EP2029289B1 - Method for producing a component with a nanostructured coating - Google Patents

Method for producing a component with a nanostructured coating Download PDF

Info

Publication number
EP2029289B1
EP2029289B1 EP07730276.8A EP07730276A EP2029289B1 EP 2029289 B1 EP2029289 B1 EP 2029289B1 EP 07730276 A EP07730276 A EP 07730276A EP 2029289 B1 EP2029289 B1 EP 2029289B1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
film
coating
polymer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07730276.8A
Other languages
German (de)
French (fr)
Other versions
EP2029289A1 (en
Inventor
Rene Jabado
Jens Dahl Jensen
Ursus KRÜGER
Daniel Körtvelyessy
Volkmar LÜTHEN
Ralph Reiche
Michael Rindler
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2029289A1 publication Critical patent/EP2029289A1/en
Application granted granted Critical
Publication of EP2029289B1 publication Critical patent/EP2029289B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • B05D1/286Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers using a temporary backing to which the coating has been applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Definitions

  • the invention relates to a method for producing a component with a nanostructured coating, in which the nanostructuring of the coating is produced using nanoparticles. Furthermore, the invention relates to polymer films in which nanoparticles are incorporated.
  • a coating consisting of a polymeric material and particles incorporated therein may be subjected to pyrolysis and / or carbonation after application to a surface.
  • the polymer is converted to form a porous carbon-based material as a matrix for the particles.
  • nanostructured coatings can be produced.
  • an aerosol containing microparticles of, for example, two materials is formed, the aerosol flowing laminarly. From the flowing microparticles, nanoparticles are separated by ablation, for example with a laser beam, which deposit as a nanostructured film on a substrate to be coated.
  • ablation for example with a laser beam
  • a comparatively complicated device is necessary, which ensures the generation of the aerosol from the microparticles and their laminar conduction over the coating substrate. In this case, different parameters must be taken into account for a desired layer thickness and composition during the coating process.
  • the object of the invention is a process for producing nanostructured coatings with any desired layer materials to provide a simple coating with a relatively free choice of the layer materials is possible and a uniform distribution of nanoparticles in the coating can be generated.
  • This invention is achieved with the aforementioned method for producing a component with a nanostructured coating in that the following method steps are carried out for nanostructuring of the coating using nanoparticles.
  • a film filled with the nanoparticles to be used is made of a polymeric material.
  • the film is applied to the surface to be coated of the component.
  • the polymer forming the film is removed from the surface by a post-treatment, the nanoparticles forming the coating.
  • the layer constituents do not have to be formed exclusively by the nanoparticles.
  • the nanostructuring consists in this case of the finely dispersed nanoparticle distribution.
  • the nanostructuring can also be generated by the nanoparticles when they form the coating.
  • interactions between the nanoparticles are responsible, which have a strong impact on film formation due to the large surface area in relation to the volume of the nanoparticles.
  • the aftertreatment can also bring about a melting of nanoparticles, which also makes possible layer cohesion without the use of further coating materials which could form a matrix for incorporating the nanoparticles.
  • the aftertreatment consists in a heat treatment of the component.
  • the destruction of the polymer material is accomplished by a thermal stress that exceeds the thermal capacity of the polymeric material.
  • a heat treatment can advantageously be carried out very easily. It is particularly suitable for large-area components, since the attack occurs during the heat treatment over the entire surface.
  • the aftertreatment can also be carried out with a laser beam or a particle beam, in particular a cold gas coating jet. If a laser beam is used for the aftertreatment, this merely serves to introduce the energy necessary for the decomposition and removal of the polymer material. In this case, the coating is formed only from the nanoparticles.
  • a particle beam is used for the aftertreatment, its thermal or kinetic energy has a positive effect on the decomposition of the polymer material.
  • the particles of the particle beam are deposited on the surface of the component, provided that suitable process parameters are selected, resulting in a bond between the coating particles and the nanoparticles.
  • the uniform distribution of the nanoparticles in this layer composite is ensured by a uniform distribution in the polymer film.
  • the nanoparticles are introduced into the polymer material by adding them directly to the polymer melt in the process of extrusion of the polymer material.
  • One Extrusion process is the most common manufacturing process for semi-finished polymers.
  • a polymer melt is produced from the starting material of the polymer and then extruded, wherein the polymer melt is basically suitable for receiving the nanoparticles.
  • the mixing processes used during extrusion are simultaneously used to achieve a uniform distribution of the nanoparticles in the melt.
  • a transport and metering system can be used, as described, for example, in US Pat WO 2005/123978 A1 is described.
  • Another possibility is to produce an aqueous dispersion from the nanoparticles, so that they can be added to the polymer melt, for example by means of a pump-conveying system.
  • the water evaporates due to the temperature development. This procedure is in the DE 103 48 548 A1 described in more detail.
  • the film can be directly prepared for use in the coating process.
  • Different granules with different nanoparticles can be mixed during the manufacturing process of the polymer film, whereby the storage is simplified.
  • the films required for the application can each be made directly before processing.
  • the nanoparticles are introduced into the film or the granules by being added directly to the polymer melt in the process of extrusion of the polymer material.
  • FIG. 1 1 illustrates how a granulate 11 can be produced from a polymer material 12, for which purpose an extrusion machine 13 is used.
  • This extrusion machine 13 has been modified in comparison to conventional extrusion machines to the effect that a metering device 14 is provided, can be supplied to the nanoparticles in a manner not shown when mixing in the extrusion machine 13 of the polymer melt.
  • the polymer melt is produced by means of an extruder screw 15, not shown in detail, in which a mixture of the polymer material 12 takes place, and a heating device 16.
  • the produced granules 11 form a supply 17, which can later form the starting material for a further extrusion process with a conventional extrusion machine 18.
  • a film of granules 11 is produced, which is filled with nanoparticles.
  • FIG. 2 an alternative method of making the film 19 is shown. This differs from the method according to FIG. 1 merely in that with the modified extrusion machine 13, with which nanoparticles can be added, the film 19 filled with nanoparticles can be produced in the same way.
  • FIG. 3 is the coating of a component 20 with the film 19, in which the nanoparticles 21 are evenly distributed are shown schematically.
  • the film 19 is first applied to the surface 22 to be coated of the component 20 and adheres to the surface 22 due to its adhesiveness.
  • the further processing of the film can be done for example by a laser beam 23, whereby the polymer material of the film 19 evaporates.
  • the nanoparticles 21 remain adhering to the surface 22 of the component 20 and form a thin coating 24.
  • the energy input of the laser beam can also be so great that the nanoparticles 21 are melted and therefore a closed layer on the surface 22 of the component 20 form.
  • a particle beam 25 which has microparticles 26 for forming a layer matrix of the coating 24, can also be used for the aftertreatment.
  • the forming layer matrix 27 contains the nanoparticles 21.
  • the material of the film 19 evaporates when the particle beam strikes.

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen eines Bauteils mit einer nanostrukturierten Beschichtung, bei dem die Nanostrukturierung der Beschichtung unter Verwendung von Nanopartikeln erzeugt wird. Weiterhin betrifft die Erfindung Polymerfolien, in die Nanopartikel eingebracht sind.The invention relates to a method for producing a component with a nanostructured coating, in which the nanostructuring of the coating is produced using nanoparticles. Furthermore, the invention relates to polymer films in which nanoparticles are incorporated.

Aus der DE 601 09 793 T2 ist es bekannt, Polymerfolien mit verkapselten bioaktiven Substanzen zu imprägnieren. Hierbei wird eine poröse, ebene PTFE-Folie verwendet, wobei in den Poren der Polymerfolie die Nanopartikel eingebunden werden können.From the DE 601 09 793 T2 It is known to impregnate polymer films with encapsulated bioactive substances. In this case, a porous, flat PTFE film is used, wherein the nanoparticles can be incorporated in the pores of the polymer film.

Weiterhin ist es gemäß DE 10 2004 025 001 A1 möglich, nanoskalige Partikel in eine Polymerschicht einzubringen, indem die nanoskaligen Partikel enthaltende Polymere geschmolzen und mit einer Geschwindigkeit von 250 m/min auf eine Oberfläche aufgebracht werden. Dort bildet sich eine mit den Partikeln versetzte Beschichtung aus.Furthermore, it is according to DE 10 2004 025 001 A1 it is possible to introduce nanoscale particles into a polymer layer by melting the polymers containing the nanoscale particles and applying them to a surface at a speed of 250 m / min. There, a coating offset with the particles forms.

Schließlich ist es aus der DE 103 22 182 A1 bekannt, dass eine Beschichtung, die aus einem Polymermaterial sowie darin eingebundenen Partikeln besteht, nach der Aufbringung auf eine Oberfläche einer Pyrolyse und/oder Carbonisierung unterworfen werden kann. Hierbei wird das Polymer umgewandelt, wobei ein poröses kohlenstoffbasiertes Material als Matrix für die Partikel entsteht.Finally it is off the DE 103 22 182 A1 It is known that a coating consisting of a polymeric material and particles incorporated therein may be subjected to pyrolysis and / or carbonation after application to a surface. In this case, the polymer is converted to form a porous carbon-based material as a matrix for the particles.

Gemäß der US 2005/0287308 A1 ist ein Verfahren beschrieben, mit dem sich nanostrukturierte Beschichtungen herstellen lassen. Zu dem Zweck wird ein Aerosol, enthaltend Mikropartikel von beispielsweise zwei Materialien gebildet, wobei das Aerosol laminar fließt. Von den fließenden Mikropartikeln werden beispielsweise mit einem Laserstrahl durch Ablation Nanopartikel abgetrennt, welche sich als nanostrukturierter Film auf einem zu beschichtenden Substrat abscheiden. Hierzu ist eine vergleichsweise komplizierte Vorrichtung notwendig, welche die Erzeugung des Aerosols aus den Mikropartikeln und deren laminare Leitung über das beschichtende Substrat gewährleistet. Hierbei müssen bei einer gewünschten Schichtdicke und Zusammensetzung während des Beschichtungsverfahrens verschiedene Parameter berücksichtigt werden.According to the US 2005/0287308 A1 describes a method by which nanostructured coatings can be produced. For the purpose, an aerosol containing microparticles of, for example, two materials is formed, the aerosol flowing laminarly. From the flowing microparticles, nanoparticles are separated by ablation, for example with a laser beam, which deposit as a nanostructured film on a substrate to be coated. For this purpose, a comparatively complicated device is necessary, which ensures the generation of the aerosol from the microparticles and their laminar conduction over the coating substrate. In this case, different parameters must be taken into account for a desired layer thickness and composition during the coating process.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung nanostrukturierter Beschichtungen mit beliebigen Schichtmaterialien anzugeben, mit dessen Hilfe eine einfache Beschichtung bei vergleichsweise freier Wahl der Schichtmaterialien möglich ist und eine gleichmäßige Verteilung der Nanopartikel in der Beschichtung erzeugt werden kann.The object of the invention is a process for producing nanostructured coatings with any desired layer materials to provide a simple coating with a relatively free choice of the layer materials is possible and a uniform distribution of nanoparticles in the coating can be generated.

Diese Erfindung wird mit dem eingangs genannten Verfahren zum Erzeugen eines Bauteils mit einer nanostrukturierten Beschichtung dadurch gelöst, dass zur Nanostrukturierung der Beschichtung unter Verwendung von Nanopartikeln folgende Verfahrensschritte durchgeführt werden. Zunächst wird eine mit den zu verwendenden Nanopartikeln gefüllte Folie aus einem Polymermaterial hergestellt. Anschließend wird die Folie auf die zu beschichtende Oberfläche des Bauteils aufgebracht. Zum Schluss wird das die Folie bildende Polymer durch eine Nachbehandlung von der Oberfläche entfernt, wobei die Nanopartikel die Beschichtung bilden. Dabei müssen die Schichtbestandteile nicht ausschließlich durch die Nanopartikel gebildet werden. Es kann während der Nachbehandlung der Oberfläche auch ein weiteres Schichtmaterial in das Verfahren eingebracht werden, welches beispielsweise eine Matrix bildet, in die die Nanopartikel eingebracht sind. Die Nanostrukturierung besteht in diesem Falle aus der feindispersen Verteilung der Nanopartikel. Die Nanostrukturierung kann jedoch auch durch die Nanopartikel erzeugt werden, wenn diese die Beschichtung bilden. Hierbei sind Wechselwirkungen zwischen den Nanopartikeln verantwortlich, die sich aufgrund der im Verhältnis zum Volumen der Nanopartikel großen Fläche bei der Schichtbildung stark auswirken. Weiterhin kann durch die Nachbehandlung auch ein Anschmelzen von Nanopartikeln bewirkt werden, was den Schichtzusammenhalt auch ohne Verwendung weiterer Beschichtungsstoffe, die eine Matrix zur Einbindung der Nanopartikel bilden könnten, ermöglicht.This invention is achieved with the aforementioned method for producing a component with a nanostructured coating in that the following method steps are carried out for nanostructuring of the coating using nanoparticles. First, a film filled with the nanoparticles to be used is made of a polymeric material. Subsequently, the film is applied to the surface to be coated of the component. Finally, the polymer forming the film is removed from the surface by a post-treatment, the nanoparticles forming the coating. The layer constituents do not have to be formed exclusively by the nanoparticles. During the aftertreatment of the surface, it is also possible to introduce a further layer material into the process which, for example, forms a matrix into which the nanoparticles are incorporated. The nanostructuring consists in this case of the finely dispersed nanoparticle distribution. However, the nanostructuring can also be generated by the nanoparticles when they form the coating. In this case, interactions between the nanoparticles are responsible, which have a strong impact on film formation due to the large surface area in relation to the volume of the nanoparticles. Furthermore, the aftertreatment can also bring about a melting of nanoparticles, which also makes possible layer cohesion without the use of further coating materials which could form a matrix for incorporating the nanoparticles.

Gemäß einer Ausgestaltung der Erfindung ist vorgesehen, dass die Nachbehandlung in einer Wärmebehandlung des Bauteils besteht. In diesem Fall wird die Zerstörung des Polymermaterials durch eine thermische Beanspruchung bewerkstelligt, die die thermische Belastbarkeit des Polymermaterials übersteigt. Eine Wärmebehandlung lässt sich vorteilhaft sehr einfach durchführen. Sie eignet sich insbesondere für großflächige Bauteile, da der Angriff bei der Wärmebehandlung ganzflächig erfolgt.According to one embodiment of the invention, it is provided that the aftertreatment consists in a heat treatment of the component. In this case, the destruction of the polymer material is accomplished by a thermal stress that exceeds the thermal capacity of the polymeric material. A heat treatment can advantageously be carried out very easily. It is particularly suitable for large-area components, since the attack occurs during the heat treatment over the entire surface.

Gemäß einer anderen Ausgestaltung der Erfindung kann die Nachbehandlung auch mit einem Laserstrahl oder einem Partikelstrahl, insbesondere einem Kaltgasbeschichtungsstrahl durchgeführt werden. Wird ein Laserstrahl für die Nachbehandlung genutzt, so dient dieser lediglich zur Einbringung der zur Zersetzung und Entfernung des Polymermaterials notwendigen Energie. In diesem Fall wird die Beschichtung lediglich aus den Nanopartikeln gebildet.According to another embodiment of the invention, the aftertreatment can also be carried out with a laser beam or a particle beam, in particular a cold gas coating jet. If a laser beam is used for the aftertreatment, this merely serves to introduce the energy necessary for the decomposition and removal of the polymer material. In this case, the coating is formed only from the nanoparticles.

Wird zur Nachbehandlung ein Partikelstrahl verwendet, so wirkt sich dessen thermische beziehungsweise kinetische Energie positiv auf die Zersetzung des Polymermaterials aus. Gleichzeitig werden die Partikel des Partikelstrahls unter der Voraussetzung der Wahl geeigneter Prozessparameter auf der Oberfläche des Bauteils abgeschieden, wodurch sich ein Verbund zwischen den Beschichtungspartikeln und den Nanopartikeln ergibt. Die gleichmäßige Verteilung der Nanopartikel in diesem Schichtverbund wird durch eine gleichmäßige Verteilung in der Polymerfolie gewährleistet.If a particle beam is used for the aftertreatment, its thermal or kinetic energy has a positive effect on the decomposition of the polymer material. At the same time, the particles of the particle beam are deposited on the surface of the component, provided that suitable process parameters are selected, resulting in a bond between the coating particles and the nanoparticles. The uniform distribution of the nanoparticles in this layer composite is ensured by a uniform distribution in the polymer film.

Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass die Nanopartikel in das Polymermaterial eingebracht werden, indem diese bei dem Vorgang der Extrusion des Polymermaterials direkt der Polymerschmelze zugesetzt werden. Ein Extrusionsvorgang ist der gebräuchlichste Herstellungsprozess für Halbzeuge aus Polymeren. Hierbei wird aus dem Ausgangsmaterial des Polymers eine Polymerschmelze hergestellt und anschließend extrudiert, wobei die Polymerschmelze grundsätzlich zur Aufnahme der Nanopartikel geeignet ist. Hierbei werden die beim Extrudieren zum Einsatz kommenden Mischvorgänge gleichzeitig genutzt, um eine gleichmäßige Verteilung der Nanopartikel in der Schmelze zu erreichen.According to another embodiment of the invention, it is provided that the nanoparticles are introduced into the polymer material by adding them directly to the polymer melt in the process of extrusion of the polymer material. One Extrusion process is the most common manufacturing process for semi-finished polymers. Here, a polymer melt is produced from the starting material of the polymer and then extruded, wherein the polymer melt is basically suitable for receiving the nanoparticles. Here, the mixing processes used during extrusion are simultaneously used to achieve a uniform distribution of the nanoparticles in the melt.

Um eine Zusetzung von Nanopartikeln zur Polymerschmelze zu ermöglichen, ohne dass die Nanopartikel agglomerieren, kann ein Transport und Dosierungssystem Verwendung finden, wie es beispielsweise in der WO 2005/123978 A1 beschrieben wird. Eine andere Möglichkeit besteht darin, aus den Nanopartikeln eine wässrige Dispersion herzustellen, wodurch diese beispielsweise durch ein Pumpfördersystem der Polymerschmelze zugesetzt werden können. Im weiteren Verfahren der Herstellung der mit Nanopartikeln gemischten Polymerschmelze verdampft das Wasser aufgrund der Temperaturentwicklung. Dieses Verfahren ist in der DE 103 48 548 A1 näher beschrieben. Außerdem besteht auch die Möglichkeit, aus den Nanopartikeln und der Polymerschmelze durch Rühren eine Mischung mit feindisperser Verteilung der Nanopartikel herzustellen. Hierbei können unterstützend auch Haftvermittler zum Einsatz kommen, die die Dispergierung der Nanopartikel in der Polymerschmelze erleichtern. Die Polymerschmelze kann dann in bekannter Weise beispielsweise mittels eines Extruders weiter verarbeitet werden. Dieses Verfahren ist in der EP 1 394 197 A1 bekannt.In order to allow nanoparticles to be added to the polymer melt without agglomerating the nanoparticles, a transport and metering system can be used, as described, for example, in US Pat WO 2005/123978 A1 is described. Another possibility is to produce an aqueous dispersion from the nanoparticles, so that they can be added to the polymer melt, for example by means of a pump-conveying system. In the further process of preparation of the mixed with nanoparticles polymer melt, the water evaporates due to the temperature development. This procedure is in the DE 103 48 548 A1 described in more detail. In addition, it is also possible to produce from the nanoparticles and the polymer melt by stirring a mixture with a finely dispersed distribution of the nanoparticles. In this connection, it is also possible to use adhesion promoters which facilitate the dispersion of the nanoparticles in the polymer melt. The polymer melt can then be further processed in a known manner, for example by means of an extruder. This procedure is in the EP 1 394 197 A1 known.

Aus der Polymerschmelze; die vorher mit den Nanopartikeln versetzt wurde, kann die Folie zur Anwendung in dem Beschichtungsverfahren direkt hergestellt werden. Alternativ ist es auch möglich, die Polymerschmelze zu einem Kunststoffgranulat zu verarbeiten, welches seinerseits wieder den Ausgangsstoff für die Herstellung der Folie bilden kann. Dies ermöglicht vorteilhaft die Herstellung der erfindungsgemäßen Polymerfolie mit gewöhnlichen Extrusionsautomaten, welche nicht mit einer geeigneten Dosierungsvorrichtung für die Nanopartikel ausgestattet sind. Dies ist vorteilhaft, da ein Verwender des erfindungsgemäßen Verfahrens geeignete granulatförmige Rohmaterialien beziehen kann ohne mit den Anschaffungskosten einer modifizierten Extrusionsmaschine belastet zu werden. Verschiedene Granulate mit unterschiedlichen Nanopartikeln können dabei bei dem Fertigungsvorgang der Polymerfolie gemischt werden, wodurch die Lagerhaltung vereinfacht wird. Die für den Anwendungsfall notwendigen Folien können jeweils direkt vor der Verarbeitung hergestellt werden.From the polymer melt; previously mixed with the nanoparticles, the film can be directly prepared for use in the coating process. Alternatively, it is also possible to process the polymer melt into a plastic granulate, which in turn is the starting material for the production of the film can form. This advantageously makes it possible to produce the polymer film according to the invention with ordinary extrusion machines which are not equipped with a suitable metering device for the nanoparticles. This is advantageous because a user of the method according to the invention can obtain suitable granular raw materials without being burdened with the acquisition costs of a modified extrusion machine. Different granules with different nanoparticles can be mixed during the manufacturing process of the polymer film, whereby the storage is simplified. The films required for the application can each be made directly before processing.

Es ist vorteilhaft, wenn bei einem Verfahren zur Herstellung einer mit Nanopartikeln gefüllten Folie beziehungsweise eines mit Nanopartikeln gefüllten Granulates die Nanopartikel in die Folie beziehungsweise das Granulat eingebracht werden, indem diese bei dem Vorgang der Extrusion des Polymermaterials direkt der Polymerschmelze zugesetzt werden. Die mit diesen Verfahren verbundenen Vorteile sind im Zusammenhang mit dem erfindungsgemäßen Beschichtungsverfahren bereits erläutert worden.It is advantageous if, in a method for producing a nanoparticle-filled film or nanoparticles-filled granules, the nanoparticles are introduced into the film or the granules by being added directly to the polymer melt in the process of extrusion of the polymer material. The advantages associated with these methods have already been explained in connection with the coating method according to the invention.

Weitere Einzelheiten der Erfindung werden im Nachfolgenden anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen

Figur 1 und 2
Ausführungsbeispiele für das erfindungsgemäße Verfahren zur Herstellung einer Polymerfolie, die mit Nanopartikeln gefüllt ist, anhand ausgewählter schematisch dargestellter Verfahrensschritte und
Figur 3
Ausführungsbeispiele des erfindungsgemäßen Verfahrens zur Herstellung der mit Nanopartikeln gefüllten Beschichtung anhand schematisch dargestellter, ausgewählter Verfahrensschritte.
Further details of the invention will be described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same reference numerals and will only be explained several times as far as there are differences between the individual figures. Show it
FIGS. 1 and 2
Exemplary embodiments of the process according to the invention for producing a polymer film, which filled with nanoparticles, using selected schematically illustrated process steps and
FIG. 3
Embodiments of the method according to the invention for the production of the coating filled with nanoparticles based on schematically illustrated, selected process steps.

Figur 1 stellt dar, wie ein Granulat 11 aus einem Polymermaterial 12 hergestellt werden kann, wobei hierfür ein Extrusionsautomat 13 verwendet wird. Dieser Extrusionsautomat 13 ist im Vergleich zu herkömmlichen Extrusionsautomaten dahingehend modifiziert worden, dass eine Dosiervorrichtung 14 vorgesehen ist, mit der Nanopartikel in nicht näher dargestellter Weise beim Durchmischen im Extrusionsautomaten 13 der Polymerschmelze zugeführt werden können. Die Polymerschmelze wird mittels einer nicht näher dargestellten Extruderschnecke 15, in der auch eine Mischung des Polymermaterials 12 erfolgt, und einer Heizvorrichtung 16 hergestellt. Das hergestellte Granulat 11 bildet einen Vorrat 17, welcher später das Ausgangsmaterial für einen weiteren Extrusionsvorgang mit einem gewöhnlichen Extrusionsautomaten 18 bilden kann. Mittels des Extrusionsautomaten 18 wird eine Folie aus Granulat 11 hergestellt, welche mit Nanopartikeln gefüllt ist. FIG. 1 1 illustrates how a granulate 11 can be produced from a polymer material 12, for which purpose an extrusion machine 13 is used. This extrusion machine 13 has been modified in comparison to conventional extrusion machines to the effect that a metering device 14 is provided, can be supplied to the nanoparticles in a manner not shown when mixing in the extrusion machine 13 of the polymer melt. The polymer melt is produced by means of an extruder screw 15, not shown in detail, in which a mixture of the polymer material 12 takes place, and a heating device 16. The produced granules 11 form a supply 17, which can later form the starting material for a further extrusion process with a conventional extrusion machine 18. By means of the extrusion machine 18, a film of granules 11 is produced, which is filled with nanoparticles.

In Figur 2 ist ein alternatives Verfahren zur Herstellung der Folie 19 dargestellt. Dieses unterscheidet sich von dem Verfahren gemäß Figur 1 lediglich darin, dass mit dem modifizierten Extrusionsautomaten 13, mit dem eine Zusetzung von Nanopartikeln erfolgen kann, gleich die mit Nanopartikeln gefüllte Folie 19 hergestellt werden kann.In FIG. 2 an alternative method of making the film 19 is shown. This differs from the method according to FIG. 1 merely in that with the modified extrusion machine 13, with which nanoparticles can be added, the film 19 filled with nanoparticles can be produced in the same way.

Gemäß Figur 3 ist die Beschichtung eines Bauteils 20 mit der Folie 19, in der die Nanopartikel 21 gleichmäßig verteilt sind, schematisch dargestellt. Hierzu wird die Folie 19 zunächst auf die zu beschichtende Oberfläche 22 des Bauteils 20 aufgebracht und bleibt aufgrund ihres Adhäsionsvermögens auf der Oberfläche 22 haften.According to FIG. 3 is the coating of a component 20 with the film 19, in which the nanoparticles 21 are evenly distributed are shown schematically. For this purpose, the film 19 is first applied to the surface 22 to be coated of the component 20 and adheres to the surface 22 due to its adhesiveness.

Die weitere Bearbeitung der Folie kann beispielsweise durch einen Laserstrahl 23 erfolgen, wodurch das Polymermaterial der Folie 19 verdampft. Dabei verbleiben die Nanopartikel 21 auf der Oberfläche 22 des Bauteils 20 haften und bilden eine dünne Beschichtung 24. Alternativ (nicht dargestellt) kann der Energieeintrag des Laserstrahls auch so groß sein, dass die Nanopartikel 21 aufgeschmolzen werden und daher eine geschlossene Schicht auf der Oberfläche 22 des Bauteils 20 ausbilden.The further processing of the film can be done for example by a laser beam 23, whereby the polymer material of the film 19 evaporates. In this case, the nanoparticles 21 remain adhering to the surface 22 of the component 20 and form a thin coating 24. Alternatively (not shown), the energy input of the laser beam can also be so great that the nanoparticles 21 are melted and therefore a closed layer on the surface 22 of the component 20 form.

Gemäß einer anderen Alternative kann zur Nachbehandlung auch ein Partikelstrahl 25 verwendet werden, welcher Mikropartikel 26 für eine Bildung einer Schichtmatrix der Beschichtung 24 aufweist. Die sich ausbildende Schichtenmatrix 27 enthält die Nanopartikel 21. Das Material der Folie 19 verdampft beim Auftreffen des Partikelstrahls.According to another alternative, a particle beam 25, which has microparticles 26 for forming a layer matrix of the coating 24, can also be used for the aftertreatment. The forming layer matrix 27 contains the nanoparticles 21. The material of the film 19 evaporates when the particle beam strikes.

Claims (7)

  1. Process for producing a component (20) with a nanostructured coating (24), in which the nanostructuring of the coating (24) is produced using nanoparticles (21), comprising the following process steps:
    - first of all, a film (19) filled with the nanoparticles (21) to be used is produced from a polymer material (12),
    - the film (19) is applied to the surface (22) of the component (20) to be coated, and
    - the polymer which forms the film (19) is removed from the surface (22) by means of further treatment, wherein the nanoparticles (21) form the coating (24).
  2. Process according to Claim 1,
    characterized
    in that the further treatment consists in a heat treatment of the component.
  3. Process according to Claim 1,
    characterized
    in that the further treatment is carried out using a laser beam (23).
  4. Process according to Claim 1,
    characterized
    in that the further treatment is carried out using a particle beam (25), in particular a coating beam of cold gas.
  5. Process according to one of the preceding claims,
    characterized
    in that the nanoparticles (21) are introduced into the polymer material (12) by being added directly to the polymer melt during the process for extruding the polymer material (12).
  6. Process according to Claim 4,
    characterized
    in that the film (19) is produced from the polymer melt.
  7. Process according to Claim 4,
    characterized
    in that granules (11), which later serve as starting material for extruding the film, are produced from the polymer melt.
EP07730276.8A 2006-06-22 2007-06-20 Method for producing a component with a nanostructured coating Active EP2029289B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006029572A DE102006029572A1 (en) 2006-06-22 2006-06-22 Method for producing a component with a nanostructured coating and method for producing a granulate or a polymer film, suitable for the method for coating
PCT/EP2007/056150 WO2007147852A1 (en) 2006-06-22 2007-06-20 Method for producing a component with a nanostructured coating

Publications (2)

Publication Number Publication Date
EP2029289A1 EP2029289A1 (en) 2009-03-04
EP2029289B1 true EP2029289B1 (en) 2014-07-30

Family

ID=38529653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730276.8A Active EP2029289B1 (en) 2006-06-22 2007-06-20 Method for producing a component with a nanostructured coating

Country Status (5)

Country Link
US (1) US8563094B2 (en)
EP (1) EP2029289B1 (en)
DE (1) DE102006029572A1 (en)
DK (1) DK2029289T3 (en)
WO (1) WO2007147852A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040826B4 (en) 2010-09-15 2020-06-18 Leibniz-Institut Für Polymerforschung Dresden E.V. Process for immobilizing nanoparticles on thermoplastic surfaces and immobilized nanoparticles
DE102015205609A1 (en) 2015-03-27 2016-09-29 Siemens Aktiengesellschaft Powder bed based additive manufacturing process and apparatus for carrying out this process
DE102015209825A1 (en) * 2015-05-28 2016-12-01 Windmöller & Hölscher Kg Device for dividing a running material web in the transport direction

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1241680B (en) * 1963-12-07 1967-06-01 Burger Eisenwerke Ag Enamelling process
CH446003A (en) * 1964-07-17 1967-10-31 Burger Eisenwerke Ag Enamel coating on metallic objects
GB0023807D0 (en) 2000-09-28 2000-11-08 Angiomed Ag Prosthesis carrying releasable substance
EP1223615A1 (en) * 2001-01-10 2002-07-17 Eidgenössische Technische Hochschule Zürich A method for producing a structure using nanoparticles
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
DE10239326A1 (en) * 2002-08-27 2004-03-18 Ems-Chemie Ag Highly viscous molding compounds with nanoscale fillers
US20040084774A1 (en) * 2002-11-02 2004-05-06 Bo Li Gas layer formation materials
GB2399541A (en) * 2003-03-18 2004-09-22 Nanomagnetics Ltd Production of nanoparticulate thin films
DE10322182A1 (en) 2003-05-16 2004-12-02 Blue Membranes Gmbh Process for the production of porous, carbon-based material
DE10348548A1 (en) 2003-10-20 2005-05-19 Fact Future Advanced Composites & Technology Gmbh Extrusion process for the production of toughened and layer silicate reinforced thermoplastic systems
DE102004025001A1 (en) 2004-05-21 2005-12-08 Lanxess Deutschland Gmbh Extrusion process with polyamides
DE102004030523A1 (en) 2004-06-18 2006-01-12 Siemens Ag Transport system for nanoparticles and method for its operation
US7527824B2 (en) 2004-06-25 2009-05-05 Becker Michael F Methods for producing coated nanoparticles from microparticles
US7384879B2 (en) * 2004-09-27 2008-06-10 Auburn University Selection and deposition of nanoparticles using CO2-expanded liquids
US7629027B2 (en) * 2005-10-14 2009-12-08 3M Innovative Properties Company Method for making chromonic nanoparticles

Also Published As

Publication number Publication date
EP2029289A1 (en) 2009-03-04
DK2029289T3 (en) 2014-10-13
US8563094B2 (en) 2013-10-22
US20100189920A1 (en) 2010-07-29
WO2007147852A1 (en) 2007-12-27
DE102006029572A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
DE2029696C3 (en) Glass fiber reinforced plastic granulate and process for its production
EP1316402B1 (en) Process for manufacturing of nanotextured or microtextured polymer films
DE102008062519A1 (en) Perforated plate and method for its production
DE102007008889A1 (en) Process for producing nano- and / or microstructured surfaces in an adhesive, in particular self-adhesive layer
DE102016200522A1 (en) Method for producing three-dimensional objects and apparatus for carrying out said method
WO2000027940A1 (en) Method for producing a multilayer coextrudate and a coextrudate produced according thereto
EP2029289B1 (en) Method for producing a component with a nanostructured coating
DE102016223244A1 (en) Method and apparatus for generative manufacturing of a three-dimensional object and three-dimensional object
EP2994242B1 (en) Spray-coating method
DE102011056686B4 (en) A process for producing a fiber composite material, a fiber composite produced by the process and an apparatus for carrying out the process
DE102010040826B4 (en) Process for immobilizing nanoparticles on thermoplastic surfaces and immobilized nanoparticles
DE102016215338A1 (en) METHOD FOR PRODUCING AN ELECTRODE FOR AN ELECTROCHEMICAL ENERGY STORAGE CELL, ELECTROCHEMICAL ENERGY STORAGE CELL AND VEHICLE
WO2021028242A1 (en) Method for producing a component and component herein
EP2985327B1 (en) Method and device for manufacturing an adhesive layer
EP2384879A1 (en) Method and device for forming tubular products of metallic or plastic material.
WO2012152814A2 (en) Substrate-functional layer assembly
EP3680301A2 (en) Adhesive filament and method of producing an adhesive filament
EP2197684B1 (en) Method for laser marking a polymer material
DE19718035C2 (en) Process for applying plastic particles to a plastic plate to produce a rough surface
DE102005026934A1 (en) Apparatus and method for producing slush hides by spraying or spin-coating
EP3656611B1 (en) Interior cladding with a moulded fibre part and method for preparation thereof
EP3352702B1 (en) Method for producing dental restorations using a dental powder
EP1923478A1 (en) Roughend bond coating
DE102019203285A1 (en) Process for the preparation of thermoplastic residual powders
DE102012008595A1 (en) Particle mixture for manufacturing plastic products, has multiple granular bodies that are provided in mixture in any shape, where granular bodies are formed with certain percentage of crushed material pieces of metal composite film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20100719

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 679694

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013328

Country of ref document: DE

Effective date: 20140911

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20141009

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013328

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150620

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230605

Year of fee payment: 17

Ref country code: FR

Payment date: 20230619

Year of fee payment: 17

Ref country code: DK

Payment date: 20230622

Year of fee payment: 17

Ref country code: DE

Payment date: 20220630

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230608

Year of fee payment: 17

Ref country code: AT

Payment date: 20230508

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230710

Year of fee payment: 17

Ref country code: CH

Payment date: 20230907

Year of fee payment: 17