EP2037085B1 - Hebel für verstellbare Statorschaufel einer Turbomaschine - Google Patents

Hebel für verstellbare Statorschaufel einer Turbomaschine Download PDF

Info

Publication number
EP2037085B1
EP2037085B1 EP08164272A EP08164272A EP2037085B1 EP 2037085 B1 EP2037085 B1 EP 2037085B1 EP 08164272 A EP08164272 A EP 08164272A EP 08164272 A EP08164272 A EP 08164272A EP 2037085 B1 EP2037085 B1 EP 2037085B1
Authority
EP
European Patent Office
Prior art keywords
lever
zone
laminate
surface portion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08164272A
Other languages
German (de)
French (fr)
Other versions
EP2037085A1 (en
Inventor
François Maurice Garcin
Pierrick Bernard Jean
Jean-Pierre François Lombard
Christian Paleczny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2037085A1 publication Critical patent/EP2037085A1/en
Application granted granted Critical
Publication of EP2037085B1 publication Critical patent/EP2037085B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20582Levers

Definitions

  • the present invention relates to turbomachines, as used in the aeronautical field. It relates to turbomachine variable valve stator blades, including gas turbine engine compressor, and more particularly to the control levers rotating such blades around their pivot.
  • the gas turbine engines include an air compressor section supplying a combustion chamber that produces hot gases driving the turbine stages downstream.
  • the engine compressor comprises a plurality of bladed movable wheels, separated by successive stages of stator bladed wheels forming gas flow rectifiers.
  • the blades of the first stages of the stator are generally variable pitch, that is to say that the angular position of the blade around its radial axis, pivoting, is adjusted according to mission points to improve the compressor efficiency.
  • the orientation of the variable-pitch vanes is effected by means of a mechanism designated variable-pitch mechanism or VSV for Variable Stator Vane.
  • Parts are designed and dimensioned to avoid the presence of critical modes in their operating range. In practice, however, there are still some crossovers and experience engine tests carried out at the end of the design cycle of the parts, showed that, in some cases, this could lead to initiations of cracks in the levers.
  • the sizing of the part must then be reviewed and modified which is particularly long and expensive. As a result, the vibration response levels must be predicted as early as possible in the sizing cycle so that corrective action can be taken as early as possible in the design process.
  • the present invention relates to a means providing structural damping in order to reduce the levels of deformation seen by these parts in operation and more particularly to reduce the dynamic responses of drive levers in rotating blade vane variable under synchronous or asynchronous solicitation, aerodynamic origin or not, by a contribution of dynamic damping.
  • the invention thus relates to a rotary drive lever around its pivot of a stator vane with a variable turbine engine timing comprising three zones: a first attachment zone to a lever driving member, a second zone attaches to said variable-pitch stator vane, and a third elongated zone between the first zone and the second zone.
  • the lever according to the invention is characterized in that on at least one surface portion of at least one of said zones of the lever, a vibration damping laminate is applied, the laminate comprising at least one layer of viscoelastic material in contact with said surface portion and a backing layer of rigid material.
  • the drive member is generally a ring surrounding the housing of the turbomachine, itself rotated about the axis thereof by a jack.
  • the lever is generally mounted at the end of the blade so as to drive it by its platform.
  • the laminate is either adhered to said surface portion or maintained applied mechanically.
  • the solution of the invention is therefore to add to the structure specific devices for dissipating vibration energy.
  • the originality of the present invention is based on the use of tile-shaped laminates composed of a viscoelastic sandwich with a layer of constraints bonded or fixed on the structure, whose function is to dissipate the vibratory energy of the room.
  • the solution of the invention has the advantage of allowing an increase in the structural damping of the metal part in question without having to resize, and thus reduce the costs and development time and development associated with the product.
  • the invention is applicable regardless of the type of dynamic loading: crossing with motor harmonics or asynchronous excitation.
  • said zone of the lever on which the laminate is applied is the third zone. According to the technical considerations, said surface portion on which the vibration damping laminate is applied completely covers said third zone.
  • said lever zone comprises the second and third zones.
  • the lever comprising a radially upper face and a radially lower face
  • the laminate is applied to at least one surface portion of said radially lower or upper faces.
  • at least one of said radially lower or upper faces is flat.
  • the second zone of the lever comprising a face at a level radially different from a face of the third zone
  • the vibration damping laminate covers at least partially a surface portion of said face of the second zone and a surface portion of said face of the third zone.
  • the laminate comprises an intermediate portion between said second zone surface portion and said third zone surface portion.
  • said intermediate portion of the vibration damping laminate is perforated.
  • the vibration damping laminate is strip-shaped with a width smaller than the width of the third zone.
  • the lever comprises at least two strips of vibration damping laminate. More particularly, the lever comprises at least two vibration damping laminate strips arranged parallel to each other.
  • the laminate consists of a stack of viscoelastic layers and alternate rigid layers, and the characteristics of the viscoelastic material vary from one layer to another or the characteristics of the viscoelastic material are the same. one layer to another and the characteristics of the rigid material vary from one layer to another or the characteristics of the rigid material are the same from one rigid layer to another.
  • the invention also relates to a turbomachine comprising at least one such rotary drive lever around its pivot of a variable-pitch stator vane. More particularly it is a gas turbine engine compressor comprising at least one such rotary drive lever around its pivot of a variable-pitch rectifier blade.
  • FIG. 1 schematically, an example of a turbomachine in the form of a turbofan and double-body turbojet engine is shown schematically.
  • a fan 2 at the front, supplies the engine with air.
  • the compressed air by the fan is divided into two concentric flows.
  • the secondary flow is evacuated directly into the atmosphere without further energy input and provides an essential part of the driving thrust.
  • the primary flow is guided through several stages of compression to the combustion chamber 5 where it is mixed with the fuel and burned.
  • the hot gases supply the different turbine stages 6 and 8 which drive the fan and the mobile wheels of the compressor. The gases are then vented to the atmosphere.
  • Such an engine comprises several stator wheels: a wheel downstream of the fan to straighten the secondary flow before its ejection, stator blade wheels 3 'and 4' interposed between the mobile wheels 3 and 4 of the compressors and distributors 6 and 8 'between the turbine wheels both at high pressure and at low pressure.
  • statically variable vane wheel with its drive mechanism, as provided in the first stages of the compressor 4.
  • This wheel 10 comprises blades 11 arranged radially relative to the axis of the engine 1, and pivotally mounted about radial axes inside a housing sector 12. Each is integral, in rotation about its radial axis , a lever 20 disposed externally to the housing sector.
  • the levers are rotatable about these radial axes so synchronous being driven by an assembly comprising a drive ring 30 surrounding the motor housing and which each of the levers and fixed by its end opposite that of the radial axis on which it is mounted.
  • An appropriate fixing means is for example a pin 21 traversing radially both the ring 30 and the end of the lever.
  • One or more cylinders not shown control the rotational movement of the ring about the axis of the motor. This movement is transmitted to the levers that pivot simultaneously around the radial axes and rotate the stator vanes around these same axes.
  • the figure 3 shows a lever 20. It is of generally elongate shape with two faces: a radially lower face 20i and a radially upper face 20e. The lower and upper terms describe the position of these faces relative to each other from the axis of the engine when the lever is in place on the engine. There are three areas.
  • the first zone 20A is pierced with a hole in which is slid here the pin 21.
  • the second zone 20B is pierced with a radial orifice through which the lever is mounted on the variable-pitch blade and ensures its rotational drive. It comprises a radially lower face 20Bi and a radially upper face 20Be.
  • the third zone 20C between the first two, is of elongated shape, thinner than the zone 20B, with a radially lower face 20Ci and a radially upper face 20Ce.
  • the shape of the lever of the figure is only one example. The invention applies to any equivalent form.
  • the figure 4 is a sectional view of a vibration damping laminate 40.
  • the laminate is in the form of a tile composed of a plurality of layers stacked one on top of the other.
  • the laminate comprises at least one layer 42 of a viscoelastic material and at least one layer 44 of a rigid material.
  • the laminate is applied by the viscoelastic layer to the surface 41 of a structure to be damped.
  • Viscoelasticity is a property of a solid or liquid which, when deformed, exhibits both viscous and elastic behavior by simultaneous dissipation and storage of mechanical energy.
  • the isotropic or anisotropic elasticity characteristics of the rigid material of the backing layer 44 are greater than those, isotropic or anisotropic, of the viscoelastic material in the desired thermal and frequency operating range.
  • the material of the layer 44 may be of metallic or composite type, and the material of the layer 42 of rubber, silicone, polymer, glass or epoxy resin type. The material must be efficient in terms of energy dissipation in the expected configuration corresponding to specific temperature and frequency ranges. It is chosen from its characteristic shear modules, expressed in deformation and speed.
  • the laminate comprises several layers 42 of viscoelastic material and several counter layers of rigid material 44, which are arranged alternately.
  • the example of the figure shows, without limitation, a vibration damping laminate having three layers 42 of viscoelastic material and three against layers 44 of rigid material.
  • the viscoelastic material layers 42 and the rigid material layers 44 may be of equal size or size.
  • the laminate comprises several layers 42, they may have all the same mechanical characteristics or have different mechanical characteristics from one layer to another.
  • the laminate comprises several against layers 44, they may have all the same mechanical characteristics or have different mechanical characteristics from one layer to another.
  • the layers 42 and the layers 44 are attached to each other preferably by adhesion by means of an adhesive film or by polymerization.
  • a laminate 40 is applied to the upper face of the zone 20C of the lever 20.
  • the laminate 40 comprises at least one layer 42 of viscoelastic material and at least one counter-layer 44 of rigid material.
  • the laminate is adhered by the layer of viscoelastic material to the lever 20.
  • it can be held in abutment against the surface of the lever by mechanical means: for example, by a clamping device on either side of the part C, by a mechanical connection ( screw / nut, rivet, crimping, or other) passing through the zone 20C of the lever and the laminate, by a pre-stressing effect obtained during assembly by deformation of the geometry at rest: fixation of the zone 55 on the part 20B by the linkage of the lever and prestressed support of the zone 54 on the portion 20 C of the lever.
  • mechanical means for example, by a clamping device on either side of the part C, by a mechanical connection ( screw / nut, rivet, crimping, or other) passing through the zone 20C of the lever and the laminate, by a pre-stressing effect obtained during assembly by deformation of the geometry at rest: fixation of the zone 55 on the part 20B by the linkage of the lever and prestressed support of the zone 54 on the portion 20 C of the lever.
  • the laminate extends over the entire surface of the third zone 20C of the lever. Its trapezoidal shape corresponds to the shape itself trapezoidal of the third zone 20C of the lever between the first zone 20A and the second zone 20B.
  • the surface portion on which the laminate is applied occupies the entire third zone.
  • the extent of the surface portion may be smaller than that of the third zone.
  • the thicknesses and the nature of the materials constituting the layers 42 and 44 are determined as a function of the desired damping.
  • the laminate 40 is applied not on the upper face of the zone 20C of the lever but on the lower face 20Ci of the zone 20C of the lever 20.
  • a vibration damping laminate, 40 and 40 ' was disposed on both sides of the third zone of the lever symmetrically.
  • the vibration damping laminate 50 comprises a first portion 54 extending over at least a surface portion of the upper face of the third zone C of the lever and a second portion 55 extending over at least a portion of surface of the upper face 20Be of the second zone 20B.
  • the first portion 54 extends over most of the third zone 20C.
  • the laminate 50 has an intermediate portion 56 connecting the first portion 54 to the second Part 55. This intermediate portion 56 improves the effectiveness of the device by using the shear forces of the viscoelastic layer.
  • the laminate is held against the surface of the lever by gluing for example at least one of the portions 54 and 55.
  • the laminate can be applied to the underside of the lever.
  • a vibration damping laminate 50 and 50 ' were disposed on both sides of the second and third zones of the lever symmetrically.
  • the vibration damping laminate 60 comprises a first portion 64 extending over a surface portion of the upper face of the third zone 20C, a second portion 65 extending over a surface portion of the upper face of the second zone 20B.
  • the laminate has an intermediate portion 66 connecting the first portion 64 to the second portion 65.
  • the intermediate portion is perforated.
  • the laminate is held against the surface of the lever by bonding for example at least one of the portions 64 and 65.
  • the laminate can be applied to the underside of the lever.
  • a vibration damping laminate 60 and 60 ' were disposed on surface portions of the two faces of the second and third regions of the lever symmetrically.
  • the laminate is in the form of strips arranged along the lever.
  • the strips comprise a first portion 74 applied on the third zone 20C, a second portion 75 on the second zone 20B and an intermediate portion 76 connecting the two portions 74 and 75.

Description

La présente invention concerne les turbomachines, telles qu'utilisées dans le domaine aéronautique. Elle se rapporte aux aubes de stator à calage variable de turbomachine, notamment de compresseur de moteur à turbine à gaz, et plus particulièrement aux leviers de commande entraînant en rotation de telles aubes autour de leur pivot.The present invention relates to turbomachines, as used in the aeronautical field. It relates to turbomachine variable valve stator blades, including gas turbine engine compressor, and more particularly to the control levers rotating such blades around their pivot.

Les moteurs à turbine à gaz comprennent une section formant compresseur d'air alimentant une chambre de combustion qui produit des gaz chauds entraînant en aval les étages de turbine. Le compresseur du moteur comprend une pluralité de roues mobiles aubagées, séparées par des étages successifs de roues aubagées statoriques formant redresseurs de flux gazeux. Les aubes des premiers étages de redresseur sont en général à calage variable, c'est-à-dire que la position angulaire de l'aube autour de son axe radial, formant pivot, est réglée en fonction de points de mission pour améliorer l'efficacité du compresseur. L'orientation des aubes à calage variable est effectuée au moyen d'un mécanisme désigné mécanisme à calage variable ou encore VSV pour Variable Stator Vane. Il existe plusieurs configurations de ces mécanismes, mais globalement ceux-ci comportent tous un ou plusieurs vérins fixés sur le carter du moteur, des barres de synchronisation ou un arbre de commande, des anneaux entourant le moteur et disposés transversalement par rapport à l'axe de ce dernier et des leviers sensiblement axiaux, désignés aussi biellettes, reliant les anneaux à chacune des aubes à calage variable. Les vérins entraînent en rotation les anneaux, autour de l'axe moteur, qui font tourner de façon synchrone l'ensemble des leviers autour des pivots des aubes.The gas turbine engines include an air compressor section supplying a combustion chamber that produces hot gases driving the turbine stages downstream. The engine compressor comprises a plurality of bladed movable wheels, separated by successive stages of stator bladed wheels forming gas flow rectifiers. The blades of the first stages of the stator are generally variable pitch, that is to say that the angular position of the blade around its radial axis, pivoting, is adjusted according to mission points to improve the compressor efficiency. The orientation of the variable-pitch vanes is effected by means of a mechanism designated variable-pitch mechanism or VSV for Variable Stator Vane. There are several configurations of these mechanisms, but overall they all include one or more jacks fixed on the motor housing, synchronization bars or a control shaft, rings surrounding the motor and arranged transversely to the axis of the latter and substantially axial levers, also referred to as connecting rods, connecting the rings to each of the variable-pitch vanes. The cylinders rotate the rings around the motor axis, which rotate synchronously all the levers around the blade pivots.

Ces mécanismes sont soumis à la fois aux charges aérodynamiques appliquées sur les aubes, qui sont importantes, et à des efforts résultant des frottements dans les différentes liaisons. En particulier les leviers sont soumis à des chargements statiques en flexion et torsion et à des sollicitations dynamiques. L'ensemble de ces charges peut atteindre des niveaux susceptibles d'être dommageables ; leur cumul notamment peut entraîner la formation de fissures ou autre dommages. Compte tenu des impératifs de tenue mécanique et de durée de vie qui leur sont assignés, les amplitudes des vibrations, induites par ces charges, que ces pièces subissent doivent rester faibles.These mechanisms are subject to both aerodynamic loads applied to the blades, which are important, and to forces resulting from friction in the various links. In particular, the levers are subjected to static loadings in bending and torsion and to dynamic loads. All of these charges can reach levels that are likely to be harmful; their cumulation in particular can lead to the formation of cracks or other damage. Given the requirements of mechanical strength and service life assigned to them, the amplitudes of the vibrations induced by these charges that these parts undergo must remain low.

Les pièces sont conçues et dimensionnées de manière à éviter la présence de modes critiques dans leur plage de fonctionnement. Dans la pratique cependant, il reste toujours quelques croisements et l'expérience, lors des essais moteurs réalisés en fin de cycle de conception des pièces, a montré que, dans certains cas, cela pouvait conduire à des initiations de criques dans les leviers. Le dimensionnement de la pièce doit alors être revu et modifié ce qui est particulièrement long et coûteux. On est donc amené à prédire au plus tôt dans le cycle de dimensionnement des pièces les niveaux de réponse vibratoire afin de pouvoir prendre les mesures correctives qui s'imposent, le plus en amont possible dans le processus de conception.Parts are designed and dimensioned to avoid the presence of critical modes in their operating range. In practice, however, there are still some crossovers and experience engine tests carried out at the end of the design cycle of the parts, showed that, in some cases, this could lead to initiations of cracks in the levers. The sizing of the part must then be reviewed and modified which is particularly long and expensive. As a result, the vibration response levels must be predicted as early as possible in the sizing cycle so that corrective action can be taken as early as possible in the design process.

L'art antérieur comprend l'enseignement des brevets EP 110918 qui décrit une méthode pour augmenter la durée de vie d'un anneau d'entraînement des aubes à calage variable d'un moteur en minimisant les mouvements relatifs résultant des vibrations du moteur consistant d'abord à désaccorder l'anneau de commande puis à introduire des moyens amortisseur des vibrations entre les différents éléments du mécanisme de commande de la géométrie variable; EP1820941 qui décrit un moyen d'amortissement des vibrations dans un dispositif de commande des aubes à géométrie variable, constitué de ressorts disposées autour du pivot intérieur opposé au mécanisme d'entraînement ; EP1111196 qui décrit un dispositif de commande des aubes à calage variable dans la turbine d'un turbochargeur entraînée par les gaz d' échappement d'un moteur à combustion interne.Prior art includes teaching of patents EP 110918 which describes a method for increasing the life of a drive ring of the variable pitch vanes of an engine by minimizing the relative movements resulting from the vibrations of the motor first detuning the control ring and then introducing vibration damping means between the different elements of the control mechanism of the variable geometry; EP1820941 which describes a vibration damping means in a variable geometry blade control device, consisting of springs arranged around the inner pivot opposite the drive mechanism; EP1111196 which describes a control device for variable pitch vanes in the turbine of a turbocharger driven by the exhaust gas of an internal combustion engine.

La présente invention a pour objet un moyen apportant de l'amortissement structural dans le but de diminuer les niveaux des déformations vues par ces pièces en fonctionnement et plus particulièrement d'atténuer les réponses dynamiques de leviers d'entraînement en rotation d'aube à calage variable sous sollicitation synchrone ou asynchrone, d'origine aérodynamique ou non, par un apport d'amortissement dynamique.The present invention relates to a means providing structural damping in order to reduce the levels of deformation seen by these parts in operation and more particularly to reduce the dynamic responses of drive levers in rotating blade vane variable under synchronous or asynchronous solicitation, aerodynamic origin or not, by a contribution of dynamic damping.

L'invention concerne ainsi un levier d'entraînement en rotation autour de son pivot d'une aube de stator à calage variable de turbomachine comprenant trois zones : une première zone d'attache à un organe d'entraînement du levier, une deuxième zone d'attache à ladite aube de stator à calage variable, et une troisième zone de forme allongée entre la première zone et la deuxième zone. Le levier selon l'invention est caractérisé par le fait que sur au moins une portion de surface d'au moins l'une des dites zones du levier, est appliqué un stratifié d'amortissement de vibrations, le stratifié comprenant au moins une couche de matériau viscoélastique en contact avec ladite portion de surface et une contre couche de matériau rigide.The invention thus relates to a rotary drive lever around its pivot of a stator vane with a variable turbine engine timing comprising three zones: a first attachment zone to a lever driving member, a second zone attaches to said variable-pitch stator vane, and a third elongated zone between the first zone and the second zone. The lever according to the invention is characterized in that on at least one surface portion of at least one of said zones of the lever, a vibration damping laminate is applied, the laminate comprising at least one layer of viscoelastic material in contact with said surface portion and a backing layer of rigid material.

L'organe d'entraînement est généralement un anneau entourant le carter de la turbomachine, lui-même mis en mouvement de rotation autour de l'axe de celle-ci par un vérin. Le levier est généralement monté en extrémité de l'aube de façon à entraîner celle-ci par sa plateforme.The drive member is generally a ring surrounding the housing of the turbomachine, itself rotated about the axis thereof by a jack. The lever is generally mounted at the end of the blade so as to drive it by its platform.

Le stratifié est soit collé sur ladite portion de surface soit maintenu appliqué par un moyen mécanique.The laminate is either adhered to said surface portion or maintained applied mechanically.

Pour garantir la robustesse de ces pièces vis-à-vis de la fatigue vibratoire, la solution de l'invention consiste donc à ajouter sur la structure des dispositifs spécifiques permettant de dissiper l'énergie vibratoire.To ensure the robustness of these parts vis-à-vis the vibration fatigue, the solution of the invention is therefore to add to the structure specific devices for dissipating vibration energy.

L'originalité de la présente invention repose sur l'emploi de stratifiés en forme de tuiles composés d'un sandwich viscoélastique avec une couche de contraintes collées ou fixées sur la structure, dont la fonction est de dissiper l'énergie vibratoire de la pièce.The originality of the present invention is based on the use of tile-shaped laminates composed of a viscoelastic sandwich with a layer of constraints bonded or fixed on the structure, whose function is to dissipate the vibratory energy of the room.

La dissipation de cette part d'énergie est obtenue par déformation en cisaillement du matériau viscoélastique, entre la structure qui se déforme sous sollicitation dynamique et la couche de contrainte entraînée par inertie. Ces stratifiés en forme de tuiles en étant fixés ou collés sur les faces du levier amortissent directement les modes de la structure, sans perturber les performances globales de la machine.The dissipation of this energy fraction is obtained by shear deformation of the viscoelastic material, between the structure which deforms under dynamic stress and the inertia-driven stress layer. These tile-like laminates being fixed or glued on the faces of the lever directly dampen the modes of the structure, without disrupting the overall performance of the machine.

La solution de l'invention présente l'avantage de permettre un accroissement de l'amortissement structural de la pièce métallique considérée sans avoir à la redimensionner, et donc de réduire les coûts et temps de développement et de mise au point associée au produit.The solution of the invention has the advantage of allowing an increase in the structural damping of the metal part in question without having to resize, and thus reduce the costs and development time and development associated with the product.

Elle autorise également l'élargissement des domaines de conception classique bornés par la satisfaction des prestations de tenue aux charges alternées et, indirectement, des gains de masse.It also allows the widening of conventional design areas bounded by the satisfaction of alternating load-bearing services and, indirectly, mass gains.

L'invention est applicable quel que soit le type de chargement dynamique : croisement avec des harmoniques moteurs ou excitation asynchrone.The invention is applicable regardless of the type of dynamic loading: crossing with motor harmonics or asynchronous excitation.

Selon un mode de réalisation de l'invention la dite zone du levier sur laquelle est appliqué le stratifié est la troisième zone. En fonction des considérations techniques, ladite portion de surface sur laquelle est appliqué le stratifié d'amortissement de vibrations recouvre entièrement ladite troisième zone.According to one embodiment of the invention, said zone of the lever on which the laminate is applied is the third zone. According to the technical considerations, said surface portion on which the vibration damping laminate is applied completely covers said third zone.

Selon un autre mode de réalisation la dite zone du levier comprend les deuxième et troisième zones.According to another embodiment, said lever zone comprises the second and third zones.

Selon un autre mode de réalisation le levier comprenant une face radialement supérieure et une face radialement inférieure, le stratifié est appliqué sur au moins une portion de surface des dites faces radialement inférieure ou supérieure. Par exemple, au moins l'une des dites faces radialement inférieure ou supérieure est plane.According to another embodiment, the lever comprising a radially upper face and a radially lower face, the laminate is applied to at least one surface portion of said radially lower or upper faces. For example, at least one of said radially lower or upper faces is flat.

Selon un autre mode de réalisation, la deuxième zone du levier comprenant une face à un niveau radialement différent d'une face de la troisième zone, le stratifié d'amortissement de vibrations recouvre au moins partiellement une portion de surface de ladite face de la deuxième zone et une portion de surface de ladite face de la troisième zone. Plus particulièrement, le stratifié comprend une partie intermédiaire entre ladite portion de surface de deuxième zone et ladite portion de surface de troisième zone. Eventuellement, ladite partie intermédiaire du stratifié d'amortissement de vibrations est ajourée.According to another embodiment, the second zone of the lever comprising a face at a level radially different from a face of the third zone, the vibration damping laminate covers at least partially a surface portion of said face of the second zone and a surface portion of said face of the third zone. More particularly, the laminate comprises an intermediate portion between said second zone surface portion and said third zone surface portion. Optionally, said intermediate portion of the vibration damping laminate is perforated.

Selon un mode de réalisation, le stratifié d'amortissement de vibrations est en forme de bande de largeur inférieure à la largeur de la troisième zone. Eventuellement, le levier comprend au moins deux bandes de stratifié d'amortissement de vibrations. Plus particulièrement, le levier comprend au moins deux bandes de stratifié d'amortissement de vibrations disposées parallèlement l'une à l'autre.According to one embodiment, the vibration damping laminate is strip-shaped with a width smaller than the width of the third zone. Optionally, the lever comprises at least two strips of vibration damping laminate. More particularly, the lever comprises at least two vibration damping laminate strips arranged parallel to each other.

Conformément à un mode de réalisation, le stratifié est constitué d'un empilement de couches viscoélastiques et de couches rigides alternées, et les caractéristiques du matériau viscoélastique varient d'une couche à l'autre ou bien les caractéristiques du matériau viscoélastique sont les mêmes d'une couche à l'autre et les caractéristiques du matériau rigide varient d'une couche à l'autre ou bien les caractéristiques du matériau rigide sont les mêmes d'une couche rigide à l'autre.According to one embodiment, the laminate consists of a stack of viscoelastic layers and alternate rigid layers, and the characteristics of the viscoelastic material vary from one layer to another or the characteristics of the viscoelastic material are the same. one layer to another and the characteristics of the rigid material vary from one layer to another or the characteristics of the rigid material are the same from one rigid layer to another.

L'invention concerne également une turbomachine comprenant au moins un tel levier d'entraînement en rotation autour de son pivot d'une aube de stator à calage variable. Plus particulièrement il s'agit d'un compresseur de moteur à turbine à gaz comprenant au moins un tel levier d'entraînement en rotation autour de son pivot d'une aube de redresseur à calage variable.The invention also relates to a turbomachine comprising at least one such rotary drive lever around its pivot of a variable-pitch stator vane. More particularly it is a gas turbine engine compressor comprising at least one such rotary drive lever around its pivot of a variable-pitch rectifier blade.

On décrit maintenant l'invention, plus en détail, en référence aux dessins annexés sur lesquels :

  • La figure 1 représente schématiquement un turboréacteur en coupe axiale susceptible d'incorporer un levier l'invention ;
  • La figure 2 montre en perspective la partie du moteur de la figure 1 correspondant à un étage de redresseurs au niveau du compresseur et comprenant des aubes de stator à calage variable ;
  • La figure 3 montre un levier d'entraînement des aubes de stator à calage variable de l'étage de redresseurs de la figure 2 ;
  • La figure 4 montre en coupe le stratifié d'amortissement de vibrations appliqué conformément à l'invention sur un levier de la figure 3 ;
  • Les figures 5 et 6 montrent, l'une en perspective l'autre en coupe le long de celui-ci, le levier de la figure 3 sur lequel est appliqué le stratifié d'amortissement de vibrations ;
  • Les figures 7 et 8 montrent, l'une en perspective l'autre en coupe le long de celui-ci, un autre mode d'application du stratifié d'amortissement de vibrations sur le levier de la figure 3 ;
  • Les figures 9 et 10 montrent, l'une en perspective l'autre en coupe le long de celui-ci, un autre mode d'application du stratifié d'amortissement de vibrations sur le levier de la figure 3 ;
  • Les figures 11, 12 et 13 montrent le levier de la figure 3 avec application de stratifiés d'amortissement de vibrations sur les faces radialement inférieure et radialement supérieure de celui-ci ;
  • Les figures 14 et 15 montrent un autre mode de réalisation de l'amortissement au moyen de stratifiés.
The invention will now be described in more detail with reference to the accompanying drawings in which:
  • The figure 1 schematically represents a turbojet in axial section capable of incorporating a lever the invention;
  • The figure 2 shows in perspective the motor part of the figure 1 corresponding to a rectifier stage at the compressor and including variable-pitch stator vanes;
  • The figure 3 shows a variable-stator stator vane drive lever of the rectifier stage of the figure 2 ;
  • The figure 4 shows in section the vibration damping laminate applied according to the invention on a lever of the figure 3 ;
  • The Figures 5 and 6 show, one in perspective the other in section along it, the lever of the figure 3 on which the vibration damping laminate is applied;
  • The Figures 7 and 8 show, one in perspective the other in section along it, another mode of application of the vibration damping laminate on the lever of the figure 3 ;
  • The Figures 9 and 10 show, one in perspective the other in section along it, another mode of application of the vibration damping laminate on the lever of the figure 3 ;
  • The Figures 11, 12 and 13 show the leverage of the figure 3 applying vibration damping laminates to the radially lower and radially upper faces thereof;
  • The Figures 14 and 15 show another embodiment of damping by means of laminates.

Sur la figure 1, on a représenté de manière schématique un exemple de turbomachine sous la forme d'un turboréacteur à double flux et à double corps. Une soufflante 2, à l'avant, alimente le moteur en air. L'air comprimé par la soufflante est partagé en deux flux concentriques. Le flux secondaire est évacué directement dans l'atmosphère sans autre apport d'énergie et fournit une part essentielle de la poussée motrice. Le flux primaire est guidé à travers plusieurs étages de compression vers la chambre de combustion 5 où il est mélangé au carburant et brûlé. Les gaz chauds alimentent les différents étages de turbine 6 et 8 qui entraînent la soufflante et les roues mobiles du compresseur. Les gaz sont ensuite évacués dans l'atmosphère. Un tel moteur comprend plusieurs roues de redresseur : une roue en aval de la soufflante pour redresser le flux secondaire avant son éjection, des roues d'aubes statoriques 3' et 4' interposées entre les roues mobiles 3 et 4 des compresseurs et des distributeurs 6' et 8' entre les roues des turbines aussi bien à haute pression qu'à basse pression.On the figure 1 schematically, an example of a turbomachine in the form of a turbofan and double-body turbojet engine is shown schematically. A fan 2, at the front, supplies the engine with air. The compressed air by the fan is divided into two concentric flows. The secondary flow is evacuated directly into the atmosphere without further energy input and provides an essential part of the driving thrust. The primary flow is guided through several stages of compression to the combustion chamber 5 where it is mixed with the fuel and burned. The hot gases supply the different turbine stages 6 and 8 which drive the fan and the mobile wheels of the compressor. The gases are then vented to the atmosphere. Such an engine comprises several stator wheels: a wheel downstream of the fan to straighten the secondary flow before its ejection, stator blade wheels 3 'and 4' interposed between the mobile wheels 3 and 4 of the compressors and distributors 6 and 8 'between the turbine wheels both at high pressure and at low pressure.

On voit sur la figure 2 une roue d'aubes statoriques à calage variable avec son mécanisme d'entraînement, telle que ménagée sur les premiers étages du compresseur 4.We see on the figure 2 a statically variable vane wheel with its drive mechanism, as provided in the first stages of the compressor 4.

Cette roue 10 comprend des aubes 11 disposées radialement par rapport à l'axe du moteur 1, et montées pivotantes autour d'axes radiaux à l'intérieur d'un secteur de carter 12. Chacune est solidaire, en rotation autour de son axe radial, d'un levier 20 disposé extérieurement au secteur de carter. Les leviers sont mobiles en rotation autour de ces axes radiaux de façon synchrone en étant entraînés par un ensemble comprenant un anneau 30 d'entraînement entourant le carter du moteur et auquel chacun des leviers et fixé par son extrémité opposée à celle de l'axe radial sur lequel il est monté. Un moyen de fixation approprié est par exemple un pion 21 traversant radialement à la fois l'anneau 30 et l'extrémité du levier. Un ou plusieurs vérins non représentés commandent le mouvement en rotation de l'anneau autour de l'axe du moteur. Ce mouvement est transmis aux leviers qui pivotent simultanément autour des axes radiaux et entraînent en rotation les aubes de stator autour de ces mêmes axes.This wheel 10 comprises blades 11 arranged radially relative to the axis of the engine 1, and pivotally mounted about radial axes inside a housing sector 12. Each is integral, in rotation about its radial axis , a lever 20 disposed externally to the housing sector. The levers are rotatable about these radial axes so synchronous being driven by an assembly comprising a drive ring 30 surrounding the motor housing and which each of the levers and fixed by its end opposite that of the radial axis on which it is mounted. An appropriate fixing means is for example a pin 21 traversing radially both the ring 30 and the end of the lever. One or more cylinders not shown control the rotational movement of the ring about the axis of the motor. This movement is transmitted to the levers that pivot simultaneously around the radial axes and rotate the stator vanes around these same axes.

La figure 3 montre un levier 20. Il est de forme globalement allongée avec deux faces : une face radialement inférieure 20i et une face radialement supérieure 20e. Les termes inférieur et supérieur qualifient la position de ces faces l'une par rapport à l'autre depuis l'axe du moteur lorsque le levier est en place sur le moteur. On distingue trois zones. La première zone 20A est percée d'un trou dans lequel est glissé ici le pion 21. La deuxième zone 20B est percée d'un orifice radial par lequel le levier est monté sur l'aube à calage variable et assure son entraînement en rotation. Elle comprend une face radialement inférieure 20Bi et une face radialement supérieure 20Be. La troisième zone 20C, entre les deux premières, est de forme allongée, plus mince que la zone 20B, avec une face radialement inférieure 20Ci et une face radialement supérieure 20Ce. La forme du levier de la figure n'est qu'un exemple. L'invention s'applique à toute forme équivalente.The figure 3 shows a lever 20. It is of generally elongate shape with two faces: a radially lower face 20i and a radially upper face 20e. The lower and upper terms describe the position of these faces relative to each other from the axis of the engine when the lever is in place on the engine. There are three areas. The first zone 20A is pierced with a hole in which is slid here the pin 21. The second zone 20B is pierced with a radial orifice through which the lever is mounted on the variable-pitch blade and ensures its rotational drive. It comprises a radially lower face 20Bi and a radially upper face 20Be. The third zone 20C, between the first two, is of elongated shape, thinner than the zone 20B, with a radially lower face 20Ci and a radially upper face 20Ce. The shape of the lever of the figure is only one example. The invention applies to any equivalent form.

La figure 4 représente en coupe un stratifié d'amortissement de vibrations 40. Le stratifié se présente sous la forme d'une tuile composée d'une pluralité de couches empilées les unes sur les autres. Selon une forme de réalisation, le stratifié comporte au moins une couche 42 d'un matériau viscoélastique et au moins une couche 44 d'un matériau rigide. Le stratifié est appliqué par la couche viscoélastique à la surface 41 d'une structure à amortir.The figure 4 is a sectional view of a vibration damping laminate 40. The laminate is in the form of a tile composed of a plurality of layers stacked one on top of the other. According to one embodiment, the laminate comprises at least one layer 42 of a viscoelastic material and at least one layer 44 of a rigid material. The laminate is applied by the viscoelastic layer to the surface 41 of a structure to be damped.

La viscoélasticité est une propriété d'un solide ou d'un liquide qui, lorsqu'il est déformé, montre un comportement à la fois visqueux et élastique par une dissipation et un stockage simultanés d'énergie mécanique.Viscoelasticity is a property of a solid or liquid which, when deformed, exhibits both viscous and elastic behavior by simultaneous dissipation and storage of mechanical energy.

Les caractéristiques, isotropes ou anisotropes, d'élasticité du matériau rigide de la contre couche 44 sont supérieures à celles, isotropes ou anisotropes, du matériau viscoélastique dans la plage de fonctionnement thermique et fréquentielle souhaitée. À titre d'exemple non limitatif, le matériau de la couche 44 peut être de type métallique ou composite, et le matériau de la couche 42 de type caoutchouc, silicone, polymère, verre ou résine époxy. Le matériau doit être efficace en termes de dissipation d'énergie dans la configuration attendue correspondant à des plages de température et de fréquence déterminées. Il est choisi à partir de ses modules caractéristiques de cisaillement, exprimés en déformation et vitesse.The isotropic or anisotropic elasticity characteristics of the rigid material of the backing layer 44 are greater than those, isotropic or anisotropic, of the viscoelastic material in the desired thermal and frequency operating range. By way of non-limiting example, the material of the layer 44 may be of metallic or composite type, and the material of the layer 42 of rubber, silicone, polymer, glass or epoxy resin type. The material must be efficient in terms of energy dissipation in the expected configuration corresponding to specific temperature and frequency ranges. It is chosen from its characteristic shear modules, expressed in deformation and speed.

Selon d'autres formes de réalisation, le stratifié comporte plusieurs couches 42 de matériau viscoélastique et plusieurs contre couches de matériau rigide 44, qui sont disposées de façon alternée. L'exemple de la figure montre, de façon non limitative, un stratifié d'amortissement de vibrations ayant trois couches 42 de matériau viscoélastique et trois contre couches 44 de matériau rigide. Selon les applications, les couches de matériau viscoélastique 42 et les contre couches de matériau rigide 44 peuvent d'égales dimensions ou de dimensions différentes. Lorsque le stratifié comporte plusieurs couches 42, celles-ci peuvent présenter toutes les mêmes caractéristiques mécaniques ou bien présenter des caractéristiques mécaniques différentes d'une couche à l'autre. Lorsque le stratifié comporte plusieurs contre couches 44, celles-ci peuvent présenter toutes les mêmes caractéristiques mécaniques ou bien présenter des caractéristiques mécaniques différentes d'une couche à l'autre. Les couches 42 et les couches 44 sont fixées les unes aux autres de préférence par adhésion au moyen d'un film de colle ou par polymérisation.According to other embodiments, the laminate comprises several layers 42 of viscoelastic material and several counter layers of rigid material 44, which are arranged alternately. The example of the figure shows, without limitation, a vibration damping laminate having three layers 42 of viscoelastic material and three against layers 44 of rigid material. Depending on the application, the viscoelastic material layers 42 and the rigid material layers 44 may be of equal size or size. When the laminate comprises several layers 42, they may have all the same mechanical characteristics or have different mechanical characteristics from one layer to another. When the laminate comprises several against layers 44, they may have all the same mechanical characteristics or have different mechanical characteristics from one layer to another. The layers 42 and the layers 44 are attached to each other preferably by adhesion by means of an adhesive film or by polymerization.

Sur les figures 5 et 6, on a représenté un premier mode de réalisation de l'invention. Un stratifié 40 est appliqué sur la face supérieure de la zone 20C du levier 20. Le stratifié 40 comporte au moins une couche 42 de matériau viscoélastique et au moins une contre couche 44 de matériau rigide. Le stratifié est collé par la couche de matériau viscoélastique au levier 20.On the Figures 5 and 6 a first embodiment of the invention is shown. A laminate 40 is applied to the upper face of the zone 20C of the lever 20. The laminate 40 comprises at least one layer 42 of viscoelastic material and at least one counter-layer 44 of rigid material. The laminate is adhered by the layer of viscoelastic material to the lever 20.

Selon une autre forme de réalisation non représentée, il peut être maintenu en appui contre la surface du levier par des moyens mécaniques : par exemple, par un dispositif de pincement de part et d'autre de la partie 20 C, par une liaison mécanique (vis/écrou, rivet, sertissage, ou autre) traversant la zone 20C du levier et le stratifié, par un effet de pré-contrainte obtenu au montage par déformation de la géométrie au repos : fixation de la zone 55 sur la partie 20B par la liaison native du levier et appui avec précontrainte de la zone 54 sur la partie 20 C du levier.According to another embodiment not shown, it can be held in abutment against the surface of the lever by mechanical means: for example, by a clamping device on either side of the part C, by a mechanical connection ( screw / nut, rivet, crimping, or other) passing through the zone 20C of the lever and the laminate, by a pre-stressing effect obtained during assembly by deformation of the geometry at rest: fixation of the zone 55 on the part 20B by the linkage of the lever and prestressed support of the zone 54 on the portion 20 C of the lever.

Le stratifié s'étend sur toute la surface de la troisième zone 20C du levier. Sa forme trapézoïdale correspond à la forme elle même trapézoïdale de la troisième zone 20C du levier entre la première zone 20A et la deuxième zone 20B. Dans cet exemple, la portion de surface sur laquelle est appliqué le stratifié occupe toute la troisième zone. Cependant selon les besoins en amortissement de vibrations, l'étendue de la portion de surface peut être inférieure à celle de la troisième zone. Par ailleurs les épaisseurs et la nature des matériaux constituant les couches 42 et 44 sont déterminées en fonction de l'amortissement souhaité.The laminate extends over the entire surface of the third zone 20C of the lever. Its trapezoidal shape corresponds to the shape itself trapezoidal of the third zone 20C of the lever between the first zone 20A and the second zone 20B. In this example, the surface portion on which the laminate is applied occupies the entire third zone. However, depending on the vibration damping requirements, the extent of the surface portion may be smaller than that of the third zone. Moreover, the thicknesses and the nature of the materials constituting the layers 42 and 44 are determined as a function of the desired damping.

Selon un autre mode de réalisation non représenté, le stratifié 40 est appliqué non pas sur la face supérieure de la zone 20C du levier mais sur la face inférieure 20Ci de la zone 20 C du levier 20. Selon un autre mode de réalisation représenté sur la figure 11, on a disposé un stratifié d'amortissement de vibrations, 40 et 40', sur les deux faces de la troisième zone du levier de façon symétrique.According to another embodiment not shown, the laminate 40 is applied not on the upper face of the zone 20C of the lever but on the lower face 20Ci of the zone 20C of the lever 20. According to another embodiment shown in FIG. figure 11 a vibration damping laminate, 40 and 40 ', was disposed on both sides of the third zone of the lever symmetrically.

Selon le mode de réalisation des figures 7 et 8, le stratifié d'amortissement de vibrations 50 comprend une première partie 54 s'étendant sur au moins une portion de surface de la face supérieure de la troisième zone 20 C du levier et une deuxième partie 55 s'étendant sur au moins une portion de surface de la face supérieure 20Be de la deuxième zone 20B. Dans cet exemple la première partie 54 s'étend sur la majeure partie de la troisième zone 20C. Dans la mesure où la surface supérieure de la deuxième zone est à un niveau radialement plus élevé que le niveau de la surface radialement supérieure 20Be de la troisième zone 20 C, le stratifié 50 comporte une partie intermédiaire 56 reliant la première partie 54 à la deuxième partie 55. Cette partie intermédiaire 56 améliore l'efficacité du dispositif en utilisant les efforts de cisaillement de la couche viscoélastique. Le stratifié est maintenu contre la surface du levier par collage par exemple au moins de l'une des portions 54 et 55. Ici encore le stratifié peut être appliqué sur la face inférieure du levier. Selon un autre mode de réalisation représenté sur la figure 12, on a disposé un stratifié d'amortissement de vibrations, 50 et 50', sur les deux faces des deuxième et troisième zones du levier de façon symétrique.According to the embodiment of Figures 7 and 8 the vibration damping laminate 50 comprises a first portion 54 extending over at least a surface portion of the upper face of the third zone C of the lever and a second portion 55 extending over at least a portion of surface of the upper face 20Be of the second zone 20B. In this example, the first portion 54 extends over most of the third zone 20C. Insofar as the upper surface of the second zone is at a level radially higher than the level of the radially upper surface 20Be of the third zone C, the laminate 50 has an intermediate portion 56 connecting the first portion 54 to the second Part 55. This intermediate portion 56 improves the effectiveness of the device by using the shear forces of the viscoelastic layer. The laminate is held against the surface of the lever by gluing for example at least one of the portions 54 and 55. Here again the laminate can be applied to the underside of the lever. According to another embodiment shown on the figure 12 a vibration damping laminate 50 and 50 'were disposed on both sides of the second and third zones of the lever symmetrically.

Selon le mode de réalisation des figures 9 et 10, le stratifié d'amortissement de vibrations 60 comprend une première partie 64 s'étendant sur une portion de surface de la face supérieure de la troisième zone 20C, une deuxième partie 65 s'étendant sur une portion de surface de la face supérieure de la deuxième zone 20B. Le stratifié comporte une partie intermédiaire 66 reliant la première partie 64 à la deuxième partie 65. Selon cet exemple la partie intermédiaire est ajourée. Le stratifié est maintenu contre la surface du levier par collage par exemple au moins de l'une des portions 64 et 65. Ici encore le stratifié peut être appliqué sur la face inférieure du levier. Selon un autre mode de réalisation représenté sur la figure 13, on a disposé un stratifié d'amortissement de vibrations, 60 et 60', sur des portions de surface des deux faces des deuxième et troisième zones du levier de façon symétrique.According to the embodiment of Figures 9 and 10 , the vibration damping laminate 60 comprises a first portion 64 extending over a surface portion of the upper face of the third zone 20C, a second portion 65 extending over a surface portion of the upper face of the second zone 20B. The laminate has an intermediate portion 66 connecting the first portion 64 to the second portion 65. According to this example, the intermediate portion is perforated. The laminate is held against the surface of the lever by bonding for example at least one of the portions 64 and 65. Here again the laminate can be applied to the underside of the lever. According to another embodiment shown on the figure 13 a vibration damping laminate 60 and 60 'were disposed on surface portions of the two faces of the second and third regions of the lever symmetrically.

Selon le mode de réalisation des figures 14 et 15 le stratifié est en forme de bandes disposées le long du levier. Les bandes comprennent une première partie 74 appliquée sur la troisième zone 20C, une deuxième partie 75 sur la deuxième zone 20B et une partie intermédiaire 76 reliant les deux parties 74 et 75.According to the embodiment of Figures 14 and 15 the laminate is in the form of strips arranged along the lever. The strips comprise a first portion 74 applied on the third zone 20C, a second portion 75 on the second zone 20B and an intermediate portion 76 connecting the two portions 74 and 75.

Claims (13)

  1. A lever (20) for rotating about its pivot a turbomachine variable-pitch stator vane comprising three zones: a first zone (20A) for attachment to a lever drive member, a second zone (20B) for attachment to said variable-pitch stator vane, and a third zone (20C) of elongate shape between the first zone and the second zone, wherein a vibration-damping laminate (40, 50, 60, 70) is applied to at least one surface portion of at least one of said zones (20A, 20B, 20C) of the lever, the laminate comprising at least one layer of viscoelastic material in contact with said surface portion and a backing layer of rigid material.
  2. The lever as claimed in the preceding claim, in which the vibration-damping laminate (40, 50, 60, 70) is glued to said surface portion.
  3. The lever as claimed in claim 1 in which the vibration-damping laminate (40, 50, 60, 70) is kept pressed against said surface portion by a mechanical means.
  4. The lever as claimed in one of the preceding claims in which said zone of the lever is the third zone (20C) or alternatively is the second and third zones.
  5. The lever as claimed in claim 4 in which said surface portion to which the vibration-damping laminate is applied entirely covers said third zone (20C).
  6. The lever as claimed in one of the preceding claims, comprising a radially upper face and a radially lower face, in which the laminate is applied to at least one surface portion, particularly a flat surface portion, of said radially lower or upper faces.
  7. The lever as claimed in one of the preceding claims, in which the second zone comprises a face at a level radially different than a face of the third zone, the vibration-damping laminate (50, 60, 70) at least partially covering a surface portion of said face of the second zone (20B) and a surface portion of said face of the third zone (20C).
  8. The lever as claimed in the preceding claim, in which the laminate comprises an intermediate part (56, 66, 76), for example holed, between said second zone surface portion and said third zone surface portion.
  9. The lever as claimed in one of the preceding claims, comprising at least one vibration-damping laminate (70) in the form of strips, at least two of these, of a width narrower than the width of the third zone, said two strips preferably being positioned parallel to one another.
  10. The lever as claimed in one of the preceding claims, in which the laminate is made up of a stack of viscoelastic layers and of rigid layers in alternation, the characteristics of the viscoelastic material varying or being the same from one layer to another.
  11. The lever as claimed in claim 10, in which the characteristics of the rigid material vary from one layer to another or are the same from one layer to another or are the same from one layer to another.
  12. A turbomachine comprising at least one lever as claimed in one of the preceding claims for rotating a variable-pitch stator vane about its pivot.
  13. A gas turbine engine compressor comprising at least one lever as claimed in one of claims 1 to 11 for rotating a variable-pitch flow straightener vane about its pivot.
EP08164272A 2007-09-13 2008-09-12 Hebel für verstellbare Statorschaufel einer Turbomaschine Active EP2037085B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0706431A FR2921100B1 (en) 2007-09-13 2007-09-13 ROTATIONAL DRIVE LEVER AROUND A VARIABLE TURBOMACHINE STATOR VANE PIVOT

Publications (2)

Publication Number Publication Date
EP2037085A1 EP2037085A1 (en) 2009-03-18
EP2037085B1 true EP2037085B1 (en) 2010-11-17

Family

ID=39469551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08164272A Active EP2037085B1 (en) 2007-09-13 2008-09-12 Hebel für verstellbare Statorschaufel einer Turbomaschine

Country Status (8)

Country Link
US (1) US8197190B2 (en)
EP (1) EP2037085B1 (en)
JP (1) JP2009068491A (en)
CN (1) CN101676570A (en)
CA (1) CA2639602C (en)
DE (1) DE602008003499D1 (en)
FR (1) FR2921100B1 (en)
RU (1) RU2471077C2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017017B2 (en) * 2009-04-10 2015-04-28 Honeywell Internatonal Inc. Variable-vane assembly having fixed guide pins for unison ring
US8915703B2 (en) * 2011-07-28 2014-12-23 United Technologies Corporation Internally actuated inlet guide vane for fan section
JP5981559B2 (en) * 2011-11-01 2016-08-31 ムーグ インコーポレーテッド Vibration isolation system and method
US9410443B2 (en) * 2012-01-27 2016-08-09 United Technologies Corporation Variable vane damping assembly
US10132179B2 (en) 2012-09-28 2018-11-20 United Technologies Corporation Alignment tool for use in a gas turbine engine
US9368129B1 (en) * 2014-07-29 2016-06-14 Magnecomp Corporation Disk drive suspension having dual vibration damper
DE102015004649A1 (en) * 2015-04-15 2016-10-20 Man Diesel & Turbo Se Guide vane adjusting device and turbomachine
CN107533881B (en) * 2015-04-28 2019-06-14 住友金属矿山股份有限公司 Electrically-conductive backing plate
US10443412B2 (en) * 2015-08-28 2019-10-15 General Electric Company Variable pitch fan pitch range limiter
US9611751B1 (en) * 2015-09-18 2017-04-04 Borgwarner Inc. Geometry for increasing torque capacity of riveted vane lever
US11021995B2 (en) * 2018-08-06 2021-06-01 Raytheon Technologies Corporation Imbalance damping devices for gas turbine engine fan shaft bearings
US11346240B2 (en) * 2019-06-07 2022-05-31 Raytheon Technologies Corporation Gas turbine engine bleed valve damping guide link
JP7431640B2 (en) 2020-03-31 2024-02-15 川崎重工業株式会社 gas turbine engine unison ring
FR3139857A1 (en) * 2022-09-16 2024-03-22 Safran Aircraft Engines Assembly of a variable pitch blade device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874711A (en) * 1974-02-06 1975-04-01 Westinghouse Electric Corp Gas turbine exhaust system expansion joint
US4695220A (en) * 1985-09-13 1987-09-22 General Electric Company Actuator for variable vanes
FR2608678B1 (en) * 1986-12-17 1991-02-08 Snecma VARIABLE SETTING BLADE CONTROL DEVICE FOR TURBOMACHINE RECTIFIER
RU2022120C1 (en) * 1991-06-05 1994-10-30 Самарский государственный аэрокосмический университет им.акад.С.П.Королева Axial turbomachine wheel
FR2685385B1 (en) * 1991-12-24 1995-03-31 Snecma VARIABLE CYCLE PROPULSION ENGINE FOR SUPERSONIC AIRCRAFT.
JPH0835538A (en) * 1994-07-25 1996-02-06 Lintec Corp Vibration damping and reinforcing sheet
US6177173B1 (en) * 1998-07-01 2001-01-23 3M Innovative Properties Company Damped laminates having welded through holes and/or edges with decreased spring back and improved fastener force retention and, a method of making
US6092984A (en) * 1998-12-18 2000-07-25 General Electric Company System life for continuously operating engines
US6494679B1 (en) * 1999-08-05 2002-12-17 General Electric Company Apparatus and method for rotor damping
DE19961613A1 (en) * 1999-12-21 2001-07-19 Daimler Chrysler Ag Exhaust gas turbine of an exhaust gas turbocharger for an internal combustion engine
FR2846034B1 (en) * 2002-10-22 2006-06-23 Snecma Moteurs CARTER, COMPRESSOR, TURBINE AND COMBUSTION TURBOMOTOR COMPRISING SUCH A CARTER
FR2875559B1 (en) * 2004-09-21 2007-02-23 Snecma Moteurs Sa LEVER FOR CONTROLLING THE ANGULAR SETTING OF A STATOR BLADE IN A TURBOMACHINE
US7983008B2 (en) * 2005-10-24 2011-07-19 The Chinese University Of Hong Kong Piezoelectric actuated suspension with passive damping in hard disk drives
EP1818509A1 (en) * 2006-02-09 2007-08-15 Siemens Aktiengesellschaft Guide vane assembly
US8602733B2 (en) * 2008-06-27 2013-12-10 Trane International, Inc. Structural and acoustical vibration dampener for a rotatable blade

Also Published As

Publication number Publication date
DE602008003499D1 (en) 2010-12-30
RU2008136811A (en) 2010-03-20
FR2921100B1 (en) 2009-12-04
JP2009068491A (en) 2009-04-02
CN101676570A (en) 2010-03-24
FR2921100A1 (en) 2009-03-20
RU2471077C2 (en) 2012-12-27
US20090074569A1 (en) 2009-03-19
US8197190B2 (en) 2012-06-12
CA2639602A1 (en) 2009-03-13
EP2037085A1 (en) 2009-03-18
CA2639602C (en) 2015-04-28

Similar Documents

Publication Publication Date Title
EP2037085B1 (en) Hebel für verstellbare Statorschaufel einer Turbomaschine
EP2324205B1 (en) Vibration damper device for turbomachine blade attachments, associated turbomachine and associated engines
EP2009237B1 (en) Turbomachine shaft damper device
EP1462608B1 (en) Stator vane with double curvature
EP1970537B1 (en) Turbomachine fan
EP2368019B1 (en) Seal for a turbomachine rotor platform
EP1903186B1 (en) Thermal screen device for the housing of a turbine to control blade tip clearance
EP1870600A1 (en) Bearing for stator vane with variable setting
EP2088290A1 (en) Supporting abradable casing liner in a turbomachine
EP3430241A1 (en) Turbofan
EP2071133B1 (en) Turbomachine module equipped with a device for improving radial play
FR2925108A1 (en) Turbomachine e.g. jet engine, module for aircraft, has clearance improving device with control device controlling thermal inertia of inner case and ring, where ring has insulating material in cavity delimited by case, ring side and sheet
EP3400168B1 (en) Pivot blade with variable pitch for a turbofan engine
EP2888452B1 (en) Gas turbine engine comprising a composite piece and a metallic piece joined together by a flexible fixation
EP3068979B1 (en) Annular element of a turbomachine casing
WO2010130959A1 (en) Diffuser for a turbine engine
FR3125087A1 (en) ROTOR FOR AN AIRCRAFT TURBOMACHINE COMPRISING A PASSIVE FIRE DETECTION DEVICE
FR3121474A1 (en) Blade comprising a composite material structure and associated manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602008003499

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008003499

Country of ref document: DE

Effective date: 20110818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 16

Ref country code: FR

Payment date: 20230822

Year of fee payment: 16

Ref country code: DE

Payment date: 20230822

Year of fee payment: 16