la jante 63'B mais il peut être aussi obtenu par usinage ensemble avec la jante à partir d'une ébauche venue de fonderie. Dans ce cas il est constitué du même métal que la jante. Sa dureté lui correspond.The second braking member 120 is secured to the rim 63'B. More specifically for this example, the member 120 is secured to a flange 63'B1 downstream at the rim. It comprises a ring-shaped element with a radial surface 120A opposite the abrasive element 110A. This second braking member 120 may be attached to the flange 63'B1 of the rim 63'B, but it may also be obtained by machining together with the rim from a cast blank. In this case it is made of the same metal as the rim. Its hardness corresponds to it.

En fonctionnement normal, le disque de turbine tourne autour de son axe et l'organe de freinage 120 se déplace en rotation autour de l'axe moteur, parallèlement à la face avant de l'élément abrasif 110A de l'organe de freinage sans le toucher de préférence.In normal operation, the turbine disk rotates about its axis and the braking member 120 moves in rotation around the motor axis, parallel to the front face of the abrasive element 110A of the braking member without the touch preferably.

La combinaison des éléments 110A et 120A doit permettre, lorsque le disque se déplace axialement vers l'aval en raison de la rupture de l'arbre 8, aux éléments abrasifs 110A de frotter contre la surface 120A. La rotation associée à la pression conduit à l'usure de l'organe de freinage 120 par les éléments abrasifs 110A à l'instar d'un outil abrasif conventionnel. L'énergie est fournie par le rotor en rotation et est ainsi dissipée.The combination of the elements 110A and 120A must allow, when the disk moves axially downstream due to the rupture of the shaft 8, the abrasive elements 110A to rub against the surface 120A. The rotation associated with the pressure leads to wear of the braking member 120 by the abrasive elements 110A in the manner of a conventional abrasive tool. The energy is supplied by the rotating rotor and is thus dissipated.

La structure et les matériaux des éléments abrasifs 110A ; granulats, substrat sont déterminés conjointement et en relation avec le matériau de l'organe de freinage 120.The structure and materials of the abrasive elements 110A; aggregates, substrate are determined jointly and in relation to the material of the braking member 120.

Le matériau abrasif peut consister en des granulats abrasifs tels que ceux connus dans l'industrie. Il peut s'agir de grains en matériau céramique ou en zirconium. Ceux-ci sont fixés, par exemple par frittage sur un substrat tel qu'une toile en fibres de verre imprégnée de résine résistant à haute température. Une résine époxy de type Pyrotek F 51 ® et fabriqué par la société Pyrotek convient à cette application et résiste à une température allant jusqu'à 700°C .The abrasive material may consist of abrasive aggregates such as those known in the industry. It may be grains of ceramic material or zirconium. These are fixed, for example by sintering on a substrate such as a glass fiber cloth impregnated with resin resistant to high temperature. An epoxy resin of the Pyrotek type F 51 ® and manufactured by Pyrotek is suitable for this application and withstands a temperature of up to 700 ° C.

Claims (6)

  1. Gas turbine engine, said turbine comprising a rotor driving a shaft and capable of rotating with respect to a stator, and equipped with a braking device, in the event of breakage of said shaft, comprising first and second braking members, the first braking member (110) being secured to the stator and the second braking member (120) being secured to the last turbine stage of the rotor,
    characterised in that said first braking member (110) is provided with at least one abrasive element (110A) secured to a radial flange (110C) of an annular flange (110D) of a stator support formed by the exhaust casing, said radial flange (110C) being positioned downstream of the second braking member (120),
    and in that said second braking member (120) comprises a ring-shaped element with a radial surface (120A) made of a material capable of being eroded by the abrasive element (110A), said second braking member (120) being secured to a flange (63'B1) downstream on a rim (63'B) located at the periphery of a turbine disk (63') in such a way that the second braking member (120) is secured to the rim (63'B), said radial surface (120A) facing the abrasive element (110A), the rim (63'B) being provided with means for attaching blades extending in a radial direction in an annular channel passed through by the engine gas, the disc (63') comprising a hub (63'A), said rim (63'B) at its periphery, and a radial velum (63'C) with a low thickness between the hub (63'A) and the rim (63'B), the two braking members coming into contact through axial displacement of the rotor after breakage of the shaft, the abrasive element (110A) of the first braking member (110) eroding the ring-shaped element with a radial surface (120A) of the second braking member (120).
  2. Engine according to claim 1 in which the first braking member (110) comprises a plurality of abrasive elements (110A) distributed about the axis of the engine.
  3. Engine according to claim 1, in which the abrasive element (110A) of the first braking member (110) comprises abrasive granules mounted on a substrate, this assembly being attached to the stator.
  4. Engine according to claim 3, in which the substrate consists of a fabric.
  5. Engine according to claim 4, in which the fabric is a resin-impregnated fiberglass fabric.
  6. Engine according to one of claims 1 to 5, characterised in that the engine is a twin spool gas turbine engine with a low-pressure turbine section in which said section is equipped with the braking device.
EP08156698.6A 2007-05-25 2008-05-21 Gas turbine motor with a braking device in the event of shaft breakage Active EP2071136B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0703758A FR2916482B1 (en) 2007-05-25 2007-05-25 BRAKE SYSTEM IN CASE OF TURBINE SHAFT RUPTURE IN A GAS TURBINE ENGINE

Publications (3)

Publication Number Publication Date
EP2071136A2 EP2071136A2 (en) 2009-06-17
EP2071136A3 EP2071136A3 (en) 2010-03-10
EP2071136B1 true EP2071136B1 (en) 2018-07-25

Family

ID=39099813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08156698.6A Active EP2071136B1 (en) 2007-05-25 2008-05-21 Gas turbine motor with a braking device in the event of shaft breakage

Country Status (3)

Country Link
US (1) US8161727B2 (en)
EP (1) EP2071136B1 (en)
FR (1) FR2916482B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916483B1 (en) * 2007-05-25 2013-03-01 Snecma SYSTEM FOR DISSIPATING ENERGY IN THE EVENT OF TURBINE SHAFT BREAKAGE IN A GAS TURBINE ENGINE
DE102011086775A1 (en) * 2011-07-20 2013-01-24 Mtu Aero Engines Gmbh Method for producing an inlet lining, inlet system, turbomachine and vane
US9062560B2 (en) 2012-03-13 2015-06-23 United Technologies Corporation Gas turbine engine variable stator vane assembly
FR3026774B1 (en) * 2014-10-07 2020-07-17 Safran Aircraft Engines TURBOMACHINE COMPRISING A BLOWER ROTOR BRAKING DEVICE.
US10190440B2 (en) 2015-06-10 2019-01-29 Rolls-Royce North American Technologies, Inc. Emergency shut-down detection system for a gas turbine
FR3049646B1 (en) * 2016-03-31 2019-04-12 Safran Aircraft Engines DEVICE FOR LIMITING THE OVERVIEW OF A TURBINE ROTOR ROTOR
US10815824B2 (en) * 2017-04-04 2020-10-27 General Electric Method and system for rotor overspeed protection
FR3113922B1 (en) 2020-09-08 2023-03-31 Safran Aircraft Engines Turbine brake
EP4006316A1 (en) * 2020-11-27 2022-06-01 Rolls-Royce Deutschland Ltd & Co KG Shaft breakage protection system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490748A (en) * 1968-05-14 1970-01-20 Gen Motors Corp Fragmentation brake for turbines
FR2050550A5 (en) * 1969-06-17 1971-04-02 Commissariat Energie Atomique Governor for turbine rotors
US4498291A (en) * 1982-10-06 1985-02-12 Rolls-Royce Limited Turbine overspeed limiter for turbomachines
JPS6213479A (en) * 1985-07-10 1987-01-22 Sumitomo Electric Ind Ltd Friction material
GB2199900B (en) * 1987-01-15 1991-06-19 Rolls Royce Plc A turbopropeller or turbofan gas turbine engine
FR2640684B1 (en) * 1988-12-15 1994-01-28 Snecma TURBOMACHINE COMPRISING A BRAKING DEVICE BETWEEN TURBINE ROTOR AND EXHAUST CASING
FR2773586B1 (en) * 1998-01-09 2000-02-11 Snecma TURBOMACHINE WITH MUTUAL BRAKING OF CONCENTRIC SHAFTS
DE19857552A1 (en) 1998-12-14 2000-06-15 Rolls Royce Deutschland Method for detecting a shaft break in a fluid flow machine
US6312215B1 (en) * 2000-02-15 2001-11-06 United Technologies Corporation Turbine engine windmilling brake
DE10218459B3 (en) * 2002-04-25 2004-01-15 Mtu Aero Engines Gmbh Multi-stage axial compressor
US7225607B2 (en) * 2004-08-27 2007-06-05 Pratt & Whitney Canada Corp. Gas turbine braking apparatus and method
FR2875842B1 (en) 2004-09-28 2010-09-24 Snecma Moteurs DEVICE FOR LIMITING TURBINE OVERVIEW IN A TURBOMACHINE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20090126336A1 (en) 2009-05-21
EP2071136A2 (en) 2009-06-17
FR2916482B1 (en) 2009-09-04
EP2071136A3 (en) 2010-03-10
US8161727B2 (en) 2012-04-24
FR2916482A1 (en) 2008-11-28

Similar Documents

Publication Publication Date Title
EP2071136B1 (en) Gas turbine motor with a braking device in the event of shaft breakage
EP1995414B1 (en) Braking device for a turbine in a gas turbine engine in the event of shaft breakage
EP2576991B1 (en) Turbo machine with a device for preventing a segment of nozzle guide vanes assembly from rotating in a casing
EP0814236B1 (en) Bearing support which allows to keep a turbofan engine functioning after the appearance of an imbalance
EP1916391B1 (en) Method and device for reducing speed in the event of breakage of the turbine shaft of a gas-turbine engine
CA2641963C (en) Blade tip clearance control for a turbine engine high-pressure turbine
CA2521265C (en) Excess turbine speed limitation device in a turbine engine
EP1903186B1 (en) Thermal screen device for the housing of a turbine to control blade tip clearance
FR2937371A1 (en) VENTILATION OF A HIGH-PRESSURE TURBINE IN A TURBOMACHINE
EP1593816B1 (en) Turbomachine provided with a blocking system for the main engine shaft with frangible bearing
WO2009156645A1 (en) Turbine engine compressor comprising an air injection system
US10408068B2 (en) Fan blade dovetail and spacer
EP3775500B1 (en) Turbine shaft of a turbomachine and method for overspeed protection of the shaft
CN101649758B (en) Energy consumption system used in the fracturing of turbine shaft of gas turbine engine
FR3075864B1 (en) TURBOMACHINE COMPRISING A TURBINE-DISCHARGING BLOWER THROUGH AN ELASTICALLY REMOVABLE CURVIC COUPLING
WO2021099736A1 (en) Turbomachine rotary-fan blade, fan, and turbomachine provided therewith
FR3102215A1 (en) improved counter-rotating turbine impeller ferrule
FR2915511A1 (en) Low pressure turbine for e.g. turbojet engine, of aircraft, has braking unit comprising upstream and downstream conical surfaces that are inclined at specific angle with respect to plane perpendicular to longitudinal axis of turbine
WO2014132001A1 (en) Reduction of convective exchanges between the air and the rotor in a turbine
FR3113922A1 (en) Turbine brake
WO2010130959A1 (en) Diffuser for a turbine engine
FR3126022A1 (en) AIRCRAFT TURBOMACHINE ASSEMBLY INCLUDING A COVER RING FOR ISOLATING MECHANICAL FASTENING COMPONENTS FROM AN AIR FLOW

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20101014

AKX Designation fees paid

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008056125

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008056125

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 16

Ref country code: DE

Payment date: 20230419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 16