EP2030706B1 - Method of preparing nanoparticles of silver - Google Patents

Method of preparing nanoparticles of silver Download PDF

Info

Publication number
EP2030706B1
EP2030706B1 EP07115455A EP07115455A EP2030706B1 EP 2030706 B1 EP2030706 B1 EP 2030706B1 EP 07115455 A EP07115455 A EP 07115455A EP 07115455 A EP07115455 A EP 07115455A EP 2030706 B1 EP2030706 B1 EP 2030706B1
Authority
EP
European Patent Office
Prior art keywords
silver
nanoparticles
silver nanoparticles
concentration
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07115455A
Other languages
German (de)
French (fr)
Other versions
EP2030706A1 (en
Inventor
Gérard Klein
Edouard Marc Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metalor Technologies International SA
Original Assignee
Metalor Technologies International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP07115455A priority Critical patent/EP2030706B1/en
Application filed by Metalor Technologies International SA filed Critical Metalor Technologies International SA
Priority to PL07115455T priority patent/PL2030706T3/en
Priority to AT07115455T priority patent/ATE487554T1/en
Priority to ES07115455T priority patent/ES2355376T3/en
Priority to DE602007010457T priority patent/DE602007010457D1/en
Priority to CA2696588A priority patent/CA2696588A1/en
Priority to PCT/EP2008/061142 priority patent/WO2009027396A2/en
Priority to US12/675,894 priority patent/US20100303876A1/en
Priority to KR1020107005565A priority patent/KR101526335B1/en
Priority to JP2010522346A priority patent/JP2010537057A/en
Publication of EP2030706A1 publication Critical patent/EP2030706A1/en
Priority to IL204075A priority patent/IL204075A/en
Application granted granted Critical
Publication of EP2030706B1 publication Critical patent/EP2030706B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to the field of nanotechnology. It relates, more particularly, to a process for preparing silver nanoparticles.
  • Metal nanoparticles are widely studied for their optical, electrical, catalytic or biological properties. The size and shape of these particles greatly influence their characteristics. Numerous studies have been carried out in order to define processes that make it possible precisely to control the shape and the size of these different metallic nanoparticles. Various preparation routes have been tested for this purpose, such as chemical reduction, gas condensation, laser irradiation ...
  • silver particles are of great interest. Firstly, their antimicrobial properties resulting from their interaction with thiol, amine, imidazole, carboxyl or phosphate functional groups of living organisms proteins make them suitable for a large number of applications in the medical field.
  • the silver particles when they are dispersed in polymeric organic matrices, they can serve as conductors in electronic and electrotechnical applications.
  • This use is doubly interesting, on the one hand because the resulting conductive formulations can be partially transparent and, on the other hand, because it is possible to induce sintering between the particles to create a crosslinked metal assembly of which the conductive properties are greatly improved.
  • S. Mukherjee proposes the production of an Ag-PAM nanocomposite.
  • a silver salt is mixed with a polymeric agent ( S. Mukherjee: "Nitrogen-mediated interaction in polyacrylamide-silver nanocomposites", Journal of Physics, Condensed Matter 18 2006, 11233-11242 ).
  • the object of the present invention is therefore to propose an easily industrializable silver nanoparticle synthesis route which makes it possible to obtain these particles with good control of their size and shape.
  • the above process is particularly advantageous when the organic silver salt used is selected from silver acetate, silver acetylacetonate, silver citrate, silver lactate or silver pentafluoropropionate.
  • the method according to the invention does not involve toxic product or dangerous for the environment.
  • the reaction conditions are mild and minimize the risks inherent in the reaction.
  • the process for the preparation of silver nanoparticles comprises a first step of mixing 5 g of silver acetate with a solution of 5 g of polyvinylpyrrolidone (PVP) of molecular mass 10000 in 200 ml of water at a temperature of temperature between 40 and 60 ° C, typically at 50 ° C.
  • PVP serves as a nucleating agent and stabilizer, to allow the formation of silver nanoparticles, while avoiding that they agglomerate.
  • a rise in temperature is carried out in 5 minutes to reach a temperature between 60 and 90 ° C, typically 75 ° C.
  • the solution white at the beginning of the reaction, then evolves towards a burne color.
  • the reaction mixture is then left stirring for 45 minutes at 95 ° C.
  • the solution then evolves slowly from a brown color to a green color.
  • the heating is then stopped and the solution is left stirring to reach 35 ° C.
  • the reaction medium is then mixed with a solution of ascorbic acid at 20 mM.
  • Ascorbic acid serves as a reducing agent. It has a coordination affinity with the Ag + ions, while having a limited reduction potential, so as not to agglomerate the reduced silver.
  • the ascorbic acid can initially bind with the Ag + ions stably, allowing the electron transfer to be done in a second time, without agglomeration of silver particles.
  • the reduction potential of ascorbic acid is -0.41V.
  • Other reducing agents with a reduction potential typically less than + 0.2V, preferably less than -0.2V, but greater than -1.5V, preferably greater than -1.2V, preferably greater than -1V may be envisaged.
  • glucose -1.87V reduction potential
  • glucose is a too strong reducing agent and reduces Ag + ions but forming agglomerates.
  • the potentials above are given according to the usual norm in Europe and extracted from: CRC Handbook Series in Organic Electrochemistry, Vol 1, 1976 .
  • the solution is centrifuged to concentrate the polymer matrix containing the silver nanoparticles. It will be noted that the evolution of the reduction reaction can be followed by UV / visible spectroscopy.
  • the analyzes carried out on the final product make it possible to determine that 80% of the silver introduced in the form of silver acetate is converted into metallic silver (Ag 0 ).
  • the figures 1 and 2 are images obtained by transmission electron microscopy (TEM) that measure the size of nanoparticles and their distribution. The size of the nanoparticles obtained is between 3 and 50 nm.
  • PVP polyethylene Glycol
  • PEG polypropylene glycol
  • the term PVP, PEG or polypropylene glycol polymer includes copolymers having one of these monomers as a unit.
  • the silver nanoparticles obtained have a diameter of less than 100 nm, more particularly less than 80 nm, more particularly less than 50 nm. Particles with a diameter of around 2 nm could be detected. These particles are dispersed in the polymer matrix at a concentration greater than 1 M, particularly greater than 2M, more particularly greater than 3M.

Abstract

Preparation of silver nanoparticles having diameter of less than 100 nm, dispersed in polymer matrix at a concentration of greater than 1 M, comprises reacting an organic silver salt and polymeric agent for nucleation and stabilization of silver nanoparticles; mixing the mixture obtained at reduction potential reducer and having an affinity of coordination with silver ions; and concentrating and separating the polymer matrix containing silver nanoparticles.

Description

Domaine techniqueTechnical area

La présente invention se rapporte au domaine de la nanotechnologie. Elle concerne, plus particulièrement, un procédé de préparation de nanoparticules d'argent.The present invention relates to the field of nanotechnology. It relates, more particularly, to a process for preparing silver nanoparticles.

Etat de la techniqueState of the art

Les nanoparticules métalliques sont largement étudiées pour leurs propriétés optiques, électriques, catalytiques ou encore biologiques. La taille et la forme de ces particules influencent grandement leurs caractéristiques. De nombreuses études ont été menées afin de définir des procédés permettant justement de contrôler la forme et la taille de ces différentes nanoparticules métalliques. Différentes voies de préparation ont été testées à cette fin, telles que la réduction chimique, la condensation gazeuse, l'irradiation laser...Metal nanoparticles are widely studied for their optical, electrical, catalytic or biological properties. The size and shape of these particles greatly influence their characteristics. Numerous studies have been carried out in order to define processes that make it possible precisely to control the shape and the size of these different metallic nanoparticles. Various preparation routes have been tested for this purpose, such as chemical reduction, gas condensation, laser irradiation ...

Plus précisément, les particules d'argent présentent un intérêt important. Tout d'abord, leurs propriétés antimicrobiennes résultant de leur interaction avec les groupes fonctionnels thiol, amine, imidazole, carboxyle ou encore phosphate des protéines d'organismes vivants les destinent à un grand nombre d'application dans le domaine médical.More specifically, silver particles are of great interest. Firstly, their antimicrobial properties resulting from their interaction with thiol, amine, imidazole, carboxyl or phosphate functional groups of living organisms proteins make them suitable for a large number of applications in the medical field.

Par ailleurs, lorsque les particules d'argent sont dispersées dans des matrices organiques polymériques, elles peuvent servir de conducteur dans des applications électroniques et électrotechniques. Cette utilisation est doublement intéressante, d'une part du fait que les formulations conductrices obtenues peuvent être partiellement transparentes et, d'autre part, du fait qu'il est possible d'induire un frittage entre les particules pour créer un ensemble métallique réticulé dont les propriété conductrices sont fortement améliorées.On the other hand, when the silver particles are dispersed in polymeric organic matrices, they can serve as conductors in electronic and electrotechnical applications. This use is doubly interesting, on the one hand because the resulting conductive formulations can be partially transparent and, on the other hand, because it is possible to induce sintering between the particles to create a crosslinked metal assembly of which the conductive properties are greatly improved.

En outre, il est également important de stabiliser les particules formées, afin qu'elles ne s'agglomèrent pas et qu'elles conservent leurs propriétés.In addition, it is also important to stabilize the formed particles so that they do not agglomerate and retain their properties.

Toutefois, ces recherches n'ont pour l'instant été entreprises qu'à titre expérimental et les conditions réactionnelles ne peuvent pas être transposées pour être industrialisées.However, this research has for the moment been undertaken only experimentally and the reaction conditions can not be transposed to be industrialized.

Par exemple, une voie de synthèse a été proposée par Li et Al (J. AM. CHEM. SOC. vol 127, n° 10,2005 ), à partir d'acétate d'argent et d'alkylamine, dans du toluène et de la phénylhydrazine. Toutefois, une telle réaction ne peut pas être utilisée industriellement pour deux inconvénients majeurs. Tout d'abord, l'utilisation d'un réducteur azoté est gênante pour d'éventuelles applications électroniques des nanoparticules obtenues, car il subsiste toujours des traces d'azote qui sont préjudiciables pour la qualité du dispositif électronique obtenu. Ensuite, bien que la publication mentionne que le produit de la réaction présente une haute concentration en argent, celle-ci n'est que de 0,5M. Or, une telle concentration n'est pas assez élevée pour qu'une telle synthèse soit économiquement intéressante. En effet, il faut mettre en oeuvre d'importants volumes de réactifs pour obtenir une quantité de nanoparticules suffisante.For example, a synthetic route has been proposed by Li and Al (J. Am.Chem., Vol 127, No. 10,2005 ), from silver acetate and alkylamine, in toluene and phenylhydrazine. However, such a reaction can not be used industrially for two major disadvantages. Firstly, the use of a nitrogen reducer is troublesome for possible electronic applications of the nanoparticles obtained, because there are still traces of nitrogen that are detrimental to the quality of the electronic device obtained. Then, although the publication mentions that the product of the reaction has a high silver concentration, it is only 0.5M. However, such a concentration is not high enough for such a synthesis is economically interesting. Indeed, it is necessary to use large volumes of reagents to obtain a sufficient amount of nanoparticles.

S. Mukherjee propose la production d'un nanocomposite Ag-PAM. Un sel d'argent est mélangé avec un agent polymérique ( S. Mukherjee: "Nitrogen-mediated interaction in polyacrylamide-silver nanocomposites", Journal of Physics, Condensed Matter 18 2006, 11233-11242 ).S. Mukherjee proposes the production of an Ag-PAM nanocomposite. A silver salt is mixed with a polymeric agent ( S. Mukherjee: "Nitrogen-mediated interaction in polyacrylamide-silver nanocomposites", Journal of Physics, Condensed Matter 18 2006, 11233-11242 ).

En outre, d'autres voies classiques de préparation d'argent par réduction d'ions Ag+ font généralement intervenir des réactifs ou des solvants toxiques (Nitrate d'argent, DMF...) et des conditions réactionnelles énergiques (température, pression), ce qui n'en fait pas non plus des solutions de choix pour une industrialisation, car elles sont délicates en terme de sécurité et d'écologie. Enfin, des procédés habituels de nucléation/croissance conduisent à des particules trop grosses, inutilisables pour les applications visées.In addition, other conventional ways of preparing silver by reduction of Ag + ions generally involve reagents or toxic solvents (silver nitrate, DMF, etc.) and energetic reaction conditions (temperature, pressure). which also does not make them ideal solutions for industrialization, because they are delicate in terms of safety and ecology. Finally, conventional methods of nucleation / growth lead to particles that are too large and unusable for the intended applications.

La présente invention a donc pour but de proposer une voie de synthèse de nanoparticules d'argent facilement industrialisable, qui permet d'obtenir ces particules avec un bon contrôle de leur taille et de leur forme.The object of the present invention is therefore to propose an easily industrializable silver nanoparticle synthesis route which makes it possible to obtain these particles with good control of their size and shape.

Divulgation de l'inventionDisclosure of the invention

De façon plus précise, l'invention concerne un procédé de préparation de nanoparticules d'argent de diamètre inférieur à 100nm, dispersées dans une matrice polymère à une concentration supérieure à 1M, comportant les étapes suivantes:

  • mise en réaction d'un sel organique d'argent et d'un agent polymérique de nucléation et de stabilisation des nanoparticules d'argent,
  • mélange du milieu réactionnel obtenu précédemment à un réducteur à potentiel de réduction limité, de manière à ne pas agglomérer l'argent réduit, et présentant une affinité de coordination avec des ions Ag+,
  • concentration et séparation de la matrice polymère contenant les nanoparticules d'argent.
More specifically, the invention relates to a method for preparing silver nanoparticles with a diameter of less than 100 nm, dispersed in a polymer matrix at a concentration greater than 1M, comprising the following steps:
  • reacting an organic silver salt and a polymeric nucleating and stabilizing agent for silver nanoparticles,
  • mixture of the reaction medium obtained above with a reducing agent with limited reduction potential, so as not to agglomerate the reduced silver, and having a coordination affinity with Ag + ions,
  • concentration and separation of the polymer matrix containing the silver nanoparticles.

Plus particulièrement, le procédé ci-dessus se montre particulièrement avantageux lorsque le sel organique d'argent mis en oeuvre est choisi parmi l'acétate d'argent, l'acétylacétonate d'argent, le citrate d'argent, le lactate d'argent ou le pentafluoropropionate d'argent.More particularly, the above process is particularly advantageous when the organic silver salt used is selected from silver acetate, silver acetylacetonate, silver citrate, silver lactate or silver pentafluoropropionate.

Des résultats très intéressants ont été obtenus en mélangeant le sel organique d'argent avec un polymère à base de polyvinylpyrrolidone (PVP), de polyéthylèneglycol (PEG) ou à base de polypropylèneglycol.Very interesting results have been obtained by mixing the organic silver salt with a polymer based on polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) or based on polypropylene glycol.

Ainsi, le procédé selon l'invention ne fait pas intervenir de produit toxique ou dangereux pour l'environnement. En outre, les conditions réactionnelles sont douces et permettent de limiter au maximum les risques inhérents à la réaction.Thus, the method according to the invention does not involve toxic product or dangerous for the environment. In addition, the reaction conditions are mild and minimize the risks inherent in the reaction.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques du procédé apparaîtront plus clairement à la lecture de la description qui suit accompagnée du dessin annexé montrant des images obtenues par microscopie électronique à transmission (MET) de particules d'argent obtenues selon le procédé.Other characteristics of the method will appear more clearly on reading the following description accompanied by the attached drawing showing images obtained by transmission electron microscopy (TEM) of silver particles obtained according to the method.

Mode(s) de réalisation de l'inventionMode (s) of realization of the invention

Le procédé de préparation de nanoparticules d'argent, selon l'invention, comporte une première étape de mélange de 5g d'acétate d'argent à une solution de 5g de polyvinylpyrrolidone (PVP) de masse moléculaire 10000 dans 200mL d'eau à une température comprise entre 40 et 60°C, typiquement à 50°C. Le PVP sert d'agent de nucléation et de stabilisateur, afin de permettre la formation de nanoparticules d'argent, tout en évitant que celles-ci s'agglomèrent.The process for the preparation of silver nanoparticles, according to the invention, comprises a first step of mixing 5 g of silver acetate with a solution of 5 g of polyvinylpyrrolidone (PVP) of molecular mass 10000 in 200 ml of water at a temperature of temperature between 40 and 60 ° C, typically at 50 ° C. PVP serves as a nucleating agent and stabilizer, to allow the formation of silver nanoparticles, while avoiding that they agglomerate.

Une montée en température est effectuée en 5 minutes pour atteindre une température comprise entre 60 et 90°C, typiquement de 75°C. La solution, blanche en début de réaction, évolue alors vers une couleur burne. Le mélange réactionnel est alors laissé sous agitation pendant 45 minutes à 95°C. La solution évolue alors lentement d'une couleur brune à une couleur verte. Le chauffage est alors arrêté et la solution est laissée sous agitation pour atteindre 35°C.A rise in temperature is carried out in 5 minutes to reach a temperature between 60 and 90 ° C, typically 75 ° C. The solution, white at the beginning of the reaction, then evolves towards a burne color. The reaction mixture is then left stirring for 45 minutes at 95 ° C. The solution then evolves slowly from a brown color to a green color. The heating is then stopped and the solution is left stirring to reach 35 ° C.

Le milieu réactionnel est ensuite mélangé à une solution d'acide ascorbique à 20mM. L'acide ascorbique sert de réducteur. Il présente une affinité de coordination avec les ions Ag+, tout en ayant un potentiel de réduction limité, de manière à ne pas agglomérer l'argent réduit. Ainsi, l'acide ascorbique peut, dans un premier temps, se lier avec les ions Ag+ de manière stable, permettant au transfert d'électrons de se faire dans un deuxième temps, sans agglomération des particules d'argent. A titre d'indication, le potentiel de réduction de l'acide ascorbique est de -0.41V. D'autres réducteurs au potentiel de réduction typiquement inférieur à +0.2V, de préférence inférieur à -0.2V, mais supérieur à -1.5V, de préférence supérieur à -1.2V, de préférence supérieur à -1V peuvent être envisagés. On notera, par exemple, que le glucose (potentiel de réduction -1.87V) est un réducteur trop puissant et réduit les ions Ag+ mais en formant des agglomérats. Les potentiels ci-dessus sont donnés selon la norme usuelle en Europe et extraits de : CRC Handbook Series in Organic Electrochemistry, Vol 1, 1976 .The reaction medium is then mixed with a solution of ascorbic acid at 20 mM. Ascorbic acid serves as a reducing agent. It has a coordination affinity with the Ag + ions, while having a limited reduction potential, so as not to agglomerate the reduced silver. Thus, the ascorbic acid can initially bind with the Ag + ions stably, allowing the electron transfer to be done in a second time, without agglomeration of silver particles. As an indication, the reduction potential of ascorbic acid is -0.41V. Other reducing agents with a reduction potential typically less than + 0.2V, preferably less than -0.2V, but greater than -1.5V, preferably greater than -1.2V, preferably greater than -1V may be envisaged. It should be noted, for example, that glucose (-1.87V reduction potential) is a too strong reducing agent and reduces Ag + ions but forming agglomerates. The potentials above are given according to the usual norm in Europe and extracted from: CRC Handbook Series in Organic Electrochemistry, Vol 1, 1976 .

II serait également envisageable d'ajouter en continu le milieu réactionnel et le réducteur, en proportion stoechiométrique.It would also be possible to continuously add the reaction medium and the reducing agent, in a stoichiometric proportion.

Lorsque la réaction de réduction est terminée, c'est-à-dire typiquement après 30 minutes, la solution est centrifugée afin de concentrer la matrice polymère contenant les nanoparticules d'argent. On notera que l'évolution de la réaction de réduction peut être suivie par spectroscopie UV/visible.When the reduction reaction is complete, i.e., typically after 30 minutes, the solution is centrifuged to concentrate the polymer matrix containing the silver nanoparticles. It will be noted that the evolution of the reduction reaction can be followed by UV / visible spectroscopy.

Les analyses effectuées sur le produit final permettent de déterminer que 80% de l'argent introduit sous forme d'acétate d'argent est converti en argent métallique (Ag0). Les figures 1 et 2 sont des images obtenues par microscopie électronique à transmission (MET) qui permettent de mesurer la taille des nanoparticules et leur distribution. La taille des nanoparticules obtenues est comprise entre 3 et 50nm.The analyzes carried out on the final product make it possible to determine that 80% of the silver introduced in the form of silver acetate is converted into metallic silver (Ag 0 ). The figures 1 and 2 are images obtained by transmission electron microscopy (TEM) that measure the size of nanoparticles and their distribution. The size of the nanoparticles obtained is between 3 and 50 nm.

D'autres expérimentations ont été effectuées avec différents sels organiques d'argent, tels que l'acétylacétonate d'argent, le citrate d'argent, le lactate d'argent ou le pentafluoropropionate d'argent. De même, du polyéthylène glycol (PEG) et du polypropylèneglycol ont également été utilisés en remplacement du PVP et ces polymères peuvent être mis en oeuvre avec différentes masses moléculaires. Pour l'interprétation des revendications le terme de polymère à base de PVP, de PEG ou de polypropylèneglycol comprend des copolymères ayant l'un de ces monomères pour motif. Selon les réactifs utilisés, les nanoparticules d'argent obtenues ont un diamètre inférieur à 100nm, plus particulièrement inférieur à 80nm, plus particulièrement inférieur à 50nm. Des particules de diamètre voisin de 2nm ont pu être détectées. Ces particules sont dispersées dans la matrice polymère à une concentration supérieure à 1 M, particulièrement supérieure à 2M, plus particulièrement supérieure à 3M.Other experiments have been carried out with various organic silver salts, such as silver acetylacetonate, silver citrate, silver lactate or silver pentafluoropropionate. Similarly, polyethylene Glycol (PEG) and polypropylene glycol have also been used as replacements for PVP and these polymers can be used with different molecular weights. For the purposes of the claims, the term PVP, PEG or polypropylene glycol polymer includes copolymers having one of these monomers as a unit. Depending on the reagents used, the silver nanoparticles obtained have a diameter of less than 100 nm, more particularly less than 80 nm, more particularly less than 50 nm. Particles with a diameter of around 2 nm could be detected. These particles are dispersed in the polymer matrix at a concentration greater than 1 M, particularly greater than 2M, more particularly greater than 3M.

Le taux de conversion obtenu, d'une part, et la qualité des particules obtenues (taille réduite et uniformité des dimensions), d'autres part, sont remarquables par rapport aux autres méthodes expérimentées.The conversion rate obtained, on the one hand, and the quality of the particles obtained (small size and uniformity of the dimensions), on the other hand, are remarkable compared to the other methods tested.

A titre de comparaison, on peut mentionner un autre protocole expérimental testé, comportant une première étape de mélange de 10g d'acétate d'argent et de 1g de polyéthylène glycol de masse moléculaire 1500 (PEG 1500) dans 80mL de tert-butanol à 50°C. Le PEG sert également de réducteur. L'acétate d'argent forme une suspension dans la solution d'alcool et de PEG. Le mélange est agité et sa température est élevée à environ 75°C sur une durée de cinq minutes. La solution est laissée sous agitation pendant quarante-cinq minutes à 80°C. Le meilleur taux de conversion obtenu avec ce protocole est d'environ 50%.By way of comparison, mention may be made of another experimental protocol tested, comprising a first step of mixing 10 g of silver acetate and 1 g of 1500 molecular weight polyethylene glycol (PEG 1500) in 80 ml of 50% tert-butanol. ° C. PEG also serves as a reducer. Silver acetate forms a suspension in the alcohol and PEG solution. The mixture is stirred and its temperature is raised to about 75 ° C over a period of five minutes. The solution is stirred for 45 minutes at 80 ° C. The best conversion rate obtained with this protocol is about 50%.

Ainsi est proposé un procédé de préparation de nanoparticules d'argent qui permet d'obtenir ces particules avec un bon contrôle de leur taille et de leur forme. Au niveau de l'industrialisation, les différents réactifs mentionnés ci-dessus peuvent être utilisés et combinés. Toutefois, le choix de l'acétate d'argent et du PVP semble présenter la meilleure combinaison en termes de rendement, de qualité des particules obtenues, du coût des réactifs, de sécurité de la réaction et d'écologie.Thus is proposed a process for preparing silver nanoparticles which makes it possible to obtain these particles with good control of their size and shape. At the level of industrialization, the various reagents mentioned above can be used and combined. However, the choice of silver acetate and PVP appears to offer the best combination in terms of yield, quality of the particles obtained, cost of reagents, safety of the reaction and ecology.

Claims (9)

  1. A method for preparing silver nanoparticles which a diameter of less than 100nm, dispersed in a polymeric matrix at a concentration above 1M, including the following steps:
    i. reacting an organic silver salt and a polymeric agent for nucleation and stabilization of silver nanoparticles,
    ii. mixing the reaction medium obtained previously with a reducing agent having a defined reduction potential and having coordination affinity with Ag+ ions,
    iii. concentrating and separating the polymeric matrix containing the silver nanoparticles.
  2. The method according to claim 1, characterized in that said organic silver salt is selected from silver acetate, silver acetylacetonate, silver citrate, silver lactate or silver pentafluoropropionate.
  3. The method according to any of claims 1 or 2, characterized in that the polymer is based on polyvinylpyrrolidone (PVP) or polyethyleneglycol (PEG) or polypropyleneglycol.
  4. The method according to claim 3, characterized in that the reacting takes place in an aqueous medium.
  5. The method according to claim 4, characterized in that step i includes addition of water at a temperature comprised between 40 and 60°C, a phase for heating to a temperature comprised between 65 and 95°C and a cooling phase.
  6. The method according to any of the preceding claims, characterized in that the reducing agent used is ascorbic acid.
  7. The method according to any of the preceding claims, characterized in that the concentration and separation operation is carried out by centrifugation.
  8. The method according to any of the preceding claims, characterized in that the diameter of the obtained silver nanoparticles is less than 50nm.
  9. The method according to any of the preceding claims, characterized in that the obtained silver nanoparticles are dispersed in a polymeric matrix at a concentration above 2M, preferably above 3M.
EP07115455A 2007-08-31 2007-08-31 Method of preparing nanoparticles of silver Not-in-force EP2030706B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL07115455T PL2030706T3 (en) 2007-08-31 2007-08-31 Method of preparing nanoparticles of silver
AT07115455T ATE487554T1 (en) 2007-08-31 2007-08-31 METHOD FOR PRODUCING SILVER NANOPARTICLES
ES07115455T ES2355376T3 (en) 2007-08-31 2007-08-31 PROCEDURE TO PREPARE SILVER NANOPARTICLES.
DE602007010457T DE602007010457D1 (en) 2007-08-31 2007-08-31 Process for the preparation of silver nanoparticles
EP07115455A EP2030706B1 (en) 2007-08-31 2007-08-31 Method of preparing nanoparticles of silver
PCT/EP2008/061142 WO2009027396A2 (en) 2007-08-31 2008-08-26 Method for preparing silver nanoparticles
CA2696588A CA2696588A1 (en) 2007-08-31 2008-08-26 Method for preparing silver nanoparticles
US12/675,894 US20100303876A1 (en) 2007-08-31 2008-08-26 Method for preparing silver nanoparticles
KR1020107005565A KR101526335B1 (en) 2007-08-31 2008-08-26 Method for preparing silver nanoparticles
JP2010522346A JP2010537057A (en) 2007-08-31 2008-08-26 Method for producing silver nanoparticles
IL204075A IL204075A (en) 2007-08-31 2010-02-21 Method for preparing silver nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07115455A EP2030706B1 (en) 2007-08-31 2007-08-31 Method of preparing nanoparticles of silver

Publications (2)

Publication Number Publication Date
EP2030706A1 EP2030706A1 (en) 2009-03-04
EP2030706B1 true EP2030706B1 (en) 2010-11-10

Family

ID=38895989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07115455A Not-in-force EP2030706B1 (en) 2007-08-31 2007-08-31 Method of preparing nanoparticles of silver

Country Status (11)

Country Link
US (1) US20100303876A1 (en)
EP (1) EP2030706B1 (en)
JP (1) JP2010537057A (en)
KR (1) KR101526335B1 (en)
AT (1) ATE487554T1 (en)
CA (1) CA2696588A1 (en)
DE (1) DE602007010457D1 (en)
ES (1) ES2355376T3 (en)
IL (1) IL204075A (en)
PL (1) PL2030706T3 (en)
WO (1) WO2009027396A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4075C1 (en) * 2009-12-31 2011-07-31 Анатолий ЭФКАРПИДИС Process for obtaining highly dispersed colloidal silver
AR080385A1 (en) * 2010-03-09 2012-04-04 Polymers Crc Ltd PROCEDURE FOR THE PREPARATION OF AN ANTIMICROBIAL ARTICLE
CN102212806B (en) * 2010-04-07 2013-03-13 南京理工大学 Preparation method of bacterial cellulose-nano silver composite material
ES2453217T3 (en) 2010-12-21 2014-04-04 Agfa-Gevaert Dispersion containing metal nanoparticles, metal oxide or metal precursor
MY158931A (en) * 2011-06-08 2016-11-30 Sumitomo Metal Mining Co Silver Powder and Process for Manufacturing Same
ES2496440T3 (en) 2011-12-21 2014-09-19 Agfa-Gevaert Dispersion containing metal nanoparticles, metal oxide or metal precursor, a polymeric dispersant and a thermally cleavable agent
ES2485308T3 (en) 2011-12-21 2014-08-13 Agfa-Gevaert Dispersion containing metal nanoparticles, metal oxide or metal precursor, a polymeric dispersant and a sintering additive
EP2671927B1 (en) 2012-06-05 2021-06-02 Agfa-Gevaert Nv A metallic nanoparticle dispersion
CN102828176A (en) * 2012-07-31 2012-12-19 东南大学 Preparation method for uniform gold nanoparticle film
CN102935520B (en) * 2012-12-05 2015-10-28 苏州大学 A kind of modified glucose prepares the method for nano-silver water solution
JP5500237B1 (en) * 2012-12-05 2014-05-21 住友金属鉱山株式会社 Silver powder
US20140239504A1 (en) * 2013-02-28 2014-08-28 Hwei-Ling Yau Multi-layer micro-wire structure
EP2781562B1 (en) 2013-03-20 2016-01-20 Agfa-Gevaert A method to prepare a metallic nanoparticle dispersion
KR101802458B1 (en) 2013-07-04 2017-11-28 아그파-게바에르트 엔.브이. A metallic nanoparticle dispersion
KR101533565B1 (en) * 2013-07-04 2015-07-09 한국화학연구원 High yield synthetic method of silver nano-plates with controllable aspect ratio
US20160083594A1 (en) 2013-07-04 2016-03-24 Agfa Gevaert A method of preparing a conductive metallic layer or pattern
EP2821164A1 (en) 2013-07-04 2015-01-07 Agfa-Gevaert A metallic nanoparticle dispersion
CN103785852B (en) * 2014-01-25 2016-08-17 华南理工大学 A kind of nanometer silver-nano micro crystal cellulose complex and preparation method and application
WO2016077936A1 (en) * 2014-11-18 2016-05-26 Nano Innova Spa. Method for forming nanoparticles of a metal, a non-metal and/or an organometal, nanoparticles derived from the process, and industrial use thereof
EP3037161B1 (en) 2014-12-22 2021-05-26 Agfa-Gevaert Nv A metallic nanoparticle dispersion
EP3099145B1 (en) 2015-05-27 2020-11-18 Agfa-Gevaert Method of preparing a silver layer or pattern comprising a step of applying a silver nanoparticle dispersion
EP3099146B1 (en) 2015-05-27 2020-11-04 Agfa-Gevaert Method of preparing a silver layer or pattern comprising a step of applying a silver nanoparticle dispersion
EP3287499B1 (en) 2016-08-26 2021-04-07 Agfa-Gevaert Nv A metallic nanoparticle dispersion
CN106637356B (en) * 2016-12-22 2018-08-21 东南大学 A kind of preparation method of three-dimensional black nano metal wide spectrum extinction film
WO2019113059A1 (en) * 2017-12-04 2019-06-13 Greene Lyon Group, Inc. Silver recovery
US20210253887A1 (en) 2018-05-08 2021-08-19 Agfa-Gevaert Nv Conductive inks
CN112059205B (en) * 2020-09-18 2022-08-16 东北大学 Preparation method of nano-silver with stable particle size
EP4163343A1 (en) 2021-10-05 2023-04-12 Agfa-Gevaert Nv Conductive inks
CN115156550A (en) * 2022-07-26 2022-10-11 深圳先进电子材料国际创新研究院 Preparation method of hollow silver nanoparticles
CN115777725B (en) * 2022-12-02 2024-01-26 山西益鑫泰生物科技有限公司 Nano silver disinfectant and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP2004307900A (en) * 2003-04-03 2004-11-04 Kuraray Co Ltd Method of producing organic-inorganic composite material containing metal ultra-fine particles
JP4413095B2 (en) * 2004-07-07 2010-02-10 財団法人川村理化学研究所 Method for producing porous metal body
JP4047312B2 (en) * 2004-08-27 2008-02-13 三井金属鉱業株式会社 Spherical silver powder, flaky silver powder, mixed powder of spherical silver powder and flaky silver powder, method for producing these silver powder, silver ink and silver paste containing the silver powder
US7270694B2 (en) * 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
DE602006013100D1 (en) * 2005-01-10 2010-05-06 Yissum Res Dev Co WATER-BASED DISPERSIONS OF METAL NANOPARTICLES
JP2006257484A (en) * 2005-03-16 2006-09-28 Nippon Paint Co Ltd Nonaqueous organic-solvent solution of metallic nanoparticle and preparation method therefor

Also Published As

Publication number Publication date
DE602007010457D1 (en) 2010-12-23
EP2030706A1 (en) 2009-03-04
CA2696588A1 (en) 2009-03-05
JP2010537057A (en) 2010-12-02
WO2009027396A2 (en) 2009-03-05
ATE487554T1 (en) 2010-11-15
IL204075A (en) 2013-08-29
PL2030706T3 (en) 2011-04-29
KR20100066511A (en) 2010-06-17
ES2355376T3 (en) 2011-03-25
WO2009027396A3 (en) 2009-07-23
KR101526335B1 (en) 2015-06-08
US20100303876A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
EP2030706B1 (en) Method of preparing nanoparticles of silver
Bertolo et al. Lignins from sugarcane bagasse: Renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation
Ahmad et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum
Moreno et al. Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations
US9421610B2 (en) Stable atomic quantum clusters, production method thereof and use of same
RU2668437C2 (en) Zeta positive hydrogenated nanodiamond powder, zeta positive single-digit hydrogenated nanodiamond dispersion and methods for producing same
Kumar et al. Sulfite reductase‐mediated synthesis of gold nanoparticles capped with phytochelatin
Seo et al. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells
EP3010852B1 (en) Process for preparing elemental selenium nanoparticles
Mees et al. Formation of selenium colloids using sodium ascorbate as the reducing agent
Gau et al. Enzymatic synthesis of temperature-responsive poly (N-vinylcaprolactam) microgels with glucose oxidase
Kaler et al. Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii
Xu et al. Gold nanoparticles bound on microgel particles and their application as an enzyme support
Ristig et al. Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles
EP2240942A1 (en) Method of manufacturing silica-coated metal nanoparticles
US20100288159A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
Dement’eva et al. Copper nanoparticles synthesized by the polyol method and their oxidation in polar dispersion media. The influence of chloride and acetate ions
FR2846572A1 (en) Asymmetric composite particles, useful for stabilizing emulsions, e.g. paints, comprise inorganic particle bound to spherical vinyl polymer particle by physicochemical or covalent interactions
Fan et al. Polymer Cages as Universal Tools for the Precise Bottom‐Up Synthesis of Metal Nanoparticles
Singh et al. Nitrate Reductase mediated synthesis of surface passivated nanogold as broad-spectrum antibacterial agent
EP1663869B1 (en) Calco-magnesian aqueous suspension and method for the production thereof
FR2964665A1 (en) LUMINESCENT NANOPARTICLES USED AS MARKERS AND PROCESS FOR THEIR PREPARATION
KR102494993B1 (en) Method for producing gold nanoparticles having increased glucose oxidase and peroxidase activities and gold nanoparticles by the method
Djohan et al. Molecular chaperone prefoldin-assisted biosynthesis of gold nanoparticles with improved size distribution and dispersion
EP3993925A1 (en) Process for purifying metal nanowires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090518

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GLN S.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007010457

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2355376

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110325

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110210

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007010457

Country of ref document: DE

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: AVENUE EDOUARD-DUBOIS 20, 2000 NEUCHATEL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140827

Year of fee payment: 8

Ref country code: CH

Payment date: 20140827

Year of fee payment: 8

Ref country code: NL

Payment date: 20140826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140801

Year of fee payment: 8

Ref country code: ES

Payment date: 20140826

Year of fee payment: 8

Ref country code: FR

Payment date: 20140818

Year of fee payment: 8

Ref country code: PL

Payment date: 20140806

Year of fee payment: 8

Ref country code: GB

Payment date: 20140827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140829

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007010457

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831