EP2059671B1 - Injektor für brennkraftmaschinen - Google Patents

Injektor für brennkraftmaschinen Download PDF

Info

Publication number
EP2059671B1
EP2059671B1 EP07787434A EP07787434A EP2059671B1 EP 2059671 B1 EP2059671 B1 EP 2059671B1 EP 07787434 A EP07787434 A EP 07787434A EP 07787434 A EP07787434 A EP 07787434A EP 2059671 B1 EP2059671 B1 EP 2059671B1
Authority
EP
European Patent Office
Prior art keywords
control valve
injector
chamber
pressure
inflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07787434A
Other languages
English (en)
French (fr)
Other versions
EP2059671A1 (de
Inventor
François Rossignol
Friedrich Howey
Olivier Charvet
Tony Dumont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2059671A1 publication Critical patent/EP2059671A1/de
Application granted granted Critical
Publication of EP2059671B1 publication Critical patent/EP2059671B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves

Definitions

  • the invention relates to an injector for injecting fuel under high pressure directly into the combustion chamber of self-igniting internal combustion engines ( EP-A-1 612 403 ).
  • the control valve In order to achieve the shortest possible switching times, that is, in order to move the nozzle needle that releases or closes the actual injection ports as quickly as possible, the control valve is often placed near injectors in the nozzle needle, so that the hydraulic connections are correspondingly short.
  • the high-pressure channel via which the compressed fuel from the rail is directed to the injection openings, must consequently be guided past the control valve, which, with respect to the substantially cylindrical shape of the injector, causes an eccentricity of the high-pressure line and thus requires corresponding structural measures. Since there is a very high pressure in the inlet channel, which depending on the injection system may be 1500 to 2000 bar (150-200 MPa), the wall thickness must not fall below certain values. This places narrow limits on the further streamlining of the injectors.
  • the central supply of fuel in an injection valve is for example from the published patent application DE 199 59 304 A1 known.
  • the fuel injection valve shown here is used with a so-called distributor pump. These distributor pumps do not provide a constant injection pressure, but produce for each injection a separate fuel surge, which is fed to the individual injector and then opens the nozzle needle against the force of a closing spring. That in the DE 199 59 304 A1 shown fuel injection valve has a central fuel inlet, which has substantially the shape of a tube and on the brennraum workedem end of the nozzle needle is guided. Due to the central guidance of the fuel injection valve can be made slim and takes in the cylinder head of the engine accordingly little space away.
  • a similar construction is from the published patent application DE 32 29 828 A1 known. Again, it is a fuel injector that is used with a distributor pump. In contrast to the above, known from the prior art, fuel injection valve here moves the nozzle needle in synchronism with the tubular body through which the compressed fuel is introduced. The supply of the fuel via a slide seal, which is ensured at the end remote from the combustion chamber between the inlet pipe and a specially fitted body.
  • the known fuel injection valves are not applicable to common rail systems, since they do not have a control valve with which the closing force can be regulated to the nozzle needle.
  • the known injectors which are used in common rail systems further slimming can be achieved only with great difficulty, since the material in which the inlet channels, which pass the fuel on the control valve, are formed, an even higher load usually can not withstand without causing damage to the injector.
  • the injector according to the invention has the advantage that it can be made very slim and thus requires little space and thereby has the full functionality of a common rail injector.
  • a high-pressure inlet pipe is arranged in the injector, the compressed fuel fed to the control chamber, wherein the control valve member is mounted slidably on the high-pressure inlet pipe.
  • the control valve member can be a very compact control valve construct, the fuel is passed through quasi through the control valve, which allows a very slim and thus compact design of the injector.
  • there are cost advantages of the fact that the holding body to which the injection nozzle is attached, is no longer exposed to the fuel pressure and therefore can be made of a cheaper material; Under certain circumstances, even a production of a low-cost plastic is possible.
  • the high-pressure inlet pipe runs centrally in the injector body, so that it is arranged substantially in alignment with the nozzle needle.
  • This arrangement has a high symmetry, which allows the use of many rotationally symmetrical components and makes the production correspondingly low.
  • the high-pressure inlet pipe opens at its outlet end into a distributor space formed in the injector body, from which the inlet throttle, which supplies the control chamber with high fuel pressure, and an inlet channel branch off, wherein the inlet channel supplies the injection openings with fuel.
  • the distribution space offers great freedom in arranging the fuel channels within the injector so that it can be more easily adapted to different requirements.
  • control valve member is formed substantially sleeve-shaped and surrounds the high-pressure inlet pipe.
  • control valve member preferably cooperates with a valve seat, which surrounds the high-pressure inlet pipe, so that an annular space which also surrounds the high-pressure inlet pipe can be connected by the movement of the control valve member with a leakage oil space in the injector.
  • the actuator that moves the control valve member is an electromagnet, which can also be arranged around the high-pressure inlet pipe, so that there is also a high degree of symmetry.
  • FIG. 1 a first embodiment of the injector according to the invention is shown in longitudinal section.
  • the injector has an injector body 1 which comprises a holding body 2, a throttle body 4 and a nozzle body 5.
  • the nozzle body 5 is clamped with the interposition of the throttle plate 4 by means of a clamping nut 7 against the holding body 2, so that all parts of the injector body 1 are pressed firmly against each other and are stationary to each other.
  • a bore 9 is formed, which is bounded on the combustion chamber side by a conical valve seat 13. From the valve seat 13 go from several injection ports 12, through which the fuel can be injected into a combustion chamber of an internal combustion engine.
  • a piston-shaped nozzle needle 10 is arranged longitudinally displaceable, which is guided in a central portion in the bore 9.
  • a pressure chamber 11 is formed through which fuel, which is supplied compressed to high pressure, can flow in the direction of the injection openings 12. If the nozzle needle 10 in contact with the valve seat 13, the injection openings 12 are closed and an injection does not take place. If an injection takes place, then the nozzle needle 10 lifts off from the valve seat 13 and releases the injection openings 12.
  • a sleeve 15 and the throttle body 4 is used.
  • the sleeve 15 is in this case guided on the nozzle needle 10, wherein between the sleeve 15 and a support ring 17 which rests on a shoulder of the nozzle needle 10, a closing spring 14 is arranged under pressure bias.
  • the closing spring 14 on the one hand, the sleeve 15 is pressed against the throttle body 4, and on the other hand, the nozzle needle 10 experiences a force in the direction of the valve seat 13, so that the nozzle needle 10 is pressed in the absence of further forces on the valve seat 13 and the injection ports 12 closes.
  • high-pressure inlet pipe 25 For supplying fuel which has been compressed by a pump to high pressure, is used in the holding body 2 and the throttle body 4 arranged high-pressure inlet pipe 25.
  • the nozzle-side end of the high-pressure inlet pipe 25 is in this case sealingly guided in a bore 21 which is formed in the throttle body 4.
  • a distributor space 23 is formed, from which on the one hand an inlet throttle 22 leads into the control chamber 16 and on the other hand an inlet channel 20 into the pressure chamber 11.
  • an outlet throttle 24 is also formed, which connects the control chamber 16 with an annular space 27 which is formed in the throttle body 4 and which surrounds the high-pressure inlet pipe 25.
  • the annular space 27 extends into a leakage oil chamber 32, which limits the nozzle-facing part of the throttle body 4 and continues in the holding body 2.
  • In the leakage oil chamber 32 is always a low fuel pressure available via a corresponding connection with a leak oil connection, which corresponds substantially to ambient pressure. Since the high-pressure inlet pipe 25 is sealingly guided in the bore 21, different pressures in the distributor space 23 and in the annular space 27 are possible.
  • the connection between the annular space 27 and the leakage oil space 32 is controlled by a control valve 8, which comprises a control valve member 30.
  • the control valve member 30 cooperates with a control valve seat 29 which is formed in the throttle body 4.
  • the control valve member 30 has the shape of a magnet armature and is the throttle body 4 facing away in a sleeve extension 130 over.
  • the sleeve extension 130 is in this case sealingly guided on the high pressure inlet pipe 25, so that the control valve member 30 is slidable on the high-pressure inlet pipe 25 and a sufficient seal between the annular space 27 and the leakage oil chamber 32 is ensured.
  • control valve member 30 The movement of the control valve member 30 is effected on the one hand by a spring 37 which is arranged under pressure bias in the holding body 2 and which is supported on the nozzle facing away from the end of the sleeve extension 130 and so the control valve member 30 presses against the control valve seat 29.
  • the control valve member 30 can be moved by an actuator 33, which is designed here as an electromagnet 33 and which is arranged in the holding body 2.
  • the electromagnet 33 is thereby pressed by a spring element 35, which is arranged in the holding body 2, in the direction of the throttle body 4, so that the electromagnet 33 is fixed in the stationary holding body 2.
  • the mode of operation of the injector is as follows: Via the high-pressure inlet pipe 25, fuel which has been compressed to high pressure is conducted into the distributor chamber 23. From there, the pressure continues via the inlet throttle 22 in the control chamber 16, which there causes the same fuel pressure as in the distribution chamber 23. About the inlet channel 20, the pressure continues in the pressure chamber 11, so that there is injection pressure.
  • the control valve member 30 is pressed by the spring 37 against the control valve seat 29 and closes the annular space 27 against the leakage oil chamber 32, wherein the same fuel pressure prevails in the annular space 27 through the outlet throttle 24 as in the control chamber 16.
  • the electromagnet 33 is not energized at the beginning of the injection. If an injection is to take place, a corresponding current is passed through the electromagnet 33 so that it builds up a magnetic field and attracts the control valve member 30. As a result, the control valve member 30 is lifted from the control valve seat 29 and connects the annular space 27 with the leakage oil chamber 32. Via the outlet throttle 24, the fuel located in the control chamber 16 relaxes, so that the hydraulic force on the valve seat 13 facing away from end face of the nozzle needle 10 is reduced. In this case, the outlet throttle 24 is dimensioned so that more fuel flows through them than flows via the inlet throttle 22.
  • FIG. 2 also shows in longitudinal section another injector according to the invention. This differs from the injector FIG. 1 by the alternative embodiment of the throttle body 4. Instead of the throttle body 4, a first throttle body 104 and a second throttle body 204 are provided in this embodiment.
  • the first throttle body 104 the high-pressure inlet pipe 25 receiving bore 21 is formed, the high-pressure inlet pipe 25 does not open here in a distributor chamber 23, but in a recess 39, which assumes the same function and from which the inlet throttle 22 and the inlet channel 20 go out.
  • the outlet throttle 24 ' is formed both in the first throttle body 104 and in the second throttle body 204, so that the annular space 27, which is formed in the first throttle body 104, is still connected to the control chamber 16.
  • This arrangement of the inlet and outlet throttles and the recess 39 makes it possible to produce them with less effort and thus lower costs, since in particular the recess 39 is formed directly on the end face of the second throttle body 204.
  • FIG. 3 shows a further embodiment of an injector according to the invention.
  • the arrangement of the bore 21 in the throttle body 4 of the inlet throttle 22 and the inlet channel 20 corresponds to the arrangement as in the FIG. 1 shown embodiment.
  • the outlet throttle 24 has a different orientation here. Instead of a bent course, as in FIG. 1
  • the outlet throttle 24 "is designed here as a straight bore, in order to bring the fuel from the control chamber 16 to the outlet throttle 24", a recess 39 'is formed on the end face of the throttle body 4' facing the nozzle body 5. In this recess 39 ' also opens the inlet throttle 22, which emanates from the distributor space 23.
  • This straight training of the outlet throttle 24 "can be easier and thus produce cheaper.
  • FIG. 3 Another difference to the injector after FIG. 1 is the formation of the nozzle body 5, the in FIG. 3 in the area of the control room 16 different from the embodiment according to FIG. 1 is trained.
  • the control chamber 16 is limited here by the wall of the bore 9, wherein in the control chamber 16, a closing spring 14 'is disposed between the throttle body 4 and the valve seat facing away from the end face of the nozzle needle 10 under pressure bias.
  • the nozzle needle 10 is with her Valve seat facing away end portion in the bore 9 sealingly guided, so that a hydraulic separation of the pressure chamber 11 and the control chamber 16 is achieved.
  • the other function of the nozzle needle 10 is identical to the embodiment according to FIG. 1 ,
  • FIG. 4 shows again in an overall view of the injector FIG. 3 ,
  • the high-pressure inlet pipe 25 has at its inlet-side end an extension into which a fuel filter 44 is inserted.
  • the fuel filter 44 serves to filter out particles present in the fuel in order to prevent damage in the area of the nozzle needle 10 or of the control valve 8.
  • a high pressure port 42 is provided on the injector, which is connected by means of a clamping screw 45 with the injector body 1.
  • the holding body 2 is formed in this embodiment as a sleeve which is much simpler constructed than the known from the prior art holding body.
  • the electromagnet is here in the power flow of the clamping nut 7, so is fixed by the tension of the holder body 2 and nozzle body 5 in the injector, without further devices for fixing the electromagnet are necessary.
  • the leakage oil space 32 surrounding the high-pressure inlet pipe 25 may be restricted in volume.
  • an insert body 46 is introduced into the holding body 2, which consists for example of plastic and in which a leakage oil drain 40 is formed.
  • the discharged via the drainage oil drain 40 fuel is supplied via a drain connection 43, a return system, so that the fuel is ultimately returned to the fuel tank of the vehicle.
  • control valve member 30 The movement of the control valve member 30 is effected by the electromagnet 33, as already stated above. Since no resulting hydraulic force is exerted on the control valve member 30 by the pressure in the annular space 27, this is force-balanced so that even a relatively small magnetic force is sufficient to move the control valve member 30. Therefore, the spring 37 needs only a small force to ensure the functionality of the control valve and can be made correspondingly small.
  • a piezoelectric actuator is used to exert a moving force on the control valve member 30.
  • the control valve member 30 is pressure balanced, which allows the use of a small piezoelectric actuator, since no large forces are needed.
  • the stroke of the piezoelectric actuator may also be low, since the cross-section opened between the control valve member 30 and the control valve seat 29 is sufficiently large even with a very small stroke of the control valve member 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft einen Injektor zur Einspritzung von Kraftstoff unter hohem Druck direkt in den Brennraum von setbstzündenden Brennkraftmaschinen ( EP-A-1 612 403 ).
  • Zur Einbringung von Kraftstoff direkt in den Brennraum von selbstzündenden Brennkraftmaschinen werden insbesondere bei Personenkraftwagen zurzeit vermehrt sogenannte Common-Rail-Systeme eingesetzt. Der Druck wird hierbei zentral von einer Hochdruckpumpe erzeugt und in einem Hochdruckspeicher, dem so genannten Rail, zwischengelagert. Von dort wird der verdichtete Kraftstoff über Injektoren in die verschiedenen Brennräume der Brennkraftmaschine eingespritzt. Einer der Vorteile dabei ist, dass der Einspritzdruck, also der Kraftstoffdruck, den die Hochdruckpumpe im Rail erzeugt, an Last und Drehzahl der Brennkraftmaschine angepasst werden kann. Damit wird ein erhöhter Energiebedarf durch die Verdichtung von nicht benötigtem Kraftstoff vermindert.
  • Um möglichst kurze Schaltzeiten zu erreichen, das heißt, um die Düsennadel, die die eigentlichen Einspritzöffnungen freigibt oder verschließt, möglichst rasch bewegen zu können, wird das Steuerventil bei Injektoren häufig nahe der Düsennadel angeordnet, so dass die hydraulischen Verbindungen entsprechend kurz sind. Der Hochdruckkanal, über den der verdichtete Kraftstoff aus dem Rail zu den Einspritzöffnungen geleitet wird, muss folglich an dem Steuerventil vorbeigeleitet werden, was bezüglich der im wesentlichen zylindrischen Gestalt des Injektors eine Exzentrizität der Hochdruckleitung bedingt und damit entsprechende bauliche Maßnahmen erfordert. Da im Zulaufkanal ein sehr hoher Druck herrscht, der je nach Einspritzsystem 1500 bis 2000 bar (150 - 200 MPa) betragen kann, darf die Wandstärke gewisse Größen nicht unterschreiten. Dies setzt der weiteren Verschlankung der Injektoren enge Grenzen.
  • Die mittige Zuführung von Kraftstoff in einem Einspritzventil ist beispielsweise aus der Offenlegungsschrift DE 199 59 304 A1 bekannt. Das hier gezeigte Kraftstoffeinspritzventil wird mit einer sogenannten Verteilerpumpe verwendet. Diese Verteilerpumpen stellen keinen konstanten Einspritzdruck zur Verfügung, sondern erzeugen für jede Einspritzung einen gesonderten Kraftstoffstoß, der dem einzelnen Einspritzventil zugeleitet wird und der die Düsennadel dann entgegen der Kraft einer Schließfeder öffnet. Das in der DE 199 59 304 A1 gezeigte Kraftstoffeinspritzventil weist einen zentralen Kraftstoffzulauf auf, der im Wesentlichen die Form eines Rohres hat und auf dessen brennraumseitigem Ende die Düsennadel geführt ist. Durch die mittige Führung des Kraftstoffs kann das Einspritzventil schlank gestaltet werden und nimmt im Zylinderkopf der Brennkraftmaschine entsprechend wenig Platz weg.
  • Eine ähnliche Konstruktion ist aus der Offenlegungsschrift DE 32 29 828 A1 bekannt. Auch hier handelt es sich um ein Kraftstoffeinspritzventil, das zusammen mit einer Verteilerpumpe benutzt wird. Im Unterschied zu dem oben genannten, aus dem Stand der Technik bekannten, Kraftstoffeinspritzventil bewegt sich hier die Düsennadel synchron mit dem röhrenförmigen Körper, über den der verdichtete Kraftstoff eingeleitet wird. Die Zuführung des Kraftstoffs erfolgt über eine Schieberdichtung, die am brennraumabgewandten Ende zwischen dem Zulaufrohr und einem speziell eingepassten Körper sichergestellt wird.
  • Die bekannten Kraftstoffeinspritzventile sind jedoch für Common-Rail-Systeme nicht anwendbar, da sie kein Steuerventil aufweisen, mit dem die Schließkraft auf die Düsennadel reguliert werden kann. Andererseits lässt sich bei den bekannten Injektoren, die in Common-Rail-Systemen verwendet werden, eine weitere Verschlankung nur unter großen Schwierigkeiten erreichen, da das Material, in dem die Zulaufkanäle, die den Kraftstoff am Steuerventil vorbeileiten, ausgebildet sind, einer noch höheren Belastung in der Regel nicht standhalten können, ohne dass es zu Schäden am Injektor kommt.
  • Offenbarung der Erfindung Vorteile der Erfindung
  • Der erfindungsgemäße Injektor weist demgegenüber den Vorteil auf, dass er sehr schlank ausgebildet werden kann und damit nur wenig Bauraum benötigt und dabei die volle Funktionsfähigkeit eines Common-Rail-Injektors aufweist. Hierzu ist im Injektorkörper ein Hochdruckzulaufrohr angeordnet, das verdichteten Kraftstoff dem Steuerraum zuleitet, wobei das Steuerventilglied auf dem Hochdruckzulaufrohr gleitverschiebbar gelagert ist. Durch diese Anordnung des Steuerventilglieds lässt sich ein sehr kompaktes Steuerventil konstruieren, wobei der Kraftstoff quasi durch das Steuerventil hindurchgeleitet wird, was eine sehr schlanke und damit kompakte Bauweise des Injektors erlaubt. Darüber hinaus ergeben sich Kostenvorteile daraus, dass der Haltekörper, an dem die Einspritzdüse befestigt ist, nicht mehr dem Kraftstoffdruck ausgesetzt ist und deshalb aus einem günstigeren Material gefertigt werden kann; unter Umständen ist sogar eine Fertigung aus einem kostengünstigen Kunststoff möglich.
  • Durch die abhängigen Ansprüche sind vorteilhafte Weiterbildungen des Gegenstandes der Erfindung möglich. In vorteilhafter Weise verläuft das Hochdruckzulaufrohr mittig im Injektorkörper, so dass es im Wesentlichen fluchtend mit der Düsennadel angeordnet ist. Diese Anordnung birgt eine hohe Symmetrie, was die Verwendung vieler rotationssymmetrischer Bauteile ermöglicht und die Herstellung entsprechend günstig macht.
  • In einer weiteren vorteilhaften Ausgestaltung mündet das Hochdruckzulaufrohr an seinem auslaufseitigen Ende in einen im Injektorkörper ausgebildeten Verteilerraum, von dem die Zulaufdrossel, die den Steuerraum mit Kraftstoffhochdruck versorgt, und ein Zulaufkanal abzweigen, wobei der Zulaufkanal die Einspritzöffnungen mit Kraftstoff versorgt. Der Verteilerraum bietet eine große Freiheit bei der Anordnung der Kraftstoffkanäle innerhalb des Injektors, so dass er leichter an verschiedene Anforderungen angepasst werden kann.
  • In einer weiteren vorteilhaften Ausgestaltung ist das Steuerventilglied im Wesentlichen hülsenförmig ausgebildet und umgibt das Hochdruckzulaufrohr. Durch diese Anordnung des Steuerventilglieds ist eine exakte Führung bei minimalem Raumbedarf möglich. Hierbei wirkt das Steuerventilglied vorzugsweise mit einem Ventilsitz zusammen, der das Hochdruckzulaufrohr umgibt, so dass ein Ringraum, der das Hochdruckzulaufrohr ebenfalls umgibt, durch die Bewegung des Steuerventilglieds mit einem Leckölraum im Injektor verbindbar ist. In vorteilhafter Weise ist der Aktor, der das Steuerventilglied bewegt, ein Elektromagnet, der ebenfalls um das Hochdruckzulaufrohr herum angeordnet sein kann, so dass sich auch eine hohe Symmetrie ergibt.
  • Zeichnung
  • In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Injektors dargestellt. Es zeigt
  • Figur 1
    einen Längsschnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Injektors,
    Figur 2
    ein weiteres Ausführungsbeispiel ebenfalls im Längsschnitt,
    Figur 3
    in vergrößerter Darstellung ein weiteres Ausführungsbeispiel, das ebenfalls im Längsschnitt dargestellt ist und
    Figur 4
    nochmals den gesamten Injektor - abgesehen von der brennraumseitigen Spitze der Düse - mit den entsprechenden Kraftstoffanschlüssen
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein erstes Ausführungsbeispiel des erfindungsgemäßen Injektors im Längsschnitt dargestellt. Der Injektor weist einen Injektorkörper 1 auf, der einen Haltekörper 2, einen Drosselkörper 4 und einen Düsenkörper 5 umfasst. Der Düsenkörper 5 wird unter Zwischenlage der Drosselscheibe 4 mittels einer Spannmutter 7 gegen den Haltekörper 2 verspannt, so dass alle Teile des Injektorkörpers 1 fest gegeneinander gepresst werden und ortsfest zueinander sind.
  • Im Düsenkörper 5 ist eine Bohrung 9 ausgebildet, die brennraumseitig von einem konischen Ventilsitz 13 begrenzt wird. Vom Ventilsitz 13 gehen mehrere Einspritzöffnungen 12 aus, durch die der Kraftstoff in einen Brennraum einer Brennkraftmaschine eingespritzt werden kann. In der Bohrung 9 ist eine kolbenförmige Düsennadel 10 längsverschiebbar angeordnet, die in einem mittleren Abschnitt in der Bohrung 9 geführt ist. Zwischen der Düsennadel 10 und der Wand der Bohrung 9 ist ein Druckraum 11 ausgebildet, durch den Kraftstoff, der auf hohen Druck verdichtet zugeführt wird, in Richtung der Einspritzöffnungen 12 fließen kann. Ist die Düsennadel 10 in Anlage am Ventilsitz 13, so werden die Einspritzöffnungen 12 verschlossen und eine Einspritzung findet nicht statt. Soll eine Einspritzung erfolgen, so hebt die Düsennadel 10 vom Ventilsitz 13 ab und gibt die Einspritzöffnungen 12 frei.
  • Zur Steuerung der Längsbewegung der Düsennadel 10 dient der Druck in einem Steuerraum 16, der von der ventilsitzabgewandten Stirnseite der Düsennadel 10, einer Hülse 15 und dem Drosselkörper 4 begrenzt wird. Die Hülse 15 ist hierbei auf der Düsennadel 10 geführt, wobei zwischen der Hülse 15 und einem Stützring 17, der auf einer Schulter der Düsennadel 10 aufliegt, eine Schließfeder 14 unter Druckvorspannung angeordnet ist. Durch die Schließfeder 14 wird einerseits die Hülse 15 gegen den Drosselkörper 4 gedrückt, und andererseits erfährt die Düsennadel 10 eine Kraft in Richtung des Ventilsitzes 13, so dass die Düsennadel 10 beim Fehlen weiterer Kräfte auf den Ventilsitz 13 gedrückt wird und die Einspritzöffnungen 12 verschließt.
  • Zur Zuführung von Kraftstoff, der von einer Pumpe auf hohen Druck verdichtet wurde, dient ein im Haltekörper 2 und im Drosselkörper 4 angeordnetes Hochdruckzulaufrohr 25. Das düsenseitige Ende des Hochdruckzulaufrohrs 25 ist hierbei in einer Bohrung 21 dichtend geführt, die im Drosselkörper 4 ausgebildet ist. Am Grund der Bohrung 21 ist ein Verteilerraum 23 ausgebildet, von dem einerseits eine Zulaufdrossel 22 in den Steuerraum 16 führt und andererseits ein Zulaufkanal 20 in den Druckraum 11.
  • Im Drosselkörper 4 ist darüber hinaus eine Ablaufdrossel 24 ausgebildet, die den Steuerraum 16 mit einem Ringraum 27 verbindet, der im Drosselkörper 4 ausgebildet ist und der das Hochdruckzulaufrohr 25 umgibt. Der Ringraum 27 reicht dabei bis in einen Leckölraum 32, der den düsenabgewandten Teil des Drosselkörpers 4 begrenzt und sich im Haltekörper 2 fortsetzt. Im Leckölraum 32 ist über eine entsprechende Verbindung mit einem Leckölanschluss stets ein niedriger Kraftstoffdruck vorhanden, der im Wesentlichen Umgebungsdruck entspricht. Da das Hochdruckzulaufrohr 25 in der Bohrung 21 dichtend geführt ist, sind unterschiedliche Drücke im Verteilerraum 23 und im Ringraum 27 möglich.
  • Die Verbindung zwischen dem Ringraum 27 und dem Leckölraum 32 wird mit einem Steuerventil 8 gesteuert, das ein Steuerventilglied 30 umfasst. Das Steuerventilglied 30 wirkt dabei mit einem Steuerventilsitz 29 zusammen, der im Drosselkörper 4 ausgebildet ist. Das Steuerventilglied 30 weist die Form eines Magnetankers auf und geht dem Drosselköper 4 abgewandt in einen Hülsenfortsatz 130 über. Der Hülsenfortsatz 130 ist hierbei auf dem Hochdruckzulaufrohr 25 dichtend geführt, so dass das Steuerventilglied 30 auf dem Hochdruckzulaufrohr 25 gleitverschiebbar ist und eine ausreichende Abdichtung zwischen dem Ringraum 27 und dem Leckölraum 32 gewährleistet ist. Die Bewegung des Steuerventilglieds 30 wird einerseits durch eine Feder 37 bewirkt, die unter Druckvorspannung im Haltekörper 2 angeordnet ist und die sich am düsenabgewandten Ende des Hülsenfortsatzes 130 abstützt und so das Steuerventilglied 30 gegen den Steuerventilsitz 29 drückt. Andererseits kann das Steuerventilglied 30 durch einen Aktor 33 bewegt werden, der hier als Elektromagnet 33 ausgebildet und der im Haltekörper 2 angeordnet ist. Der Elektromagnet 33 wird dabei durch ein Federelement 35, das im Haltekörper 2 angeordnet ist, in Richtung des Drosselkörpers 4 gedrückt, so dass der Elektromagnet 33 ortsfest im Haltekörper 2 fixiert wird.
  • Die Funktionsweise des Injektors ist wie folgt: Über das Hochdruckzulaufrohr 25 wird Kraftstoff, der auf hohen Druck verdichtet wurde, in den Verteilerraum 23 geleitet. Von dort setzt sich der Druck über die Zulaufdrossel 22 in den Steuerraum 16 fort, was dort denselben Kraftstoffdruck bewirkt wie im Verteilerraum 23. Über den Zulaufkanal 20 setzt sich der Druck auch in den Druckraum 11 fort, so dass dort Einspritzdruck anliegt. Das Steuerventilglied 30 wird durch die Feder 37 gegen den Steuerventilsitz 29 gedrückt und verschließt den Ringraum 27 gegen den Leckölraum 32, wobei durch die Ablaufdrossel 24 auch im Ringraum 27 derselbe Kraftstoffdruck wie im Steuerraum 16 herrscht.
  • Der Elektromagnet 33 ist zu Beginn der Einspritzung nicht bestromt. Soll eine Einspritzung erfolgen, so wird durch den Elektromagnet 33 ein entsprechender Strom geleitet, so dass dieser ein Magnetfeld aufbaut und das Steuerventilglied 30 anzieht. Dadurch wird das Steuerventilglied 30 vom Steuerventilsitz 29 abgehoben und verbindet den Ringraum 27 mit dem Leckölraum 32. Über die Ablaufdrossel 24 entspannt sich der im Steuerraum 16 befindliche Kraftstoff, so dass sich die hydraulische Kraft auf die dem Ventilsitz 13 abgewandte Stirnseite der Düsennadel 10 vermindert. Hierbei ist die Ablaufdrossel 24 so bemessen, dass mehr Kraftstoff über diese abfließt, als über die Zulaufdrossel 22 zufließt. Gleichzeitig bleibt die hydraulische Kraft, die auf die Düsennadel 10 durch den Kraftstoffdruck im Druckraum 11 herrscht, konstant, so dass sich insgesamt eine resultierende Kraft auf die Düsennadel 10 ergibt, die vom Ventilsitz 13 weggerichtet ist und die Düsennadel 10 vom Ventilsitz 13 wegdrückt. Durch die so freigegebenen Einspritzöffnungen 12 wird nun Kraftstoff unter hohem Druck ausgespritzt. Die Einspritzung wird wieder beendet durch das Stromlosschalten des Elektromagneten 33, so dass die Feder 37 das Steuerventilglied 30 zurück in Anlage an den Steuerventilsitz 29 drückt. Durch den Verschluss des Ringraums 27 erhöht sich über die Zulaufdrossel 22 der Druck im Steuerraum 16 erneut, so dass die Düsennadel 10 durch die sich erhöhende hydraulische Kraft auf die Stirnseite zurück in ihre Schließstellung gedrückt wird.
  • Figur 2 zeigt ebenfalls im Längsschnitt einen weiteren erfindungsgemäßen Injektor. Dieser unterscheidet sich vom Injektor nach Figur 1 durch die alternative Ausgestaltung des Drosselkörpers 4. Statt des Drosselkörpers 4 sind bei diesem Ausführungsbeispiel ein erster Drosselkörper 104 und ein zweiter Drosselkörper 204 vorgesehen. Im ersten Drosselkörper 104 ist die das Hochdruckzulaufrohr 25 aufnehmende Bohrung 21 ausgebildet, wobei das Hochdruckzulaufrohr 25 hier nicht in einen Verteilerraum 23 mündet, sondern in eine Ausnehmung 39, die dieselbe Funktion übernimmt und von der die Zulaufdrossel 22 und der Zulaufkanal 20 ausgehen. Die Ablaufdrossel 24' ist sowohl im ersten Drosselkörper 104 als auch im zweiten Drosselkörper 204 ausgebildet, so dass der Ringraum 27, der im ersten Drosselkörper 104 ausgebildet ist, nach wie vor mit dem Steuerraum 16 verbunden ist. Diese Anordnung der Zu- und Ablaufdrosseln und der Ausnehmung 39 ermöglicht es, diese mit geringerem Aufwand und damit geringeren Kosten herzustellen, da insbesondere die Ausnehmung 39 direkt an der Stirnseite des zweiten Drosselkörpers 204 ausgebildet ist.
  • Figur 3 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Injektors. Die Anordnung der Bohrung 21 im Drosselkörper 4 der Zulaufdrossel 22 und des Zulaufkanals 20 entspricht der Anordnung wie bei dem in Figur 1 gezeigten Ausführungsbeispiel. Die Ablaufdrossel 24 hat hier jedoch eine andere Ausrichtung. Statt eines geknickten Verlaufs, wie in Figur 1 gezeigt, ist die Ablaufdrossel 24" hier als gerade Bohrung ausgebildet. Um den Kraftstoff vom Steuerraum 16 zur Ablaufdrossel 24" zu bringen, ist an der dem Düsenkörper 5 zugewandten Stirnfläche des Drosselkörpers 4' eine Ausnehmung 39' ausgebildet. In diese Ausnehmung 39' mündet auch die Zulaufdrossel 22, die vom Verteilerraum 23 ausgeht. Durch diese gerade Ausbildung der Ablaufdrossel 24" lässt diese sich einfacher und damit kostengünstiger herstellen.
  • Ein weiterer Unterschied zu dem Einspritzventil nach Figur 1 ist die Ausbildung des Düsenkörpers 5, der in Figur 3 im Bereich des Steuerraums 16 verschieden von dem Ausführungsbeispiel nach Figur 1 ausgebildet ist. Der Steuerraum 16 wird hier durch die Wand der Bohrung 9 begrenzt, wobei sich im Steuerraum 16 eine Schließfeder 14' befindet, die zwischen dem Drosselkörper 4 und der ventilsitzabgewandten Stirnfläche der Düsennadel 10 unter Druckvorspannung angeordnet ist. Die Düsennadel 10 ist mit ihrem ventilsitzabgewandten Endabschnitt in der Bohrung 9 dichtend geführt, so dass eine hydraulische Trennung von Druckraum 11 und Steuerraum 16 erreicht wird. Die sonstige Funktion der Düsennadel 10 ist identisch mit dem Ausführungsbeispiel nach Figur 1.
  • Figur 4 zeigt noch einmal in einer Gesamtansicht den Injektor nach Figur 3. Das Hochdruckzulaufrohr 25 weist an seinem einlaufseitigen Ende eine Erweiterung auf, in die ein Kraftstofffilter 44 eingesetzt ist. Das Kraftstofffilter 44 dient dazu, im Kraftstoff vorhandene Partikel herauszufiltern, um eine Beschädigung im Bereich der Düsennadel 10 oder des Steuerventils 8 zu verhindern. Um den verdichteten Kraftstoff in das Hochdruckzulaufrohr 25 einzuführen, ist am Injektor ein Hochdruckanschluss 42 vorgesehen, der mittels einer Spannschraube 45 mit dem Injektorkörper 1 verbunden ist.
  • Der Haltekörper 2 ist in diesem Ausführungsbeispiel als Hülse ausgebildet, die wesentliche einfacher aufgebaut ist als die aus dem Stand der Technik bekannten Haltekörper. Der Elektromagnet befindet sich hier im Kraftfluss der Spannmutter 7, wird also durch die Verspannung von Haltekörper 2 und Düsenkörper 5 im Injektor fixiert, ohne dass weitere Vorrichtungen zum Fixieren des Elektromagneten dazu nötig sind.
  • Der Leckölraum 32, der das Hochdruckzulaufrohr 25 umgibt, kann im Volumen beschränkt werden. Hierzu wird in den Haltekörper 2 ein Einsatzkörper 46 eingebracht, der beispielsweise aus Kunststoff besteht und in dem ein Leckölablauf 40 ausgebildet ist. Der über den Leckölablauf 40 abgeführte Kraftstoff wird über einen Leckölanschluss 43 einem Rücklaufsystem zugeführt, so dass der Kraftstoff letztlich wieder in den Kraftstofftank des Fahrzeugs zurückgeführt wird.
  • Die Bewegung des Steuerventilglieds 30 erfolgt durch den Elektromagneten 33, wie oben bereits ausgeführt. Da durch den Druck im Ringraum 27 keine resultierende hydraulische Kraft auf das Steuerventilglied 30 ausgeübt wird, ist dieses insofern kraftausgeglichen, so dass bereits eine relativ geringe magnetische Kraft ausreicht, das Steuerventilglied 30 zu bewegen. Die Feder 37 braucht deshalb nur eine geringe Kraft aufbringen, um die Funktionalität des Steuerventils zu gewährleisten und kann entsprechend klein ausgebildet werden.
  • Alternativ kann es auch vorgesehen sein, dass statt eines Elektromagneten ein Piezoaktor eingesetzt wird, um eine Bewegende Kraft auf das Steuerventilglied 30 auszuüben. Wie oben beschrieben ist das Steuerventilglied 30 druckausgeglichen, was den Einsatz eines kleinen Piezoaktors erlaubt, da keine großen Kräfte nötig sind. Auch der Hub des Piezoaktors kann gering sein, da der zwischen dem Steuerventilglied 30 und dem Steuerventilsitz 29 aufgesteuerte Querschnitt bereits bei sehr kleinem Hub des Steuerventilglieds 30 ausreichend groß ist.

Claims (8)

  1. Injektor zur Einspritzung von unter hohem Druck stehenden Kraftstoff in einen Brennraum einer Brennkraftmaschine mit einem Injektorkörper (1), in dem eine Düsennadel (10) längsverschiebbar angeordnet ist, die durch ihre Längsverschiebung die Öffnung wenigstens einer Einspritzöffnung (12) steuert und dabei mit einem Ventilsitz (13) zusammenwirkt, und mit einem Steuerraum (16), der mit Kraftstoff unter hohem Druck befüllbar ist, wobei durch den Kraftstoffdruck im Steuerraum (16) zumindest mittelbar eine Schließkraft in Richtung des Ventilsitzes (13) auf die Düsennadel (10) ausgeübt wird, und mit einem Steuerventil (8), über das der Steuerraum (16) mit einem Leckölraum (32) verbindbar ist, so dass der Steuerraum (16) druckentlastet werden kann, wobei das Steuerventil (8) ein Steuerventilglied (30) aufweist, das durch einen Aktor (33) bewegbar ist, dadurch gekennzeichnet, dass im Injektorkörper (1) ein Hochdruckzulaufrohr (25) angeordnet ist, das verdichteten Kraftstoff zu dem Steuerraum (16) leitet, wobei das Steuerventilglied (30) auf dem Hochdruckzulaufrohr (25) gleitverschiebbar gelagert ist.
  2. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass das Hochdruckzulaufrohr (25) mittig im Injektorkörper (1) verläuft, wobei es im wesentlichen fluchtend mit der Düsennadel (10) angeordnet ist.
  3. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass das Hochdruckzulaufrohr (25) an seinem auslaufseitigen Ende in einen im Injektorkörper (1) ausgebildeten Verteilerraum (23) mündet, wobei eine Zulaufdrossel (22) vorgesehen ist, durch die der Steuerraum (16) mit dem Verteilerraum (23) verbunden ist, und ein Zulaufkanal (20), mit dem der Verteilerraum (23) mit den Einspritzöffnungen (12) verbindbar ist.
  4. Injektor nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass das Steuerventilglied (30) einen Hülsenfortsatz (130) aufweist, der das Hochdruckzulaufrohr (25) umgibt, so dass das Steuerventilglied (30) auf dem Hochdruckzulaufrohr (25) gleitverschiebbar dichtend gelagert ist.
  5. Injektor nach Anspruch 4, dadurch gekennzeichnet, dass das Steuerventilglied (30) mit einem Steuerventilsitz (29) zusammenwirkt, der das Hochdruckzulaufrohr (25) umgibt, so dass ein das Hochdruckzulaufrohr (25) umgebender Ringraum (27), der mit dem Steuerraum (16) über eine Ablaufdrossel (24) verbunden ist, durch das Abheben des Steuerventilglieds (30) vom Steuerventilsitz (29) mit einem Leckölraum (32) des Injektors verbindbar ist.
  6. Injektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der das Steuerventilglied (30) bewegende Aktor ein Elektromagnet (33) ist.
  7. Injektor nach Anspruch 6, dadurch gekennzeichnet, dass der Elektromagnet (33) das Hochdruckzulaufrohr (25) umgibt.
  8. Injektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Elektromagnet zwischen Haltekörper (2) und Ventilkörper (5) angeordnet ist, wobei der Haltekörper (2) und der Ventilkörper (5) mittels einer Spannmutter (7) gegeneinander gepresst werden, so dass der Elektromagnet zwischen Ventilkörper (5) und Haltekörper (2) fixiert wird.
EP07787434A 2006-08-30 2007-07-12 Injektor für brennkraftmaschinen Expired - Fee Related EP2059671B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610040645 DE102006040645A1 (de) 2006-08-30 2006-08-30 Injektor für Brennkraftmaschinen
PCT/EP2007/057163 WO2008025607A1 (de) 2006-08-30 2007-07-12 Injektor für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP2059671A1 EP2059671A1 (de) 2009-05-20
EP2059671B1 true EP2059671B1 (de) 2010-05-12

Family

ID=38606878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787434A Expired - Fee Related EP2059671B1 (de) 2006-08-30 2007-07-12 Injektor für brennkraftmaschinen

Country Status (4)

Country Link
EP (1) EP2059671B1 (de)
CN (1) CN101512139B (de)
DE (2) DE102006040645A1 (de)
WO (1) WO2008025607A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2195523B1 (de) * 2007-10-02 2016-06-08 Robert Bosch GmbH Injektor mit steuerventilhülse

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683739B2 (en) * 2009-11-09 2017-06-20 Woodward, Inc. Variable-area fuel injector with improved circumferential spray uniformity
DE102010001311A1 (de) * 2010-01-28 2011-08-18 Robert Bosch GmbH, 70469 Verfahren zur hochdruckdichten Verbindung wenigstens eines plattenförmigen Körpers mit einem weiteren Körper eines Kraftstoffinjektors sowie Kraftstoffinjektor
DE102016221547A1 (de) * 2016-11-03 2018-05-03 Robert Bosch Gmbh Brennstoffeinspritzventil zum Einspritzen eines gasförmigen und/oder flüssigen Brennstoffs
CN107917030B (zh) * 2017-10-09 2020-04-07 中国第一汽车股份有限公司 一种共轨喷油器控制阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9508623D0 (en) * 1995-04-28 1995-06-14 Lucas Ind Plc "Fuel injection nozzle"
DE19959304A1 (de) * 1999-12-09 2001-06-13 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmschinen
DE10000575A1 (de) * 2000-01-10 2001-07-19 Bosch Gmbh Robert Einspritzdüse
JP3633885B2 (ja) * 2000-08-21 2005-03-30 株式会社デンソー 電磁弁装置およびそれを用いた燃料噴射装置
DE10115215A1 (de) * 2001-03-28 2002-10-10 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10159003A1 (de) * 2001-11-30 2003-06-18 Bosch Gmbh Robert Injektor mit einem Magnetventil zur Steuerung eines Einspritzventils
DE10222196A1 (de) * 2002-05-18 2003-11-27 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
ES2277229T3 (es) * 2004-06-30 2007-07-01 C.R.F. Societa Consortile Per Azioni Servovalvula para controlar el inyector de combustible de un motor de combustion interna.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2195523B1 (de) * 2007-10-02 2016-06-08 Robert Bosch GmbH Injektor mit steuerventilhülse

Also Published As

Publication number Publication date
DE502007003783D1 (de) 2010-06-24
DE102006040645A1 (de) 2008-03-13
EP2059671A1 (de) 2009-05-20
WO2008025607A1 (de) 2008-03-06
CN101512139A (zh) 2009-08-19
CN101512139B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
EP1733139B1 (de) Common-rail-injektor
EP1688611A2 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
WO2001088365A1 (de) Einspritzanordnung für ein kraftstoff-speichereinspritzsystem einer verbrennungsmaschine
WO2014000957A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2059671B1 (de) Injektor für brennkraftmaschinen
EP1867868B1 (de) Kraftstoffeinspritzventil mit Sicherheitssteuerventil
DE102006015745A1 (de) Kraftstoffinjektor mit direktgesteuertem Einspritzventilglied
EP2011995A2 (de) Injektor mit nach außen öffnendem Ventilelement
DE102006060593A1 (de) Kraftstoffinjektor
DE102008042158A1 (de) Brennstoffeinspritzventil
EP1983186A2 (de) Druckausgeglichenes Stellelement
DE102012224398A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1483499A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
EP2984328B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006047935A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE10132248A1 (de) Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE102018200565A1 (de) Injektor zur Dosierung von gasförmigem Kraftstoff, Gaseinblassystem mit einem solchen Injektor und Verfahren zum Betreiben dieses Injektors
EP2655850B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102008002522A1 (de) Brennstoffeinspritzventil
DE10031571A1 (de) Injektor mit zentralem Hochdruckanschluß
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
DE19905152C1 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
DE102012223199A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102009045560A1 (de) Common-Rail-Kraftstoffinjektor
EP2818684A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUMONT, TONY

Inventor name: ROSSIGNOL, FRANCOIS

Inventor name: HOWEY, FRIEDRICH

Inventor name: CHARVET, OLIVIER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007003783

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007003783

Country of ref document: DE

Effective date: 20110214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110712

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170927

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180723

Year of fee payment: 12

Ref country code: IT

Payment date: 20180720

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003783

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712