EP2055140B1 - Method of adjusting a hearing instrument - Google Patents

Method of adjusting a hearing instrument Download PDF

Info

Publication number
EP2055140B1
EP2055140B1 EP06792685A EP06792685A EP2055140B1 EP 2055140 B1 EP2055140 B1 EP 2055140B1 EP 06792685 A EP06792685 A EP 06792685A EP 06792685 A EP06792685 A EP 06792685A EP 2055140 B1 EP2055140 B1 EP 2055140B1
Authority
EP
European Patent Office
Prior art keywords
microphones
microphone
hearing instrument
stability
better
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06792685A
Other languages
German (de)
French (fr)
Other versions
EP2055140A2 (en
Inventor
Andi Vonlanthen
Andreas Von Buol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Publication of EP2055140A2 publication Critical patent/EP2055140A2/en
Application granted granted Critical
Publication of EP2055140B1 publication Critical patent/EP2055140B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/43Electronic input selection or mixing based on input signal analysis, e.g. mixing or selection between microphone and telecoil or between microphones with different directivity characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/456Prevention of acoustic reaction, i.e. acoustic oscillatory feedback mechanically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers

Definitions

  • This invention relates generally to a method of adjusting a hearing instrument.
  • Hearing instruments such as hearing devices or hearing aids, are often equipped with a multi-microphone system in order to provide directional information of the sound.
  • two microphones are located at the hearing instrument in a predefined distance from each other.
  • ITE in-the-ear
  • CIC completely-in-the-canal
  • the feedback stability and maximum stable gain are depending on the actual microphone location in relation to the venting of the hearing instrument housing, the pinna or other environmental influences caused by the physics of the user of the hearing instrument. Therefore, even if the distance between two technically identical microphones is very small, the feedback stability and maximum stable gain are different for those two microphones.
  • EP 1 221 276 a method for adapting a hearing device and a hearing device with two microphones for directional-use is described.
  • the use of a switching unit to switch the connecting outputs of the microphones to the digital signal processing unit is proposed.
  • the forward and backward location of the microphones within the hearing device in relation to the front of the head of the user may be adapted and thus the hearing device may be used either for the left or the right ear of the user, providing correct directional information.
  • this document teaches a predefined operational connection of multiple microphones to a digital signal processing unit.
  • EP 1 309 225 a method for determining the feedback threshold of a microphone in a given location or position respectively within a hearing device and therefore the determination of the maximum gain for this microphone in a given acoustical setup is provided.
  • This method may be used for limiting the maximum gain for a specific microphone or to determine the value of the maximum gain for a specific microphone for providing feedback stability of the hearing instrument concerned.
  • the present invention provides a method of adjusting a hearing instrument, the hearing instrument comprising at least two microphones and an amplifying processing unit, the method comprising the steps of:
  • the microphone determined to have the better feedback stability will be used, i.e. will be operationally connected to the amplifier or amplifying processing unit of the hearing instrument. Thus, a better performance rather than switching to a predetermined microphone will be achieved.
  • the method further comprises the steps of:
  • This embodiment takes into account the acoustical stability of each of the microphones in order to optimally combine the microphones to achieve an optimal omni-directional performance if desired by the user of the hearing instrument.
  • the known current solutions only propose the selection of one predetermined specific microphone, i.e. the microphone in the forward position of the shell of the hearing instrument, not taking into account the specific, individual acoustical stability of the microphones of a specific hearing instrument.
  • the determination of the proportion and phase of the signals of the microphones will be made as a function of frequency and the proportion and phase of the signals of the microphone will be set and modified accordingly. This takes into account that the microphones may have different acoustic performance for different frequencies. To provide excellent omni-directional performance, both microphones will remain active, but the proportion and phase of the signals of the different microphones will be used dependent of the actual frequencies of the sound.
  • the microphone location effect is estimated by taking into account the different contributions of reflected sound by the pinna.
  • the "microphone location effect” describes the amplification from free field sound to the microphone e.g. by reflections on the pinna. This effect may be measured directly for a certain range of frequencies for a specific hearing instrument inserted within the ear of the individual user of this hearing instrument. This may be performed either during the fitting process based on the real situation or based on stored geometrical data of the microphone location and the geometry of the pinna and the ear canal of the user retrieved during a customized shell molding process. This step is especially useful for hearing instruments of the type of ITE and CIC.
  • the feedback stability for each of the microphones is estimated by performing measurement on the ear of an individual user during the fitting process. Such a process is known and described for instance in EP 1 309 225 .
  • the feedback stability for the microphones is estimated based on geometrical data of the location of the microphone and vent of the hearing instrument.
  • the feedback stability will be calculated based on stored geometrical data of the hearing instrument and the geometry of the ear canal that may be recorded and stored during the molding process of the shell of a hearing instrument to be inserted into the ear canal.
  • the best microphone is determined and its location is selected as the only microphone to be used in an omni-directional mode.
  • the omni-directional mode only one of the at least two microphones of the hearing instrument will be operationally connected to the amplifier or amplifying processing unit of the hearing instrument. This only one microphone is not a predefined microphone but the microphone with the better acoustic performance.
  • the best microphone is determined by weighting maximum stable overall amplifications as a function of frequency and selecting the most stable amplification.
  • the maximum stable overall amplification is calculated as a function of frequency by adding the above described "microphone location effect" and the feedback threshold.
  • the feedback threshold describes the maximum stable amplification of the hearing instrument from the microphone to the eardrum of the individual user of the hearing instrument.
  • the weighting is done by a predefined rule that is independent of individual hearing loss.
  • the rule only takes into account the data retrieved by the hearing instrument itself and its position and influence by the geometry of the ear canal and the pinna.
  • the weighting is done by a predefined rule that is dependent of individual hearing loss.
  • the individual hearing loss of the user will be taken into account by the rule. This might be done for instance by estimating the feedback stability only for a specific range or multiple ranges of frequencies specified by he individual hearing loss of the user of the hearing instrument.
  • the selection of the better microphone position is done by switching the operative connection of the microphones to the previously determined better microphone, i.e. the microphone with the higher maximum stable overall amplification. This switching may be performed by using a switching unit within the hearing device to automatically connect only the better microphone to the amplifier or to the signal processing unit and/or to disconnect the other microphones respectively.
  • the inventive method above will be applied to a hearing instrument that is at least partially insertable into an ear canal.
  • Fig. 1 schematically shows a partial cross-section of the external ear with a hearing instrument partially inserted into the ear canal.
  • FIG 1 the schematic drawing of an ITE hearing aid 1 at least partially inserted into the ear canal 2 is shown.
  • the hearing aid comprises two microphones 3 and 4, located on the front side of the shell of the hearing aid 1. Both microphones 3 and 4 are connected to an amplifying processing unit 5, arranged within the shell of the hearing aid 1.
  • This amplifying processing unit 5 drives a receiver 6 which is acoustically coupled to the ear canal 2 via a conduct 7.
  • the hearing aid 1 further comprises a venting canal 8 that connects the ear canal 2 with the environment.
  • the better of the two microphones 3 and 4 remains connected to the amplifying processing unit 5 and the other microphone will be disconnected from the amplifying processing unit 5.
  • This switching is performed i.e. by using a switching unit as described in EP 1 221 276 .
  • both microphones 3 and 4 remain connected to the amplifying processing unit 5.
  • the amplifying processing unit 5 will set only one of those microphones active for determined ranges of frequencies, i.e. by applying respectively set filters. As an example it thus may be the case that the first microphone 3 is activated for low frequencies and the second microphone 4 is activated for high frequencies, providing an even better acoustic performance than using only one microphone for the whole range of frequencies.
  • the present solution advantageously takes the acoustical stability into account when combining the two microphones or selecting one of the two microphones for omni-directional use. Therefore the better microphone will be selected and thus a higher stable gain and less feedback related problems will be achieved for hearing devices with at least two microphones for the omni-directional mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The present invention provides a method of adjusting a hearing instrument (1) that is at least partially insertable into an ear canal (2) , the hearing instrument (1) comprising at least two microphones (3; 4), the method comprising the steps of : - estimating the relative microphone location effect for each of the microphones (3/4) ; - estimating the feedback stability for each of the microphones (3;4) ; - determining the optimum proportion and phase of the signals of the microphones (3; 4) to be used in an omni-directional mode; and - setting the optimum proportion and phase of the signals of the microphones (3; 4) . Thus, the present invention takes into account the acoustical stability of each of the microphones in order to optimally combine the microphones to achieve an optimal omni-directional performance if desired by the user of the hearing instrument

Description

    TECHNICAL FIELD
  • This invention relates generally to a method of adjusting a hearing instrument.
  • BACKGROUND OF THE INVENTION
  • Hearing instruments, such as hearing devices or hearing aids, are often equipped with a multi-microphone system in order to provide directional information of the sound.
  • In such a directional mode of the hearing instrument, usually two microphones are located at the hearing instrument in a predefined distance from each other.
  • Especially for hearing devices of the type of in-the-ear (ITE) or completely-in-the-canal (CIC), there is only little space available for arranging the microphones. Even though, the two microphones, usually two electrically identical microphones, have a different acoustical behavior.
  • Especially the feedback stability and maximum stable gain are depending on the actual microphone location in relation to the venting of the hearing instrument housing, the pinna or other environmental influences caused by the physics of the user of the hearing instrument. Therefore, even if the distance between two technically identical microphones is very small, the feedback stability and maximum stable gain are different for those two microphones.
  • In EP 1 221 276 , a method for adapting a hearing device and a hearing device with two microphones for directional-use is described. To allow the use of such a hearing device either in the left or the right ear of a user of this hearing device, the use of a switching unit to switch the connecting outputs of the microphones to the digital signal processing unit is proposed. Thus, the forward and backward location of the microphones within the hearing device in relation to the front of the head of the user may be adapted and thus the hearing device may be used either for the left or the right ear of the user, providing correct directional information.
  • Thus, this document teaches a predefined operational connection of multiple microphones to a digital signal processing unit.
  • In EP 1 309 225 , a method for determining the feedback threshold of a microphone in a given location or position respectively within a hearing device and therefore the determination of the maximum gain for this microphone in a given acoustical setup is provided.
  • This method may be used for limiting the maximum gain for a specific microphone or to determine the value of the maximum gain for a specific microphone for providing feedback stability of the hearing instrument concerned.
  • It is an object of the present invention to provide a method of adjusting a hearing instrument with at least two microphones for the omni-directional mode.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of adjusting a hearing instrument, the hearing instrument comprising at least two microphones and an amplifying processing unit, the method comprising the steps of:
    • estimating the microphone location effect for each of the microphones;
    • estimating the feedback stability for each of the microphones;
    • determining the microphone with the better feedback stability to be used in an omni-directional mode.
  • For using the hearing instrument in an omni-directional mode, only the microphone determined to have the better feedback stability will be used, i.e. will be operationally connected to the amplifier or amplifying processing unit of the hearing instrument. Thus, a better performance rather than switching to a predetermined microphone will be achieved.
  • In a further embodiment of the present invention, the method further comprises the steps of:
    • determining the proportion and phase of the signals of the at leat two microphones to be used in an omnidirectional mode; and
    • setting the proportion and phase of the signals of the microphones.
  • This embodiment takes into account the acoustical stability of each of the microphones in order to optimally combine the microphones to achieve an optimal omni-directional performance if desired by the user of the hearing instrument. The known current solutions only propose the selection of one predetermined specific microphone, i.e. the microphone in the forward position of the shell of the hearing instrument, not taking into account the specific, individual acoustical stability of the microphones of a specific hearing instrument.
  • In a further embodiment, the determination of the proportion and phase of the signals of the microphones will be made as a function of frequency and the proportion and phase of the signals of the microphone will be set and modified accordingly. This takes into account that the microphones may have different acoustic performance for different frequencies. To provide excellent omni-directional performance, both microphones will remain active, but the proportion and phase of the signals of the different microphones will be used dependent of the actual frequencies of the sound.
  • In a further embodiment, the microphone location effect is estimated by taking into account the different contributions of reflected sound by the pinna. The "microphone location effect" describes the amplification from free field sound to the microphone e.g. by reflections on the pinna. This effect may be measured directly for a certain range of frequencies for a specific hearing instrument inserted within the ear of the individual user of this hearing instrument. This may be performed either during the fitting process based on the real situation or based on stored geometrical data of the microphone location and the geometry of the pinna and the ear canal of the user retrieved during a customized shell molding process. This step is especially useful for hearing instruments of the type of ITE and CIC.
  • In a further embodiment, the feedback stability for each of the microphones is estimated by performing measurement on the ear of an individual user during the fitting process. Such a process is known and described for instance in EP 1 309 225 .
  • In a further embodiment, the feedback stability for the microphones is estimated based on geometrical data of the location of the microphone and vent of the hearing instrument. Thus, the feedback stability will be calculated based on stored geometrical data of the hearing instrument and the geometry of the ear canal that may be recorded and stored during the molding process of the shell of a hearing instrument to be inserted into the ear canal.
  • In a further embodiment, the best microphone is determined and its location is selected as the only microphone to be used in an omni-directional mode. For the omni-directional mode, only one of the at least two microphones of the hearing instrument will be operationally connected to the amplifier or amplifying processing unit of the hearing instrument. This only one microphone is not a predefined microphone but the microphone with the better acoustic performance.
  • In a further embodiment, the best microphone is determined by weighting maximum stable overall amplifications as a function of frequency and selecting the most stable amplification. The maximum stable overall amplification is calculated as a function of frequency by adding the above described "microphone location effect" and the feedback threshold. The feedback threshold describes the maximum stable amplification of the hearing instrument from the microphone to the eardrum of the individual user of the hearing instrument.
  • In a further embodiment, the weighting is done by a predefined rule that is independent of individual hearing loss. Thus, the rule only takes into account the data retrieved by the hearing instrument itself and its position and influence by the geometry of the ear canal and the pinna.
  • In a further embodiment, the weighting is done by a predefined rule that is dependent of individual hearing loss. In addition to the data retrieved from the hearing instrument in its position within the ear of the user, the individual hearing loss of the user will be taken into account by the rule. This might be done for instance by estimating the feedback stability only for a specific range or multiple ranges of frequencies specified by he individual hearing loss of the user of the hearing instrument.
  • In a further embodiment, the selection of the better microphone position is done by switching the operative connection of the microphones to the previously determined better microphone, i.e. the microphone with the higher maximum stable overall amplification. This switching may be performed by using a switching unit within the hearing device to automatically connect only the better microphone to the amplifier or to the signal processing unit and/or to disconnect the other microphones respectively.
  • In a further embodiment of the present invention, the inventive method above will be applied to a hearing instrument that is at least partially insertable into an ear canal.
  • DESCRIPTION OF THE DRAWINGS
  • For purpose of facilitating and understanding of the invention, a preferred embodiment thereof is illustrated in the accompanying drawing to be considered in connection with the following description. Thus the invention may be readily understood and appreciated.
  • Fig. 1 schematically shows a partial cross-section of the external ear with a hearing instrument partially inserted into the ear canal.
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • Referring to figure 1, the schematic drawing of an ITE hearing aid 1 at least partially inserted into the ear canal 2 is shown. The hearing aid comprises two microphones 3 and 4, located on the front side of the shell of the hearing aid 1. Both microphones 3 and 4 are connected to an amplifying processing unit 5, arranged within the shell of the hearing aid 1. This amplifying processing unit 5 drives a receiver 6 which is acoustically coupled to the ear canal 2 via a conduct 7.
  • The hearing aid 1 further comprises a venting canal 8 that connects the ear canal 2 with the environment.
  • The influence of the pinna 9, surrounding the front side of the shell of the hearing aid 1, to the microphones 3 and 4 are shown by arrows symbolizing the path of the environmental sound S. This sound will arrive at the microphones both directly as well as reflected by the pinna 9.
  • If the user of the hearing aid 1 wants to switch from the regular directional use to the omni-directional use, in one embodiment, the better of the two microphones 3 and 4 remains connected to the amplifying processing unit 5 and the other microphone will be disconnected from the amplifying processing unit 5.
  • This switching is performed i.e. by using a switching unit as described in EP 1 221 276 .
  • In another embodiment of the present invention, both microphones 3 and 4 remain connected to the amplifying processing unit 5. The amplifying processing unit 5 will set only one of those microphones active for determined ranges of frequencies, i.e. by applying respectively set filters. As an example it thus may be the case that the first microphone 3 is activated for low frequencies and the second microphone 4 is activated for high frequencies, providing an even better acoustic performance than using only one microphone for the whole range of frequencies.
  • The present solution advantageously takes the acoustical stability into account when combining the two microphones or selecting one of the two microphones for omni-directional use. Therefore the better microphone will be selected and thus a higher stable gain and less feedback related problems will be achieved for hearing devices with at least two microphones for the omni-directional mode.

Claims (9)

  1. Method of adjusting a hearing instrument (1), the hearing instrument (1) comprising at least two microphones (3;4) and an amplifying processing unit (5), the method characterized in comprising the steps of:
    - estimating the microphone location effect describing the amplification from free field sound to the microphone for each of the microphones (3;4);
    - estimating the feedback stability for each of the microphones (3;4);
    - determining the microphone (3; 4) with the better feedback stability to be used in an omni-directional mode.
  2. The method of claim 1, comprising further the steps of:
    - determining the proportion and phase of the signals of the at least two microphones (3;4) to be used in an omni-directional mode; and
    - setting the proportion and phase of the signals of the microphones (3;4).
  3. The method of claim 2, wherein the determination of the proportion and phase of the signals of the at least two microphones (3;4) will be made as a function of frequency and the proportion and phase of the signals of the microphone will be set and modified accordingly.
  4. The method of claim 1, wherein the microphone location effect describing the amplification from free field sound to the microphoneis estimated by taking into account the different contributions of reflected sound by the pinna (9).
  5. The method of claim 1, wherein the feedback stability for the microphones (3;4) is estimated by performing measurements on the ear of an individual user during the fitting process of the hearing instrument (1).
  6. The method of claim 1, wherein the feedback stability for the microphones (3;4) is estimated based on geometrical data of the location of the microphones (3;4) and vent (8) of the hearing instrument (1).
  7. The method of claim 1, wherein the microphone with the better feedback stability (3;4) is determined and is selected as the only microphone (3;4) to be used in an omni-directional mode,
    wherein the microphone with the better feedback stability (3;4) is determined by weighting maximum stable overall amplifications as a function of frequency and selecting the most stable amplification.
  8. The method of claim 7, wherein the selection of the microphone with the better feeback stability is done by switching the operative connection of the microphones (3,4) with the amplifying processing unit (5) to the previously determined microphone with the better feeback stability (3;4).
  9. Applying the method of any of claims 1 to 8 to a hearing instrument that is at least partially insertable into an ear canal.
EP06792685A 2006-08-03 2006-08-03 Method of adjusting a hearing instrument Not-in-force EP2055140B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/065051 WO2006136615A2 (en) 2006-08-03 2006-08-03 Method of adjusting a hearing instrument

Publications (2)

Publication Number Publication Date
EP2055140A2 EP2055140A2 (en) 2009-05-06
EP2055140B1 true EP2055140B1 (en) 2010-11-03

Family

ID=37570796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792685A Not-in-force EP2055140B1 (en) 2006-08-03 2006-08-03 Method of adjusting a hearing instrument

Country Status (5)

Country Link
EP (1) EP2055140B1 (en)
AT (1) ATE487338T1 (en)
DE (1) DE602006018080D1 (en)
DK (1) DK2055140T3 (en)
WO (1) WO2006136615A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000842A2 (en) * 2007-09-20 2008-01-03 Phonak Ag Method for determining of feedback threshold in a hearing device
EP2189007A2 (en) * 2007-09-20 2010-05-26 Phonak AG Method for determining of feedback threshold in a hearing device
EP2088802B1 (en) * 2008-02-07 2013-07-10 Oticon A/S Method of estimating weighting function of audio signals in a hearing aid
EP2268063A1 (en) * 2009-06-26 2010-12-29 Siemens Medical Instruments Pte. Ltd. System and method for customizing a hearing aid device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757933A (en) * 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system
EP1221276B1 (en) * 1999-10-14 2003-07-23 Phonak Ag Method for adapting a hearing device and hearing device
DK1309225T3 (en) * 2002-10-02 2014-05-26 Phonak Ag Method for determining the feedback threshold in a hearing aid

Also Published As

Publication number Publication date
EP2055140A2 (en) 2009-05-06
ATE487338T1 (en) 2010-11-15
DK2055140T3 (en) 2011-02-21
WO2006136615A2 (en) 2006-12-28
DE602006018080D1 (en) 2010-12-16
WO2006136615A3 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US7826632B2 (en) Method of adjusting a hearing instrument
US9749754B2 (en) Hearing aids with adaptive beamformer responsive to off-axis speech
US9473858B2 (en) Hearing device
US9807522B2 (en) Hearing device adapted for estimating a current real ear to coupler difference
US9894446B2 (en) Customization of adaptive directionality for hearing aids using a portable device
US8295519B2 (en) Codebook based feedback path estimation
EP1981310B1 (en) Hearing instrument with linearized output stage
US9226082B2 (en) Hearing aid with means for estimating the ear plug fitting
EP2375787B1 (en) Method and apparatus for improved noise reduction for hearing assistance devices
US9843873B2 (en) Hearing device
EP2055140B1 (en) Method of adjusting a hearing instrument
US9301058B2 (en) Method for selecting a preferred direction of a directional microphone and corresponding hearing device
US20100046775A1 (en) Method for operating a hearing apparatus with directional effect and an associated hearing apparatus
US8811622B2 (en) Dual setting method for a hearing system
CN110611870B (en) Method for identifying receiver, hearing system and earphone
US8929576B2 (en) Method for tuning a hearing device using a percentile analysis, and tuning device
US10979827B2 (en) Method of estimating a feedback path of a hearing aid and a hearing aid
US8737656B2 (en) Hearing device with feedback-reduction filters operated in parallel, and method
WO2021021429A1 (en) Ear-worn electronic device incorporating microphone fault reduction system and method
US20230080855A1 (en) Method for operating a hearing device, and hearing device
US20230109140A1 (en) Method for determining a head related transfer function and hearing device
CN117177160A (en) Self-voice detection on hearing devices and binaural hearing device systems and methods therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081202

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090512

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006018080

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101103

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110303

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006018080

Country of ref document: DE

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110803

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140827

Year of fee payment: 9

Ref country code: DK

Payment date: 20140825

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150827

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150817

Year of fee payment: 10

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602006018080

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210827

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006018080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301