EP2026629B1 - Câble chauffant - Google Patents

Câble chauffant Download PDF

Info

Publication number
EP2026629B1
EP2026629B1 EP08161899.3A EP08161899A EP2026629B1 EP 2026629 B1 EP2026629 B1 EP 2026629B1 EP 08161899 A EP08161899 A EP 08161899A EP 2026629 B1 EP2026629 B1 EP 2026629B1
Authority
EP
European Patent Office
Prior art keywords
cable
conductor
conductive
shielding
shielding conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08161899.3A
Other languages
German (de)
English (en)
Other versions
EP2026629A2 (fr
EP2026629A3 (fr
Inventor
Andrew Rayner
Michael Daniels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermocable Flexible Elements Ltd
Original Assignee
Thermocable Flexible Elements Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermocable Flexible Elements Ltd filed Critical Thermocable Flexible Elements Ltd
Publication of EP2026629A2 publication Critical patent/EP2026629A2/fr
Publication of EP2026629A3 publication Critical patent/EP2026629A3/fr
Application granted granted Critical
Publication of EP2026629B1 publication Critical patent/EP2026629B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables

Definitions

  • the present invention relates to heating cables, and methods of manufacture and use of heating cables.
  • Embodiments of the present invention are particularly suitable for, but not limited to, use in underfloor heating cables.
  • a typical heating cable includes one or more conductors extending longitudinally along the cable.
  • the conductors act as resistive heating elements.
  • the conductors are arranged to provide power to an electrical heating element for instance a semi-conductive polymeric matrix extruded between the conductors.
  • a controller may be connected to the heating cable, so as to control the supply of electrical power to the heating cable.
  • the controller can also act as a safety device, so as to ensure that the electrical power stops if the temperature of the heating cable exceeds a predetermined threshold or if an electrical fault is detected.
  • Heating cables can also be self-regulating, for instance formed of material that limits the temperature reached by the cables and/or prevents operation of the cable if a fault occurs.
  • Such self-regulating cables typically comprise materials having a negative temperature coefficient of resistance and/or materials having a positive temperature coefficient of resistance.
  • Safety standards often require that the electrical heating cable is surrounded by an electrical earth or ground shield such as a metallic shield for connection to electrical earth/ground. Sharp conductive objects (such as pins) that penetrate such heating cables will thus first penetrate the metallic shielding connected to earth, before contacting the electrical conductors.
  • One electrical safety standard requires the cable to accommodate penetration by a 1mm diameter pin in this way. Thus, the sharp object would be grounded prior to contacting the electrical conductors that carry the electrical power to reduce the chance of an electrical shock, or at least reduce the effect of an electrical shock that might occur, to a person or device in electrical contact with the sharp object.
  • One known type of earth shielding takes the form of metallic braiding forming a close-knit mesh of metal wires, surrounding the electrical conductor(s).
  • An advantage of braiding is that the shielding is relatively flexible.
  • the braiding is relatively expensive and time consuming to form around the electrical conductors.
  • Known electrical safety standards require a minimum conductance to earth. For example, one requirement is that the earth/ground shield has a current carrying capacity equivalent to a 0.5mm diameter round copper wire
  • An alternative solution of earth shielding is to provide a continuous metal sheath that completely encapsulates the conductor(s) of the heating cable.
  • a known material for forming such a shield is aluminium.
  • the encapsulation technique tends to be cheaper than metallic braiding, but provides poor flexibility.
  • the heating cable is relatively flexible, for instance within electrical blankets, or for underfloor heating, or indeed for many other applications in which it may be desirable or necessary for the heating cable to flex during use or during installation.
  • US-5558794 discloses a coaxial heating cable comprising a central electrically conductive heating core, an electrically insulating polymeric sheath surrounding the core and an outer electrically conductive ground shield enclosing the polymeric sheath. Complete coverage of the core is provided by means of helically wound wire strands. This allows the cable to earth a pin which pierces the outer sheath before contact is made with the core.
  • the preferred embodiment specifies using 24 strands of tin plated copper of diameter of approximately 0.1mm diameter. This is insufficient to meet known safety standards requiring that a ground shield has a current carrying capacity equivalent to a 0.5mm diameter round copper wire. Due to the large amount of metal within the braid and limited space for movement within the cable itself, the cables disclosed in US-5558794 are inflexible and expensive.
  • US-2005/0167134 describes a heating cable substantially free from electromagnetic fields comprising a pair or spirally twisted heating wire elements and a tubular sheath made of an electrically conductive material covering the pair of spirally twisted heating wire elements.
  • the tubular sheath may be constructed of a plurality of small-diameter electrically-conductive metal wires braided together to form a tubular shielding. It is stated that a function of the metal sheath is to mechanically resist impacts as strong as 100lbs.
  • the metal sheath is a constructed by braiding together a plurality of small-diameter wires. It is well known that the braiding process uses both a relatively large amount of metal and is a very slow process in terms of throughput. Therefore, while the preferred embodiment would offer a good degree of protection with regards to earthing a pin of 1mm diameter if it pierced the outer sheath, it is relatively expensive and is a bottleneck in the manufacture of a cable requiring braiding.
  • US-2005/0167134 provides a metal tape spirally wound or longitudinally applied to the pair of spirally twisted heating wire elements as an alternative or addition to the braided metal wires.
  • a metal tape would have to be substantial in order to resist impacts of 100lbs and therefore would be brittle and have poor flexibility adversely affecting the final product characteristics and increasing the complexity of manufacture.
  • the tubular sheath covers the pair of spirally twisted heating wire elements, it is clear that for embodiments in which the tubular sheath comprises only a spirally wound metal tape adjacent turns of the spiral must overlap.
  • GB-574753 discloses a range of electrical conductors.
  • the electrical conductors comprise fibrous or non fibrous flexible cores formed from insulating materials.
  • the flexible core may be string.
  • Overlying the core is a braided insulation.
  • One or more electrical conductors may be wound helically interlaced within the tubular braid.
  • the core may comprise one or more longitudinally extending passageways incorporating further electrical conductors. The helically wound electrical conductors are firmly held by the braided insulation in a mutually spaced relationship.
  • GB-2014784 discloses an electrical device for use as a heater.
  • First and second elongate electrodes extend along the length of a cable generally parallel to one another.
  • a separation layer formed from a material having a positive temperature coefficient surrounds at least one of the electrodes.
  • Overlying both electrodes and the PTC separation layer is a further layer of a material having a constant resistivity. An electrical voltage applied between the two electrodes causes heating within either the PTC element or the constant resistivity element.
  • US-2005/0247700-A1 discloses an electrical heating cable which utilises negative temperature coefficient (NTC) material and current imbalances between live and neutral ends of the heater to simultaneously protect the heater from hot spots and mechanical intrusion into the heating cable.
  • NTC negative temperature coefficient
  • the NTC material separates a heating wire and a current leakage conductor.
  • the NTC material becomes electrically conductive above 60° C thus leaking the current to earth.
  • Hot spots are protected by measuring the current imbalance between line and neutral connections of the heating cable.
  • Mechanical intrusion into the heater is detected by the same current imbalance measuring system.
  • a return conductor and metal foil/mesh hot spot detection shields may be provided for cancelling electromagnetic fields.
  • a secondary requirement is the cable should be able to withstand an impact of approximately 50kgs without destroying the integrity of any electrical or mechanical insulation within the cable.
  • the present invention provides a heating cable comprising: at least one conductor extending longitudinally along the cable; a conductive shield extending along the cable and surrounding said at least one conductor, at least a portion of said conductive shield comprising a shielding conductor extending in a spiral around said at least one conductor, the spiral comprising a plurality of turns, each turn being physically separated from a corresponding portion of an adjacent turn; and at least one insulating separation layer separating the conductive shield from said at least one conductor characterised in that the heating cable further comprises: a conductive conduit extending longitudinally along the cable in electrical contact with said shielding conductor and in that the separation between adjacent turns is less than 2mm and at least 0.1mm.
  • Formation of the conductive shield in the form of a spiral allows the provision of a heating cable having earth shielding that is relatively flexible. Further, as spiralling is a relatively simple process compared to braiding, such a conductive shield can be formed faster and more easily than a prior art braid shield, and hence generally at a lower cost.
  • the configuration of the spiral can be controlled such that adjacent turns on the spiral have a predetermined separation arranged to meet a predetermined safety regulation such as any predetermined safety regulation relating to intrusion by sharp objects.
  • a spiral can be formed that includes less material than a braided shield meeting the same regulation (for instance having the same minimum separation between adjacent portions), hence reducing cost.
  • spacing adjacent turns of the spiral apart significantly reduces the amount of material within the shielding conductor. Providing the spacing between adjacent turns is controlled, the cable retains the ability to meet regulations requiring a sharp conductive object penetrating the cable to be earthed before contacting a conductor.
  • Said conductive conduit may have a cross-sectional area greater than the cross-sectional area of the shielding conductor.
  • Said conductive conduit may comprise a plurality of conductive fibres extending along the cable.
  • Said plurality of conductive fibres may be intertwined.
  • Said at least one insulating separation layer may separate the conductive conduit from said at least one conductor.
  • Said conductive conduit may be helically wrapped with said at least one conductor.
  • Said portion of said conductive shield may comprise a shielding conductor extends in a spiral around both said at least one conductor and said conductive conduit.
  • Said at least one insulating separation layer may comprise a respective insulating separation layer extending around each of said at least one conductor.
  • Said at least one conductor may comprise a first conductor and a second conductor, each extending along the cable, and connected at one end of the cable in series such that if the first and second conductors are connected at the other end of the cable to respective poles of a power supply, equal currents flow in opposite directions through adjacent portions of the conductors.
  • the shielding conductor may have a tensile strength of at least 500N/mm 2 .
  • Said shielding conductor may be formed in the shape of a tape.
  • Said portion of said conductive shield may extend along the complete length of the cable.
  • Said conductive shield may be for connection to electrical earth when in use.
  • the present invention provides a method of installing a heating cable as herein described, comprising the step of connecting said shielding conductor to an electrical earth.
  • the present invention provides a method of manufacturing a heating cable comprising: providing at least one conductor extending longitudinally along the cable; providing a conductive shield extending along the cable and surrounding said at least one conductor, wherein providing at least a portion of said conductive shield comprises winding a shielding conductor in a spiral around said at least one conductor, the spiral comprising a plurality of turns, each turn being physically separated from a corresponding portion of an adjacent turn; and providing at least one insulating separation layer separating the conductive shield from said at least one conductor characterised in that the method further comprises: providing a conductive conduit extending longitudinally along the cable in electrical contact with said shielding conductor and in that the separation between adjacent turns is less than 2mm and at least 0.1mm.
  • a secondary requirement is the cable should be able to withstand an impact of approximately 50kgs without destroying the integrity of any electrical or mechanical insulation within the cable.
  • a conductive shield in the form of a shielding conductor is helically wound around insulated core conductors.
  • a flattened round wire may be used, which is advantageous over a round wire in that it has increased strength by work hardening of the metal during the flattening process. Additionally, a flattened round wire has a reduced profile therefore decreasing the overall diameter of the cable. If the cable is helically wound such that the gap between adjacent turns is less than 1mm, ideally approximately 0.8mm, it is impossible to penetrate the cable to contact the core conductor without touching at least one turn of the conductive shield.
  • a conductive conduit may extend along the cable, in electrical contact with the said shielding conductor.
  • a conductive conduit may comprise a plurality of conductive fibres and have a cross sectional area equivalent to at least the cross sectional area of a 0.5mm diameter round wire. Due to the conductive conduit being in electrical contact with the helically wound shielding conductor, the shielding conductor resistance is now in parallel with the conductive conduit resulting in a low overall electrical resistance satisfying the requirement that the shielding conductor (connected to earth) must have a certain minimum current carrying capability.
  • the combined cross sectional area of both the helically wound conductive shield and conductive conduit may be equivalent to the cross sectional area of a 0.5mm diameter round copper wire.
  • Embodiments of the present invention therefore provide a low cost solution to providing an underfloor heating cable because a minimal amount of metal may be used in order to satisfy both primary requirements.
  • a further advantage is the minimal impact on flexibility due to the helically wound conductive shield.
  • the manufacturing throughput does not suffer because the conductive conduit and two conductive heating cores may all be introduced at the same stage, i.e. during spiralling of the conductive shield which operates at a much greater speed than certain known braiding operations.
  • polymers for use as the separation layer of the core conductors and the outer protective sheath may be chosen to augment the cable properties.
  • Such polymers should have a high hardness (preferably over 70 on the Rockwell R hardness scale), a high tensile modulus (preferably over 1000 MPa) and a high impact strength (preferably over 50kJ/m2 at 23°C).
  • An advantage to using specialised polymers to increase the mechanical strength of the cable is the extrusion of plastic offers throughputs in excess of 50m/min in comparison to braiding as disclosed in the prior art which typically operates at 0.5m/min, that is two orders of magnitude slower.
  • a heating cable 10 comprises two conductors 12a, 12b extending longitudinally along the full length of the cable.
  • the conductors 12a, 12b act as heating elements.
  • Each conductor 12a, 12b is surrounded by a respective insulating layer 14a, 14b.
  • a conductive conduit 18 also extends along the full length of the cable 10. The conductor conduit 18 can extend parallel to the conductors 12a, 12b.
  • the conductive conduit 18 can be formed of a single piece of material for instance of a wire such as copper. However, more preferably, for increased flexibility, the conductive conduit 18 is formed of a plurality of intertwined conductive fibres.
  • the conduit could be a stranded core, or could be braided.
  • the conduit is a stranded wire comprising approximately seven bunched wires. As such a conduit can be pre-formed, a cable including such a stranded conduit can be formed relatively quickly and cheaply.
  • Figure 2 illustrates a braided conduit 18, with the conduit 18 being seen to comprise a plurality of intertwined conductive fibres.
  • the conductive fibres take the form of thin copper wires, braided together.
  • a conductive shield is provided by a shielding conductor 16 extending in a spiral or helix around the conductors 12a, 12b.
  • the shielding conductor 16 extends in a spiral around both the conductors 12a, 12b and the conductive conduit 18.
  • the shielding conductor 16 binds or holds together the conductive conduit 18 and the conductors 12a, 12b.
  • Figure 2 illustrates the individual turns 16a, 16b, 16c, 16d, 16e of a section of the spiral formed by the shielding conductor 16.
  • Each turn, wrap or round 16a-16e of the shielding conductor 16 is in electrical contact with the conductive conduit 18. As will be explained further below, such an electrical connection ensures a good grounding path.
  • the insulating layers 14a, 14b separate the conductors 12a, 12b from the adjacent conductive conduit 18, and also from the shielding conductor 16.
  • At least one further electrically insulating layer extends around the shielding conductor 16.
  • an electrically insulating membrane 20 surrounds the shielding conductor 16 (and the conductors 12a, 12b and conductive conduit 18).
  • the insulating membrane 20 is preferably waterproof. That insulating membrane 20 is further surrounded by a protective outer jacket 22 for instance formed of nylon, so as to form a sheath around the cable 10.
  • the spiral of the shielding conductor 16 is formed to be a regular shape, such that a uniform separation d exists between adjacent turns 16a-16e of the shielding conductor.
  • the separation d can be any predetermined separation suitable for meeting the desired use of the heating cable.
  • each turn 16a-16e is separated by a non-zero amount from the adjacent turn 16a-16e.
  • d is greater than 0.1mm.
  • the shielding conductor 16 is of predetermined width w and predetermined thickness t.
  • the shielding conductor is formed as a tape, that is as a relatively long piece of conductive material, with a width w greater than the thickness t.
  • the shielding conductor could be formed into a tape structure from a wire for instance by flattening of a wire.
  • the thickness t is one tenth or less of the width w. Formation of the shielding conductor 16 as a tape facilitates the wrapping of the shielding conductor 16 in a spiral around the conductors 12a, 12b, in the manufacturing process.
  • the overall size of the heating cable (for instance the total external diameter of the heating cable) is minimised.
  • the overall diameter of the heating cable 10 would be less than 5mm, for instance the cable 10 may have a diameter of around 3.5mm or less.
  • the shielding conductor can be formed of any conductive material, including a metal such as copper.
  • the shielding conductor is formed of a material having a higher tensile strength than copper.
  • copper typically has a tensile strength of around 330N/mm 2
  • the material of the shielding conductor has a tensile strength of 500N/mm 2 or greater, and more preferably a tensile strength of 750N/mm 2 or greater.
  • the shielding conductor could be formed of a copper alloy, such as a copper tin alloy.
  • the conductive conduit will have a cross-sectional area larger than the cross-sectional area of the conductive conduit.
  • the cross-sectional area of the conductive conduit is preferably at least double, and more preferably at least four times the cross-sectional area of the shielding conductor.
  • the precise dimensions t, w of the shielding conductor 16, the cross-sectional area (or at least the effective cross-sectional area) of the conductive conduit 18, and the separation d between adjacent turns 16a-16e of the shielding conductor can have any predetermined value, depending upon the use of the heating cable. Such values can be selected to meet appropriate safety standards.
  • the heating cable 10 will be connected to a power supply 30.
  • the electrical conductors 12a, 12b of the heating cable 10 are connected to corresponding electrodes 32a, 32b of the power supply 30.
  • the power supply 30 may comprise a controller, for controlling delivery of the electrical power to the conductors 12a, 12b.
  • the opposite ends of the conductors 12a, 12b from the electrodes 32a, 32b are connected in series, such that equal currents flow in opposite directions through adjacent portions of the conductors 12a, 12b (in both directions along each conductor, when the power supply 30 provides an AC supply).
  • the shielding conductor 16 is connected to an electrical earth connection 34.
  • the shielding conductor 16 is represented by a dotted box.
  • the shielding conductor 16 is in electrical contact with the conductive conduit 18, and hence the shielding conductor is actually connected to the electrical earth 34 via the conductive conduit 18.
  • the object will first contact the shielding conductor 16.
  • the shielding conductor 16 is in electrical contact (on each turn) with the conductive conduit 18, the penetrating object will be electrically earthed prior to it touching/penetrating through to the electrical conductors 12a, 12b.
  • the shielding conductor provides an earthing shield.
  • the shielding conductor has been described in conjunction with one particular type of heating cable. However, it should be appreciated that such a conductor is equally applicable to other types of heating cable having different configurations of conductors.
  • the shielding conductor 16 is described as being in electrical contact with a conductive conduit 18, with that conduit 18 being connected to an electrical earth in use.
  • the shielding conductor need not provide an electrical earth shield, but could be used in other electrical shielding requirements.
  • the heating cable need not comprise the conductive conduit 18, but instead the shielding conductor 16 could be connected directly to an electrical earth connection 34.
  • the size (cross-sectional areas) of the shielding conductor and the conductive conduits can be selected in dependence upon the relevant application.
  • the cross-sectional areas, in combination with the conductivity of the materials of the shielding conductor and the conductive conduit, will determine the current that may be safely carried by the shielding conductor/the conductive conduit.
  • the standard, or intended use of the heating cable will set a minimum conductance to earth.
  • the earth/ground shield has a current carrying capacity equivalent to a 0.5mm diameter round copper wire, whilst a US standard relates to the current carrying capacity being equivalent to that of a 0.75mm diameter wire.
  • the conductive conduit could have a cross-sectional area at least equivalent to that of either a 0.5mm diameter wire, or a 0.75mm diameter wire.
  • the shielding conductor would have a smaller cross-sectional area than the conduit for instance the shielding conductor could be formed having a cross-sectional area equivalent to that of a wire having a diameter less than 0.2mm.
  • the shielding conductor could be formed from a wire having a diameter of 0.2mm or less, which is then subsequently flattened into a tape.
  • the thickness of the tape could be approximately 0.05mm, with the width w of the tape being around 1mm.
  • the width w of the tape would be of the same order of magnitude as (or indeed, have a value within 50% of, or more preferably 20% of) the value of the separation d between adjacent rounds of the tape.
  • the separation d between adjacent rounds of 16a-16e of the shielding conductor 16 can be selected depending upon the desired application. In most instances, it will be desirable to maximise the separation d, whilst still keeping within the desired safety criteria. The greater the separation d between adjacent turns, the less material that is required to form the shielding conductor along a predetermined length of cable. However, the separation d must also meet the requisite safety criteria. Thus, typically, d will be less than 2mm.
  • the separation d will be less than the width of the pin.
  • an appropriate separation d to meet such a safety criteria would be to provide a separation of approximately 0.8mm or less.

Landscapes

  • Insulated Conductors (AREA)
  • Resistance Heating (AREA)

Claims (12)

  1. Câble chauffant (10), comprenant :
    au moins un conducteur (12a, 12b) s'étendant longitudinalement le long du câble (10) ;
    un blindage conducteur s'étendant le long du câble (10) et entourant ledit au moins un conducteur (12a, 12b), au moins une partie dudit blindage conducteur comprenant un conducteur de blindage (16) s'étendant en spirale autour dudit au moins un conducteur (12a, 12b), la spirale comprenant une pluralité de spires (16a, 16b, 16c, 16d, 16e), chaque spire (16a, 16b, 16c, 16d, 16e) étant physiquement séparée d'une partie correspondante d'une spire adjacente (16a, 16b, 16c, 16d, 16e) ; et
    au moins une couche de séparation isolante (14a, 14b) séparant le blindage conducteur dudit au moins un conducteur (12a, 12b)
    caractérisé en ce que le câble chauffant comprend en outre : un conduit conducteur (18) s'étendant longitudinalement le long du câble (10) en contact électrique avec ledit conducteur de blindage (16) et en ce que la séparation entre les spires adjacentes (16a, 16b, 16c, 16d, 16e) est inférieure à 2 mm et supérieure ou égale 0,1 mm.
  2. Câble (10) tel que revendiqué dans la revendication 1, dans lequel ledit conduit conducteur (18) a une superficie en coupe transversale plus grande que la superficie en coupe transversale du conducteur de blindage (16).
  3. Câble (10) tel que revendiqué dans la revendication 1 ou 2, dans lequel ledit conduit conducteur (18) comprend une pluralité de fibres conductrices entremêlées s'étendant le long du câble (10).
  4. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ladite au moins une couche de séparation isolante (14a, 14b) sépare le conduit conducteur (18) dudit au moins un conducteur (12a, 12b).
  5. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ledit conduit conducteur (18) est enroulé en hélice avec ledit au moins un conducteur (12a, 12b).
  6. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ledit conducteur de blindage (16) s'étend en spirale à la fois autour dudit au moins un conducteur (12a, 12b) et dudit conduit conducteur (18).
  7. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ladite au moins une couche de séparation isolante (14a, 14b) comprend une couche de séparation isolante respective (14a, 14b) s'étendant autour de chacun desdits au moins un conducteur (12a, 12b).
  8. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ledit au moins un conducteur (12a, 12b) comprend un premier conducteur (12a) et un deuxième conducteur (12b), chacun s'étendant le long du câble (10), et relié à une extrémité du câble (10) en série de sorte que si les premier et deuxième conducteurs (12a, 12b) sont reliés au niveau de l'autre extrémité du câble (10) à des pôles respectifs d'un bloc d'alimentation électrique, des courants égaux circulent dans des directions opposées à travers des parties adjacentes des conducteurs (12a, 12b).
  9. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le conducteur de blindage (16) présente une résistance à la traction d'au moins 500 N/mm2.
  10. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ledit conducteur de blindage (16) est conçu en forme de bande.
  11. Câble (10) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel ladite partie dudit blindage conducteur se prolonge le long de la longueur complète du câble (10).
  12. Procédé de fabrication d'un câble chauffant (10), comprenant le fait :
    de fournir au moins un conducteur (12a, 12b) s'étendant longitudinalement le long du câble (10) ;
    de fournir un blindage conducteur s'étendant le long du câble et entourant ledit au moins un conducteur (12a, 12b), où le fait de fournir au moins une partie dudit blindage conducteur comprend l'enroulement d'un conducteur de blindage (16) en spirale autour dudit au moins un conducteur, la spirale comprenant une pluralité de spires (16a, 16b, 16c, 16d, 16e), chaque spire (16a, 16b, 16c, 16d, 16e) étant physiquement séparée d'une partie correspondante d'une spire adjacente (16a, 16b, 16c, 16d, 16e) ; et
    de fournir au moins une couche de séparation isolante (14a, 14b) séparant le blindage conducteur dudit au moins un conducteur (12a, 12b),
    caractérisé en ce que le procédé comprend en outre le fait : de fournir un conduit conducteur (18) s'étendant longitudinalement le long du câble (10) en contact électrique avec ledit conducteur de blindage (16) et en ce que la séparation entre des spires adjacentes (16a, 16b, 16c, 16d, 16e) est inférieure à 2 mm et supérieure ou égale 0,1 mm.
EP08161899.3A 2007-08-11 2008-08-06 Câble chauffant Active EP2026629B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0716201.9A GB0716201D0 (en) 2007-08-11 2007-08-11 Heating cable

Publications (3)

Publication Number Publication Date
EP2026629A2 EP2026629A2 (fr) 2009-02-18
EP2026629A3 EP2026629A3 (fr) 2011-05-11
EP2026629B1 true EP2026629B1 (fr) 2016-02-17

Family

ID=38566659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08161899.3A Active EP2026629B1 (fr) 2007-08-11 2008-08-06 Câble chauffant

Country Status (2)

Country Link
EP (1) EP2026629B1 (fr)
GB (1) GB0716201D0 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516219C2 (ru) * 2012-07-06 2014-05-20 Георгий Николаевич Степанчук Кабель нагревательный коаксиальный трехфазный
CN105304203A (zh) * 2015-11-24 2016-02-03 天津朗兴电线电缆有限公司 电缆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB574753A (en) * 1944-02-15 1946-01-18 Tenaplas Ltd Improvements in or relating to electrical conductors
US4246468A (en) * 1978-01-30 1981-01-20 Raychem Corporation Electrical devices containing PTC elements
US20050167134A1 (en) 2004-02-02 2005-08-04 Philippe Charron Heating cable substantially free from electromagnetic field
US6958463B1 (en) * 2004-04-23 2005-10-25 Thermosoft International Corporation Heater with simultaneous hot spot and mechanical intrusion protection

Also Published As

Publication number Publication date
EP2026629A2 (fr) 2009-02-18
GB0716201D0 (en) 2007-09-26
EP2026629A3 (fr) 2011-05-11

Similar Documents

Publication Publication Date Title
US10847286B2 (en) Metal sheathed cable with jacketed, cabled conductor subassembly
US3927247A (en) Shielded coaxial cable
CA2719689C (fr) Ensemble cable a gaine metallique
EP1273206B1 (fr) Cable electrique a plan de terre polymere sans tresse, fournissant une detection des defauts
KR101213775B1 (ko) 초전도체 케이블
US7358443B2 (en) Braided cord with conductive foil
KR20080046600A (ko) 전기 제어 케이블
US9953737B2 (en) Electrical wire with a central aluminum wire surrounded by at least one copper wire
US20060011376A1 (en) Multi-axial electrically conductive cable with multi-layered core and method of manufacture and use
EP2026629B1 (fr) Câble chauffant
CA2968829C (fr) Cable a gaine metallique comportant des conducteurs paralleles
EP3043357B1 (fr) Câble gainé métallique avec sous-ensemble conducteur câblé et chemisé
US20110253414A1 (en) Metal-clad cable assembly
US7978944B2 (en) Laser light cable
EP0930804A2 (fr) Câble chauffant
JP2014143015A (ja) 多芯ケーブル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20111103

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20120730

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 776141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008042361

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 776141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008042361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

26N No opposition filed

Effective date: 20161118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008042361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230830

Year of fee payment: 16