EP2070388B1 - Method and measuring device for monitoring loudspeaker systems - Google Patents

Method and measuring device for monitoring loudspeaker systems Download PDF

Info

Publication number
EP2070388B1
EP2070388B1 EP07800194.8A EP07800194A EP2070388B1 EP 2070388 B1 EP2070388 B1 EP 2070388B1 EP 07800194 A EP07800194 A EP 07800194A EP 2070388 B1 EP2070388 B1 EP 2070388B1
Authority
EP
European Patent Office
Prior art keywords
signal
level
impedance
values
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07800194.8A
Other languages
German (de)
French (fr)
Other versions
EP2070388A2 (en
Inventor
Josef Schreiner
Wolfgang Zelenka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Life Safety Austria GmbH
Original Assignee
Honeywell Life Safety Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Life Safety Austria GmbH filed Critical Honeywell Life Safety Austria GmbH
Publication of EP2070388A2 publication Critical patent/EP2070388A2/en
Application granted granted Critical
Publication of EP2070388B1 publication Critical patent/EP2070388B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/007Monitoring arrangements; Testing arrangements for public address systems

Definitions

  • the invention relates to a method for monitoring loudspeaker lines by impedance measurement, in which the input of a loudspeaker line at least an alternating voltage signal of predetermined frequency is supplied, voltage and current are measured at the input of the line and determined from these measurements, the input impedance to the line and with a reference value is compared.
  • the invention relates to an apparatus for carrying out the method according to the invention.
  • PA systems are to be understood as a system in which at least one loudspeaker line, to which a plurality of loudspeakers is generally connected, is fed by one or more power amplifiers to a larger area or a building complex, such as a Sports stadium, an airport, a department store, etc. to sound.
  • An object of the invention is to provide a method which takes into account the above-mentioned problems and which enables a particularly rapid and reliable detection of errors.
  • a single alternating voltage signal predetermined frequency of a speaker line is supplied via a power amplifier with a level which is below the nominal operating level, and the AC signal has such a low frequency that one for the human ear not or only Barely perceptible sound level is generated.
  • the impedance values obtained in this way have the advantage that they were measured under actual operating conditions.
  • this plurality of frequencies also contains the only low frequency in that a weighted mean value level is formed from the plurality of received signal signal levels obtained, and for each measurement the level of the single low-frequency measuring signal supplied to the loudspeaker line is set at a predefinable fixed distance to the weighted average level.
  • a degaussing signal of low frequency may be supplied to a loudspeaker line via a power amplifier having a level which rises to a maximum level and then falls again before a measurement.
  • impedance values can be determined over a wide frequency range, if at least one alternating voltage signal of predetermined frequency / frequencies is supplied to a loudspeaker line having a level which is selected such that the generated sound levels are not or only barely perceptible to the human ear ,
  • FIG. 1 In the illustration after Fig. 1 are outlined three speaker lines of a public address system, but it should be clear that depending on the type of system also a different number of speaker lines may be present.
  • a plurality of loudspeakers are connected to each line, with larger systems preferably employing a high-impedance, so-called "100 volt" variant, in which each loudspeaker lies above a transformer on the line.
  • a switch SCH power amplifier To an input of the speaker line can be switched via a switch SCH power amplifier, in the present case, for simplicity, only a power amplifier LEV is shown, which can be controlled by different audio sources AQ1, AQ2, AQ3 to voice, music and warning signals to those of the Speakers supplied places to bring.
  • a signal generator SIG controlled by or part of a digital signal processor DSP may provide signals to the input of the power amplifier LEV, such as the output of the power amplifier LEV.
  • the mentioned signal processor DSP For measuring the current I and the voltage U at the output of the amplifier LEV or at the input of the speaker line current and voltage converters are provided, the measured values, optionally after external A / D conversion, the mentioned signal processor DSP are supplied.
  • each loudspeaker line can also be closed in the manner of a loop, and in this case the infeed thus does not take place at an "end" of the loudspeaker line.
  • Such a ring structure has the advantage that an interruption of a conductor or both conductors at one point does not lead to failure of the speakers.
  • the signal generator SIG is used for large signal measurement with the aid of the power amplifier
  • another signal generator GEN is provided for a small signal measurement.
  • This signal generator can also be controlled by the signal processor DSP or be part of the same and supplies signals to the input of the loudspeaker line LL1, whose level is selected so that no or barely audible sound pressure levels are generated.
  • three frequencies are used for the small signal measurement, namely 70 Hz, 250 Hz and 1 kHz.
  • the nominal (reference) values of the impedances are first determined in a learning phase, the nominal (reference) values of the impedances at different frequencies, in the present case, at least at the frequencies 23, 4375 Hz, 70 Hz, 250 Hz and 1 kHz.
  • the impedances are expediently also determined at different levels, since, for example, high levels result in different impedance values due to heating, in particular of voice coils, and due to nonlinearities in transformers and / or loudspeakers.
  • the same method can be used, which is used to determine the actual impedances.
  • the measured values of current and voltage are converted into digital signals at the said different frequencies and levels and subjected to rapid Fourier transformation (FFT) in the digital signal processor DSP.
  • FFT rapid Fourier transformation
  • an FFT length or sample number of 2048 is used.
  • 50 readings are taken and then an average is formed from these values which, at least in the measurements in the learning phase, can be an arithmetic mean, but weighting at different frequencies or levels is also possible.
  • the determined reference values Z R23 , Z R70 , Z R250 , Z R1000 , generally Z Ref are then stored in order to be available for the following measurements.
  • a useful signal i. H. a public address signal, such as. As music or speech, is present to perform either a large signal measurement or a small signal measurement.
  • a small-signal measurement is not expedient or would be very complicated because of the difficult-to-control level differences between a conventional measuring signal of low level (for example -6 dBu) and the useful signal level (for example + 42 dBu). Therefore, in this case, a measurement is made with a higher signal level, but with the already mentioned low frequency fu of 23.4375 Hz, which is practically inaudible in normal operation.
  • the output signal of the signal generator SIG is supplied to the input of the power amplifier, which then feeds the loudspeaker line to be measured.
  • the signal level is chosen to be lower than the useful signal level so as not to overdrive the amplifier when the useful signal is already high, e.g. B. 13 dB below the Nutzsignalpegel.
  • an impedance Z to be compared with a reference value Z Ref .
  • several, e.g. 50 analog measurements of voltage and current are converted to digital signals, subjected to Fourier transform, and correspondingly many impedance values are determined from the transformed values of current and voltage.
  • An average value is formed from these impedance values and this is compared with a reference impedance value. If the resulting mean value deviates from the reference impedance value by a definable tolerance value, an error signal is emitted.
  • the large signal measurement offers the advantage that background noise does not affect the measurement results, since interference signals striking the speaker diaphragms only produce signals whose level is far below the operating level. Also, the influence of the line length on the measurement result at the applied low measurement frequency is low.
  • the magnetic hysteresis of the iron core of transformers which the 100 volt line to the usually low-resistance, z. B. adapting 8 ohm speakers, at low frequencies can lead to significant changes in the measured impedance, so it is expedient to remove in the cores of the transformer existing remanences by a demagnetizing step.
  • a demagnetization signal s E low frequency f E , z. B. 15 Hz a speaker line via a power amplifier with a rising to a maximum level and then dropped again level.
  • the demagnetization signal - like all other signals used here expediently a sinusoidal signal - rises from a zero level to a level which corresponds at least to the highest occurring operating level and then falls back to a zero level, to eliminate with certainty all remanence. In practice, a time of 1/3 second is sufficient for this process.
  • Another useful method step is that before a large signal measurement, a practical level for the measurement signal is determined in the following manner:
  • the useful signal which as already mentioned voice and / or music signals, but also other signals, such as alarm signals, may contain before the actual impedance measurement of a spectral analysis, again z. B. by a fast Fourier analysis to form from the determined level values at a plurality of frequencies, for example at 2048 frequency points, which should contain at least the later used low measuring frequency fu, a weighted average level.
  • the level of the subsequently applied measurement signal is then automatically kept at a predeterminable distance from the determined level, proven at least 13 dB below it.
  • a small signal measurement can be carried out if there is no useful signal, or if the speaker line to be measured is not connected to any amplifier.
  • the audio generator GEN is used, which - controlled by the processor DSP - generates signals of a specifiable frequency, for example 70 Hz, 250 Hz and 1000 Hz. These signals are applied in succession to the loudspeaker line to be measured, as well as in the large-signal measurement current and voltage continuously measured, the measured values are sampled and Fourier-transformed.
  • the digital signal processor DSP is also used.
  • the signal levels are chosen so that sound levels are generated at the respective frequencies, which are not audible to people in the sonicated areas or at least not perceived as disturbing.
  • the level selection is dependent on the frequency corresponding to the auditory curve, for a 100 volt system in practice voltage level in of the order of 300 to 400 mV at 70 Hz are typical. Demagnetization of the transmitter cores is generally not required for higher frequency signals.
  • a large number of measured values are determined in quick succession, for example 50 measured values per frequency again, and then averaged. In one embodiment, this measurement is done every 100 seconds. It is particularly expedient if a statistic is determined via the average values obtained as above and a moving average is formed therefrom. The number of values averaged over (by moving average) is determined by the variance and the desired tolerance of the line. The variance is the mean squared deviation of the measured values from their mean value. The higher the variance, ie the higher the measured values fluctuate around their mean value, and the lower the desired tolerance, the more values must be averaged. In a current measurement method, exponential moving averages are used, ie the current mean value with a certain factor ⁇ 1, z.
  • This moving average can then, for. B. every 100 s, with the reference (reference) value to be compared.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Überwachung von Lautsprecherlinien durch Impedanzmessung, bei welchem dem Eingang einer Lautsprecherlinie zumindest ein Wechselspannungssignal vorbestimmter Frequenz zugeführt wird, Spannung und Strom an dem Eingang der Linie gemessen werden und aus diesen Messwerten die Eingangsimpedanz an der Linie ermittelt und mit einem Referenzwert verglichen wird.
Ebenso bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung des Verfahrens nach der Erfindung.
Unter Beschallungsanlagen soll jedenfalls in Zusammenhang mit der vorliegenden Erfindung ein System verstanden werden, bei welchem zumindest eine Lautsprecherlinie, an welche im allgemeinen eine Vielzahl von Lautsprechern geschaltet ist, von einem oder mehreren Leistungsverstärkern gespeist wird, um ein größeres Gebiet oder einen Gebäudekomplex, wie ein Sportstadion, einen Flughafen, ein Kaufhaus etc. zu beschallen. Da neben üblichen Durchsagen, Werbetexten, Hintergrundmusik usw. in Not- oder Katastrophenfällen auch überlebenswichtige Aufrufe über die Lautsprecher an jeder Stelle des Systems gehört werden müssen, ist es erforderlich und in vielen Fällen auch durch entsprechende Normen vorgeschrieben, dass die Beschallungsanlage regelmäßig auf ihre Funktionssicherheit überprüft wird.
Für eine solche Überprüfung sind verschiedene Verfahren bekannt geworden, die jedoch bisher der Komplexität der gestellten Aufgabe nicht gerecht wurden. Diese Komplexität liegt darin, dass an einer Lautsprecherlinie eine große Anzahl von Lautsprechern liegt, die meist über entsprechend viele Übertrager mit der Linie verbunden sind, wie dies bei 100 Volt System der Fall ist. Die Arten der Fehler, die einen nicht beschallten Raum zur Folge haben können sind vielfältig: Leitungskurzschlüsse, Leitungsunterbrechungen, Risse von Schwingspulen, festgeklemmte Schwingspulen, defekte Übertrager usf. Die Messung muss somit alle diese Fehler erkennen, wobei auch die Temperaturabhängigkeit der Impedanzen zu berücksichtigen ist. Außerdem soll die Messung den normalen Betrieb der Anlage nicht stören und auf eine Lautsprecherlinie geschaltete Messsignale sollen nicht oder kaum hörbar sein.
Eine Aufgabe der Erfindung liegt in der Schaffung eines Verfahrens, welches den oben genannten Problemen Rechnung trägt und das ein besonders rasches und auch zuverlässiges Erkennen von Fehlern ermöglicht.
The invention relates to a method for monitoring loudspeaker lines by impedance measurement, in which the input of a loudspeaker line at least an alternating voltage signal of predetermined frequency is supplied, voltage and current are measured at the input of the line and determined from these measurements, the input impedance to the line and with a reference value is compared.
Likewise, the invention relates to an apparatus for carrying out the method according to the invention.
In any case, in the context of the present invention, PA systems are to be understood as a system in which at least one loudspeaker line, to which a plurality of loudspeakers is generally connected, is fed by one or more power amplifiers to a larger area or a building complex, such as a Sports stadium, an airport, a department store, etc. to sound. Since in addition to usual announcements, copywriting, background music, etc. in emergencies or disasters even vital calls on the speakers must be heard at each point of the system, it is necessary and in many cases prescribed by appropriate standards that the public address system regularly on their reliability is checked.
For such a review, various methods have become known, but so far the complexity of the task did not do justice. This complexity lies in the fact that a loudspeaker line has a large number of loudspeakers, which are usually connected to the line via a corresponding number of transformers, as is the case with the 100 volt system. The types of faults that can result in a non-sonicated room are manifold: line shorts, line breaks, voice coil cracks, clamped voice coils, faulty transformers, etc. The measurement must therefore detect all these faults, taking into account the temperature dependence of the impedances , In addition, the measurement should not interfere with the normal operation of the system and connected to a speaker line measuring signals should not or barely audible.
An object of the invention is to provide a method which takes into account the above-mentioned problems and which enables a particularly rapid and reliable detection of errors.

Diese Aufgabe wird mit einem Verfahren der eingangs genannte Art gelöst, bei welchem erfindungsgemäß zur Ermittlung einer mit einem Referenzwert zu vergleichenden Impedanz bei einem Messvorgang eine Vielzahl analoger Messwerte von Spannung und Strom in digitale Signale gewandelt und diese einer Fouriertransformation unterworfen werden, aus den Fourier-transformierten Werten von Strom und Spannung eine entsprechende Vielzahl von Impedanzwerten ermittelt wird, diese Impedanzwerte einer Mittelwertbildung unterzogen werden und der resultierende Mittelwert mit einem Referenz-Impedanzwert verglichen wird, wobei bei Abweichen des resultierenden Mittelwertes von dem Referenz-Impedanzwert um einen festlegbaren Toleranzwert ein Fehlersignal abgegeben wird.This object is achieved with a method of the aforementioned type, in which according to the invention a plurality of analog measured values of voltage and current are converted into digital signals and subjected to a Fourier transformation in order to determine an impedance to be compared with a reference value. transformed values of impedance and averaged over the resulting mean value with a reference impedance value, wherein when the resulting mean value deviates from the reference impedance value by a definable tolerance value, an error signal is output becomes.

Bei einer Variante ist vorgesehen, dass bei einer Großsignalmessung ein einziges Wechselspannungssignal vorbestimmter Frequenz einer Lautsprecherlinie über einen Leistungsverstärker mit einem Pegel zugeführt wird, der unter dem Nennbetriebspegel liegt, und das Wechselspannungssignal eine so niedrige Frequenz aufweist, dass ein für das menschliche Ohr nicht oder nur kaum wahrnehmbarer Schallpegel erzeugt wird. Die auf diese Weise ermittelten Impedanzwerte haben den Vorteil, dass die unter tatsächlichen Betriebsbedingungen gemessen wurden.In a variant, it is provided that in a large signal measurement, a single alternating voltage signal predetermined frequency of a speaker line is supplied via a power amplifier with a level which is below the nominal operating level, and the AC signal has such a low frequency that one for the human ear not or only Barely perceptible sound level is generated. The impedance values obtained in this way have the advantage that they were measured under actual operating conditions.

Im Sinne einer Anpassung des Messsignals an die tatsächlich vorkommenden Pegel und Frequenzverteilungen ist es sinnvoll, wenn das Nutzsignal vor jeder Messung einer Spektralanalyse unterzogen wird, um den Nutzsignalpegel bei einer Vielzahl von Frequenzen zu ermitteln, wobei diese Vielzahl von Frequenzen auch die einzige niedrige Frequenz enthält, aus der Vielzahl der erhaltenen Nutzsignalpegel ein gewichteter Mittelwertpegel gebildet wird und für jede Messung der Pegel des der Lautsprecherlinie zugeführten einzigen Messsignals niedriger Frequenz in einem vorgebbaren festen Abstand zu dem gewichteten Mittelwertpegel eingestellt wird.In terms of an adaptation of the measurement signal to the actually occurring level and frequency distributions, it makes sense if the useful signal before each measurement is subjected to a spectral analysis to determine the useful signal level at a plurality of frequencies, this plurality of frequencies also contains the only low frequency in that a weighted mean value level is formed from the plurality of received signal signal levels obtained, and for each measurement the level of the single low-frequency measuring signal supplied to the loudspeaker line is set at a predefinable fixed distance to the weighted average level.

Um den Einfluss der Hystereseerscheinungen in Lautsprecher-Übertragern zu eliminieren, kann vorgesehen sein, dass vor einer Messung ein Entmagnetisierungssignal mit niedriger Frequenz einer Lautsprecherlinie über einen Leistungsverstärker mit einem bis zu einem Maximalpegel ansteigenden und dann wieder abfallenden Pegel zugeführt wird.In order to eliminate the influence of the hysteresis phenomena in loudspeaker transformers, provision may be made for a degaussing signal of low frequency to be supplied to a loudspeaker line via a power amplifier having a level which rises to a maximum level and then falls again before a measurement.

Andererseits lassen sich Impedanzwerte über einen weiten Frequenzbereich ermitteln, falls bei einer Kleinsignalmessung zumindest ein Wechselspannungssignal vorbestimmter Frequenz/Frequenzen einer Lautsprecherlinie mit einem Pegel/Pegeln zugeführt wird, der so gewählt wird, dass die erzeugten Schallpegel für das menschliche Ohr nicht oder nur kaum wahrnehmbar sind.On the other hand, impedance values can be determined over a wide frequency range, if at least one alternating voltage signal of predetermined frequency / frequencies is supplied to a loudspeaker line having a level which is selected such that the generated sound levels are not or only barely perceptible to the human ear ,

Die Bestimmung von Referenzwerten kann in vorteilhafter Weise dadurch erfolgen dass vor dem laufenden Betrieb der Anlage in einer Einlernphase der Lautsprecherlinie Signale unterschiedlicher Frequenzen und/oder Pegel zugeführt, die dabei erhaltenen Messwerte von Strom und Spannung in digitale Signale umgewandelt und sodann einer Fouriertransformation unterworfen und sodann aus den Strom- und Spannungswerten Referenzwerte für unterschiedliche Frequenzen und/oder Pegel ermittelt und abgespeichert werden. Dabei ist es zweckmäßig, wenn für jede Frequenz/Pegel eine Vielzahl von Einzelmesswerte für Strom und Spannung ermittelt werden und der folgenden Bestimmung der Referenzimpedanzen Mittelwerte der Einzelmesswerte zurunde gelegt werden.
Um zu vermeiden, dass langsame und durchaus "normale" Impedanzänderungen, z. B. auf Grund einer Temperaturänderung, zu Fehleranzeigen führen, kann vorgesehen sein, dass der Toleranzwert während des Betriebes dahingehend geändert wird, dass langsamen Änderungen von Ist-Impedanzen ein weiterer Toleranzbereich der Referenzimpedanzen zugewiesen wird, als raschen Änderungen.
In der Praxis hat es sich vorteilhaft gezeigt, wenn der Absolutwert der Impedanz ermittelt und mit einem Referenzwert verglichen wird, wenngleich in bestimmten Fällen auch eine Wirkleistungs-bezogene Messung des Realteils der Impedanz von Vorteil sein kann.
Die der Erfindung zugrunde liegende Aufgabe wird auch mit einer Vorrichtung zur Überwachung von Lautsprecherlinien durch Impedanzmessung mit zumindest einem Signalgenerator und zumindest einem Verstärker sowie gesteuerten Schaltern zur Zuführung zumindest eines Wechselspannungssignals vorbestimmter Frequenz an den Eingang zumindest einer Lautsprecherlinie, mit Messeinrichtungen zum Messen von Spannung und Strom an dem Eingang der Linie sowie mit zumindest einem Mikroprozessor gelöst, wobei letzterer zur Durchführung des erfindungsgemäßen Verfahrens eingerichtet ist und unter Benutzung der oben genanten Merkmale des erfindungsgemäßen Verfahrens den zumindest einen Signalgenerator steuert, dem die Messwerte der Messeinrichtungen zuführbar sind und der zur Ermittlung der Eingangsimpedanz an der Linie und zu deren Vergleich mit einem Referenzwert sowie zur Abgabe eines Fehlersignals eingerichtet ist, falls der ermittelte Impedanzwert innerhalb festsetzbarer Toleranzen von einem Referenzwert abweicht.
Die Erfindung samt weiteren Vorteilen ist im Folgenden an Hand beispielsweiser Ausführungsformen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen

  • Fig. 1 in einem vereinfachtem Blockschaltbild den prinzipiellen Aufbau einer Messeinrichtung nach der Erfindung und
  • Fig. 2 in einem Ablaufdiagramm die wesentlichen Verfahrensschritte des erfindungsgemäßen Verfahrens.
The determination of reference values can advantageously take place by supplying signals of different frequencies and / or levels in a learning phase of the loudspeaker line prior to the operation of the system, converting the measured values of current and voltage into digital signals and then subjecting them to a Fourier transformation and then Reference values for different frequencies and / or levels can be determined and stored from the current and voltage values. In this case, it is expedient for a multiplicity of individual measured values for current and voltage to be determined for each frequency / level and mean values of the individual measured values to be set for the following determination of the reference impedances.
To avoid that slow and quite "normal" impedance changes, eg. B. due to a change in temperature, lead to error indications, it can be provided that the tolerance value is changed during operation to the effect that slow changes of actual impedances a further tolerance range of the reference impedances is assigned, as rapid changes.
In practice, it has been found to be advantageous if the absolute value of the impedance is determined and compared with a reference value, although in certain cases an active power-related measurement of the real part of the impedance can also be advantageous.
The object of the invention is also based on a device for monitoring loudspeaker lines by impedance measurement with at least one signal generator and at least one amplifier and controlled switches for supplying at least one alternating voltage signal of predetermined frequency to the input of at least one speaker line, with measuring devices for measuring voltage and current the latter is set up to carry out the method according to the invention and controls the at least one signal generator, to which the measured values of the measuring devices can be fed, and to determine the input impedance using the above-mentioned features of the inventive method is set up at the line and for comparison with a reference value and for outputting an error signal if the determined impedance value is within determinable tolerances of an R differs from reference value.
The invention together with further advantages is explained in more detail below by way of example embodiments, which are illustrated in the drawing. In this show
  • Fig. 1 in a simplified block diagram of the basic structure of a measuring device according to the invention and
  • Fig. 2 in a flow chart, the essential steps of the method according to the invention.

In der Darstellung nach Fig. 1 sind drei Lautsprecherlinien einer Beschallungsanlage skizziert, doch soll es klar sein, dass abhängig von der Art der Anlage auch eine andere Zahl von Lautsprecherlinien vorhanden sein kann. An jede Linie sind eine Mehrzahl von Lautsprechern angeschaltet, wobei bei größeren Anlagen bevorzugt eine hochohmige, so genannte "100 Volt" Variante angewendet wird, bei welcher jeder Lautsprecher über einem Übertrager an der Linie liegt.In the illustration after Fig. 1 are outlined three speaker lines of a public address system, but it should be clear that depending on the type of system also a different number of speaker lines may be present. A plurality of loudspeakers are connected to each line, with larger systems preferably employing a high-impedance, so-called "100 volt" variant, in which each loudspeaker lies above a transformer on the line.

An einen Eingang der Lautsprecherlinie können über einen Schalter SCH Leistungsverstärker aufgeschaltet werden, wobei im vorliegenden Fall zur Vereinfachung lediglich ein Leistungsverstärker LEV gezeigt ist, der von unterschiedlichen Audioquellen AQ1, AQ2, AQ3 angesteuert werden kann, um Sprache, Musik und Warnsignale an die von den Lautsprechern versorgten Orte zu bringen. Zum Zwecke der weiter unten beschriebenen Messvorgänge kann außerdem ein Signalgenerator SIG, der von einem digitalen Signalprozessor DSP gesteuert oder ein Bestandteil desselben ist, Signale an den Eingang des Leistungsverstärkers LEV liefern, wie z. B. Sinussignale mit 15 Hz bzw. 23,4375 Hz.To an input of the speaker line can be switched via a switch SCH power amplifier, in the present case, for simplicity, only a power amplifier LEV is shown, which can be controlled by different audio sources AQ1, AQ2, AQ3 to voice, music and warning signals to those of the Speakers supplied places to bring. In addition, for the purposes of the measurement operations described below, a signal generator SIG controlled by or part of a digital signal processor DSP may provide signals to the input of the power amplifier LEV, such as the output of the power amplifier LEV. B. sinusoidal signals at 15 Hz or 23.4375 Hz.

Zum Messen des Stromes I und der Spannung U am Ausgang des Verstärkers LEV bzw. am Eingang der Lautsprecherlinie sind Strom- und Spannungswandler vorgesehen, deren Messwerte, gegebenenfalls nach externer A/D-Wandlung, dem erwähnten Signalprozessor DSP zugeführt werden.For measuring the current I and the voltage U at the output of the amplifier LEV or at the input of the speaker line current and voltage converters are provided, the measured values, optionally after external A / D conversion, the mentioned signal processor DSP are supplied.

Es darf an dieser Stelle angemerkt werden, dass auch weitere Lautsprecherlinien LL2 und LL3 an Leistungsverstärker angeschlossen sein können und nach dem erfindungsgemäßen Messverfahren überprüft werden, was durch entsprechende Schalter und einen zyklischen Ablauf der Messungen an den einzelnen Linien LL1, LL2, LL3 technisch umgesetzt wird. Weiter soll darauf hingewiesen werden, dass jede Lautsprecherlinie auch nach Art einer Ringleitung in sich geschlossen sein kann und in diesem Fall die Einspeisung somit nicht an einem "Ende" der Lautsprecherlinie erfolgt. Eine solche Ringstruktur hat den Vorteil, dass eine Unterbrechung eines Leiters oder auch beider Leiter an einer Stelle nicht zum Ausfall der Lautsprecher führt.It may be noted at this point that even more speaker lines LL2 and LL3 can be connected to power amplifiers and checked by the measuring method according to the invention, which is technically implemented by appropriate switches and a cyclical sequence of measurements on the individual lines LL1, LL2, LL3 , It should also be pointed out that each loudspeaker line can also be closed in the manner of a loop, and in this case the infeed thus does not take place at an "end" of the loudspeaker line. Such a ring structure has the advantage that an interruption of a conductor or both conductors at one point does not lead to failure of the speakers.

Während der Signalgenerator SIG zur Großsignalmessung unter Mithilfe des Leistungsverstärkers dient, ist ein weiterer Signalgenerator GEN für eine Kleinsignalmessung vorgesehen. Dieser Signalgenerator kann gleichfalls von dem Signalprozessor DSP gesteuert oder Teil desselben sein und liefert Signale an den Eingang der Lautsprecherlinie LL1, deren Pegel so gewählt wird, dass nicht oder nur kaum hörbare Schalldruckpegel generiert werden. In dem beschrieben Beispiel werden für die Kleinsignalmessung drei Frequenzen, nämlich 70 Hz, 250 Hz und 1 kHz verwendet.While the signal generator SIG is used for large signal measurement with the aid of the power amplifier, another signal generator GEN is provided for a small signal measurement. This signal generator can also be controlled by the signal processor DSP or be part of the same and supplies signals to the input of the loudspeaker line LL1, whose level is selected so that no or barely audible sound pressure levels are generated. In the example described, three frequencies are used for the small signal measurement, namely 70 Hz, 250 Hz and 1 kHz.

Im Folgenden werden unter Bezugnahme auf Fig. 2 das Verfahren nach der Erfindung sowie weitere Einzelheiten der zugehörigen Vorrichtung an einem Ausführungsbeispiel beschrieben, wobei für den Fachmann im Rahmen der Erfindung Abänderungen in vielerlei Hinsicht möglich sind, beispielsweise was die Anzahl der verwendeten Frequenzen und Pegel sowie der Reihenfolge verschiedener Messschritte anbelangt.The following are with reference to Fig. 2 the method according to the invention as well as further details of the associated device described in one embodiment, which are in many ways possible for the skilled person within the scope of the invention, for example, as regards the number of frequencies and levels used and the order of different measurement steps.

Wenn eine Beschallungsanlage fertig gestellt ist, d. h. sämtliche Leitungen gelegt und die erforderlichen Lautsprecher angeschlossen sind, die Anlage somit konfiguriert wurde und intakte Leitungen, Lautsprecher, Übertrager etc. vorausgesetzt werden können, werden zunächst in einer Lernphase die Soll(Referenz)werte der Impedanzen bei unterschiedlichen Frequenzen ermittelt, im vorliegenden Fall zumindest bei den Frequenzen 23, 4375 Hz, 70 Hz, 250 Hz und 1 kHz. Weiters werden zweckmäßigerweise die Impedanzen auch bei unterschiedlichen Pegeln bestimmt, da beispielsweise hohe Pegel durch Erwärmung insbesondere von Schwingspulen und durch Nichtlinearitäten in Übertragern und/oder Lautsprechern andere Impedanzwerte ergeben.When a sound system is completed, d. H. All lines are laid and the required speakers are connected, the system was thus configured and intact lines, speakers, transformers, etc. can be assumed, are first determined in a learning phase, the nominal (reference) values of the impedances at different frequencies, in the present case, at least at the frequencies 23, 4375 Hz, 70 Hz, 250 Hz and 1 kHz. Furthermore, the impedances are expediently also determined at different levels, since, for example, high levels result in different impedance values due to heating, in particular of voice coils, and due to nonlinearities in transformers and / or loudspeakers.

Zur Bestimmung der Referenzwerte ZRef kann das gleiche Verfahren angewendet werden, das für zur Bestimmung der Ist-Impedanzen dient. In der Lernphase werden bei den genannten verschiedenen Frequenzen und Pegeln die Messwerte von Strom und Spannung in digitale Signale umgewandelt und in dem digitalen Signalprozessor DSP einer raschen Fouriertransformation (FFT) unterworfen. Beispielsweise wird eine FFT-Länge (oder Samplezahl) von 2048 verwendet. Bei jeder Frequenz bzw. jedem Messpegel werden 50 Messwerte ermittelt und aus diesen Werten sodann ein Mittelwert gebildet, der, jedenfalls bei den Messungen in der Lernphase, ein arithmetischer Mittelwert sein kann, doch ist ebenso eine Gewichtung bei unterschiedlicher Frequenzen oder Pegel möglich. Die ermittelten Referenzwerte ZR23, ZR70, ZR250, ZR1000, allgemein ZRef, werden sodann abgespeichert, um für die folgenden Messungen zur Verfügung zu stehen.In order to determine the reference values Z Ref , the same method can be used, which is used to determine the actual impedances. In the learning phase, the measured values of current and voltage are converted into digital signals at the said different frequencies and levels and subjected to rapid Fourier transformation (FFT) in the digital signal processor DSP. For example, an FFT length (or sample number) of 2048 is used. At each frequency or level, 50 readings are taken and then an average is formed from these values which, at least in the measurements in the learning phase, can be an arithmetic mean, but weighting at different frequencies or levels is also possible. The determined reference values Z R23 , Z R70 , Z R250 , Z R1000 , generally Z Ref , are then stored in order to be available for the following measurements.

Wie weiter unten noch erläutert, wird sinnvollerweise auch in der Einlernphase zumindest vor der Großsignalmessung ein Entmagnetisieren durch ein anschwellendes und sodann abfallendes Sinussignal von z. B. 15 Hz vorgenommen, um Remanenzen in den einzelnen Übertragern zu löschen.As will be explained below, it is also useful to demagnetise the device by a swelling and then decreasing sinusoidal signal of z. B. 15 Hz made to delete remanence in the individual transformers.

In der Betriebsphase der Beschallungsanlage kann bei bzw. vor der Messung unterschieden werden, ob ein Nutzsignal, d. h. ein Beschallungssignal, wie z. B. Musik oder Sprache, vorliegt, um entweder eine Großsignalmessung oder eine Kleinsignalmessung durchzuführen.In the operating phase of the public address system, a distinction can be made during or before the measurement as to whether a useful signal, i. H. a public address signal, such as. As music or speech, is present to perform either a large signal measurement or a small signal measurement.

Bei Vorliegen eines Nutzsignals ist eine Kleinsignalmessung wegen der schwer beherrschbaren Pegeldifferenzen zwischen einem üblichen Messsignal niedrigen Pegels (z. B. - 6 dBu) und den Nutzsignalpegel (z. B. + 42 dBu) nicht zweckmäßig bzw. wäre sehr aufwändig. Daher wird in diesem Fall eine Messung mit höherem Signalpegel durchgeführt, jedoch mit der bereits erwähnten niedrigen Frequenz fu von 23,4375 Hz, die im normalen Betrieb praktisch unhörbar ist. Dazu wird das Ausgangssignal des Signalgenerators SIG dem Eingang des Leistungsverstärkers zugeführt, der sodann die zu messende Lautsprecherlinie speist. Der Signalpegel wird geringer als der Nutzsignalpegel gewählt, um den Verstärker bei bereits hohem Nutzsignal nicht zu übersteuern, z. B. 13 dB unter dem Nutzsignalpegel.In the case of a useful signal, a small-signal measurement is not expedient or would be very complicated because of the difficult-to-control level differences between a conventional measuring signal of low level (for example -6 dBu) and the useful signal level (for example + 42 dBu). Therefore, in this case, a measurement is made with a higher signal level, but with the already mentioned low frequency fu of 23.4375 Hz, which is practically inaudible in normal operation. For this purpose, the output signal of the signal generator SIG is supplied to the input of the power amplifier, which then feeds the loudspeaker line to be measured. The signal level is chosen to be lower than the useful signal level so as not to overdrive the amplifier when the useful signal is already high, e.g. B. 13 dB below the Nutzsignalpegel.

Zur Ermittlung einer mit einem Referenzwert ZRef zu vergleichenden Impedanz Z werden bei jedem Messvorgang mehrere, z. B. 50 analoge Messwerte von Spannung und Strom in digitale Signale gewandelt, diese einer Fouriertransformation unterworfen und aus den transformierten Werten von Strom und Spannung werden entsprechende viele Impedanzwerte bestimmt. Aus diesen Impedanzwerten wird ein Mittelwert gebildet und dieser mit einem Referenz-Impedanzwert verglichen. Weicht der resultierende Mittelwert von dem Referenz-Impedanzwert um einen festlegbaren Toleranzwert ab, so wird ein Fehlersignal abgegeben.In order to determine an impedance Z to be compared with a reference value Z Ref , several, e.g. For example, 50 analog measurements of voltage and current are converted to digital signals, subjected to Fourier transform, and correspondingly many impedance values are determined from the transformed values of current and voltage. An average value is formed from these impedance values and this is compared with a reference impedance value. If the resulting mean value deviates from the reference impedance value by a definable tolerance value, an error signal is emitted.

Die Großsignalmessung bietet als Vorteil, dass Störschall die Messergebnisse nicht beeinflusst, da auf die Lautsprechermembranen auffallender Störschall nur Signale erzeugt, deren Pegel weit unter dem Betriebspegel liegt. Auch ist der Einfluss der Leitungslänge auf das Messergebnis bei der angewendeten niedrigen Messfrequenz nur gering.The large signal measurement offers the advantage that background noise does not affect the measurement results, since interference signals striking the speaker diaphragms only produce signals whose level is far below the operating level. Also, the influence of the line length on the measurement result at the applied low measurement frequency is low.

Die magnetische Hysterese des Eisenkerns von Übertragern, welche die 100 Volt Leitung an die üblicherweise niederohmigen, z. B. 8 Ohm-Lautsprecher anpassen, kann bei niedrigen Frequenzen zu erheblichen Änderungen der gemessenen Impedanz führen, sodass es zweckmäßig ist, in den Kernen der Übertrager vorhandene Remanenzen durch einen Entmagnetisierschritt zu entfernen. Dazu wird vor einer Messung ein Entmagnetisierungssignal sE mit niedriger Frequenz fE, z. B. 15 Hz, einer Lautsprecherlinie über einen Leistungsverstärker mit einem bis zu einem Maximalpegel ansteigenden und dann wieder abfallenden Pegel zugeführt. Das Entmagnetisierungssignal - wie alle anderen hier verwendeten Signale zweckmäßigerweise ein Sinussignal - steigt von einem Nullpegel bis zu einem Pegel, der zumindest dem höchsten vorkommenden Betriebspegel entspricht und fällt dann wieder auf einen Nullpegel zurück, um mit Sicherheit alle Remanenzen zu beseitigen. In der Praxis reicht für diesen Vorgang eine Zeit von 1/3 Sekunde.The magnetic hysteresis of the iron core of transformers, which the 100 volt line to the usually low-resistance, z. B. adapting 8 ohm speakers, at low frequencies can lead to significant changes in the measured impedance, so it is expedient to remove in the cores of the transformer existing remanences by a demagnetizing step. For this purpose, a demagnetization signal s E low frequency f E , z. B. 15 Hz, a speaker line via a power amplifier with a rising to a maximum level and then dropped again level. The demagnetization signal - like all other signals used here expediently a sinusoidal signal - rises from a zero level to a level which corresponds at least to the highest occurring operating level and then falls back to a zero level, to eliminate with certainty all remanence. In practice, a time of 1/3 second is sufficient for this process.

Ein weiterer sinnvoller Verfahrensschritt besteht darin, dass vor einer Großsignalmessung ein praxisgemäßer Pegel für das Messsignal auf folgende Weise ermittelt wird: Man unterzieht das Nutzsignal, das wie bereits erwähnt Sprach- und/oder Musiksignale, aber auch andere Signale, wie Alarmsignale, enthalten kann, vor der eigentlichen Impedanzmessung einer Spektralanalyse, wiederum z. B. durch eine schnelle Fourieranalyse , um aus den ermittelten Pegelwerten bei einer Vielzahl von Frequenzen, beispielsweise an 2048 Frequenzpunkten, die zumindest auch die später verwendete niedrige Messfrequenz fu enthalten sollen, einen gewichteten Mittelwertpegel zu bilden. Der Pegel des später aufgeschalteten Messsignals wird sodann automatisch in einem vorgebbaren Abstand zu dem ermittelten Pegel gehalten, erprobtermaßen mindestens 13 dB darunter.Another useful method step is that before a large signal measurement, a practical level for the measurement signal is determined in the following manner: One subjects the useful signal, which as already mentioned voice and / or music signals, but also other signals, such as alarm signals, may contain before the actual impedance measurement of a spectral analysis, again z. B. by a fast Fourier analysis to form from the determined level values at a plurality of frequencies, for example at 2048 frequency points, which should contain at least the later used low measuring frequency fu, a weighted average level. The level of the subsequently applied measurement signal is then automatically kept at a predeterminable distance from the determined level, proven at least 13 dB below it.

Eine Kleinsignalmessung kann durchgeführt werden, wenn kein Nutzsignal vorhanden ist, bzw. wenn die zu messende Lautsprecherlinie auf keinen Verstärker aufgeschaltet ist. Zum Zwecke der Kleinsignalmessung wird der Audiogenerator GEN verwendet, der - von dem Prozessor DSP gesteuert - Signale vorgebbarer Frequenz erzeugt, beispielsweise 70 Hz, 250 Hz und 1000 Hz. Diese Signale werden der Reihe nach an die zu messende Lautsprecherlinie gelegt, wobei ebenso wie bei der Großsignalmessung Strom und Spannung laufend gemessen, die Messwerte abgetastet und Fourier-transformiert werden. Für diesen Zweck wird gleichfalls der digitale Signalprozessor DSP herangezogen.A small signal measurement can be carried out if there is no useful signal, or if the speaker line to be measured is not connected to any amplifier. For the purpose of small signal measurement, the audio generator GEN is used, which - controlled by the processor DSP - generates signals of a specifiable frequency, for example 70 Hz, 250 Hz and 1000 Hz. These signals are applied in succession to the loudspeaker line to be measured, as well as in the large-signal measurement current and voltage continuously measured, the measured values are sampled and Fourier-transformed. For this purpose, the digital signal processor DSP is also used.

Die Signalpegel werden so gewählt, dass bei den jeweiligen Frequenzen Schallpegel erzeugt werden, die in den beschallten Gebieten für Menschen nicht hörbar sind oder zumindest als nicht störend empfunden werden. Die Pegelwahl erfolgt abhängig von der Frequenz entsprechend der Gehörkurve, wobei für eine 100 Volt Anlage in der Praxis Spannungspegel in der Größenordnung von 300 bis 400 mV bei 70 Hz typisch sind. Ein Entmagnetisieren der Übertragerkerne ist bei Signalen höherer Frequenz im Allgemeinen nicht erforderlich.The signal levels are chosen so that sound levels are generated at the respective frequencies, which are not audible to people in the sonicated areas or at least not perceived as disturbing. The level selection is dependent on the frequency corresponding to the auditory curve, for a 100 volt system in practice voltage level in of the order of 300 to 400 mV at 70 Hz are typical. Demagnetization of the transmitter cores is generally not required for higher frequency signals.

Für jede Frequenz wird rasch hintereinander eine Vielzahl von Messwerten ermittelt, beispielsweise wieder 50 Messwerte je Frequenz, und dann gemittelt. Bei einem Ausführungsbeispiel erfolgt diese Messung alle 100 Sekunden. Besonders zweckmäßig ist es, wenn über die wie oben erhaltenen Mittelwerte eine Statistik ermittelt und daraus ein gleitender Mittelwert gebildet wird. Die anzahl der Werte, über die (mittels gleitendem Mittelwert) gemittelt wird, bestimmt sich aus der Varianz und der gewünschten Toleranz der Linie. Die Varianz ist die mittlere quadratische Abweichung der Messwerte von deren Mittelwert. Je höhe die Varianz, d. h. je höhe die Messwerte um ihren Mittelwert schwanken, und je geringer die gewünschte toleranz ist, über umso mehr Werte muss gemittelt werden. In einem aktuellen Messverfahren werden exponentielle gleitende Mittelwerte verwendet, d. h. es wird der aktuelle Mittelwert mit einem bestimmten Faktor < 1, z. B.: 0,1 multipliziert und zu dem mit 1 minus diesem Faktor multiplizierten aktuellen Mittelwert dazu addiert: Mittelwert : x n = k x n + 1 k x n 1 ; x 1 = x 1

Figure imgb0001
Varianz : var x n = k x n x n 2 + 1 k var x n 1 ;
Figure imgb0002
var x 1 = x 1 / 4 Schätzwert _
Figure imgb0003
For each frequency, a large number of measured values are determined in quick succession, for example 50 measured values per frequency again, and then averaged. In one embodiment, this measurement is done every 100 seconds. It is particularly expedient if a statistic is determined via the average values obtained as above and a moving average is formed therefrom. The number of values averaged over (by moving average) is determined by the variance and the desired tolerance of the line. The variance is the mean squared deviation of the measured values from their mean value. The higher the variance, ie the higher the measured values fluctuate around their mean value, and the lower the desired tolerance, the more values must be averaged. In a current measurement method, exponential moving averages are used, ie the current mean value with a certain factor <1, z. For example: 0.1 multiplied and added to the current average multiplied by 1 minus this factor: Average : x ~ n = k x n + 1 - k x ~ n - 1 ; x ~ 1 = x 1
Figure imgb0001
variance : var x n = k x n - x ~ n 2 + 1 - k var x n - 1 ;
Figure imgb0002
var x 1 = x 1 / 4 estimated value _
Figure imgb0003

Dieser gleitende Mittelwert kann dann, z. B. alle 100 s, mit dem Soll(Referenz)wert verglichen werden.This moving average can then, for. B. every 100 s, with the reference (reference) value to be compared.

Es ist für den Fachmann klar, dass die Wahl der verwendeten Frequenzen ebenso wie deren Anzahl im Rahmen der Erfindung den jeweiligen Bedingungen angepasst werden kann. Ebenso wird es von Vorteil sein, wenn periodisch, z. B. mit der erwähnten 100 Sekunden Periode, sowohl Großsignal- als auch Kleinsignalmessungen durchgeführt werde.It is clear to the person skilled in the art that the choice of the frequencies used, as well as their number, can be adapted to the respective conditions within the scope of the invention. Likewise, it will be advantageous if periodically, z. B. with the mentioned 100 second period, both large signal and small signal measurements would be performed.

Claims (10)

  1. Method for monitoring loudspeaker lines by measuring impedance, in which at least one a.c. signal of a predetermined frequency is fed to the input of a loudspeaker line, the voltage and current at the input of the line are measured and the input impedance on the line is determined from these measured values and compared with a reference value, characterized in that, for determining an impedance (Z) that is to be compared with a reference value (ZRef) in a measuring operation, a plurality of analog voltage and current measured values are converted into digital signals and are subjected to a Fourier transformation, a corresponding plurality of impedance values are determined from the Fourier-transformed current and voltage values, these impedance values are averaged and the resultant average value is compared with a reference impedance value, an error signal being output if the resultant average value deviates from the reference impedance value by a definable tolerance value.
  2. Method according to Claim 1, characterized in that, in a large-signal measurement, a single a.c. signal (su) of a predetermined frequency is fed to a loudspeaker line via a power booster at a level that lies below the normal operating level, and the a.c. signal has such a low frequency (fu) that a sound level that is imperceptible or only scarcely perceptible to the human ear is produced.
  3. Method according to Claim 1 or 2, characterized in that, if there is a useful signal, the useful signal is subjected to a spectral analysis before each measurement, in order to determine the useful signal level at a plurality of frequencies (m), this plurality of frequencies also including the single low frequency (fu), a weighted average value level is formed from the plurality of useful signal levels obtained and, for each measurement, the level of the single measuring signal of low frequency that is fed to the loudspeaker line is set at a predeterminable fixed interval from the weighted average value level.
  4. Method according to one of Claims 1 to 3, characterized in that, before a measurement, a demagnetizing signal (SE) of a low frequency (fE) is fed to a loudspeaker line via a power booster at a level that increases up to a maximum level and then falls back again.
  5. Method according to one of Claims 1 to 3, characterized in that, in a small-signal measurement, at least one a.c. signal (si) of a predetermined frequency/frequencies (fi) is/are fed to a loudspeaker line at a level/levels chosen such that the sound levels produced are imperceptible or only scarcely perceptible to the human ear.
  6. Method according to one of Claims 1 to 5, characterized in that, before the actual operation of the system, in a learning phase the loudspeaker line is fed signals of different frequencies and/or levels, the measured current and voltage values thereby obtained are converted into digital signals and are then subjected to a Fourier transformation, and then reference values (ZRef) are determined from the current and voltage values for various frequencies and/or levels and are stored.
  7. Method according to Claim 6, characterized in that, for each frequency/level, a plurality of individual current and voltage measured values are determined and average values of the individual measured values are used as a basis for the following determination of the reference impedances.
  8. Method according to one of Claims 1 to 5, characterized in that the tolerance value is changed during operation to the effect that slow changes of actual impedances are assigned a wider tolerance range of the reference impedances than rapid changes.
  9. Method according to one of Claims 1 to 8, characterized in that the absolute value of the impedance is determined and compared with a reference value.
  10. Device for monitoring loudspeaker lines by measuring impedance, with at least one signal generator and at least one booster and also controlled switches for feeding at least one a.c. signal of a predetermined frequency to the input of at least one loudspeaker line, with measuring devices for measuring voltage and current at the input of the line and also with at least one microprocessor, which is designed for carrying out the method according to one of Claims 1 to 9 and, by using the features of this method, controls the at least one signal generator, to which the measured values of the measuring devices can be fed and which is designed for determining the input impedance on the line and for comparing it with a reference value and also for emitting an error signal if the impedance value determined deviates from a reference value within definable tolerances.
EP07800194.8A 2006-09-28 2007-09-27 Method and measuring device for monitoring loudspeaker systems Active EP2070388B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0161806A AT504297B1 (en) 2006-09-28 2006-09-28 METHOD AND MEASURING DEVICE FOR MONITORING SOUNDPROOFING SYSTEMS
PCT/AT2007/000454 WO2008036992A2 (en) 2006-09-28 2007-09-27 Method and measuring device for monitoring loudspeaker systems

Publications (2)

Publication Number Publication Date
EP2070388A2 EP2070388A2 (en) 2009-06-17
EP2070388B1 true EP2070388B1 (en) 2018-05-23

Family

ID=39230549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07800194.8A Active EP2070388B1 (en) 2006-09-28 2007-09-27 Method and measuring device for monitoring loudspeaker systems

Country Status (3)

Country Link
EP (1) EP2070388B1 (en)
AT (1) AT504297B1 (en)
WO (1) WO2008036992A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220337965A1 (en) * 2019-08-14 2022-10-20 Dolby Laboratories Licensing Corporation Method and system for monitoring and reporting speaker health

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057437B4 (en) 2008-11-14 2012-08-30 Gräf & Meyer GmbH Apparatus and method for short circuit isolation in speaker ring lines of electroacoustic installations
PT2553946E (en) 2010-03-26 2014-12-18 Finsecur Method and device for loudspeaker control
FR2958107B1 (en) * 2010-03-26 2012-08-31 Finsecur METHOD AND DEVICE FOR CONTROLLING LOUDSPEAKER
DE102010047220B4 (en) * 2010-10-04 2012-07-05 Novar Gmbh Method for operating a voice announcement system
EP2884773B1 (en) * 2013-12-10 2017-02-15 Televic Rail NV Public address system and method
AT514916B1 (en) * 2014-01-22 2015-05-15 Itec Tontechnik Und Industrieelektronik Ges M B H Method and device for monitoring a loudspeaker system
DE202015001656U1 (en) 2015-03-04 2015-03-24 Itec Tontechnik Und Industrieelektronik Gesellschaft M.B.H. Device for monitoring a public address system
DE102015206570A1 (en) * 2015-04-13 2016-10-13 Robert Bosch Gmbh Audio system, calibration module, operating method and computer program
DE102019210414A1 (en) * 2019-07-15 2021-01-21 Robert Bosch Gmbh Evaluation device and method for analyzing a public address system and public address system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855415A (en) * 1973-07-20 1974-12-17 Kane Corp Du Communication sound system continuously monitored

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659357A5 (en) * 1982-07-05 1987-01-15 Zellweger Uster Ag Method of balancing the electro-acoustic transmission factor of electro-dynamic converters, particularly for telephones
US5345510A (en) * 1992-07-13 1994-09-06 Rauland-Borg Corporation Integrated speaker supervision and alarm system
JPH10136493A (en) * 1996-10-28 1998-05-22 Toa Corp Inspection device for speaker line
JP2001036995A (en) * 1999-07-21 2001-02-09 Toa Corp Abnormality detecting device for speaker line
US6466649B1 (en) * 1999-12-09 2002-10-15 Harris Corporation Detection of bridged taps by frequency domain reflectometry
US7106865B2 (en) * 2004-12-15 2006-09-12 Motorola, Inc. Speaker diagnostics based upon driving-point impedance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855415A (en) * 1973-07-20 1974-12-17 Kane Corp Du Communication sound system continuously monitored

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220337965A1 (en) * 2019-08-14 2022-10-20 Dolby Laboratories Licensing Corporation Method and system for monitoring and reporting speaker health
US12003927B2 (en) * 2019-08-14 2024-06-04 Dolby Laboratories Licensing Corporation Method and system for monitoring and reporting speaker health

Also Published As

Publication number Publication date
WO2008036992A3 (en) 2008-10-30
EP2070388A2 (en) 2009-06-17
AT504297A1 (en) 2008-04-15
WO2008036992A2 (en) 2008-04-03
AT504297B1 (en) 2009-11-15

Similar Documents

Publication Publication Date Title
EP2070388B1 (en) Method and measuring device for monitoring loudspeaker systems
EP1143416B1 (en) Time domain noise reduction
AT501758B1 (en) METHOD OF LOCATING LEAKAGE IN TUBE
DE69517325T2 (en) SOUND QUALITY ANALYSIS
DE69334139T2 (en) Testing of communication device
DE112016006218B4 (en) Sound Signal Enhancement Device
DE102018130690B3 (en) Magnetic field measuring device and method for detecting a localization current in a branched AC power supply system
DE102007031677A1 (en) Method and apparatus for determining a room acoustic impulse response in the time domain
EP3454572B1 (en) Method for detection of a defect in a listening instrument
DE602004010634T2 (en) METHOD AND SYSTEM FOR LANGUAGE QUALITY FORECASTING AN AUDIO TRANSMISSION SYSTEM
EP3588498B1 (en) Method for suppressing an acoustic reverberation in an audio signal
EP2441274A1 (en) Method for determining an averaged frequency-dependent transmission function for a disturbed linear time-invariant system, evaluation device and computer program product
EP2381703B1 (en) Method and device for monitoring a loudspeaker line
EP2672280B1 (en) Insulation fault monitoring with signal quality display
EP3284271B1 (en) Audio system, calibration module, operating method, and computer program
EP1351550B1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
DE3119925C2 (en) Method and device for earth fault location on high-voltage overhead line networks
DE202006018730U1 (en) Emergency device for electro acoustic emergency warning system, has microphone mounted in loudspeakers to measure acoustic pressure of individual loudspeakers, where loud speaker operating analog signal is compared with radiated signal
EP3736580A1 (en) Detection of a dc component in an inductive device
WO2016091932A1 (en) Demagnetization device and method for demagnetizing a transformer core
EP4253969B1 (en) Method for detecting saturation of a current transformer
EP1443336B1 (en) Method of detecting a branch with an earth fault
EP3337183A1 (en) Method and circuit arrangement for operating a headset
EP0835039A2 (en) Method and device for correcting the frequency band of an acoustic transmitter
AT504920B1 (en) EARTH LOCKING BY FOREIGN CURRENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20170329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016193

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016193

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210929

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016193

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230926

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 17