EP2053329A1 - Electronics industry installation and method for operating electronic industry installation - Google Patents

Electronics industry installation and method for operating electronic industry installation Download PDF

Info

Publication number
EP2053329A1
EP2053329A1 EP07023683A EP07023683A EP2053329A1 EP 2053329 A1 EP2053329 A1 EP 2053329A1 EP 07023683 A EP07023683 A EP 07023683A EP 07023683 A EP07023683 A EP 07023683A EP 2053329 A1 EP2053329 A1 EP 2053329A1
Authority
EP
European Patent Office
Prior art keywords
product stream
residual fraction
oxygen
production unit
air separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07023683A
Other languages
German (de)
French (fr)
Inventor
Stefan Lochner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2053329A1 publication Critical patent/EP2053329A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method for operating an electronic industrial plant according to the preamble of patent claim 1.
  • cryogenic air separation unit in the form of a single column system which produces nitrogen as a single product and at least partially supplies it to the semiconductor manufacturing unit.
  • Such units often require nitrogen for inertization, pure oxygen to produce an oxidizing atmosphere to remove CO and NO from the manufacturing tools, and impure oxygen to dispose of noxious fumes by incineration.
  • the production unit for semiconductor production can be formed, for example, by a system known per se for the production or further processing of wafers, for the production or further processing of silicon plates for solar installations or for the production of integrated circuits.
  • cryogenic air separation units are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known. They usually have a distillation column system for nitrogen-oxygen separation and at least one main heat exchanger for cooling of feed air.
  • the distillation column system of the invention can be configured as a single column system for nitrogen-oxygen separation (ie, for example, have a single column as a single distillation column), as a two-column system (for example as a classic Linde double column system or as a single column with pure oxygen column), or as three or multi-column system.
  • it may also have condenser-type evaporators for producing reflux liquid and ascending steam for the distillation.
  • Streams taken from the distillation column system and / or the main heat exchanger are referred to below as product streams of the cryogenic air separation unit. It is known to withdraw from one of the columns and / or condenser-evaporators of the distillation column system a nitrogen product stream which is in gaseous or liquid state and to deliver at least a portion of this nitrogen product stream to the production unit.
  • distillation devices may be provided for obtaining other air components, in particular noble gases, for example for argon production.
  • the invention is based on the object to operate the electronic industrial plant economically particularly favorable.
  • product stream herein is meant not only those streams which are produced in the or one of the distillation columns of the cryogenic air separation unit, but also streams which originate from an external source but in the cryogenic air separation unit, for example in its main heat exchanger, is cooled in the feed air, be brought into heat exchange with one or more streams which originate from or be introduced into the distillation column (s).
  • the third product stream has a composition which differs from the composition of the first product stream and from the composition of the second product stream, preferably by at least 1 mol% with respect to at least one component, in particular by at least 5 mol% or at least 10 mol% with respect to at least one component. It may, for example, be an oxygen product that is purer or less pure than that first product flow is.
  • the third product stream may also be formed by an argon, helium or hydrogen product or by a nitrogen product that is purer or less pure than the first product stream. Of course, a combination of two or more "third" product streams of different composition is possible.
  • the second product stream may be formed by a pure oxygen stream and the third product stream may be formed by a non-pure oxygen stream.
  • the impure oxygen product can be generated in any manner in the cryogenic air separation unit. Preferably, this is done by a first oxygen-enriched residual fraction is generated, at least a first part of the first residual fraction is expanded to perform work in a relaxation machine and a second part of the first residual fraction is not introduced into the expansion machine, but is obtained as a gaseous impure oxygen product stream. At least a portion of the gaseous particulate oxygen product stream is then sent to the production unit.
  • the remainder or part of the remainder can be used in the context of the invention as a gaseous impure oxygen product, specifically below the inlet pressure of the expansion machine, that is to say at a significantly superatmospheric pressure of 3 to 6 bar, preferably 3.5 to 5.5 bar.
  • the gaseous impure oxygen product can be used for any application in the production unit that requires a corresponding pressure without the need for a compressor, for example, as an oxidant in a chemical reaction, such as combustion of environmentally harmful exhaust gas.
  • the cryogenic air separation unit has a single column with overhead condenser in which vapor from the upper region of the single column is at least partially condensed
  • the first residual fraction can first be removed liquid from the lower region of the single column and then at least partially vaporized in the overhead condenser; from the vaporized residual fraction downstream of the Top condenser then the first and the second part of the first residual fraction are formed.
  • a second residual fraction is taken from the lower or middle region of the single column, recompressed, and then fed back to the single column. This increases the product yield, in particular of nitrogen.
  • the recompression of the second residual fraction can be carried out by means of a cold compressor. Both in cold and in warm recompression, the mechanical energy generated during the work-relaxing expansion can be used at least partially for recompression of the second residual fraction.
  • the second residual fraction can be taken out of the single column together with the first residual fraction. Alternatively, it is withdrawn from an intermediate point of the single column, which is arranged above the sump, in particular above the point at which the first residual fraction is removed.
  • the first residual fraction can be withdrawn, for example, at the bottom of the single column.
  • a pure oxygen product for the production unit or other third product stream can be recovered within the cryogenic air separation unit by evaporating and / or heating an external fluid of appropriate composition by cooling feed air in a main heat exchanger of the cryogenic air separation unit and into a distillation column system for nitrogen Oxygen separation is initiated, a fluid from an external source is at least temporarily passed into a liquid tank, at least temporarily taken fluid in the liquid state from the liquid tank, evaporated in the main heat exchanger and recovered as a gaseous pure oxygen product stream, which finally at least to Part of the production unit is supplied.
  • the external fluid from the liquid tank is not warmed as usual by means of an external heat exchanger (for example a water bath evaporator or an air-heated evaporator), but in the main heat exchanger in which the feed air for the distillation column system is cooled.
  • an external heat exchanger for example a water bath evaporator or an air-heated evaporator
  • the fluid originates from an "external source", that is, not from any of the separation columns of the nitrogen-oxygen separation distillation column system or a separation column downstream of the nitrogen-oxygen separation distillation column system.
  • it is transported from another plant for producing liquefied gas, for example by means of a tanker truck.
  • It may be a fluid having the chemical composition of one of the product streams of the nitrogen-oxygen separation distillation column system.
  • the fluid has a different composition than these product streams and consists for example of argon or hydrogen.
  • the inventive method is thus suitable in particular for the supply of companies in the semiconductor industry with industrial gases.
  • the "main heat exchanger” is preferably formed by a single heat exchanger block. For larger systems, it may be useful to realize the main heat exchanger by a plurality of parallel with respect to the temperature profile strands, which are formed by separate components. In principle, it is possible that the main heat exchanger or each of these strands is formed by two or more blocks connected in series.
  • the operating pressure of the liquid tank is at least 1 bar above the atmospheric pressure, preferably at least 1 bar above the product pressure of the gaseous additional product, under which it is delivered to an application or a post-compression unit.
  • the operating pressure of the liquid tank is for example 2 to 36 bar, preferably 5 to 16 bar.
  • the overpressure may be formed by any known means, for example by filling with pressurized fluid or by pressure build-up evaporation.
  • the pure oxygen can be recovered by decomposition in the cryogenic air separation unit by taking an oxygen-containing stream from the single column at an intermediate point and feeding it to a pure oxygen column and removing a pure oxygen product stream in the liquid state from the lower region of the pure oxygen column, the pure oxygen -Product stream - optionally evaporated after evaporation in the liquid state in the main heat exchanger against feed air and warmed and fed at least in part to the production unit.
  • the invention also relates to an electronic industrial plant according to claim 10.
  • the electronic industrial plant of FIG. 1 has a production unit 200 for producing a semiconductor product and a cryogenic air separation unit 100.
  • Air 1 is supplied to a cryogenic air separation unit 100. From this, a nitrogen product stream as the first product stream 110, a pure oxygen product stream as the second product stream 120 and a non-pure oxygen product stream as the third product stream 130 are removed and fed to the production unit.
  • FIG. 2 shows details of the cryogenic air separation unit of FIG. 1
  • the distillation column system of the cryogenic air separation unit of the embodiment of FIG. 2 has a single column 12 and a pure oxygen column 38.
  • Atmospheric air 1 is drawn in via a filter 2 from an air compressor and there compressed to an absolute pressure of 6 to 20 bar, preferably about 9 bar.
  • the compressed air 6 is cleaned in a cleaning device 7 comprising a pair of containers filled with adsorption material, preferably molecular sieve.
  • the purified air 8 is cooled in a main heat exchanger 9 to about dew point and partially liquefied.
  • a first part 11 of the cooled air 10 is introduced via a throttle valve 51 into the single column 12.
  • the feed is preferably some practical or theoretical soils above the sump.
  • the operating pressure of the single column 12 (at the top) is 6 to 20 bar, preferably about 9 bar.
  • Your top condenser is cooled with a second residual fraction 18 and a first residual fraction 14.
  • the first residual fraction 14 is withdrawn from the sump of the single column 12, the second residual fraction 14 from an intermediate point some practical or theoretical soils above the air supply or at the same level as this.
  • gaseous nitrogen 15 16 is withdrawn at the top, heated in the main heat exchanger 9 to about ambient temperature and finally withdrawn via line 17 as gaseous pressure product (PGAN) and on in FIG. 1 shown line 110 fed as a nitrogen product stream of the production unit 200.
  • a portion 53 of the condensate 52 from the top condenser 13 may be recovered as liquid nitrogen product (PLIN); the remainder 54 is given up as reflux to the head of the single column.
  • the second residual fraction 18 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar and flows in gaseous form via line 29 to a cold compressor 30 in which it is recompressed to about the operating pressure of the single column.
  • the recompressed residual fraction 31 is cooled in the main heat exchanger 9 back to column temperature and finally fed via line 32 of the single column 12 at the bottom again.
  • the first residual fraction 14 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar, and flows in gaseous form via line 19 to the cold end of the main heat exchanger 9.
  • a first part 20 of the first residual fraction is removed again (Line 20).
  • a second part remains in the main heat exchanger 9, where it is further warmed to approximately ambient temperature and leaves via line 60, the cryogenic air separation unit as gaseous impure oxygen product (GOX Imp.). He will then talk about the in FIG. 1 shown line 130 as Unreininsauer product flow supplied to the production unit 200.
  • the first part 20 of the first residual fraction is depressurized in a relaxation machine 21, which is designed in the example as turboexpander, working to about 300 mbar above atmospheric pressure.
  • the expansion machine is mechanically coupled to the cold compressor 30 and a braking device 22, which is formed in the embodiment by an oil brake.
  • the relaxed first residual fraction 23 is heated in the main heat exchanger 9 to about ambient temperature.
  • the warm first residual fraction 24 is blown off into the atmosphere (line 25) and / or used as regeneration gas 26, 27 in the cleaning device 7, optionally after heating in the heater 28.
  • an impure oxygen product from the recompressed second residual fraction 31 branched off and warmed in the main heat exchanger 9 to about ambient temperature.
  • An oxygen-containing stream 36 that is substantially free of less volatile impurities is withdrawn from an intermediate location of the single column 12 in the liquid state, which is located 5 to 25 theoretical or practical trays above the air feed.
  • the oxygen-containing stream 36 is optionally supercooled in a sump evaporator 37 of the pure oxygen column 38 and fed via line 39 and throttle valve 40 to the top of the pure oxygen column 38.
  • the operating pressure of the pure oxygen column 38 (at the top) is 1.3 to 4 bar, preferably about 2.5 bar.
  • the sump evaporator 37 of the pure oxygen column 38 is also cooled by means of a second part 42 of the cooled feed air 10.
  • the feed air stream 42 is at least partially, for example, completely condensed and flows via line 43 to the single column 12, where it is introduced approximately at the level of the feed of the remaining feed air 11.
  • a pure oxygen product stream 41 is removed in the liquid state, brought by a pump 55 to an elevated pressure of 2 to 100 bar, preferably about 12 bar, led via line 56 to the cold end of the main heat exchanger 9, there under the increased pressure evaporated and warmed to about ambient temperature and finally via line 57 as gaseous product (GOX-IC) won. He will then talk about the in FIG. 1 shown line 120 fed as pure oxygen product stream of the production unit 200.
  • the head gas 58 of the pure oxygen column 38 is admixed with the relaxed first residual fraction 23. If necessary, a portion of the feed air for pumping prevention of the cold compressor 30 is led to its inlet via a bypass line 59 (anti-surge control).
  • a liquid oxygen can be removed as a liquid product (not shown in the drawing).
  • an external liquid for example, liquid argon, liquid nitrogen or liquid oxygen from a liquid tank, may be vaporized in the main heat exchanger 9 in indirect heat exchange with the feed air (not shown in the drawing).
  • a liquid tank 70 is occasionally filled from a tanker with liquid argon as a "fluid".
  • the fluid is introduced below about 12 bar, the operating pressure of the liquid tank.
  • Liquid fluid is continuously withdrawn below about 12 bar via a line 71, vaporized and warmed under this pressure in the main heat exchanger 9 and finally drawn off via lines 72 and 73 as a gaseous additional product.
  • another stream 74 of liquid and pressurized fluid may be withdrawn from the liquid tank 70, in an evaporator 75 which is vaporized by means of an external heat transfer medium (for example atmospheric air or water) and added to the gaseous by-product via line 76.
  • the evaporator 75 can also be used for emergency supply in case of failure of the main heat exchanger 9.
  • the flow rates are adjusted by the valves 77 and 78.
  • the invention is also applicable to a similar process without pure oxygen column 38.
  • the external fluid in the liquid tank 70 is not formed by argon but by pure oxygen.
  • the pure oxygen product stream is then withdrawn via line 72.

Abstract

The method involves producing semiconductor products i.e. semiconductor wafer, using a production unit (200). A low temperature-air decomposition unit (100) withdraws nitrogen product stream as one product stream (110), pure oxygen stream as another product stream (120) and impure oxygen stream as a third product stream (130). The latter product stream and the third product stream are fed to the production unit. The third product stream exhibits a composition, which differs from a composition of the former product stream and a composition of the latter product stream. An independent claim is also included for an electronic industry installation.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektronikindustrieanlage gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for operating an electronic industrial plant according to the preamble of patent claim 1.

Es ist bekannt, bei Elektronikindustrieanlagen eine Tieftemperatur-Luftzerlegungseinheit in Form einer Einzelsäulenanlage einzusetzen, die Stickstoff als einziges Produkt erzeugen und dieses mindestens zum Teil an die Produktionseinheit zur Halbleiterherstellung zu liefern. Solche Einheiten benötigen häufig Stickstoff zur Inertisierung, Reinsauerstoff zur Herstellung einer oxidierenden Atmosphäre zur Entfernung von CO und NO aus den Fertigungswerkzeugen und Unreinsauerstoff zur Entsorgung von schädlichen Abgasen durch Verbrennung.It is known to use in electronics industry plants a cryogenic air separation unit in the form of a single column system which produces nitrogen as a single product and at least partially supplies it to the semiconductor manufacturing unit. Such units often require nitrogen for inertization, pure oxygen to produce an oxidizing atmosphere to remove CO and NO from the manufacturing tools, and impure oxygen to dispose of noxious fumes by incineration.

Die Produktionseinheit zur Halbleiterherstellung kann zum Beispiel durch eine an sich bekannte Anlage zur Herstellung oder Weiterverarbeitung von Wafern, zur Fertigung oder Weiterverarbeitung von Siliziumplatten für Solaranlagen oder zur Herstellung integrierter Schaltungen gebildet werden.The production unit for semiconductor production can be formed, for example, by a system known per se for the production or further processing of wafers, for the production or further processing of silicon plates for solar installations or for the production of integrated circuits.

Tieftemperatur-Luftzerlegungseinheiten sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt. Sie weisen üblicherweise ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung sowie mindestens einen Hauptwärmetauscher zur Abkühlung von Einsatzluft auf. Das Destilliersäulen-System der Erfindung kann als Einsäulensystem zur Stickstoff-Sauerstoff-Trennung ausgebildet sein (also zum Beispiel eine Einzelsäule als einzige Destilliersäule aufweisen), als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem oder als Einzelsäule mit Reinsauerstoffsäule), oder auch als Drei- oder Mehrsäulensystem. Es kann neben den Destilliersäulen auch Kondensator-Verdampfer zur Erzeugung von Rücklaufflüssigkeit und aufsteigendem Dampf für die Destillation aufweisen. Aus dem Destilliersäulen-System und/oder dem Hauptwärmetauscher entnommene Ströme werden im Folgenden als Produktströme der Tieftemperatur-Luftzerlegungseinheit bezeichnet. Es ist bekannt, aus einer der Säulen und/oder Kondensator-Verdampfer des Destilliersäulen-Systems einen Stickstoff-Produktstrom abzuziehen, der sich in gasförmigem oder flüssigem Zustand befindet, und mindestens einen Teil dieses Stickstoff-Produktstroms der Produktionseinheit zuzuleiten.For example, cryogenic air separation units are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known. They usually have a distillation column system for nitrogen-oxygen separation and at least one main heat exchanger for cooling of feed air. The distillation column system of the invention can be configured as a single column system for nitrogen-oxygen separation (ie, for example, have a single column as a single distillation column), as a two-column system (for example as a classic Linde double column system or as a single column with pure oxygen column), or as three or multi-column system. In addition to the distillation columns, it may also have condenser-type evaporators for producing reflux liquid and ascending steam for the distillation. Streams taken from the distillation column system and / or the main heat exchanger are referred to below as product streams of the cryogenic air separation unit. It is known to withdraw from one of the columns and / or condenser-evaporators of the distillation column system a nitrogen product stream which is in gaseous or liquid state and to deliver at least a portion of this nitrogen product stream to the production unit.

Zusätzlich können weitere Destilliervorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise zur Argongewinnung.In addition, further distillation devices may be provided for obtaining other air components, in particular noble gases, for example for argon production.

Der Erfindung liegt die Aufgabe zu Grunde, die Elektronikindustrieanlage wirtschaftlich besonders günstig zu betreiben.The invention is based on the object to operate the electronic industrial plant economically particularly favorable.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is solved by the characterizing features of claim 1.

Als "Produktstrom" werden hier nicht nur diejenigen Ströme bezeichnet, die in der oder einer der Destilliersäulen der Tieftemperatur-Luftzerlegungseinheit erzeugt werden, sondern auch Ströme, die ursprünglich aus einer externen Quelle stammen, aber in der Tieftemperatur-Luftzerlegungseinheit, beispielsweise in deren Hauptwärmetauscher, in dem Einsatzluft abgekühlt wird, in Wärmeaustausch mit einem oder mehreren Strömen gebracht werden, die aus der oder den Destilliersäulen stammen oder in diese eingeleitete werden.As "product stream" herein is meant not only those streams which are produced in the or one of the distillation columns of the cryogenic air separation unit, but also streams which originate from an external source but in the cryogenic air separation unit, for example in its main heat exchanger, is cooled in the feed air, be brought into heat exchange with one or more streams which originate from or be introduced into the distillation column (s).

Im Rahmen der Erfindung wird also nicht nur ein Stickstoff-Produktstrom aus der Tieftemperatur-Luftzerlegungseinheit, sondern außerdem zwei weitere Produktströme, von denen mindestens einer einen Rein- oder Unreinsauerstoff-Produktstrom darstellt, aus der Tieftemperatur-Luftzerlegungseinheit in die Produktionseinheit eingeleitet. Dies ermöglicht eine wesentlich effizientere Nutzung der Tieftemperatur-Luftzerlegungseinheit und erspart den Einsatz anderer Quellen für diese Ströme, die in der Produktionseinheit benötigt werden.In the context of the invention, therefore, not only a nitrogen product stream from the cryogenic air separation unit, but also two further product streams, at least one of which represents a pure or non-pure oxygen product stream, are introduced from the cryogenic air separation unit into the production unit. This allows a much more efficient use of the cryogenic air separation unit and saves the use of other sources for these flows that are needed in the production unit.

Der dritte Produktstrom weist eine Zusammensetzung aufweist, die sich von der Zusammensetzung des ersten Produktstroms und von der Zusammensetzung des zweiten Produktstroms unterscheidet, vorzugsweise um mindestens 1 mol-% bezüglich mindestens einer Komponente, insbesondere um mindestens 5 mol-% oder mindestens 10 mol-% bezüglich mindestens einer Komponente. Es kann sich beispielsweise um ein Sauerstoffprodukt handeln, das reiner oder unreiner als der erste Produktstrom ist. Der dritte Produktstrom kann auch durch ein Argon-, Helium- oder Wasserstoffprodukt gebildet werden oder durch ein Stickstoffprodukt, das reiner oder weniger rein als der erste Produktstrom ist. Selbstverständlich ist auch eine Kombination zweier oder mehrerer "dritter" Produktströme unterschiedlicher Zusammensetzung möglich.The third product stream has a composition which differs from the composition of the first product stream and from the composition of the second product stream, preferably by at least 1 mol% with respect to at least one component, in particular by at least 5 mol% or at least 10 mol% with respect to at least one component. It may, for example, be an oxygen product that is purer or less pure than that first product flow is. The third product stream may also be formed by an argon, helium or hydrogen product or by a nitrogen product that is purer or less pure than the first product stream. Of course, a combination of two or more "third" product streams of different composition is possible.

Beispielsweise können der zweite Produktstrom durch einen Reinsauerstoffstrom und der dritte Produktstrom durch einen Unreinsauerstoffstrom gebildet werden. Das Unreinsauerstoff-Produkt kann auf jede Weise in der Tieftemperatur-Luftzerlegungseinheit erzeugt werden. Vorzugsweise geschieht dies, indem eine erste sauerstoffangereicherte Restfraktion erzeugt wird, mindestens ein erster Teil der ersten Restfraktion in einer Entspannungsmaschine arbeitsleistend entspannt wird und ein zweiter Teil der ersten Restfraktion nicht in die Entspannungsmaschine eingeleitet, sondern als gasförmiges Unreinsauerstoff-Produktstrom gewonnen wird. Mindestens ein Teil des gasförmigen Unreinsauerstoff-Produktstroms wird dann der Produktionseinheit zugeleitet.For example, the second product stream may be formed by a pure oxygen stream and the third product stream may be formed by a non-pure oxygen stream. The impure oxygen product can be generated in any manner in the cryogenic air separation unit. Preferably, this is done by a first oxygen-enriched residual fraction is generated, at least a first part of the first residual fraction is expanded to perform work in a relaxation machine and a second part of the first residual fraction is not introduced into the expansion machine, but is obtained as a gaseous impure oxygen product stream. At least a portion of the gaseous particulate oxygen product stream is then sent to the production unit.

Häufig wird nur ein Teil der ersten Restfraktion für die Kälteproduktion durch arbeitsleistende Entspannung benötigt. Der Rest oder ein Teil des Restes kann im Rahmen der Erfindung als gasförmiges Unrein-Sauerstoffprodukt verwendet werden, und zwar unter etwa dem Eintrittsdruck der Entspannungsmaschine, das heißt unter einem deutlich überatmosphärischen Druck von 3 bis 6 bar, vorzugsweise 3,5 bis 5,5 bar.Often, only part of the first residual fraction is needed for refrigeration production through work-performing relaxation. The remainder or part of the remainder can be used in the context of the invention as a gaseous impure oxygen product, specifically below the inlet pressure of the expansion machine, that is to say at a significantly superatmospheric pressure of 3 to 6 bar, preferably 3.5 to 5.5 bar.

Das gasförmige Unrein-Sauerstoffprodukt kann für jede Anwendung in der Produktionseinheit genutzt werden, die einen entsprechenden Druck erfordert, ohne dass ein Verdichter notwendig wäre, zum Beispiel als Oxidationsmittel bei einer chemischen Reaktion, etwa einer Verbrennung von umweltschädlichem Abgas.The gaseous impure oxygen product can be used for any application in the production unit that requires a corresponding pressure without the need for a compressor, for example, as an oxidant in a chemical reaction, such as combustion of environmentally harmful exhaust gas.

Wenn die Tieftemperatur-Luftzerlegungseinheit eine Einzelsäule mit Kopfkondensator aufweist, in dem Dampf aus dem oberen Bereich der Einzelsäule mindestens teilweise kondensiert wird, kann die erste Restfraktion zunächst flüssig aus dem unteren Bereich der Einzelsäule entnommen und anschließend in dem Kopfkondensator mindestens teilweise verdampft werden; aus der verdampften Restfraktion stromabwärts des Kopfkondensators werden dann der erste und der zweite Teil der ersten Restfraktion gebildet.If the cryogenic air separation unit has a single column with overhead condenser in which vapor from the upper region of the single column is at least partially condensed, the first residual fraction can first be removed liquid from the lower region of the single column and then at least partially vaporized in the overhead condenser; from the vaporized residual fraction downstream of the Top condenser then the first and the second part of the first residual fraction are formed.

Außerdem ist es günstig, wenn bei der Erfindung in an sich bekannter Weise eine zweite Restfraktion aus dem unteren oder mittleren Bereich der Einzelsäule entnommen, rückverdichtet und anschließend wieder der Einzelsäule zugeleitet wird. Hierdurch wird die Produktausbeute, insbesondere an Stickstoff, erhöht.Moreover, it is advantageous if, in a manner known per se, a second residual fraction is taken from the lower or middle region of the single column, recompressed, and then fed back to the single column. This increases the product yield, in particular of nitrogen.

Die Rückverdichtung der zweiten Restfraktion kann mittels eines Kaltverdichters vorgenommen werden. Sowohl bei kalter als auch bei warmer Rückverdichtung kann die bei der arbeitsleistenden Entspannung erzeugte mechanische Energie mindestens teilweise zur Rückverdichtung der zweiten Restfraktion genutzt werden.The recompression of the second residual fraction can be carried out by means of a cold compressor. Both in cold and in warm recompression, the mechanical energy generated during the work-relaxing expansion can be used at least partially for recompression of the second residual fraction.

Die zweite Restfraktion kann zusammen mit der ersten Restfraktion aus der Einzelsäule entnommen werden. Alternativ wird sie von einer Zwischenstelle der Einzelsäule abgezogen, die oberhalb des Sumpfs angeordnet ist, insbesondere oberhalb der Stelle, an der die erste Restfraktion entnommen wird. Die erste Restfraktion kann dabei zum Beispiel am Sumpf der Einzelsäule abgezogen werden.The second residual fraction can be taken out of the single column together with the first residual fraction. Alternatively, it is withdrawn from an intermediate point of the single column, which is arranged above the sump, in particular above the point at which the first residual fraction is removed. The first residual fraction can be withdrawn, for example, at the bottom of the single column.

Ein Reinsauerstoff-Produkt für die Produktionseinheit oder ein anderer dritter Produktstrom kann innerhalb der Tieftemperatur-Luftzerlegungseinheit mittels Verdampfung und/oder Anwärmung eines externen Fluids entsprechender Zusammensetzung gewonnen werden, indem Einsatzluft in einem Hauptwärmetauscher der Tieftemperatur-Luftzerlegungseinheit abgekühlt und in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeleitet wird, ein Fluid aus einer externen Quelle mindestens zeitweise in einen Flüssigtank geleitet wird, wobei mindestens zeitweise Fluid in flüssigem Zustand aus dem Flüssigtank entnommen, in dem Hauptwärmetauscher verdampft und als gasförmiger Reinsauerstoff-Produktstrom gewonnen wird, der schließlich mindestens zum Teil der Produktionseinheit zugeleitet wird.A pure oxygen product for the production unit or other third product stream can be recovered within the cryogenic air separation unit by evaporating and / or heating an external fluid of appropriate composition by cooling feed air in a main heat exchanger of the cryogenic air separation unit and into a distillation column system for nitrogen Oxygen separation is initiated, a fluid from an external source is at least temporarily passed into a liquid tank, at least temporarily taken fluid in the liquid state from the liquid tank, evaporated in the main heat exchanger and recovered as a gaseous pure oxygen product stream, which finally at least to Part of the production unit is supplied.

Das externe Fluid aus dem Flüssigtank wird nicht wie üblich mittels eines externen Wärmetauschers (beispielsweise einem Wasserbad-Verdampfer oder einem luftbeheizten Verdampfer) angewärmt, sondern im Hauptwärmetauscher, in dem die Einsatzluft für das Destilliersäulen-System abgekühlt wird. Hierdurch kann die Kälte, die in dem externen Fluid enthalten ist, für das Zerlegungsverfahren zurückgewonnen werden, indem sie in dem Hauptwärmetauscher auf Einsatzluft übertragen wird.The external fluid from the liquid tank is not warmed as usual by means of an external heat exchanger (for example a water bath evaporator or an air-heated evaporator), but in the main heat exchanger in which the feed air for the distillation column system is cooled. As a result, the cold, contained in the external fluid are recovered for the separation process by being transferred to feed air in the main heat exchanger.

Das Fluid stammt aus einer "externen Quelle", das heißt nicht aus einer der Trennsäulen des Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung oder einer dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung nachgeschalteten Trennsäule. Vorzugsweise wird es aus einer anderen Anlage zur Erzeugung verflüssigter Gas antransportiert, beispielsweise mittels eines Tankwagens. Es kann sich dabei um ein Fluid, das die chemische Zusammensetzung eines der Produktströme des Destilliersäulen-Systems zur Stickstoff-Sauerstoff-Trennung aufweist. Vorzugsweise weist das Fluid jedoch eine andere Zusammensetzung als diese Produktströme auf und besteht beispielsweise aus Argon oder Wasserstoff. Das erfindungsgemäße Verfahren eignet sich damit insbesondere für die Versorgung von Betrieben der Halbleiterindustrie mit technischen Gasen. Diese benötigen häufig eine so geringe Menge an Argon, dass es sich nicht lohnt, dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eine Argongewinnung nachzuschalten. Außerdem kann auch die Kälte von Gasen wie Wasserstoff, die nicht in Luftzerlegungsanlagen gewonnen werden, für die Luftzerlegung genutzt und damit der Energieverbrauch der Zerlegung verringert werden.The fluid originates from an "external source", that is, not from any of the separation columns of the nitrogen-oxygen separation distillation column system or a separation column downstream of the nitrogen-oxygen separation distillation column system. Preferably, it is transported from another plant for producing liquefied gas, for example by means of a tanker truck. It may be a fluid having the chemical composition of one of the product streams of the nitrogen-oxygen separation distillation column system. Preferably, however, the fluid has a different composition than these product streams and consists for example of argon or hydrogen. The inventive method is thus suitable in particular for the supply of companies in the semiconductor industry with industrial gases. These often require such a small amount of argon that it is not worthwhile downstream of the distillation column system for nitrogen-oxygen separation argon production. In addition, the cold of gases such as hydrogen, which are not obtained in air separation plants, used for the air separation and thus reduce the energy consumption of the decomposition.

Der "Hauptwärmetauscher" wird vorzugsweise durch einen einzigen Wärmetauscherblock gebildet. Bei größeren Anlagen kann es sinnvoll sein, den Hauptwärmetauscher durch mehrere hinsichtlich des Temperaturverlaufs parallel geschaltete Stränge zu realisieren, die durch voneinander getrennte Bauelemente gebildet werden. Grundsätzlich ist es möglich, dass der Hauptwärmetauscher beziehungsweise jeder dieser Stränge durch zwei oder mehr seriell verbundene Blöcke gebildet wird.The "main heat exchanger" is preferably formed by a single heat exchanger block. For larger systems, it may be useful to realize the main heat exchanger by a plurality of parallel with respect to the temperature profile strands, which are formed by separate components. In principle, it is possible that the main heat exchanger or each of these strands is formed by two or more blocks connected in series.

Es ist günstig, wenn der Betriebsdruck des Flüssigtanks mindestens 1 bar über dem Atmosphärendruck liegt, vorzugsweise mindestens 1 bar über dem Produktdruck des gasförmigen Zusatzprodukts, unter dem dieses an eine Anwendung oder eine Nachverdichtungseinheit abgegeben wird. Der Betriebsdruck des Flüssigtanks beträgt beispielsweise 2 bis 36 bar, vorzugsweise 5 bis 16 bar. Der Überdruck kann durch jede bekannte Maßnahme, beispielsweise durch das Befüllen mit unter entsprechendem Druck stehendem Fluid oder durch Druckaufbauverdampfung gebildet werden.It is favorable if the operating pressure of the liquid tank is at least 1 bar above the atmospheric pressure, preferably at least 1 bar above the product pressure of the gaseous additional product, under which it is delivered to an application or a post-compression unit. The operating pressure of the liquid tank is for example 2 to 36 bar, preferably 5 to 16 bar. The overpressure may be formed by any known means, for example by filling with pressurized fluid or by pressure build-up evaporation.

Alternativ oder zusätzlich kann der Reinsauerstoff durch Zerlegung in der Tieftemperatur-Luftzerlegungseinheit gewonnen werden, indem ein sauerstoffhaltiger Strom der Einzelsäule an einer Zwischenstelle entnommen und einer Reinsauerstoffsäule zugeleitet wird und ein Reinsauerstoff-Produktstrom in flüssigem Zustand aus dem unteren Bereich der Reinsauerstoffsäule entnommen wird, der Reinsauerstoff-Produktstrom - gegebenenfalls nach Druckerhöhung im flüssigen Zustand in dem Hauptwärmetauscher gegen Einsatzluft verdampft und angewärmt und mindestens zum Teil der Produktionseinheit zugeleitet wird.Alternatively or additionally, the pure oxygen can be recovered by decomposition in the cryogenic air separation unit by taking an oxygen-containing stream from the single column at an intermediate point and feeding it to a pure oxygen column and removing a pure oxygen product stream in the liquid state from the lower region of the pure oxygen column, the pure oxygen -Product stream - optionally evaporated after evaporation in the liquid state in the main heat exchanger against feed air and warmed and fed at least in part to the production unit.

Die Erfindung betrifft außerdem eine Elektronikindustrieanlage gemäß Patentanspruch 10.The invention also relates to an electronic industrial plant according to claim 10.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in den Zeichnungen schematisch dargestellten Ausführungsbeispiels näher erläutert. Hierbei zeigen:

Figur 1
eine Prinzipdarstellung des Ausführungsbeispiels,
Figur 2
die Tieftemperatur-Luftzerlegungseinheit des Ausführungsbeispiels im Detail.
The invention and further details of the invention are explained in more detail below with reference to an embodiment schematically illustrated in the drawings. Hereby show:
FIG. 1
a schematic diagram of the embodiment,
FIG. 2
the cryogenic air separation unit of the embodiment in detail.

Die Elektronikindustrieanlage der Figur 1 weist eine Produktionseinheit 200 zur Herstellung eines Halbleiterprodukts und eine Tieftemperatur-Luftzerlegungseinheit 100 auf. Luft 1 wird einer Tieftemperatur-Luftzerlegungseinheit 100 zugeführt. Aus dieser werden ein Stickstoff-Produktstrom als erster Produktstrom 110, ein Reinsauerstoff-Produktstrom als zweiter Produktstrom 120 und ein Unreinsauerstoff-Produktstrom als dritter Produktstrom 130 entnommen und der Produktionseinheit zugeleitet.The electronic industrial plant of FIG. 1 has a production unit 200 for producing a semiconductor product and a cryogenic air separation unit 100. Air 1 is supplied to a cryogenic air separation unit 100. From this, a nitrogen product stream as the first product stream 110, a pure oxygen product stream as the second product stream 120 and a non-pure oxygen product stream as the third product stream 130 are removed and fed to the production unit.

Figur 2 zeigt Details der Tieftemperatur-Luftzerlegungseinheit der Figur 1. Das Destilliersäulen-System der Tieftemperatur-Luftzerlegungseinheit des Ausführungsbeispiels der Figur 2 weist eine Einzelsäule 12 und eine Reinsauerstoffsäule 38 auf. Atmosphärische Luft 1 wird über ein Filter 2 von einem Luftverdichter angesaugt und dort auf einen Absolutdruck von 6 bis 20 bar, vorzugsweise etwa 9 bar verdichtet. Nach Durchströmen eines Nachkühlers 4 und eines Wasserabscheiders 5 wird die verdichtete Luft 6 in einer Reinigungsvorrichtung 7 gereinigt, die ein Paar von mit Adsorptionsmaterial, vorzugsweise Molekularsieb, gefüllten Behältern aufweist. Die gereinigte Luft 8 wird in einem Hauptwärmetauscher 9 auf etwa Taupunkt abgekühlt und teilweise verflüssigt. Ein erster Teil 11 der abgekühlten Luft 10 wird über ein Drosselventil 51 in die Einzelsäule 12 eingeleitet. Die Einspeisung erfolgt vorzugsweise einige praktische oder theoretische Böden oberhalb des Sumpfs. FIG. 2 shows details of the cryogenic air separation unit of FIG. 1 , The distillation column system of the cryogenic air separation unit of the embodiment of FIG. 2 has a single column 12 and a pure oxygen column 38. Atmospheric air 1 is drawn in via a filter 2 from an air compressor and there compressed to an absolute pressure of 6 to 20 bar, preferably about 9 bar. After flowing through an aftercooler 4 and a water separator 5, the compressed air 6 is cleaned in a cleaning device 7 comprising a pair of containers filled with adsorption material, preferably molecular sieve. The purified air 8 is cooled in a main heat exchanger 9 to about dew point and partially liquefied. A first part 11 of the cooled air 10 is introduced via a throttle valve 51 into the single column 12. The feed is preferably some practical or theoretical soils above the sump.

Der Betriebsdruck der Einzelsäule 12 (am Kopf) beträgt 6 bis 20 bar, vorzugsweise etwa 9 bar. Ihr Kopfkondensator wird mit einer zweiten Restfraktion 18 und einer ersten Restfraktion 14 gekühlt. Die erste Restfraktion 14 wird vom Sumpf der Einzelsäule 12 abgezogen, die zweite Restfraktion 14 von einer Zwischenstelle einige praktische oder theoretische Böden oberhalb der Luftzuspeisung oder auf gleicher Höhe wie diese.The operating pressure of the single column 12 (at the top) is 6 to 20 bar, preferably about 9 bar. Your top condenser is cooled with a second residual fraction 18 and a first residual fraction 14. The first residual fraction 14 is withdrawn from the sump of the single column 12, the second residual fraction 14 from an intermediate point some practical or theoretical soils above the air supply or at the same level as this.

Als Hauptprodukt der Einzelsäule 12 wird gasförmiger Stickstoff 15, 16 am Kopf abgezogen, im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 17 als gasförmiges Druckprodukt (PGAN) abgezogen und über die in Figur 1 dargestellte Leitung 110 als Stickstoff-Produktstrom der Produktionseinheit 200 zugeleitet. Ein Teil 53 des Kondensats 52 aus dem Kopfkondensator 13 kann als Flüssigstickstoffprodukt (PLIN) gewonnen werden; der Rest 54 wird als Rücklauf auf den Kopf der Einzelsäule aufgegeben.As the main product of the single column 12 gaseous nitrogen 15, 16 is withdrawn at the top, heated in the main heat exchanger 9 to about ambient temperature and finally withdrawn via line 17 as gaseous pressure product (PGAN) and on in FIG. 1 shown line 110 fed as a nitrogen product stream of the production unit 200. A portion 53 of the condensate 52 from the top condenser 13 may be recovered as liquid nitrogen product (PLIN); the remainder 54 is given up as reflux to the head of the single column.

Die zweite Restfraktion 18 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar verdampft und strömt gasförmig über Leitung 29 zu einem Kaltverdichter 30, in dem sie auf etwa den Betriebsdruck der Einzelsäule rückverdichtet wird. Die rückverdichtete Restfraktion 31 wird im Hauptwärmetauscher 9 wieder auf Säulentemperatur abgekühlt und schließlich über Leitung 32 der Einzelsäule 12 am Sumpf wieder zugeführt.The second residual fraction 18 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar and flows in gaseous form via line 29 to a cold compressor 30 in which it is recompressed to about the operating pressure of the single column. The recompressed residual fraction 31 is cooled in the main heat exchanger 9 back to column temperature and finally fed via line 32 of the single column 12 at the bottom again.

Die erste Restfraktion 14 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar verdampft und strömt gasförmig über Leitung 19 zum kalten Ende des Hauptwärmetauschers 9. Aus bei einer Zwischentemperatur wird ein erster Teil 20 der ersten Restfraktion wieder entnommen (Leitung 20). Ein zweiter Teil verbleibt im Hauptwärmetauscher 9, wird dort weiter auf etwa Umgebungstemperatur angewärmt und verlässt über Leitung 60 die Tieftemperatur-Luftzerlegungseinheit als gasförmiges Unrein-Sauerstoffprodukt (GOX-Imp.). Er wird dann über die in Figur 1 dargestellte Leitung 130 als Unreinsauerstoff-Produktstrom der Produktionseinheit 200 zugeleitet. Der erste Teil 20 der ersten Restfraktion wird in einer Entspannungsmaschine 21, die in dem Beispiel als Turboexpander ausgebildet ist, arbeitsleistend auf etwa 300 mbar über Atmosphärendruck entspannt. Die Entspannungsmaschine ist mechanisch gekoppelt mit dem Kaltverdichter 30 und einer Bremseinrichtung 22, die in dem Ausführungsbeispiel durch eine Ölbremse gebildet wird. Die entspannte erste Restfraktion 23 wird im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt. Die warme erste Restfraktion 24 wird in die Atmosphäre abgeblasen (Leitung 25) und/oder als Regeneriergas 26, 27 in der Reinigungsvorrichtung 7 eingesetzt, gegebenenfalls nach Erhitzung in der Heizeinrichtung 28. Alternativ oder zusätzlich kann ein Unrein-Sauerstoffprodukt aus der rückverdichteten zweiten Restfraktion 31 abgezweigt und im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt werden.The first residual fraction 14 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar, and flows in gaseous form via line 19 to the cold end of the main heat exchanger 9. At an intermediate temperature, a first part 20 of the first residual fraction is removed again ( Line 20). A second part remains in the main heat exchanger 9, where it is further warmed to approximately ambient temperature and leaves via line 60, the cryogenic air separation unit as gaseous impure oxygen product (GOX Imp.). He will then talk about the in FIG. 1 shown line 130 as Unreininsauer product flow supplied to the production unit 200. The first part 20 of the first residual fraction is depressurized in a relaxation machine 21, which is designed in the example as turboexpander, working to about 300 mbar above atmospheric pressure. The expansion machine is mechanically coupled to the cold compressor 30 and a braking device 22, which is formed in the embodiment by an oil brake. The relaxed first residual fraction 23 is heated in the main heat exchanger 9 to about ambient temperature. The warm first residual fraction 24 is blown off into the atmosphere (line 25) and / or used as regeneration gas 26, 27 in the cleaning device 7, optionally after heating in the heater 28. Alternatively or additionally, an impure oxygen product from the recompressed second residual fraction 31 branched off and warmed in the main heat exchanger 9 to about ambient temperature.

Ein sauerstoffhaltiger Strom 36, der im Wesentlichen frei von schwererflüchtigen Verunreinigungen ist, wird von einer Zwischenstelle der Einzelsäule 12 in flüssigem Zustand abgezogen, die 5 bis 25 theoretische oder praktische Böden oberhalb der Luftzuspeisung angeordnet ist. Der sauerstoffhaltige Strom 36 wird gegebenenfalls in einem Sumpfverdampfer 37 der Reinsauerstoffsäule 38 unterkühlt und über Leitung 39 und Drosselventil 40 auf den Kopf der Reinsauerstoffsäule 38 aufgegeben. Der Betriebsdruck der Reinsauerstoffsäule 38 (am Kopf) beträgt 1,3 bis 4 bar, vorzugsweise etwa 2,5 bar.An oxygen-containing stream 36 that is substantially free of less volatile impurities is withdrawn from an intermediate location of the single column 12 in the liquid state, which is located 5 to 25 theoretical or practical trays above the air feed. The oxygen-containing stream 36 is optionally supercooled in a sump evaporator 37 of the pure oxygen column 38 and fed via line 39 and throttle valve 40 to the top of the pure oxygen column 38. The operating pressure of the pure oxygen column 38 (at the top) is 1.3 to 4 bar, preferably about 2.5 bar.

Der Sumpfverdampfer 37 der Reinsauerstoffsäule 38 wird außerdem mittels eines zweiten Teils 42 der abgekühlten Einsatzluft 10 gekühlt. Der Einsatzluftstrom 42 wird dabei mindestens teilweise, beispielsweise vollständig kondensiert und strömt über Leitung 43 zur Einzelsäule 12, wo er etwa auf Höhe der Zuspeisung der übrigen Einsatzluft 11 eingeleitet wird.The sump evaporator 37 of the pure oxygen column 38 is also cooled by means of a second part 42 of the cooled feed air 10. The feed air stream 42 is at least partially, for example, completely condensed and flows via line 43 to the single column 12, where it is introduced approximately at the level of the feed of the remaining feed air 11.

Vom Sumpf der Reinsauerstoffsäule 38 wird ein Reinsauerstoff-Produktstrom 41 in flüssigem Zustand entnommen, mittels einer Pumpe 55 auf einen erhöhten Druck von 2 bis 100 bar, vorzugsweise etwa 12 bar gebracht, über Leitung 56 zum kalten Ende des Hauptwärmetauschers 9 geführt, dort unter dem erhöhten Druck verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 57 als gasförmiges Produkt (GOX-IC) gewonnen. Er wird dann über die in Figur 1 dargestellte Leitung 120 als Reinsauerstoff-Produktstrom der Produktionseinheit 200 zugeleitet.From the bottom of the pure oxygen column 38, a pure oxygen product stream 41 is removed in the liquid state, brought by a pump 55 to an elevated pressure of 2 to 100 bar, preferably about 12 bar, led via line 56 to the cold end of the main heat exchanger 9, there under the increased pressure evaporated and warmed to about ambient temperature and finally via line 57 as gaseous product (GOX-IC) won. He will then talk about the in FIG. 1 shown line 120 fed as pure oxygen product stream of the production unit 200.

Das Kopfgas 58 der Reinsauerstoffsäule 38 wird der entspannten ersten Restfraktion 23 zugemischt. Über eine Bypassleitung 59 wird gegebenenfalls ein Teil der Einsatzluft zur Pumpverhütung des Kaltverdichters 30 zu dessen Eintritt geleitet (anti-surge control).The head gas 58 of the pure oxygen column 38 is admixed with the relaxed first residual fraction 23. If necessary, a portion of the feed air for pumping prevention of the cold compressor 30 is led to its inlet via a bypass line 59 (anti-surge control).

Bei Bedarf kann der Anlage stromaufwärts und/oder stromabwärts der Pumpe 55 ein flüssiger Sauerstoffs als Flüssigprodukt entnommen werden (in der Zeichnung nicht dargestellt). Zusätzlich kann eine externe Flüssigkeit, zum Beispiel flüssiges Argon, flüssiger Stickstoff oder flüssiger Sauerstoff aus einem Flüssigtank, in dem Hauptwärmetauscher 9 in indirektem Wärmeaustausch mit der Einsatzluft verdampft werden (in der Zeichnung nicht dargestellt).If necessary, the system upstream and / or downstream of the pump 55, a liquid oxygen can be removed as a liquid product (not shown in the drawing). In addition, an external liquid, for example, liquid argon, liquid nitrogen or liquid oxygen from a liquid tank, may be vaporized in the main heat exchanger 9 in indirect heat exchange with the feed air (not shown in the drawing).

Ein Flüssigkeitstank 70 wird von Zeit zu Zeit aus einem Tankwagen mit flüssigem Argon als "Fluid" gefüllt. Das Fluid wird unter etwa 12 bar, dem Betriebsdruck des Flüssigtanks, eingeführt. Kontinuierlich wird über eine Leitung 71 flüssiges Fluid unter etwa 12 bar entnommen, unter diesem Druck im Hauptwärmetauscher 9 verdampft und angewärmt und schließlich über die Leitungen 72 und 73 als gasförmiges Zusatzprodukt abgezogen.A liquid tank 70 is occasionally filled from a tanker with liquid argon as a "fluid". The fluid is introduced below about 12 bar, the operating pressure of the liquid tank. Liquid fluid is continuously withdrawn below about 12 bar via a line 71, vaporized and warmed under this pressure in the main heat exchanger 9 and finally drawn off via lines 72 and 73 as a gaseous additional product.

Gleichzeitig kann ein weiterer Strom 74 des flüssigen und unter Druck stehenden Fluids aus dem Flüssigtank 70 entnommen, in einem Verdampfer 75, der mittels eines externen Wärmeträgers (zum Beispiel atmosphärischer Luft oder Wasser) verdampft und über Leitung 76 dem gasförmigen Zusatzprodukt hinzugefügt werden. Der Verdampfer 75 kann aber auch zur Notversorgung bei Ausfall des Hauptwärmetauschers 9 genutzt werden. Die Mengenströme werden durch die Ventile 77 und 78 eingestellt.At the same time, another stream 74 of liquid and pressurized fluid may be withdrawn from the liquid tank 70, in an evaporator 75 which is vaporized by means of an external heat transfer medium (for example atmospheric air or water) and added to the gaseous by-product via line 76. The evaporator 75 can also be used for emergency supply in case of failure of the main heat exchanger 9. The flow rates are adjusted by the valves 77 and 78.

Die Erfindung ist ebenso auf ähnliches Verfahren ohne Reinsauerstoffsäule 38 anwendbar. In diesem Fall wird das externe Fluid in dem Flüssigtank 70 nicht durch Argon, sondern durch Reinsauerstoff gebildet. Der Reinsauerstoffprodukt-Strom wird dann über Leitung 72 abgezogen.The invention is also applicable to a similar process without pure oxygen column 38. In this case, the external fluid in the liquid tank 70 is not formed by argon but by pure oxygen. The pure oxygen product stream is then withdrawn via line 72.

Claims (10)

Verfahren zum Betreiben einer Elektronikindustrieanlage, die eine Produktionseinheit (200) zur Herstellung eines Halbleiterprodukts und eine Tieftemperatur-Luftzerlegungseinheit (100) aufweist, wobei der Tieftemperatur-Luftzerlegungseinheit ein Stickstoff-Produktstrom (15, 16, 17; 110) als erster Produktstrom entnommen und der Produktionseinheit zugeführt wird, dadurch gekennzeichnet, dass der Tieftemperatur-Luftzerlegungseinheit ein erster Sauerstoffstrom als zweiter Produktstrom (41, 56, 57; 60; 120) und ein dritter Produktstrom (60; 41, 56, 57; 130) entnommen werden und der zweite Produktstrom und der dritte Produktstrom der Produktionseinheit zugeleitet werden, wobei der dritte Produktstrom eine Zusammensetzung aufweist, die sich von der Zusammensetzung des ersten Produktstroms und von der Zusammensetzung des zweiten Produktstroms unterscheidet.A method of operating an electronics plant comprising a production unit (200) for producing a semiconductor product and a cryogenic air separation unit (100), wherein the cryogenic air separation unit removes a nitrogen product stream (15, 16, 17, 110) as the first product stream and the Production unit is supplied, characterized in that the cryogenic air separation unit, a first oxygen stream as a second product stream (41, 56, 57, 60; 120) and a third product stream (60; 41, 56, 57, 130) are removed and the second product stream and supplying the third product stream to the production unit, the third product stream having a composition that is different from the composition of the first product stream and the composition of the second product stream. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in der Tieftemperatur-Luftzerlegungseinheit - eine erste sauerstoffangereicherte Restfraktion (19) erzeugt wird und - mindestens ein erster Teil (20) der ersten Restfraktion (19) in einer Entspannungsmaschine (21) arbeitsleistend entspannt wird, wobei insbesondere - ein zweiter Teil der ersten Restfraktion (19) nicht in die Entspannungsmaschine (21) eingeleitet, sondern als gasförmiges Unreinsauerstoff-Produktstrom (60) gewonnen wird und mindestens ein Teil des gasförmigen Unreinsauerstoff-Produktstroms (60) als zweiter beziehungsweise dritter Produktstrom der Produktionseinheit zugeleitet wird. A method according to claim 1, characterized in that in the cryogenic air separation unit - A first oxygen-enriched residual fraction (19) is generated and - At least a first part (20) of the first residual fraction (19) in a relaxation machine (21) is designed to perform work, in particular - A second part of the first residual fraction (19) is not introduced into the expansion machine (21), but is obtained as gaseous Unreininsauer product stream (60) and at least a portion of the gaseous Unreininsauer product stream (60) as the second or third product stream fed to the production unit becomes. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass - die Tieftemperatur-Luftzerlegungseinheit eine Einzelsäule (12) mit Kopfkondensator (13) aufweist, in dem Dampf aus dem oberen Bereich der Einzelsäule mindestens teilweise kondensiert wird, - eine erste Restfraktion (14, 19) flüssig aus dem unteren Bereich der Einzelsäule (12) entnommen und in dem Kopfkondensator (13) mindestens teilweise verdampft wird und - aus der verdampften Restfraktion (19) stromabwärts des Kopfkondensators (13) der erste und der zweite Teil der ersten Restfraktion gebildet werden. A method according to claim 2, characterized in that the cryogenic air separation unit has a single column (12) with top condenser (13) in which steam from the upper region of the single column is at least partially condensed, - A first residual fraction (14, 19) liquid taken from the lower region of the single column (12) and in the top condenser (13) is at least partially evaporated and - From the evaporated residual fraction (19) downstream of the top condenser (13) of the first and the second part of the first residual fraction are formed. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine zweite Restfraktion (18, 29) aus dem unteren oder mittleren Bereich der Einzelsäule (12) entnommen, rückverdichtet (30) und anschließend mindestens zu einem ersten Teil wieder der Einzelsäule (12) zugeleitet (32) wird, wobei insbesondere ein zweiter Teil der rückverdichteten zweiten Restfraktion (31) als gasförmiger Unreinsauerstoff-Produktstrom gewonnen wird und mindestens ein Teil dieses gasförmigen Unreinsauerstoff-Produktstroms als zweiter beziehungsweise dritter Produktstrom der Produktionseinheit zugeleitet wird..A method according to claim 3, characterized in that a second residual fraction (18, 29) taken from the lower or central region of the single column (12), recompressed (30) and then at least to a first part again the single column (12) fed (32 In particular, a second portion of the recompressed second residue fraction (31) is recovered as a gaseous impure oxygen product stream and at least a portion of this gaseous impure oxygen product stream is passed as second or third product streams to the production unit. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Rückverdichtung der zweiten Restfraktion (18, 29) mittels eines Kaltverdichters (30) vorgenommen wird.A method according to claim 4, characterized in that the recompression of the second residual fraction (18, 29) by means of a cold compressor (30) is made. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die bei der arbeitsleistenden Entspannung (21) erzeugte mechanische Energie mindestens teilweise zur Rückverdichtung (30) der zweiten Restfraktion genutzt wird.Method according to one of claims 3 to 5, characterized in that in the work-performing expansion (21) generated mechanical energy is at least partially used for recompression (30) of the second residual fraction. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die zweite Restfraktion (18) von einer Zwischenstelle der Einzelsäule (12) abgezogen wird, die oberhalb des Sumpfs angeordnet ist, insbesondere oberhalb der Stelle, an der die erste Restfraktion (14) entnommen wird.Method according to one of claims 4 to 6, characterized in that the second residual fraction (18) is withdrawn from an intermediate point of the single column (12), which is arranged above the sump, in particular above the point at which the first residual fraction (14). is removed. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Tieftemperatur-Luftzerlegungseinheit - Einsatzluft (8) in einem Hauptwärmetauscher (9) abgekühlt und in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeleitet (11, 43) wird, - ein Fluid aus einer externen Quelle mindestens zeitweise in einen Flüssigtank (70) geleitet wird, - mindestens zeitweise Fluid (71) in flüssigem Zustand aus dem Flüssigtank (70) entnommen, in dem Hauptwärmetauscher (9) verdampft und als dritter Produktstrom (72, 73) gewonnen wird und - mindestens ein Teil des dritten Produktstroms (72, 73) der Produktionseinheit zugeleitet wird. Method according to one of claims 1 to 6, characterized in that in the cryogenic air separation unit Cooled feed air (8) in a main heat exchanger (9) and introduced into a distillation column system for nitrogen-oxygen separation (11, 43), a fluid from an external source is passed at least temporarily into a liquid tank (70), - At least temporarily removed fluid (71) in the liquid state from the liquid tank (70), evaporated in the main heat exchanger (9) and as the third product stream (72, 73) is recovered and - At least a portion of the third product stream (72, 73) is fed to the production unit. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass in der Tieftemperatur-Luftzerlegungseinheit - ein sauerstoffhaltiger Strom (36) der Einzelsäule (12) an einer Zwischenstelle entnommen und einer Reinsauerstoffsäule (38) zugeleitet (39) wird und - ein Reinsauerstoff-Produktstrom (41) in flüssigem Zustand aus dem unteren Bereich der Reinsauerstoffsäule (38) entnommen wird, - der Reinsauerstoff-Produktstrom (41, 56) - gegebenenfalls nach Druckerhöhung (55) im flüssigen Zustand in dem Hauptwärmetauscher (9) gegen Einsatzluft (8) verdampft und angewärmt - und mindestens zum Teil der Produktionseinheit zugeleitet wird. Method according to one of claims 3 to 7, characterized in that in the cryogenic air separation unit - An oxygen-containing stream (36) of the single column (12) taken at an intermediate point and a pure oxygen column (38) supplied (39) and a pure oxygen product stream (41) in the liquid state is taken from the lower region of the pure oxygen column (38), - The pure oxygen product stream (41, 56) - optionally after pressure increase (55) in the liquid state in the main heat exchanger (9) against use of air (8) evaporated and heated - and at least partially fed to the production unit. Elektronikindustrieanlage mit einer Produktionseinheit zur Herstellung eines Halbleiterprodukts und mit einer TT-LZE und mit Mitteln zur Zuführung von Stickstoff aus der Tieftemperatur-Luftzerlegungseinheit in die Produktionseinheit, gekennzeichnet durch Mittel zur Zuführung von Reinsauerstoff aus der Tieftemperatur-Luftzerlegungseinheit in die Produktionseinheit und durch Mittel zur Zuführung von Unreinsauerstoff aus der Tieftemperatur-Luftzerlegungseinheit in die Produktionseinheit.An electronic industrial plant comprising a production unit for producing a semiconductor product and a TT-LZE and means for supplying nitrogen from the cryogenic air separation unit to the production unit, characterized by means for supplying pure oxygen from the cryogenic air separation unit to the production unit and by means for supply of deoxygenated oxygen from the cryogenic air separation unit to the production unit.
EP07023683A 2007-10-25 2007-12-06 Electronics industry installation and method for operating electronic industry installation Withdrawn EP2053329A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007051182A DE102007051182A1 (en) 2007-10-25 2007-10-25 An electronic industrial plant and method for operating an electronic industrial plant

Publications (1)

Publication Number Publication Date
EP2053329A1 true EP2053329A1 (en) 2009-04-29

Family

ID=39387144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07023683A Withdrawn EP2053329A1 (en) 2007-10-25 2007-12-06 Electronics industry installation and method for operating electronic industry installation

Country Status (2)

Country Link
EP (1) EP2053329A1 (en)
DE (1) DE102007051182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219685A1 (en) * 2017-05-31 2018-12-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671813A (en) * 1984-03-29 1987-06-09 Daidousanso Co. Ltd. Highly pure nitrogen gas producing apparatus
US5363656A (en) * 1992-04-13 1994-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ultra-high purity nitrogen and oxygen generator
US5546765A (en) * 1994-09-14 1996-08-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air separating unit
US5656557A (en) * 1993-04-22 1997-08-12 Nippon Sanso Corporation Process for producing various gases for semiconductor production factories
JPH09303957A (en) * 1996-05-14 1997-11-28 Teisan Kk Air separator
EP1037004A1 (en) * 1999-03-17 2000-09-20 Linde Aktiengesellschaft Apparatus and process for gas mixture separation at low temperature
US6546748B1 (en) * 2002-06-11 2003-04-15 Praxair Technology, Inc. Cryogenic rectification system for producing ultra high purity clean dry air
DE10205096A1 (en) * 2001-11-02 2003-05-15 Linde Ag Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen
US20070204652A1 (en) * 2006-02-21 2007-09-06 Musicus Paul Process and apparatus for producing ultrapure oxygen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671813A (en) * 1984-03-29 1987-06-09 Daidousanso Co. Ltd. Highly pure nitrogen gas producing apparatus
US5363656A (en) * 1992-04-13 1994-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ultra-high purity nitrogen and oxygen generator
US5656557A (en) * 1993-04-22 1997-08-12 Nippon Sanso Corporation Process for producing various gases for semiconductor production factories
US5546765A (en) * 1994-09-14 1996-08-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air separating unit
JPH09303957A (en) * 1996-05-14 1997-11-28 Teisan Kk Air separator
EP1037004A1 (en) * 1999-03-17 2000-09-20 Linde Aktiengesellschaft Apparatus and process for gas mixture separation at low temperature
DE10205096A1 (en) * 2001-11-02 2003-05-15 Linde Ag Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen
US6546748B1 (en) * 2002-06-11 2003-04-15 Praxair Technology, Inc. Cryogenic rectification system for producing ultra high purity clean dry air
US20070204652A1 (en) * 2006-02-21 2007-09-06 Musicus Paul Process and apparatus for producing ultrapure oxygen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hausen/Linde, Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219685A1 (en) * 2017-05-31 2018-12-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system
CN110662935A (en) * 2017-05-31 2020-01-07 乔治洛德方法研究和开发液化空气有限公司 Gas production system
US11346603B2 (en) 2017-05-31 2022-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system
TWI821181B (en) * 2017-05-31 2023-11-11 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Gas production system

Also Published As

Publication number Publication date
DE102007051182A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2235460B1 (en) Process and device for the cryogenic separation of air
EP2015012A2 (en) Process for the cryogenic separation of air
DE10334560A1 (en) Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
EP2053330A1 (en) Method for low-temperature air separation
EP1995537A2 (en) Process and device for the cryogenic separation of air
EP2989400B1 (en) Method for obtaining an air product in an air separating system with temporary storage, and air separating system
DE10334559A1 (en) Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
WO2020083528A1 (en) Method and unit for low-temperature air separation
EP2603754A2 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP1239246B2 (en) Process and apparatus for separation of a gas mixture with failsafe operation
EP1757884A2 (en) Process for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP0768503A2 (en) Triple column air separation process
WO2021104668A1 (en) Process and plant for low-temperature fractionation of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP3980705A1 (en) Method and system for low-temperature air separation
DE102013002094A1 (en) Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
DE19933558B4 (en) Three-column process and apparatus for the cryogenic separation of air
EP1300640A1 (en) Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air
WO2014067662A2 (en) Process for the low-temperature separation of air in an air separation plant and air separation plant
DE102017010001A1 (en) Process and installation for the cryogenic separation of air
EP2053329A1 (en) Electronics industry installation and method for operating electronic industry installation
EP2600090A1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091030

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566