EP2041496A1 - Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés - Google Patents

Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés

Info

Publication number
EP2041496A1
EP2041496A1 EP07793904A EP07793904A EP2041496A1 EP 2041496 A1 EP2041496 A1 EP 2041496A1 EP 07793904 A EP07793904 A EP 07793904A EP 07793904 A EP07793904 A EP 07793904A EP 2041496 A1 EP2041496 A1 EP 2041496A1
Authority
EP
European Patent Office
Prior art keywords
fluid
receptacle
energy
exchange element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07793904A
Other languages
German (de)
English (en)
Other versions
EP2041496A4 (fr
EP2041496B1 (fr
Inventor
Finn Sigve Andreassen
Lars Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansen Lars
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL07793904T priority Critical patent/PL2041496T3/pl
Publication of EP2041496A1 publication Critical patent/EP2041496A1/fr
Publication of EP2041496A4 publication Critical patent/EP2041496A4/fr
Application granted granted Critical
Publication of EP2041496B1 publication Critical patent/EP2041496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank

Definitions

  • An arrangement and a method for changing the temperature of a first and a second fluid located in two separate receptacles An arrangement and a method for changing the temperature of a first and a second fluid located in two separate receptacles.
  • the present invention relates to an arrangement for changing the temperature of a fluid located in a receptacle and being arranged to be able to circulate through the receptacle. More precisely, it concerns effecting a change in temperature of a first fluid and a second fluid arranged to be able to circulate through a first receptacle and a second receptacle, respectively.
  • the temperature of the first fluid and the second fluid is influenced by energy exchange elements placed in each of the receptacles.
  • the temperature of the second fluid may be further influenced by the source temperature of the first fluid owing to the fact that the first fluid upstream of the inlet portion of the first receptacle circulates through a piping system extending through a portion of the second receptacle.
  • the invention also relates to a method for using the arrangement.
  • the term receptacle implies a closed tank provided with at least one fluid inlet portion and at least one fluid outlet portion.
  • Hot consumer water i.e. hot water discharged from a shower or tap, for example, is heated in a so-called water heater.
  • Dwellings installed with water-borne heat must thus be provided with two separate receptacles for heating water.
  • the temperature of the water in a water heater for consumer water is much higher than the temperature of the water in a receptacle for water-borne heat.
  • the temperature in the water heater will typically be 70 0 C, whereas the water temperature in the receptacle for water-borne heat will be ca. 35 0 C.
  • the control system must be provided with at least two temperature sensors, which are to output signals for controlling the heat pump. This involves a complicated adjustment procedure for the user and also relatively high installation- and maintenance costs.
  • the object of the invention is to remedy or reduce at least one of the prior art disadvantages.
  • two fluid receptacles known per se and arranged to be able to provide a change in temperature of a fluid which in a non-limiting example may be for heating consumer water and water for water-borne heat, may be modified in a relatively simple manner allowing for increased efficiency, simple installation and, not the least, simple adjustment for the user.
  • the present invention relates to an arrangement for changing the temperature of a fluid, the arrangement including a first fluid receptacle having at least one first energy exchange element arranged to be able to change the temperature of a first fluid located in the fluid receptacle; a second fluid receptacle having at least one second energy exchange element arranged to be able to change the temperature of a second fluid located in the fluid receptacle, wherein each of said first fluid receptacle and said second fluid receptacle is provided with an inlet portion and an outlet portion for communicating fluid into and out of the receptacles, and wherein the energy exchange
  • P25159PC00DENCL - 12.09.07 elements are influenced by at least one energy source, wherein a piping system is placed in a portion of the second receptacle, the piping system being surrounded by the second fluid and being arranged to be able to conduct the first fluid from a fluid source, via the second fluid receptacle and onto the first fluid receptacle, whereby the temperature of the second fluid may be influenced by the fluid source temperature of the first fluid.
  • At least one of said first and second energy exchange elements is a piping arrangement for circulation of a fluid between the piping arrangement and the energy source.
  • At least one of said first and second energy exchange elements is an electric heating coil known per se.
  • the energy source may, for example, be a heat pump of any type known per se for circulating a liquid or a gas.
  • the liquid may, for example, be water, and the gas may, for example, be freon.
  • both of the energy exchange elements constitute a piping arrangement .
  • the piping arrangements are connected in series, wherein an outlet portion of the piping arrangement in the first receptacle is connected to an inlet portion of the piping arrangement in the second receptacle.
  • the outlet portion of the piping arrangement in the first receptacle is placed higher than the inlet portion of the piping arrangement in the second receptacle.
  • the fluid having circulated through said second receptacle is retuned to the heat pump, after which the fluid again is arranged to be able to circulate to the first receptacle.
  • the first receptacle is a receptacle for heating consumer water
  • the second receptacle is a receptacle for circulating hot liquid through at least one heat emission element constituting a part of a closed fluid circuit.
  • the heat emission element may be water pipes for floor heating, one or more radiators, and/or one or more fan coil units.
  • a by-pass valve is placed in the closed fluid circuit.
  • the purpose of the by-pass valve is to be able to maintain circulation of the second fluid even if it is desirable for the fluid not to circulate through the heat emission element.
  • a temperature sensor is placed in a portion of the closed fluid circuit for circulating fluid from the second receptacle.
  • the temperature sensor is arranged to be able to communicate with a control unit influencing the at least one energy source.
  • a control unit influencing the at least one energy source.
  • all components such as piping, pipe couplings, valves, pumps, energy exchange elements in the receptacles and the energy source, are of a standard type commonly used in the field of invention.
  • the receptacles are provided with an insulation
  • P25159PC00DENCL - 12.09.07 means of a type known per se.
  • the insulation means preferably is also placed in the border portion between the receptacles in a manner reducing any heat exchange between the fluids in the receptacles.
  • the present invention also relates to a method for changing the temperature of a fluid, the method including the steps of providing a first fluid receptacle having at least one first energy exchange element arranged to be able to change the temperature of a first fluid; providing a second fluid receptacle having at least one second energy exchange element arranged to be able to change the temperature of a second fluid, wherein each of said first fluid receptacle and said second fluid receptacle is provided with an inlet portion and an outlet portion for communicating fluid into and out of the receptacles, and wherein the energy exchange elements are influenced by at least one energy source, wherein a piping system is placed in a portion of the second receptacle, the piping system surrounding the second fluid and conducting the first fluid from a fluid source having a fluid source temperature, via the second fluid receptacle and onto the first fluid receptacle, whereby the temperature of the second fluid may be influenced by the fluid source temperature of the first fluid.
  • FIG. 1 showing a principle drawing of a non-limiting example of an arrangement for a hot water installation in a dwelling.
  • reference number 1 indicates an arrangement that includes a first fluid receptacle 3 provided with a first energy exchange element 5, and a second fluid receptacle 7 provided with a second energy exchange element 9.
  • Each energy exchange element 5, 9 is comprised of a first piping coil 5 and a second piping coil 9.
  • the piping coils 5, 9 are connected to a heat pump 15 known per se.
  • the heat pump 15 may be of any known type.
  • freon is used as an energy carrier between the heat pump 15 and the fluid receptacles 3 , 7.
  • the gas is carried from the heat pump 15 and into the piping coil 5 in the first receptacle 3 via a pipe 3 ' .
  • the gas will start condensing in the piping coil 5, thereby transmitting heat to the fluid located in the first receptacle 3.
  • This fluid may, for example, be consumer water.
  • the first receptacle 3 will therefore be referred to as a water heater 3.
  • the piping coil 5 in the water heater 3 is connected in series with the piping coil 9 in the second receptacle 7.
  • the second receptacle 7 is arranged to be able to heat a liquid, for example water.
  • the water circulates through one or more of the heat emission elements 21, 23, 25.
  • the heat emission elements 21, 23, 25 may, for example, be a piping system embedded in a floor, i.e. so-called water-borne floor heating, a radiator or a fan coil unit, all of which are of a type known per se and being well known in the art.
  • the second receptacle will be referred to as a floor heat exchanger 7.
  • Freon in the form of gas and condensate, is conducted from the piping coil 5 in the water heater 3 and onto the piping coil 9 in the floor heat exchanger 7.
  • the freon gas will condense completely in the piping coil 9, thus heating the liquid in the floor heat exchanger 7.
  • Condensed freon is conducted from the piping coil 9 and back to the heat pump 15 via a pipe 7 ' .
  • the temperature of the water in the floor heat exchanger 7 may rise relatively quickly to a predetermined maximum level.
  • the heat pump 15 When the predetermined temperature of the liquid in the floor heat exchanger 7 has been reached, the heat pump 15 will stop in a manner known per se, or it will have a reduced output if using inverter-controlled equipment.
  • a consumer water piping coil 17, hereinafter referred to as a piping coil 17, is placed in the lower portion of the floor heat exchanger 7.
  • the piping coil 17, in an inlet portion 19 thereof, is connected to a water source (not shown), for example a water distribution system.
  • An outlet portion of the piping coil 17 is in fluid communication with an inlet portion 11' placed at the top of the water heater 3.
  • the inlet portion 11' may be comprised of a mixing valve 13' known per se.
  • Water having a predetermined temperature may be able to flow from the mixing valve 13' and onto discharge points 31.
  • the discharge points 31 may, for example, be a shower or a washbasin.
  • the heat pump 15 Upon reducing the temperature in the floor heat exchanger 7 to below its setpoint, the heat pump 15 will be operational even when heat is not required to the heat emission elements 21, 23, 25. Furthermore, the water being conducted into the water heater 3 will be preheated. This renders possible to reduce the size of the water heater 3 because it is supplied with preheated water whilst simultaneously transmitting heat from the freon gas when condensing in the piping coil 5.
  • the heat pump 15 may be influenced by the need for heat to the heat emission elements 21, 23, 25, and instead of the need for hot consumer water.
  • the energy source 15, which in the embodiment example is a heat pump, and which is arranged to be able to heat the fluid in both receptacles 3, 7, may be controlled by means of only one setpoint 29, which may be comprised of a thermostat/temperature sensor.
  • the thermostat/temperature sensor 29 is arranged to be able to communicate with a control unit known per se, but not shown, and which is arranged to be able to influence the heat pump 15. This provides great advantages, both in terms of installation costs, user-friendliness and maintenance costs.
  • a heat pump is replaced by a solar panel for heating a liquid.
  • the heated liquid is circulated, in the same manner as the freon gas referred to in the above example, through the piping coils 5, 9.
  • a solar panel may be used in series together with a
  • P25159PC00DENCL - 12.09.07 condenser circuit for a cooling/freezing plant. When used in this manner, the surplus energy may be used for heating.
  • a combination of liquid and gas from a solar panel and a heat pump, respectively, is conducted through piping coils in one or both of the receptacles 3 , 7.
  • an electric heating coil known per se is placed in addition to the piping coil(s), at least in one of the receptacles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Control Of Temperature (AREA)

Abstract

La présente invention concerne une configuration (1) de changement de la température d'un fluide, la comfiguration comprenant un premier réceptacle de fluide (3) présentant au moins un premier élément d'échange d'énergie (5) disposé pour changer la température d'un premier fluide situé dans le réceptacle de fluide (3); un second réceptacle de fluide (7) présentant au moins un second élément d'échange d'énergie (9) disposé pour changer la température d'un second fluide situé dans le réceptacle de fluide (7), chacun dudit premier réceptacle de fluide (3) et dudit second réceptacle de fluide (7) étant pourvu d'une partie entrée (11, 11') et d'une partie sortie (13, 13') assurant la mise en communication du fluide pour entrer et sortir des réceptacles (3, 7), les éléments d'échange d'énergie (5, 9) étant influencés par au moins une source d'énergie (15), un système de tuyauterie (17) étant placée dans une partie du second réceptacle (7), le système de tuyauterie (17) étant entouré par le second fluide et étant disposé pour conduire le premier fluide d'une source de fluide (19), par le biais du second réceptacle de fluide (7), jusqu'au premier réceptacle de fluide (3), la température du second fluide pouvant ainsi être influencée par la température de source de fluide du premier fluide. L'invention concerne également un procédé permettant de réaliser l'invention.
EP07793904.9A 2006-07-14 2007-06-29 Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés Active EP2041496B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07793904T PL2041496T3 (pl) 2006-07-14 2007-06-29 Układ i sposób zmiany temperatury pierwszego i drugiego płynu, które są umieszczone w dwóch oddzielnych zbiornikach

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20063270A NO326440B1 (no) 2006-07-14 2006-07-14 Arrangement og fremgangsmate for styring av temperaturendring av fluid
PCT/NO2007/000243 WO2008007968A1 (fr) 2006-07-14 2007-06-29 Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés

Publications (3)

Publication Number Publication Date
EP2041496A1 true EP2041496A1 (fr) 2009-04-01
EP2041496A4 EP2041496A4 (fr) 2015-09-16
EP2041496B1 EP2041496B1 (fr) 2017-05-31

Family

ID=38923457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07793904.9A Active EP2041496B1 (fr) 2006-07-14 2007-06-29 Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés

Country Status (6)

Country Link
EP (1) EP2041496B1 (fr)
DK (1) DK2041496T3 (fr)
ES (1) ES2638867T3 (fr)
NO (1) NO326440B1 (fr)
PL (1) PL2041496T3 (fr)
WO (1) WO2008007968A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010702A1 (fr) * 2007-07-17 2009-01-22 Powrmatic Limited Module de chauffage et contrôleur de système qui augmente le rendement de pompes à chaleur pour l'eau chaude et le chauffage domestiques
FR2995068A1 (fr) * 2012-09-05 2014-03-07 Didier Thieme Systeme ameliorant les performances des machines frigorifique a compression chauffants des fluides
GB201302761D0 (en) * 2013-02-18 2013-04-03 Ideal Boilers Ltd Water heating apparatus
NO337174B1 (no) 2013-12-19 2016-02-01 Lars Hansen Varmevekslerrør og framgangsmåte ved bruk av samme
EP3173703A1 (fr) * 2015-11-27 2017-05-31 Sharp Kabushiki Kaisha Accumulateur thermique de préchauffage
EP4293307A1 (fr) 2022-06-16 2023-12-20 Cordivari S.r.l. Système compact de stockage et d'echange de chaleur pour systèmes thermiques, installation correspondante et procede

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264239A (en) 1975-10-14 1981-04-28 King-Seeley Thermos Co. Ice transport and dispensing system
US4139152A (en) * 1977-04-05 1979-02-13 Kronberger Jr Joseph A Heating system
FR2485169B1 (fr) * 1980-06-20 1986-01-03 Electricite De France Perfectionnements aux installations de fourniture d'eau chaude comprenant un circuit thermodynamique
GB9403378D0 (en) * 1994-02-21 1994-04-13 Cole Robert Spent heat reclamation system
DE29601783U1 (de) * 1996-02-05 1996-06-13 Froeling Heizkessel Und Behael Pufferspeicher für einen Heizungskreislauf
DE29800262U1 (de) * 1998-01-09 1998-09-10 Loeser Solarsysteme Gmbh Speichersystem zur Warmwasserbereitung
GB2414289A (en) * 2004-05-19 2005-11-23 Asker Barum Kuldeteknikk A S A heat pump installation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008007968A1 *

Also Published As

Publication number Publication date
ES2638867T3 (es) 2017-10-24
PL2041496T3 (pl) 2017-10-31
EP2041496A4 (fr) 2015-09-16
DK2041496T3 (en) 2017-09-18
NO326440B1 (no) 2008-12-08
NO20063270L (no) 2008-01-15
EP2041496B1 (fr) 2017-05-31
WO2008007968A1 (fr) 2008-01-17

Similar Documents

Publication Publication Date Title
US7913501B2 (en) Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode
US20040108096A1 (en) Geothermal loopless exchanger
US3986664A (en) Heating installation comprising a heat pump and a fuel-fired boiler with a radiator circuit
EP3557143B1 (fr) Ensemble de consommateur d'énergie thermique local et ensemble générateur d'énergie thermique local pour un système de distribution d'énergie thermique de district
EP2041496B1 (fr) Configuration et procédé pour changer la température d'un premier et d'un deuxième fluide dans deux réceptacles séparés
US7628337B2 (en) Secondary heating system
EP2672190B1 (fr) Unité de conditionnement d'air ambiant à usage résidentiel
EP2508806B1 (fr) Système de pompe à chaleur et procédé de commande de l'unité de pompe à chaleur
WO2017134743A1 (fr) Procédé de commande de système de chauffage d'eau, et système de chauffage d'eau
CZ117894A3 (en) Room conditioner
CN113883662A (zh) 热能系统中的功率消耗的控制
US10941965B2 (en) System and method for providing supplemental heat to a refrigerant in an air-conditioner
WO1995020135A1 (fr) Procede et transfert d'energie de chauffage et/ou de refroidissement
US8245949B2 (en) Energy conservation system for using heat from air conditioning units to heat water supply lines
Caskey et al. Hybrid air-hydronic HVAC performance in a residential net-zero energy retrofit
EP2450641B1 (fr) Installation pour la récupération de chaleur de l'air d'évacuation utilisant une pompe à chaleur, et bâtiment comportant cette installation
KR101794002B1 (ko) 외부 냉각 열교환기를 구비하는 급탕 난방 통합배관 시스템
US10612792B2 (en) Air conditioning system, peripheral air-conditioning unit thereof and water pipeline upgrading method for heating purposes
US9835385B2 (en) Three-conductor and four-conductor system for saving energy in connection with district heat
EP0508245A1 (fr) Système combiné de chauffage et de refroidissement
CN115210504A (zh) 提高热量提取系统和/或热量沉积系统的效率
US20090078783A1 (en) Secondary heating and cooling system
GB2528314A (en) A heating supply arrangement
FI114566B (fi) Menetelmä huonetilojen lämmittämiseksi ja jäähdyttämiseksi nestekiertoisesti sekä menetelmässä käytettävä laitteisto
EP3638957B1 (fr) Appareil pour conditionnement thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HANSEN, LARS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HANSEN, LARS

Inventor name: ANDREASSEN, FINN, SIGVE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HANSEN, LARS

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150819

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 3/08 20060101AFI20150813BHEP

Ipc: F24D 11/02 20060101ALI20150813BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 897853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007051175

Country of ref document: DE

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170914

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2638867

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170824

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007051175

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

26N No opposition filed

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180620

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180702

Year of fee payment: 12

Ref country code: BE

Payment date: 20180702

Year of fee payment: 12

Ref country code: DK

Payment date: 20180702

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181227

Year of fee payment: 12

Ref country code: CZ

Payment date: 20181220

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070629

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 897853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 897853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190211

Year of fee payment: 14

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 17

Ref country code: DE

Payment date: 20230621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 17

Ref country code: GB

Payment date: 20230621

Year of fee payment: 17

Ref country code: ES

Payment date: 20230818

Year of fee payment: 17