EP2049244A1 - Installation et procédé pour la fabrication industrielle continue de 3-chloropropylchlorosilanes - Google Patents
Installation et procédé pour la fabrication industrielle continue de 3-chloropropylchlorosilanesInfo
- Publication number
- EP2049244A1 EP2049244A1 EP07787246A EP07787246A EP2049244A1 EP 2049244 A1 EP2049244 A1 EP 2049244A1 EP 07787246 A EP07787246 A EP 07787246A EP 07787246 A EP07787246 A EP 07787246A EP 2049244 A1 EP2049244 A1 EP 2049244A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- reactors
- reaction
- catalyst
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- CVEGDJIFCXGXJU-UHFFFAOYSA-N chloro(3-chloropropyl)silane Chemical class ClCCC[SiH2]Cl CVEGDJIFCXGXJU-UHFFFAOYSA-N 0.000 title claims description 6
- 238000002360 preparation method Methods 0.000 title description 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 55
- 239000003054 catalyst Substances 0.000 claims abstract description 37
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 claims abstract description 8
- -1 HSi compound Chemical class 0.000 claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 20
- 239000010935 stainless steel Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 18
- 239000002815 homogeneous catalyst Substances 0.000 claims description 14
- 238000012856 packing Methods 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000009776 industrial production Methods 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000007858 starting material Substances 0.000 claims description 6
- 150000001336 alkenes Chemical class 0.000 claims description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- 150000004756 silanes Chemical class 0.000 claims description 5
- 238000010924 continuous production Methods 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000009419 refurbishment Methods 0.000 claims 1
- 239000000376 reactant Substances 0.000 abstract description 9
- 238000010626 work up procedure Methods 0.000 abstract description 9
- 239000000047 product Substances 0.000 description 36
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 238000006459 hydrosilylation reaction Methods 0.000 description 6
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 6
- 239000005052 trichlorosilane Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000010923 batch production Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000001282 organosilanes Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002638 heterogeneous catalyst Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000003622 immobilized catalyst Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OOXSLJBUMMHDKW-UHFFFAOYSA-N trichloro(3-chloropropyl)silane Chemical compound ClCCC[Si](Cl)(Cl)Cl OOXSLJBUMMHDKW-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 description 1
- BJLJNLUARMMMLW-UHFFFAOYSA-N chloro-(3-chloropropyl)-dimethylsilane Chemical compound C[Si](C)(Cl)CCCCl BJLJNLUARMMMLW-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 1
- UCJHMXXKIKBHQP-UHFFFAOYSA-N dichloro-(3-chloropropyl)-methylsilane Chemical compound C[Si](Cl)(Cl)CCCCl UCJHMXXKIKBHQP-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000005048 methyldichlorosilane Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/12—Organo silicon halides
- C07F7/14—Preparation thereof from optionally substituted halogenated silanes and hydrocarbons hydrosilylation reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00788—Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00822—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00826—Quartz
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00831—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00837—Materials of construction comprising coatings other than catalytically active coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00867—Microreactors placed in series, on the same or on different supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00869—Microreactors placed in parallel, on the same or on different supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00871—Modular assembly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00889—Mixing
Definitions
- the present invention relates to a novel reactor and a plant for the continuous industrial production of 3-chloropropylchlorosilanes by reacting allyl chloride with an HSi compound and a process therefor.
- Organosilanes such as vinylchloro or vinylalkoxysilanes (EP 0 456 901 A1, EP 0 806 427 A2), chloroalkylchlorosilanes (DE-AS 28 15 316, EP 0 519 181 A1, DE 195 34 853 A1, EP 0 823 434 A1, EP 1 020 473 A2), alkylalkoxysilanes (EP 0 714 901 A1, DE 101 52 284 A1), fluoroalkylalkoxysilanes (EP 0 838 467 A1, DE 103 01 997 A1), aminoalkylalkoxysilanes (DE-OS 27 53 124, EP 0 709 391 A2 , EP 0 849 271 A2, EP 1 209 162 A2, EP 1 295 889 A2), glycidyloxyalkylalkoxysilanes (EP 1 070 721 A2, EP 0 934 947 A2), methacryloxy
- Microstructured reactors as such for example for a continuous production of polyether alcohols (DE 10 2004 013 551 A1) or the synthesis of u. a. Ammonia, methanol, MTBE (WO 03/078052) are known. Also microreactors for catalytic reactions are known (WO 01/54807). However, so far the microreactor technology for the industrial production of organosilanes has been omitted or at least not realized. The tendency of alkoxy- and chlorosilanes to hydrolysis - even with small amounts of moisture - and corresponding caking in a Organosilanher einsstrom probably to be seen as a sustainable problem.
- the hydrosilylation of an HSi-containing component B, in particular a hydrogenchlorosilane, with allyl chloride (component A) in the presence of a catalyst C in a simple and economical manner on an industrial scale and continuously in an on a multi-element reactor (5) based systems can perform advantageous, in particular the multi-element reactor (5) includes at least two reactor units in the form of interchangeable prereactors (5.1) and at least one further pre-reactors downstream reactor unit (5.3).
- pre-reactors can be used in a particularly advantageous manner, which are equipped with packing, which even more targeted and effective separation of hydrolyzate or particles and thus a reduction in constipation tendency and downtime of the system can be achieved by deposits and caking in the reactor.
- the educts vorzumischen immediately before the multi-element reactor continuously can also be done cold, then heat in the multi-element reactor and there targeted and continuously implement. It is also possible to add a catalyst to the educt mixture. Subsequently, the product can be worked up continuously, z. As in a evaporation, rectification and / or in a Kurzweg- or thin-film evaporator - to name just a few options.
- the heat of reaction liberated during the reaction can be advantageously transferred via the large surface area of the interior walls of the reactor in relation to the reactor volume and, if provided, to a Heat transfer medium are dissipated.
- a significant increase in the space-time yield of fast, heat-dissipating reactions is possible. This is made possible by a faster mixing of the educts, a higher average concentration level of the starting materials than in the batch process, ie no limitation by educt depletion, and / or an increase in temperature, which can usually cause an additional acceleration of the reaction.
- the present invention enables the preservation of process reliability in a comparatively simple and economical manner.
- a drastic process intensification in particular shortening of the process time under reaction conditions by more than 90%, based on the space-time yield, compared to the standard batch process
- the present reactions were carried out in a stainless steel multi-element reactor.
- the present reactions can be dispensed with the use of special materials in an advantageous manner.
- the reproducibility compared to comparable studies in batch processes could be significantly improved.
- a multi-element reactor advantageously contains at least one interchangeable, preferably filled with preforms pre-reactor
- a surprisingly long system life even without stoppages, which are caused by caking or deposits are made possible.
- the multielement reactor before the start of the actual reaction with the reaction mixture, in particular if this contains a homogeneous catalyst to rinse, ie preconditioned.
- the present invention thus relates to a plant for the continuous industrial implementation of a reaction in which allyl chloride A is reacted with an HSi compound B in the presence of a catalyst C and optionally further auxiliaries and the plant at least on the Eduktzusammen entry (3) for the components A ( 1) and B (2), at least one multi-element reactor (5) which in turn contains at least two reactor units in the form of at least one replaceable prereactor (5.1) and at least one further reactor unit (5.3) connected downstream of the prereactor system, and on a product recycle (8). based.
- the present invention furthermore relates to a multielement reactor (5) for reacting hydrolyzable silanes, in particular those containing H-Si units, which in turn has at least two reactor units in the form of at least one replaceable prereactor (5.1) and at least one further reaction unit connected downstream of the prereactor system (5.3).
- Prereactors (5.1) are preferred, which are equipped with packing.
- Suitable fillers are, for example-but not exclusively-structured fillers, ie regular or irregular particles of the same or different size, preferably having an average particle size, the average particle diameter of the cross-sectional area ⁇ 1/3, particularly preferably 1/10 to 1 / 100, the free cross-section of the respective reactor unit (5.1) and the average particle cross-sectional area preferably 100 to 10 ⁇ 6 mm 2 corresponds, such as chips, fibers / wool, spheres, splinters, strands with round or approximately circular or polygonal cross-section, spirals, cylinders , Tubes, Cups, saddles, honeycomb bodies, plates, lattices, fabrics, open-pored sponges, irregular shaped or hollow bodies, (structural) packings or containers of the aforesaid structural bodies, spherical bodies of metal, metal oxide, ceramic, glass or plastic, said filling bodies for example, but not limited to, steel, stainless steel,
- FIGS. 1 to 6 show flow diagrams of plants or plant parts as preferred embodiments of the present invention.
- FIG. 1 shows a preferred continuous system in which the reactant components A and B are combined in unit (3), fed to unit (5), which may contain an immobilized catalyst, reacted therein and the reaction product in the unit (8) is worked up.
- FIG. 2 shows a further preferred embodiment of a continuous plant according to the invention, in which a catalyst C is fed to component B.
- a catalyst C is fed to component B.
- a reactor unit is understood as meaning an element of the multielement reactor (5), each element representing an area or reaction space for the said reaction, cf. for example, (5.1) (reactor unit in the form of a pre-reactor) in Figure 4 and (5.5) [reactor unit of an integrated block reactor (5.3.1)] in FIG. 5 and (5.10) [reactor unit of a microtube bundle heat exchanger reactor (5.9)].
- Reactor units of a multielement reactor (5) in the context of the present invention are in particular stainless steel or quartz glass capillaries, stainless steel tubes or well-dimensioned stainless steel reactors, for example pre-reactors (5.1), tubes (5.10) in microtube bundle heat exchanger reactors [e.g. B.
- the inner walls of the reactor elements may be coated, for example with a ceramic layer, a layer of metal oxides, such as Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , zeolites, silicates, to name only a few, but also organic polymers, in particular fluoropolymers, such as Teflon, are possible.
- metal oxides such as Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , zeolites, silicates, to name only a few, but also organic polymers, in particular fluoropolymers, such as Teflon, are possible.
- a plant according to the invention comprises one or more multi-element reactors (5), which in turn are based on at least 2 to 1,000,000 reactor units, including all natural numbers in between, preferably from 3 to 10,000, in particular from 4 to 1,000 reactor units.
- the reactor or reaction space of at least one reactor unit preferably has a semicircular, semi-oval, round, oval, triangular, square, rectangular or trapezoidal cross-section perpendicular to the flow direction.
- a cross section preferably has a cross-sectional area of 75 ⁇ m 2 to 75 cm 2 .
- Particularly preferred are cross-sectional areas of 0.7 to 120 mm 2 and all numerically intervening numerical values.
- a diameter of> 30 ⁇ m to ⁇ 15 mm, in particular 150 ⁇ m to 10 mm is preferred.
- Square cross-sectional areas preferably have edge lengths of> 30 ⁇ m to ⁇ 15 mm, preferably 0.1 to 12 mm.
- reactor units with differently shaped cross-sectional areas can be present in a multielement reactor (5) of a system according to the invention.
- the structure length in a reactor unit ie from entry of the reaction or product stream into the reactor unit, cf. z. B. (5.1 and 5.1.1) or (5.5 and 5.5.1), until the exit, cf. (5.1.2) or (5.5.2), preferably 5 cm to 500 m, including all numerically intervening numerical values, particularly preferably> 15 cm to 100 m, very particularly preferably 20 cm to 50 m, in particular 25 cm to 30 m.
- reactor units whose respective reaction volume (also referred to as the reactor volume, that is to say the product of
- Cross-sectional area and structure length 0.01 ml to 100 l, including all numerically intervening numerical values. This is particularly preferred
- Reactor volume of a reactor unit of a plant according to the invention 0.05 ml to 10 1, very particularly preferably 1 ml to 5 1, very particularly preferably 3 ml to 2 l, in particular 5 ml to 500 ml.
- systems according to the invention can be based on one or more multi-element reactors (5), which are preferably connected in parallel.
- said multi-element reactors (5) can also be switched one behind the other so that the product which originates from the preceding multi-element reactor can be fed to the inlet of the subsequent multi-element reactor.
- the present multielement reactors (5) can advantageously be equipped with a reactant component flow (4) or. (5.2), which is suitably divided into the respective sub-streams, cf. z. B. (5.4) in Figure 5 and (5.11) in Figure 6, are fed.
- the product streams can be combined, cf. z. B. (5.7) in Figure 5, (5.12) in Figure 6 and (7), and then work up advantageously in a workup unit (8).
- a processing unit (8) initially have a condensation stage or evaporation stage, which has a or several distillation stages.
- a multielement reactor (5) of a plant according to the invention can be based on at least two stainless steel capillaries connected in parallel or on at least two quartz glass capillaries connected in parallel or at least one shell and tube heat exchanger reactor (5.9) or at least one integrated block reactor (5.3.1).
- stainless steel capillaries, reactors or prereactors which advantageously consist of a high-strength, high-temperature-resistant and stainless steel; for example, but not exclusively, pre-reactors, capillaries, block reactors, shell-and-tube heat exchanger reactors, etc., are made of steel of the type 1.4571 or 1.4462, cf.
- the steel facing the reaction chamber surface of a stainless steel capillary or a multi-element reactor with a polymer layer, for example a fluorine-containing layer, including Teflon, or a ceramic layer, preferably an optionally porous SiO 2 -, TiO 2 - or AI 2 O 3 layer, in particular for receiving a catalyst be equipped.
- an integrated block reactor as can be seen, for example, as a temperature-controllable block reactor constructed from defined-structured metal plates (also referred to below as a plane) from http://www.heatric.com/phe-construction.html.
- said structured metal plates or planes from which a block reactor can then be produced, can take place, for example, by etching, turning, cutting, milling, embossing, rolling, spark erosion, laser processing, plasma technology or another technique of the processing methods known per se.
- structures such as grooves or joints, incorporated on one side of a metal plate, in particular a metal plate made of stainless steel.
- the respective grooves or joints start on a front side of the metal plate, are continuous and usually end on the opposite end face of the metal plate.
- FIG. 5 shows a plane of an integrated block reactor (5.3.1) with a plurality of reactor units or elements (5.5).
- a level usually consists of a base plate made of metal with metal walls thereon (5.6), the reaction chambers (5.5) together with a cover plate made of metal and a unit for temperature control (6.5, 6.6), preferably a further level or textured metal plate, limit.
- the unit (5.3.1) contains an area (5.4) for feeding and distributing the educt mixture (5.2) into the reactor elements (5.5) and a region (5.7) for combining the product streams from the reaction areas (5.5) and discharging the product stream ( 7).
- an integrated block reactor (5.3.1)
- several such previously described levels may be connected one above the other.
- integrated block reactors (5.3.1) are advantageously surrounded by a temperature control unit (6.5, 6.6), which enables the heating or cooling of the block reactor (5.3.1), ie a targeted temperature control.
- a medium (D) z. B.
- Marlotherm or Mediatherm by means of a heat exchanger (6.7) tempered and fed via line (6.8) a pump (6.9) and line (6.1) of the temperature control unit (6.5) and via (6.6) and (6.2) removed and the heat exchanger unit (6.7 ).
- a heat exchanger 6.7
- a pump 6.9
- an integrated block reactor (5.3.1) it is possible in an integrated block reactor (5.3.1) to optimally control the heat of reaction released by the shortest route, thereby allowing temperature peaks that result in a targeted reaction adversely affect, can avoid.
- It is also possible to design the integrated block reactor (5.3.1) and the associated temperature control unit (6.5, 6.6) such that a temperature control plane is arranged between two reactor element planes, which guides the temperature control medium even more directionally between the areas (6.1, 6.5) and (6.6, 6.2).
- a multielement reactor (i) on at least one prereactor (5.1) and at least one stainless steel capillary (5.3) downstream of the prereactor or (ii) on at least one prereactor (5.1) and at least one prereactor downstream quartz glass capillaries (5.3) or (iii) on at least one pre-reactor (5.1) and at least one integrated block reactor (5.3 or 5.3.1) or (iv) on at least one pre-reactor (5.1) and at least one microtube bundle heat exchanger reactor (5.3 or 5.9) based.
- the prereactor (5.1) is suitably tempered, d. H. cooled and / or heated, off (D, 6.3, 6.4), cf. FIG. 4.
- a prereactor (5.1) in the context of the multi-element reactor (5) in particular for the implementation of silanes, is that in addition to carrying out the continuous reaction by a targeted separation and discharge of hydrolyzates or particles unplanned Stillg , Can advantageously minimize downtime.
- the pre-reactors (5.1) equipped according to the invention can additionally be preceded and / or followed by filters for particle separation.
- a plant according to the invention for the continuous industrial implementation of reactions based on a reactant combination (3) for the components A and B, at least one said multi-element reactor (5) and on a product work-up (8), cf. Figures 1, 2 and 3, wherein the multi-element reactor (5) at least two reactor units in the form of replaceable pre-reactors (5.1), which are preferably equipped with packing, and at least one further, the pre-reactor downstream reactor unit (5.3).
- the educt components A and B can each be combined in a targeted manner from a storage unit by means of pumps and optionally by means of differential weighing system in the area (3).
- components A and B are metered at ambient temperature, preferably at 10 to 40 ° C., and mixed in region (3). But you can also preheat at least one of the components, both components or feedstocks or the corresponding mixture.
- the said storage unit can be conditioned and the storage containers can be designed to be temperature-controlled.
- the multielement reactor (5) is preferably brought to or maintained at the desired operating temperature by means of a temperature control medium D (6.1, 6.2) so that undesirable temperature peaks and temperature fluctuations known from batch systems are advantageously avoided or adequately achieved in the present system according to the invention can become low.
- the product or crude product stream (7) is continuously the product work-up (8), for example, a rectification, fed, for example, over head (10) a low-boiling product F, for example, used in excess and optimally recyclable silane, and on the Swamp (9) a heavy boiling product E can continuously decrease. It is also possible to remove side streams as a product from the unit (8). If it is necessary to carry out the reaction of components A and B in the presence of a catalyst C, it is advantageously possible to use a homogeneous catalyst by metering into the educt stream. But you can also use a suspension catalyst, which can also be added to the reactant stream.
- the maximum particle diameter of the suspension catalyst should advantageously be less than 1/3 of the extent of the smallest free cross-sectional area of a reactor unit of the multi-element reactor (5).
- FIG. 2 reveals that it is advantageous to meter in a said catalyst C to component B before it is combined with component A in region (3).
- liquid auxiliaries for example but not exclusively, activators, initiators, stabilizers, inhibitors, solvents or diluents to the reactant components A and B, etc.
- the catalyst C can be present, for example-but not exclusively-on the surface of the reaction space of the respective reactor elements.
- a plant according to the invention for the continuous industrial implementation of the reaction of a said compound A with a compound B is optionally based in the presence of a catalyst and further auxiliaries at least one Eduktzusammen entry (3), at least one multi-element reactor (5), which in turn includes inventive reactor units (5.1 and 5.3), and on a product processing (8).
- the reactants or feedstocks are provided in a storage unit for carrying out the reaction and fed or metered as required.
- a system according to the invention is equipped with the measuring, metering, shut-off, transport, conveying, monitoring, control units and exhaust gas and waste disposal devices which are conventional in the art.
- system according to the invention can be advantageously accommodated in a portable and stackable container and handled flexibly. So you can bring a system according to the invention quickly and flexibly, for example, to the respective educt or energy sources. With a system according to the invention, but also with all the advantages, it is possible to continuously provide product at the point at which the product is further processed or used further, for example directly at the customer's.
- Another particularly noteworthy advantage of a plant according to the invention for the continuous industrial implementation of a reaction of allyl chloride (compound A) with a HSi compound B is that it now has a possibility, even small specialty products with sales volumes between 5 kg and 150 000 t p. a., Preferably 10 kg to 10 000 t p. a., In a simple and economical way to produce continuously and flexibly. In this case, unnecessary downtime, the yield, the selectivity influencing temperature peaks and fluctuations and too long residence times and thus unwanted side reactions can be advantageously avoided. In particular, such an installation can also be used optimally for the production of existing silanes from an economical, ecological and customer-friendly point of view.
- a further subject of the present invention is a method for continuous industrial production of a 3-chloropropylchlorosilane of the general formula (I)
- R ' is a C 1 to C 4 alkyl group, preferably methyl, and m is 0 or 1 or 2,
- reaction of the starting material components A and B is carried out in the presence of a catalyst C and optionally further components in a multi-element reactor (5), which in turn on at least two reactor units in the form of at least one interchangeable prereactor (5.1) and at least one further, the pre-reactor downstream reactor unit (5.3).
- the reaction is preferably carried out in at least one multielement reactor (5) whose reactor units consist of stainless steel or quartz glass or whose reaction spaces are delimited by stainless steel or quartz glass, wherein the surfaces of the reactor units can be coated or occupied, for example with Teflon.
- reactor units whose respective cross-section is semicircular, semi-oval, round, oval, triangular, square, rectangular or trapezoidal.
- reactor units are used whose respective cross-sectional area is 75 ⁇ m 2 to 75 cm 2 .
- reactor units which have a structure length of 5 cm to 200 m, particularly preferably 10 cm to 120 m, very particularly preferably 15 cm to 80 m, in particular 18 cm to 30 m, including all possible Numerical values included from the aforementioned ranges.
- reactor units are suitably used whose respective reaction volume is 0.01 ml to 100 l including all numerically intermediate numerical values, preferably 0.1 ml to 50 l, particularly preferably 1 ml to 20 l, very particularly preferably 2 ml to 10 1, in particular 5 ml to 5 1.
- the said reaction can also advantageously be carried out in a plant with a multielement reactor (5) which (i) has at least two parallel-connected pre-reactors (5.1) and at least one stainless steel capillary downstream of the pre-reactors, or (ii) at least two shunts Prereactors (5.1) and at least one downstream of the pre-reactors quartz glass capillaries or (iii) on at least two parallel connected pre-reactors (5.1) and at least one integrated block reactor (5.3.1) or (iv) on at least two parallel connected pre-reactors (5.1) and at least one Shell-and-tube heat exchanger reactor (5.9) based.
- a multielement reactor (5) which (i) has at least two parallel-connected pre-reactors (5.1) and at least one stainless steel capillary downstream of the pre-reactors, or (ii) at least two shunts Prereactors (5.1) and at least one downstream of the pre-reactors quartz glass capillaries or (iii)
- a multielement reactor (5) which contains at least two replaceable pre-reactors (5.1) according to the invention, these being equipped with fillers, as listed in particular above, for the separation of hydrolysis products of hydrolyzable silanes.
- the process according to the invention is particularly preferably carried out in reactor units made of stainless steel.
- the surface of the reactor units of the multielement reactor which is in contact with the starting material / product mixture is coated with a catalyst. If, in the context of the process according to the invention, the reaction of components A and B is carried out in the presence of a homogeneous catalyst C, it has surprisingly been found that it is particularly advantageous to pass the multielement reactor through one or more rinses with a mixture of homogeneous catalyst C and component B or Homogeneous catalyst C and components A and B or a short-term operation of the plant, for example, for 10 to 120 minutes and optionally with a higher catalyst concentration, precondition.
- the substances used for the preconditioning of the multielement reactor can be collected and later metered into the educt stream at least proportionally or fed directly to the product work-up and worked up.
- reaction or product mixture can be present in one, two or three phases.
- reaction is preferably carried out in a single-phase, in particular in the liquid phase.
- the process of the invention is advantageously carried out using a multielement reactor at a temperature of 10 to 250 0 C at a pressure of 0.1 to 500 bar abs.
- a multielement reactor at a temperature of 10 to 250 0 C at a pressure of 0.1 to 500 bar abs.
- components A and B in particular a hydrosilylation
- in the multi-element reactor at a temperature of 50 to 200 0 C, preferably at 60 to 180 0 C, in particular at 100 to 120 0 C, and at a pressure of 0.5 to 300 bar abs., Preferably at 1 to 200 bar abs., More preferably at 2 to 50 bar abs., By.
- the differential pressure in a system according to the invention d. H. between Eduktzusammen entry (3) and product work-up (8), 1 to 10 bar abs.
- a pressure-holding valve Preference is given to the pressure-holding valve from 1 to 100 bar abs., Preferably to 70 bar abs., Particularly preferably to 40 bar abs., In particular to a value between 10 to 35 bar abs., A.
- the reaction can according to the invention at a linear velocity. (LV) of 1 to 1 ⁇ 10 4 h "1 i N. perform one.
- the flow velocity of the material stream is situated in the reactor units preferably in the range of 0.0001 to 1 m / s i.
- the ratio of reactor surface prevailing in accordance with the invention (A ) to the reactor volume (V) is preferable to have an AV ratio of 20 to 5,000 m 2 / m 3 - including all numerically possible individual values which are within the stated range - for advantageously carrying out the method according to the invention is a measure of the heat transfer and possible heterogeneous (wall) influences.
- reaction in the process according to the invention is advantageously carried out at a mean residence time of from 10 seconds to 60 minutes, preferably from 1 to 30 minutes, more preferably from 2 to 20 minutes, in particular from 3 to 10 minutes.
- mean residence time of from 10 seconds to 60 minutes, preferably from 1 to 30 minutes, more preferably from 2 to 20 minutes, in particular from 3 to 10 minutes.
- Particularly suitable as components B in the process according to the invention are hydrogensilanes of the general formula (II)
- R ' is a C 1 to C 4 alkyl group and m is 0 or 1 or 2, preferably R' is methyl.
- TCS trichlorosilane
- methyldichlorosilane methylchlorosilane
- the components A and B are preferably employed in the process according to the invention in a molar ratio A to B of 1: 5 to 100: 1, more preferably 1: 4 to 5: 1, very particularly preferably 1: 2 to 2: 1, for example but not limited to - 1: 0.9 to 1, 5, in particular from 1, 0: 1, 5 to 1, 5: 1, including all possible numbers within the aforementioned ranges, a.
- the process according to the invention is preferably carried out in the presence of a homogeneous catalyst C.
- a homogeneous catalyst C it is also possible to operate the process according to the invention without the addition of a catalyst, in which case a clear decrease in the yield is generally to be expected.
- the process according to the invention is used for carrying out a hydrosilylation reaction for the preparation of organosilanes according to formula (I), in particular homogeneous catalysts from the series Pt complex catalyst, for example those of the Karstedt type, such as Pt (0) -divinyltetramethyldisiloxane in xylene, PtCl 4, H 2 [PtCl 6] and H 2 [PtCl 6] ⁇ 6H 2 O, preferably a "Speyer catalyst", cis- (Ph 3 P) 2 PtCl 2 complex catalysts of Pd, Rh, Ru, Cu, Ag, Au, Ir or those of other transitional or precious metals Complex catalysts in an organic, preferably polar solvent for example - but not exclusively - ethers, such as THF, ketones, such as acetone, alcohols, such as isopropanol, aliphatic or aromatic hydrocarbons, such as toluene, xylene solve.
- an activator for example in the form of an organic or inorganic acid such as HCl, H 2 SO 4 , H 3 PO 4 , mono- or dicarboxylic acids, HCOOH, H 3 C-COOH , Propionic Acid, Oxalic Acid, Succinic Acid, Citric Acid, Benzoic Acid, Phthalic Acid - just to name a few.
- an organic or inorganic acid such as HCl, H 2 SO 4 , H 3 PO 4 , mono- or dicarboxylic acids, HCOOH, H 3 C-COOH , Propionic Acid, Oxalic Acid, Succinic Acid, Citric Acid, Benzoic Acid, Phthalic Acid - just to name a few.
- an organic or inorganic acid to the reaction mixture can take on another advantageous function, for example as a stabilizer or inhibitor of impurities in the trace range.
- the olefin component A is added to the catalyst, based on the metal, preferably in a molar ratio of 2,000,000: 1 to 1,000: 1, more preferably 1,000,000: 1 up to 4 000: 1, in particular from 500 000: 1 to 10 000: 1, and all possible numerical values within the abovementioned ranges.
- an immobilized catalyst or heterogeneous catalyst from the series of transition metals or noble metals or a corresponding multielement catalyst for carrying out the hydrosilylation reaction. So you can, for example - but not exclusively - use precious metal sludge or precious metal on activated carbon. But you can also provide a fixed bed for receiving a heterogeneous catalyst in the field of multi-element reactor. So you can, for example - but not exclusively - synonymous Heterogeneous catalysts on a support, such as spheres, strands, pellets, cylinders, stirrers, etc. from, inter alia, SiO 2 , TiO 2 , Al 2 O 3, ZrO 2 , bring into the reaction region of the reactor units.
- solvents or diluents such as alcohols, aliphatic and aromatic hydrocarbons, ethers, esters, ketones, CHCs, CFCs - to name but a few - can be used as auxiliaries.
- Such adjuvants can be removed from the product, for example, in the product work-up.
- inhibitors for example polymerization inhibitors or corresponding mixtures, can be used as additional auxiliaries in the present process.
- the reactant components A, B and, if appropriate, C are metered in, and optionally further auxiliaries, and the mixture is mixed. It is endeavored to meter a homogeneous catalyst with an accuracy of ⁇ 20%, preferably ⁇ ⁇ 10%. In special cases, it is also possible to meter the homogeneous catalyst and optionally further auxiliaries into the mixture of components A and B only shortly before entry into the multielement reactor. Subsequently, it is possible to feed the starting material mixture to the multielement reactor and to react the components under temperature control. However, it is also possible first to rinse or precondition the multielement reactor with a catalyst-containing educt or reactant mixture before the temperature is advanced to carry out the reaction.
- the product streams (crude product) combined or obtained in the multielement reactor can subsequently be worked up in a suitable manner in a product work-up of the plant according to the invention, for example-but not exclusively-with a vacuum distillation at 50 mbar, the column being able to be equipped with packings.
- the process is preferably operated continuously.
- the inventive method using a system according to the invention advantageously continuously with a product output of 5 kg to 150 000 t p. a. operate and for example - but not exclusively - 3-chloropropyltrichlorosilane, 3-chloropropylmethyldichlorosilane or 3-Chlorpropyldimethylchlorsilan advantageously produce.
- the plant used for the production of chloropropyltrichlorosilane consisted essentially of the educt reservoirs, diaphragm pumps, regulating, measuring and metering units, a T-mixer, two parallel, exchangeable and filled with packing (stainless steel beads with an average of 1, 5 mm diameter) pre-reactors (Diameter 5 cm, length 40 mm, stainless steel), a Titankapillaren (1 mm diameter, 50 m length) a thermostatic bath with temperature control for the pre-reactors and capillary, a pressure-holding valve, a continuously operated with N2 stripping and the Eduk Center and for product -, recycling and flue gas discharge required lines.
- TCS trichlorosilane
- olefin 1, 15: 1
- the system was rinsed with the starting material mixture A + C for 2 hours prior to raising the temperature in the reactor system.
- the temperature was raised in the bath, set in the reactor system to 100 0 C and operated continuously for 5 days.
- samples were taken at intervals from the tube product stream and analyzed by GC-WLD measurements. The conversion, based on TCS, was 97% and the selectivity, based on the target product, was 66%.
- the thus obtained stream of reaction product was fed continuously to a stripping column operated with N 2 . 180 g of hydrosilylation product were withdrawn continuously from the bottom of the stripping column per hour. Obtained chloropropyltrichlorosilane can be reacted, for example, with an alcohol so as to obtain chloropropylalkoxysilane so advantageous.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
La présente invention concerne une installation, un réacteur et un procédé pour la réalisation industrielle continue d'une réaction selon laquelle du chlorure d'allyle A est mis en réaction avec un composé HSi B en présence d'un catalyseur C et éventuellement d'adjuvants supplémentaires. L'installation selon l'invention comporte, au moins à la jonction des adduits (3) pour les composants A (1) et B (2), au moins un réacteur multiélément (5), comprenant lui-même au moins deux unités de réacteur sous forme de pré-réacteurs interchangeables (5.1) et au moins une unité de réacteur en aval des pré-réacteurs (5.3), et est fondée sur le traitement d'un produit (8).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006037405 | 2006-08-10 | ||
DE102007023764A DE102007023764A1 (de) | 2006-08-10 | 2007-05-22 | Anlage und Vorrichtung zur kontinuierlichen industriellen Herstellung von 3-Chlorpropylchlorsilanen |
PCT/EP2007/056970 WO2008017558A1 (fr) | 2006-08-10 | 2007-07-09 | Installation et procédé pour la fabrication industrielle continue de 3-chloropropylchlorosilanes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2049244A1 true EP2049244A1 (fr) | 2009-04-22 |
Family
ID=38739873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07787246A Withdrawn EP2049244A1 (fr) | 2006-08-10 | 2007-07-09 | Installation et procédé pour la fabrication industrielle continue de 3-chloropropylchlorosilanes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2049244A1 (fr) |
DE (1) | DE102007023764A1 (fr) |
WO (1) | WO2008017558A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113444122A (zh) * | 2020-03-24 | 2021-09-28 | 新特能源股份有限公司 | 一种γ-氯丙基三氯硅烷的连续生产工艺与装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580523A (en) * | 1994-04-01 | 1996-12-03 | Bard; Allen J. | Integrated chemical synthesizers |
DE19858856A1 (de) * | 1998-12-19 | 2000-06-21 | Merck Patent Gmbh | Verfahren zur Herstellung von Arylmetallverbindungen und deren Umsetzung mit Elektrophilen |
DE19920794A1 (de) * | 1999-05-06 | 2000-11-09 | Merck Patent Gmbh | Verfahren zur Herstellung von Perlpolymerisaten |
DE19959249A1 (de) * | 1999-12-08 | 2001-07-19 | Inst Mikrotechnik Mainz Gmbh | Modulares Mikroreaktionssystem |
US7485454B1 (en) * | 2000-03-10 | 2009-02-03 | Bioprocessors Corp. | Microreactor |
DE10014298A1 (de) * | 2000-03-23 | 2001-09-27 | Merck Patent Gmbh | Verfahren zur Reduktion aliphatischer, aromatischer oder heterocyclischer organischer Verbindungen mittels Hydriden und/oder deren Derivaten |
DE10333174A1 (de) * | 2003-07-22 | 2005-02-17 | Cpc Cellular Process Chemistry Systems Gmbh | Verfahren zur Durchführung einer In-Situ-Quench Reaktion |
GB0413400D0 (en) * | 2004-06-16 | 2004-07-21 | Accentus Plc | Catalytic plant and process |
US20090036702A1 (en) * | 2004-10-28 | 2009-02-05 | Wacker Chemie Ag | Production of organosilanes in the presence of iridium-catalysts and cocatalysts |
-
2007
- 2007-05-22 DE DE102007023764A patent/DE102007023764A1/de not_active Withdrawn
- 2007-07-09 EP EP07787246A patent/EP2049244A1/fr not_active Withdrawn
- 2007-07-09 WO PCT/EP2007/056970 patent/WO2008017558A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008017558A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102007023764A1 (de) | 2008-02-14 |
WO2008017558A1 (fr) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008017553A1 (fr) | Installation et procédé pour la fabrication industrielle continue de fluoroalkylchlorosilane | |
EP2049243A1 (fr) | Installation et procédé pour la fabrication industrielle continue d'organosilanes | |
WO2008017552A1 (fr) | Installation, réacteur et procédé pour la fabrication industrielle continue de polyétheralkylalcoxysilanes | |
EP2049242A1 (fr) | Installation, réacteur et procédé pour la fabrication industrielle continue de 3-méthacryloxypropylalcoxysilanes | |
DE102006060353A1 (de) | Verfahren zur Herstellung einer Chemikalie, die von einem Olefinoxid ableitbar ist, und Reaktor, der für solch ein Verfahren geeignet ist | |
WO2008017561A1 (fr) | Installation et procédé pour la fabrication industrielle continue de 3-glycidyloxypropylalcoxysilanes | |
Schwalbe et al. | Application report on operating cellular process chemistry plants in fine chemical and contract manufacturing industries | |
EP2049244A1 (fr) | Installation et procédé pour la fabrication industrielle continue de 3-chloropropylchlorosilanes | |
WO2008017562A1 (fr) | Installation et procédé pour la fabrication industrielle continue d'alkylalcoxysilanes | |
DE19619138C2 (de) | Verfahren zur Herstellung von vinylierten Silicium-organischen Verbindungen | |
CN101362774A (zh) | 用于连续工业化制备3-缩水甘油基氧基丙基烷氧基硅烷的装置和方法 | |
CN101121727A (zh) | 用于连续工业生产3-甲基丙烯酰氧基丙基烷氧基硅烷的装置、反应器和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20110502 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140201 |