EP2019919B1 - Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle - Google Patents

Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle Download PDF

Info

Publication number
EP2019919B1
EP2019919B1 EP07766056.1A EP07766056A EP2019919B1 EP 2019919 B1 EP2019919 B1 EP 2019919B1 EP 07766056 A EP07766056 A EP 07766056A EP 2019919 B1 EP2019919 B1 EP 2019919B1
Authority
EP
European Patent Office
Prior art keywords
chamber
compression chamber
complementary
expansion chamber
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07766056.1A
Other languages
German (de)
French (fr)
Other versions
EP2019919A1 (en
Inventor
Fabien Formosa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2019919A1 publication Critical patent/EP2019919A1/en
Application granted granted Critical
Publication of EP2019919B1 publication Critical patent/EP2019919B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/31Nano- or microengines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/15Microelectro-mechanical devices

Definitions

  • the invention relates to the field of mechanical microelectronic systems, also called MEMS for "Microelectromechanical System". It relates more particularly microsystems or miniaturized devices for ensuring a conversion of mechanical energy into heat and vice versa. It relates more specifically to miniaturized devices operating according to a Stirling thermodynamic cycle, and in particular according to the so-called ⁇ and ⁇ configurations of this type of thermal machine.
  • a thermal machine operating according to a Stirling thermodynamic cycle comprises an expansion chamber and a compression chamber which are connected via a regenerator, allowing the passage of a working fluid, which is generally a gas, from the expansion chamber to the compression chamber and vice versa, under the effect of the movement of a piston commonly called “displacer”.
  • a piston "motor” for the transfer of energy in the form of mechanical work is movable in a fraction of the compression chamber, to change the volume.
  • the movements of the displacer piston and the engine piston are synchronized and their phase shift is maintained by a synchronizing device, to ensure optimal operation according to a Stirling cycle.
  • thermodynamic cycle of Stirling for an operation in motor mode, connects four phases during which the working fluid, undergoes the following transformations: namely, constant volume heating, isothermal expansion, then cooling to constant volume, followed by isothermal compression.
  • the compression chamber is thermally connected to a source of heat, so that the working fluid in the compression chamber is at a lower temperature than in the expansion chamber.
  • the compression chamber may incorporate a fraction of a heat exchanger for exchanging heat with the lateral region of the device. The presence of this exchanger fraction separates the compression chamber into two parts which are, however, at the same temperature because of the high thermal conductivity of the exchanger fraction, necessary for a good exchange coefficient.
  • thermodynamic efficiency of a Stirling engine is equal to 1-T D / T C , where T D is T C are the temperatures that prevail respectively in the expansion and compression chambers.
  • the heat dissipated at the expansion chamber causes an increase in the temperature in the compression chamber by thermal conduction through the elements of the system, and therefore a reduction of the temperature difference, synonymous with yield reduction.
  • a problem to be solved by the invention is that of maintaining satisfactory performance in terms of thermodynamic efficiency, while allowing a particularly compact configuration.
  • Another object of the invention is to provide a Stirling engine or cooler structure that does not require simultaneous control of the displacer mechanism and the engine piston to obtain the desired operation.
  • the invention therefore relates to a miniaturized device, which is able to function as a motor or as a cooler, according to a Stirling thermodynamic cycle.
  • a miniaturized device which is able to function as a motor or as a cooler, according to a Stirling thermodynamic cycle.
  • a device comprises an expansion chamber and a compression chamber, which are connected by means of a regenerator allowing the fluid to pass from the expansion chamber to the compression chamber and vice versa, under the effect of the movement of a displacer mechanism, also called simply displacer.
  • a fraction of the compression chamber is movable, in order to change the volume, in the manner of a piston.
  • this device is characterized in that it also comprises a complementary chamber, which is connected to the compression chamber via a complementary connection channel.
  • This complementary chamber is separated from the expansion chamber by the displacer mechanism.
  • This complementary chamber is at an intermediate temperature between the temperature of the compression chamber and the temperature of the expansion chamber.
  • the device according to the invention comprises an additional chamber, which makes it possible to reduce the pressure effect existing in the compression chamber on the face of the displacer opposite to the expansion chamber.
  • the device according to the invention is remarkable in that the displacer is in indirect contact with the chamber compression through the characteristic complementary chamber.
  • this complementary chamber may be at a temperature intermediate between that of the expansion chamber and the compression chamber.
  • the difference in temperature between the two faces of the displacer is less than in conventional systems, at constant temperature difference between expansion chamber and compression chamber.
  • connection channel connecting the complementary chamber to the compression chamber may include a specific thermal arrangement, so as to maintain a temperature difference between the compression chamber and the complementary chamber, and thus promote a significant temperature difference between the compression chamber and the relaxation chamber.
  • this temperature difference can be maintained by various devices.
  • an active device for regulating the temperature of the gas flowing in the connection channel can be provided.
  • This device may comprise thermo-elements that heat or cool this gas, depending on the needs.
  • the regulating device may be formed by a complementary regenerator.
  • the displacer has two contact surfaces, respectively with the expansion chamber and the complementary chamber, which have different areas.
  • the contact surface between the displacer and the expansion chamber is typically greater than the contact area between the complementary chamber and the same displacer.
  • the dynamic system formed by the displacer mechanism and the piston element which is stable until the temperature differential between the expansion chamber and the compression chamber, becomes dynamically unstable beyond this temperature differential thanks to the feedback.
  • This instability causes the movement of the displacer and the element acting as a piston at the slightest disturbance.
  • the amplitude of the displacements increases so that nonlinear dissipation phenomena modify the dynamics of the system to reach a stable operating point.
  • the synchronization of the movements of the displacer and the element acting as a piston is then dependent on the dynamic characteristics of the displacer mechanism and the piston as well as the dissipation phenomena of viscous origin in the regenerator and the complementary channel.
  • a mechanical limitation of the amplitude of the movement of the element acting as a piston can also be implemented so as to obtain the desired thermodynamic characteristics.
  • the regenerator, as well as possibly the connection channel can be arranged in different ways, depending on the properties of the working fluid, the desired thermal performance and available technologies.
  • the circulation of the working fluid in the regenerator and the connection channel or channels can be effected in a direction parallel to the direction defined between the expansion chamber and the compression chamber.
  • the regenerator and the connection channel may be composed of several tubular channels dug in the thickness of the component material.
  • this regenerator may allow the circulation of the working fluid in a plane perpendicular to this same direction defined between the expansion and compression chambers.
  • the surface of the regenerator may be larger.
  • the expansion chamber and the compression chamber are arranged in two distinct components, and connected by pipes connecting the different chambers in an appropriate manner.
  • the distance between the compression chamber and the expansion chamber is further increased so as to increase the temperature difference between these two chambers and thus the efficiency of the device.
  • the device according to the invention may comprise a synchronization mechanism between the movement of the displacer of the element acting as a piston.
  • This synchronization mechanism comprises non-compulsorily a pressure chamber arranged so that the surface of the element acting as a piston, opposite the compression chamber is subjected to this pressure.
  • the frequency associated with the element acting as a piston engine can then be modified by the adjustment of this pressure by a suitable device.
  • This synchronization mechanism may also comprise non-compulsorily stops which limit the displacement amplitude of the element acting as piston to a value ensuring the optimal operation of the device used in motor mode.
  • a device for controlling the element acting as a piston engine can also be added. He then understands electromechanical converter associated with a control circuit that controls the amplitude and / or the frequency and / or the damping associated with the element acting as a piston.
  • the design of the device according to the invention allows it to be used as a motor, in order to transform a thermal energy into a mechanical energy, or as a cooler, that is to say in order to transform a mechanical energy in thermal energy.
  • the mechanical energy produced at the element acting as piston can be used and converted in various ways, for example into electrical energy, by the use of converters of varied type such as electrostatic, electromagnetic or piezoelectric for example. It may be noted that in this case, the converter used may be part of the engine control device.
  • the piston acting on the compression chamber may be associated with a member capable of causing displacement by the use of converters of various types such as electrostatic, electromagnetic or piezoelectric for example.
  • the invention relates to a miniaturized device, of the MEMS type, operating according to a thermodynamic cycle of Stirling.
  • the figure 1 illustrates such a device (1), in which are only shown the essential elements for understanding the invention, and in which is not shown the entire environment of the invention, which may be necessary for the operation of the invention.
  • the device (1) illustrated in the figure 1 comprises an expansion chamber (2), a compression chamber (3), which are connected by a regenerator (4).
  • the device (1) also comprises a complementary chamber (5) which is separated from the expansion chamber (2) by a displacer mechanism (6).
  • This complementary chamber (5) is connected to the compression chamber (3) via a connection channel (7), or generally by a specific connection.
  • the compression chamber (3) has one of its walls (8) which is movable, so as to vary its volume. This wall acting as a piston (8) moves inside a volume (9) provided for this purpose. Depending on the configuration of this volume (9), the pressure therein, and the nature of the gas that it contains, it is possible to promote thermal insulation between the compression and expansion chambers.
  • the displacer (6) has its upper face (12) which is in contact with the expansion chamber (2), whereas the lower face (13) of this same displacer (6) is in contact with the complementary chamber ( 5), connected to the compression chamber (3).
  • the specific connection (7) maintains a temperature difference between the intermediate chamber (5) and the compression chamber (3), so that the temperature gradient inside the displacer (6) is smaller than in traditional systems, assuming the same theoretical yield.
  • the underside (13) of the displacer (6) has an area smaller than the area of the upper face (12) of the same regenerator, which is in contact with the expansion chamber (2).
  • This dissymmetry between the two faces of the displacer is advantageous with regard to starting and maintaining an optimum phase shift between the movement of the displacer and that of the piston associated with the compression chamber.
  • This asymmetry can be generated by different geometries of the two faces (12) and (13) of the displacer (6), or the presence of specific stiffeners present on one of its two faces.
  • the embodiment of the displacer (6) can integrate the taking into account of the stiffness parameters that it is desired to give the displacer.
  • the expansion chamber (2) is thermally connected to a heat source (not shown), which can be of very different natures.
  • a heat source not shown
  • it may be a contact with a room of combustion, or a thermal sensor, capable of receiving energy by conduction, convection or radiation.
  • the piston (8), mobile during operation of the device can be associated with various electrical converters for transforming the movement of the piston (8) into an electrical energy acting according to different principles, depending on the applications.
  • the conversion can take place by a piezoelectric, electrostatic or electromagnetic effect for example.
  • the device according to the invention can be produced within the same component, as illustrated in FIGS. Figures 2 and 3 .
  • the expansion chamber (22) is connected to the compression chamber (23) via the regenerator (24).
  • the complementary chamber (25) is itself connected to the compression chamber (23) via the connection channel (27).
  • regenerator and the connection channel (24, 27) have a multi-tubular configuration, parallel to the direction (28) connecting the compression chamber (23) to the expansion chamber (22).
  • these regenerators are constituted by channels dug in the thickness of the material (26) separating the complementary chamber (25) from the compression chamber (23).
  • the expansion chamber (32) is connected to the compression chamber (33) via the regenerator composed of a first tubular portion (34) parallel to the direction (38) connecting the compression chambers (33) and relaxing (32).
  • This first portion (34) is extended by a flat portion (35) extending in a plane perpendicular to the direction (38) connecting the compression and expansion chambers.
  • a third portion (36) parallel to the direction (38) connects the flat portion (35) of the regenerator to the compression chamber.
  • the figure 4 illustrates the geometry that can adopt the different elements that constitute the active part of the regenerator.
  • a first fraction of this active part of the regenerator is illustrated with channels (40) separated by quasi-rectilinear portions (41).
  • These channels (40) make it possible to define a relatively large contact area, and to limit the pressure drops caused by the passage of the working fluid within the active part of the regenerator.
  • the elements making it possible to play the thermal buffer effect are in the form of studs (43) distributed in staggered rows, in the event that it is desired to create turbulences in order to improve the heat exchange between the fluid of work and the active elements of the regenerator.
  • the device according to the invention can be realized by conventional techniques in the field of the embodiment of MEMS.
  • membranes can be made from films that are stretched to generate a uniform tension in the thickness thereof.
  • the stretched films thus claimed will be assembled on the device so as to obtain the displacer on the one hand and the piston on the other hand.
  • this voltage will be such that the dynamic behavior of the device according to the invention depending on the resonant frequencies of the membranes acting as piston and displacer is adapted to the operating conditions.
  • the configuration illustrated in Figures 5 and 6 has an advantage in terms of thermal insulation between the expansion chamber and the compression chamber. More specifically, the relaxation chamber (52) illustrated in FIG. figure 5 is separated from the complementary chamber (55) via the displacer (56), which has an asymmetrical configuration.
  • the expansion chambers (52) and complementary (55) are formed inside a first component (51), which comprises different pipes (58), (59) for connection with a second component (60) which encloses the compression chamber (53), the regenerator (54) and the specific connection (57).
  • the pipes (62, 63) connecting the two components (51, 60) have the geometry and in particular the desired length, depending on the distance between the two components (51, 60).
  • the two components (51, 60) are shown side by side, and can in particular be made at the same substrate.
  • the pipes (66) connecting the expansion chamber (52) and the regenerator (54), as well as the pipe (67) connecting the complementary chamber (55) and the connecting channel (57) are made appropriate, either outside the two components (51, 60), or can be formed in the thickness of the material to achieve both components and geometric implantation constraints.
  • expansion chamber (72) is formed above the complementary chamber (75) from which it is separated by the displacer (76).
  • the compression chamber (73) is formed in an offset portion of the overall component, and has a piston (78) defining the upper portion. This piston (78) can move between abutments (79, 80) formed respectively in the compression chamber (73) and the volume (81) located on the other side of the piston (78).
  • the compression chamber is connected to the complementary chamber by a pipe (83), which could include a thermal device (not shown).
  • the compression chamber (73) is connected to the expansion chamber (72) via the regenerator, a part (84) of which appears on the figure 8 , and which is prolonged by an additional fraction (85) visible at the figure 9 .
  • the two portions (84, 85) of the main regenerator are connected by a portion passing through the thickness which separates the two section planes VIII-VIII ', IX-IX'.
  • the compression and expansion chambers have a circular geometry, favorable to their mechanical strength.
  • the device according to the invention has the major advantage of allowing miniaturization Stirling machines, while maintaining a satisfactory level of performance, by maintaining a significant temperature difference between the chamber of relaxation and the compression chamber.
  • the absence of complex kinematics and connections makes it possible to overcome the problems of mechanical wear of parts in relative movement and the appearance of play generating shocks and vibrations.
  • the low inertia in motion also limit the vibrations transmitted by the device to its environment thus limiting the noise generated.
  • the device according to the invention can find multiple applications, among which include the micro generation of electrical energy, the recovery and recovery of thermal energy, as well as the cooling of electronic systems in particular.
  • electrical generation from a source of chemical energy, the necessary thermal energy is generated by catalytic combustion and the device according to the invention allows the efficient conversion of heat energy into mechanical energy finally converted into usable electrical energy by a converter built into the device.
  • Electrical generation may also be envisaged by operating the device according to the invention in series and arranged in such a way that the thermal energy of the environment (solar radiation, thermal energy dissipated by a process) is converted efficiently. in electrical energy.
  • the device according to the invention used in cooler mode can be applied to the cooling of electronic computer components that require temperature control.
  • the range of temperature difference accessible by the use of a device operating in the Stirling cycle makes it possible to envisage its use in low temperature cooling applications for thermal camera infrared sensors for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Domaine techniqueTechnical area

L'invention se rattache au domaine des systèmes microélectroniques mécaniques, également appelés MEMS pour "Microelectromechanical System". Elle vise plus particulièrement des microsystèmes ou dispositifs miniaturisés permettant d'assurer une conversion d'énergie mécanique en chaleur et inversement. Elle concerne plus spécifiquement des dispositifs miniaturisés fonctionnant selon un cycle thermodynamique de Stirling, et en particulier selon les configurations dites α et β de ce type de machine thermique.The invention relates to the field of mechanical microelectronic systems, also called MEMS for "Microelectromechanical System". It relates more particularly microsystems or miniaturized devices for ensuring a conversion of mechanical energy into heat and vice versa. It relates more specifically to miniaturized devices operating according to a Stirling thermodynamic cycle, and in particular according to the so-called α and β configurations of this type of thermal machine.

Techniques antérieuresPrevious techniques

De façon générale, une machine thermique fonctionnant selon un cycle thermodynamique de Stirling comprend une chambre de détente et une chambre de compression qui sont reliées par l'intermédiaire d'un régénérateur, permettant le passage d'un fluide de travail, qui est généralement un gaz, de la chambre de détente à la chambre de compression et inversement, sous l'effet du mouvement d'un piston couramment appelé "déplaceur". Un piston "moteur" permettant le transfert d'énergie sous forme de travail mécanique est mobile dans une fraction de la chambre de compression, afin d'en modifier le volume. Les mouvements du piston déplaceur et du piston moteur sont synchronisés et leur déphasage est maintenu par un dispositif synchronisateur, pour assurer un fonctionnement optimal selon un cycle de Stirling.In general, a thermal machine operating according to a Stirling thermodynamic cycle comprises an expansion chamber and a compression chamber which are connected via a regenerator, allowing the passage of a working fluid, which is generally a gas, from the expansion chamber to the compression chamber and vice versa, under the effect of the movement of a piston commonly called "displacer". A piston "motor" for the transfer of energy in the form of mechanical work is movable in a fraction of the compression chamber, to change the volume. The movements of the displacer piston and the engine piston are synchronized and their phase shift is maintained by a synchronizing device, to ensure optimal operation according to a Stirling cycle.

En effet, un cycle thermodynamique idéal de Stirling, pour un fonctionnement en mode moteur, enchaîne quatre phases au cours desquelles le fluide de travail, subit les transformations suivantes : à savoir, un chauffage à volume constant, une détente isotherme, puis un refroidissement à volume constant, suivi d'une compression isotherme. Dans le cadre d'un fonctionnement en mode moteur, la chambre de compression est thermiquement reliée à une source de chaleur, de sorte que le fluide de travail dans la chambre de compression se trouve à une température plus faible que dans la chambre de détente.Indeed, an ideal thermodynamic cycle of Stirling, for an operation in motor mode, connects four phases during which the working fluid, undergoes the following transformations: namely, constant volume heating, isothermal expansion, then cooling to constant volume, followed by isothermal compression. In engine mode operation, the compression chamber is thermally connected to a source of heat, so that the working fluid in the compression chamber is at a lower temperature than in the expansion chamber.

Les moteurs dits "Stirling" ont déjà été développés pour des fonctions de locomotion et comme sous système pour la génération électrique. La réversibilité du moteur Stirling est également mise à profit afin de produire du froid de façon industrielle. Des développements ont également été réalisés pour miniaturiser ce type de moteur, et notamment pour le réaliser par des techniques utilisées dans le domaine de la microélectronique. De tels dispositifs appartiennent ainsi à la catégorie générale des systèmes microélectromécanique ou MEMS pour "Microelectromechanical system".The so-called "Stirling" engines have already been developed for locomotion functions and as subsystems for electrical generation. The reversibility of the Stirling engine is also used to produce cold in an industrial way. Developments have also been made to miniaturize this type of engine, and in particular to achieve it by techniques used in the field of microelectronics. Such devices thus belong to the general category of microelectromechanical systems or MEMS for "Microelectromechanical system".

Ainsi, les documents US 5 457 956 , US 5 749 226 , US 6 385 973 décrivent les dispositifs MEMS fonctionnant selon des cycles de Stirling. De tels mécanismes regroupent donc dans un espace confiné très réduit l'ensemble des éléments permettant le fonctionnement du moteur ou du refroidisseur Stirling. Un autre exemple de moteur Stirling réalisé à partir de structure MEMS est décrit dans le document WO 97/13956 . Dans certaines configurations envisagées dans ce document, la chambre de compression peut intégrer une fraction d'un échangeur thermique permettant d'échanger de la chaleur avec la région latérale du dispositif. La présence de cette fraction d'échangeur sépare la chambre de compression en deux parties qui sont toutefois à la même température du fait de la forte conductivité thermique de la fraction d'échangeur, nécessaire pour un bon coefficient d'échange.Thus, the documents US 5,457,956 , US 5,749,226 , US 6,385,973 describe the MEMS devices operating in Stirling cycles. Such mechanisms therefore bring together in a very small confined space all the elements allowing the operation of the Stirling engine or cooler. Another example of a Stirling engine made from MEMS structure is described in the document WO 97/13956 . In some configurations contemplated herein, the compression chamber may incorporate a fraction of a heat exchanger for exchanging heat with the lateral region of the device. The presence of this exchanger fraction separates the compression chamber into two parts which are, however, at the same temperature because of the high thermal conductivity of the exchanger fraction, necessary for a good exchange coefficient.

Un problème se pose avec ce type de dispositif, dans la mesure où leur miniaturisation conduit inévitablement à une réduction de leur performance. Plus précisément, le rendement thermodynamique idéal d'un moteur de Stirling est égal à 1-TD/TC, où TD est TC sont les températures qui règnent respectivement dans les chambres de détente et de compression.A problem arises with this type of device, insofar as their miniaturization inevitably leads to a reduction in their performance. More precisely, the ideal thermodynamic efficiency of a Stirling engine is equal to 1-T D / T C , where T D is T C are the temperatures that prevail respectively in the expansion and compression chambers.

On conçoit donc que le rendement est d'autant plus élevé que l'écart en température entre la chambre de détente et la chambre de compression est importante. Or, plus un dispositif est miniaturisé, plus la chambre de détente se trouve à proximité de la chambre de compression, de sorte que l'isolation thermique entre les deux chambres ne peut pas être maintenue efficacement.It is therefore conceivable that the efficiency is even higher than the temperature difference between the expansion chamber and the compression chamber is important. However, the more a device is miniaturized, the more the expansion chamber is close to the compression chamber, so that the thermal insulation between the two chambers can not be effectively maintained.

En d'autres termes, la chaleur dissipée au niveau de la chambre de détente provoque une augmentation de la température dans la chambre de compression par conduction thermique au travers des éléments du système, et donc une réduction de l'écart de température, synonyme de baisse de rendement.In other words, the heat dissipated at the expansion chamber causes an increase in the temperature in the compression chamber by thermal conduction through the elements of the system, and therefore a reduction of the temperature difference, synonymous with yield reduction.

Ainsi, avec les matériaux couramment utilisés dans l'industrie des MEMS, l'isolation thermique entre les deux chambres, lorsqu'elles sont séparées de quelques microns n'est pas satisfaisante.Thus, with the materials commonly used in the MEMS industry, the thermal insulation between the two chambers when they are separated by a few microns is not satisfactory.

Un problème que se propose donc de résoudre l'invention est celui de conserver des performances satisfaisantes en termes de rendement thermodynamique, et ce tout en autorisant une configuration particulièrement compacte.A problem to be solved by the invention is that of maintaining satisfactory performance in terms of thermodynamic efficiency, while allowing a particularly compact configuration.

Le document US 5 941 079 décrit plusieurs combinaisons de structures élémentaires de dispositifs Stirling. De telles architectures imposent des dispositions particulières afin d'être piloté. En effet, en régime permanent, le réglage du décalage de phase entre le mouvement du piston déplaceur lié à la chambre de détente, et du piston moteur lié à la chambre de compression est obtenu par une conception appropriée des caractéristiques dynamiques du piston déplaceur et du piston moteur associée aux phénomènes de dissipation d'origine visqueuse au sein du régénérateur. Dans le cas d'un fonctionnement de type moteur, le démarrage puis la synchronisation des mouvements du piston déplaceur et du piston moteur ne peut être obtenu que par la commande au travers d'un dispositif d'actionnement de ceux-ci. Le convertisseur utilisé peut être alors de type électromécanique, piézoélectrique, électrostatique ou électrostrictif.The document US 5,941,079 describes several combinations of elementary structures of Stirling devices. Such architectures impose special provisions to be controlled. Indeed, in steady state, the adjustment of the phase shift between the movement of the displacer piston connected to the expansion chamber, and the engine piston connected to the compression chamber is obtained by an appropriate design of the dynamic characteristics of the displacer piston and the engine piston associated with dissipation phenomena of viscous origin within the regenerator. In the case of engine-type operation, starting and then synchronizing movements of the displacer piston and the engine piston can only be obtained by controlling through an actuating device thereof. The converter used can then be of the electromechanical, piezoelectric, electrostatic or electrostrictive type.

Un autre objectif de l'invention est de proposer une structure de moteur ou refroidisseur Stirling ne nécessitant pas le pilotage simultané du mécanisme déplaceur et du piston moteur pour obtenir le fonctionnement désiré.Another object of the invention is to provide a Stirling engine or cooler structure that does not require simultaneous control of the displacer mechanism and the engine piston to obtain the desired operation.

Exposé de l'inventionPresentation of the invention

L'invention concerne donc un dispositif miniaturisé, qui est apte à fonctionner comme moteur ou comme refroidisseur, selon un cycle thermodynamique de Stirling. De façon classique, un tel dispositif comporte une chambre de détente et une chambre de compression, qui sont reliées par l'intermédiaire d'un régénérateur permettant le passage du fluide de la chambre de détente à la chambre de compression et inversement, sous l'effet du mouvement d'un mécanisme déplaceur, également dénommé simplement déplaceur.The invention therefore relates to a miniaturized device, which is able to function as a motor or as a cooler, according to a Stirling thermodynamic cycle. Conventionally, such a device comprises an expansion chamber and a compression chamber, which are connected by means of a regenerator allowing the fluid to pass from the expansion chamber to the compression chamber and vice versa, under the effect of the movement of a displacer mechanism, also called simply displacer.

De façon classique, une fraction de la chambre de compression est mobile, afin d'en modifier le volume, à la manière d'un piston.Conventionally, a fraction of the compression chamber is movable, in order to change the volume, in the manner of a piston.

Conformément à l'invention, ce dispositif se caractérise en ce qu'il comporte également une chambre complémentaire, qui est reliée à la chambre de compression par l'intermédiaire d'un canal de connexion complémentaire. Cette chambre complémentaire est séparée de la chambre de détente par le mécanisme déplaceur. Cette chambre complémentaire est à une température intermédiaire entre la température de la chambre de compression et la température de la chambre de détente.According to the invention, this device is characterized in that it also comprises a complementary chamber, which is connected to the compression chamber via a complementary connection channel. This complementary chamber is separated from the expansion chamber by the displacer mechanism. This complementary chamber is at an intermediate temperature between the temperature of the compression chamber and the temperature of the expansion chamber.

Autrement dit, par rapport aux configurations classiques le dispositif selon l'invention comporte une chambre supplémentaire, qui permet de ramener l'effet de pression existant dans la chambre de compression sur la face du déplaceur opposée à la chambre de détente. Le canal de connexion complémentaire ainsi que les dispositions et matériaux choisis permettent de maintenir une différence de température substantielle entre la chambre de compression et la chambre complémentaire.In other words, compared to conventional configurations, the device according to the invention comprises an additional chamber, which makes it possible to reduce the pressure effect existing in the compression chamber on the face of the displacer opposite to the expansion chamber. The complementary connection channel and the arrangements and materials chosen to maintain a substantial temperature difference between the compression chamber and the complementary chamber.

En d'autres termes, contrairement aux systèmes classiques dans lesquels les deux faces du déplaceur sont au contact respectif des chambres de détente et de compression, le dispositif conforme à l'invention est remarquable en ce que le déplaceur est au contact indirect de la chambre de compression par l'intermédiaire de la chambre complémentaire caractéristique.In other words, unlike conventional systems in which the two faces of the displacer are in respective contact with the expansion and compression chambers, the device according to the invention is remarkable in that the displacer is in indirect contact with the chamber compression through the characteristic complementary chamber.

De la sorte, cette chambre complémentaire peut être à une température intermédiaire entre celle de la chambre de détente et la chambre de compression. Ainsi, la différence de température entre les deux faces du déplaceur est moindre que dans les systèmes classiques, à écart de température constant entre chambre de détente et chambre de compression.In this way, this complementary chamber may be at a temperature intermediate between that of the expansion chamber and the compression chamber. Thus, the difference in temperature between the two faces of the displacer is less than in conventional systems, at constant temperature difference between expansion chamber and compression chamber.

Il est donc possible de réaliser des dispositifs miniaturisés, possédant un rendement satisfaisant, malgré une très faible épaisseur du dispositif déplaceur pouvant alors être réalisé par des moyens classiques d'obtention de membranes micrométriques.It is therefore possible to produce miniaturized devices having a satisfactory performance, despite a very small thickness of the displacer device can then be achieved by conventional means for obtaining micrometric membranes.

Avantageusement en pratique, le canal de connexion reliant la chambre complémentaire à la chambre de compression peut inclure une disposition thermique spécifique, de manière à maintenir une différence de température entre la chambre de compression et la chambre complémentaire, et ainsi favoriser une différence de température significative entre la chambre de compression et la chambre de détente.Advantageously in practice, the connection channel connecting the complementary chamber to the compression chamber may include a specific thermal arrangement, so as to maintain a temperature difference between the compression chamber and the complementary chamber, and thus promote a significant temperature difference between the compression chamber and the relaxation chamber.

En pratique, cette différence de température peut être maintenue par divers dispositifs. Ainsi, on peut prévoir un dispositif actif de régulation de la température du gaz circulant dans le canal de connexion. Ce dispositif peut comporter des thermo-éléments qui réchauffent ou refroidissent ce gaz, en fonction des besoins. Avantageusement, le dispositif de régulation peut être formé par un régénérateur complémentaire.In practice, this temperature difference can be maintained by various devices. Thus, an active device for regulating the temperature of the gas flowing in the connection channel can be provided. This device may comprise thermo-elements that heat or cool this gas, depending on the needs. Advantageously, the regulating device may be formed by a complementary regenerator.

Selon une autre caractéristique de l'invention, le déplaceur possède deux surfaces de contact, respectivement avec la chambre de détente et la chambre complémentaire, qui présentent des aires différentes. Autrement dit, la surface de contact entre le déplaceur et la chambre de détente est typiquement plus importante que la surface de contact entre la chambre complémentaire et le même déplaceur. Cette dissymétrie présente des avantages par rapport à la conception du mécanisme qui assure l'auto démarrage et le maintien d'un déphasage optimal entre le mouvement du déplaceur et celui du piston associé à la chambre de compression. En effet, dans un fonctionnement de type moteur, le démarrage peut être obtenu par le choix approprié des caractéristiques dynamiques du déplaceur et de l'élément jouant le rôle de piston moteur. Le système dynamique formé par le mécanisme déplaceur et l'élément jouant le rôle de piston, stable jusqu'au différentiel de température entre la chambre de détente et la chambre de compression devient dynamiquement instable au-delà de ce différentiel de température grâce à la rétroaction en pression sur la surface du déplaceur en contact avec le fluide contenu dans la chambre complémentaire. Cette instabilité entraîne la mise en mouvement du déplaceur et de l'élément jouant le rôle de piston à la moindre perturbation. L'amplitude des déplacements augmente de telle sorte que des phénomènes de dissipation non linéaires modifient la dynamique du système pour atteindre un point de fonctionnement stable. La synchronisation des mouvements du déplaceur et de l'élément jouant le rôle de piston est alors dépendante des caractéristiques dynamiques du mécanisme déplaceur et du piston ainsi que des phénomènes de dissipation d'origine visqueuse dans le régénérateur et le canal complémentaire. De plus, une limitation mécanique de l'amplitude du mouvement de l'élément jouant le rôle de piston moteur peut également être mise en oeuvre de façon à obtenir les caractéristiques thermodynamiques souhaitées.According to another characteristic of the invention, the displacer has two contact surfaces, respectively with the expansion chamber and the complementary chamber, which have different areas. In other words, the contact surface between the displacer and the expansion chamber is typically greater than the contact area between the complementary chamber and the same displacer. This dissymmetry has advantages over the design of the mechanism which ensures the self-starting and the maintenance of an optimal phase shift between the movement of the displacer and that of the piston associated with the compression chamber. Indeed, in a motor-type operation, the start can be obtained by the appropriate choice of the dynamic characteristics of the displacer and the element acting as a piston engine. The dynamic system formed by the displacer mechanism and the piston element, which is stable until the temperature differential between the expansion chamber and the compression chamber, becomes dynamically unstable beyond this temperature differential thanks to the feedback. in pressure on the surface of the displacer in contact with the fluid contained in the complementary chamber. This instability causes the movement of the displacer and the element acting as a piston at the slightest disturbance. The amplitude of the displacements increases so that nonlinear dissipation phenomena modify the dynamics of the system to reach a stable operating point. The synchronization of the movements of the displacer and the element acting as a piston is then dependent on the dynamic characteristics of the displacer mechanism and the piston as well as the dissipation phenomena of viscous origin in the regenerator and the complementary channel. In addition, a mechanical limitation of the amplitude of the movement of the element acting as a piston can also be implemented so as to obtain the desired thermodynamic characteristics.

En pratique, le régénérateur, ainsi qu'éventuellement le canal de connexion peuvent être agencés de différentes manières, en fonction des propriétés du fluide de travail, des performances thermiques souhaitées et des technologies disponibles. Ainsi, plus précisément, la circulation du fluide de travail dans le régénérateur et le ou les canaux de connexion peut s'effectuer selon une direction parallèle à la direction définie entre la chambre de détente et la chambre de compression. Dans ce cas, le régénérateur ainsi que le canal de connexion peuvent être composés de plusieurs canaux tubulaires creusés dans l'épaisseur de la matière du composant.In practice, the regenerator, as well as possibly the connection channel can be arranged in different ways, depending on the properties of the working fluid, the desired thermal performance and available technologies. Thus, more specifically, the circulation of the working fluid in the regenerator and the connection channel or channels can be effected in a direction parallel to the direction defined between the expansion chamber and the compression chamber. In this case, the regenerator and the connection channel may be composed of several tubular channels dug in the thickness of the component material.

Dans une autre variante, ce régénérateur peut autoriser la circulation du fluide de travail dans un plan perpendiculaire à cette même direction définie entre les chambres de détente et de compression. Dans ce cas, la surface du régénérateur peut être plus importante. En fonction du type de conception de régénérateur, il est ainsi possible d'ajuster les pertes de charge prenant naissance à la traversée du ou des régénérateurs, ainsi que l'écart en température entre les deux extrémités du régénérateur.In another variant, this regenerator may allow the circulation of the working fluid in a plane perpendicular to this same direction defined between the expansion and compression chambers. In this case, the surface of the regenerator may be larger. Depending on the type of regenerator design, it is thus possible to adjust the pressure drops arising at the crossing of the regenerator or regenerators, as well as the temperature difference between the two ends of the regenerator.

Selon une autre caractéristique de l'invention, il est possible que la chambre de détente et la chambre de compression soient aménagées dans deux composants distincts, et reliées par des canalisations assurant la connexion entre les différentes chambres de façon appropriée. De la sorte, on augmente encore la distance entre la chambre de compression et la chambre de détente, afin donc d'accroître la différence de température entre ces deux chambres, et donc le rendement du dispositif.According to another characteristic of the invention, it is possible for the expansion chamber and the compression chamber to be arranged in two distinct components, and connected by pipes connecting the different chambers in an appropriate manner. In this way, the distance between the compression chamber and the expansion chamber is further increased so as to increase the temperature difference between these two chambers and thus the efficiency of the device.

En pratique, le dispositif conforme à l'invention peut comporter un mécanisme de synchronisation entre le mouvement du déplaceur de l'élément jouant le rôle de piston. Ce mécanisme de synchronisation comprend de manière non obligatoire une chambre sous pression aménagée de telle sorte que la surface de l'élément jouant le rôle de piston, opposée à la chambre de compression est soumise à cette pression. La fréquence associée à l'élément jouant le rôle de piston moteur peut alors être modifiée par l'ajustement de cette pression par un dispositif adapté. Ce mécanisme de synchronisation peut comprendre également de manière non obligatoire des butées qui limitent l'amplitude de déplacement de l'élément jouant le rôle de piston à une valeur assurant le fonctionnement optimal du dispositif utilisé en mode moteur. Un dispositif de pilotage de l'élément jouant le rôle de piston moteur peut également être ajouté. Il comprend alors un convertisseur électromécanique associé à un circuit de commande qui permet de piloter l'amplitude et/ou la fréquence et/ou l'amortissement associés à l'élément jouant le rôle de piston.In practice, the device according to the invention may comprise a synchronization mechanism between the movement of the displacer of the element acting as a piston. This synchronization mechanism comprises non-compulsorily a pressure chamber arranged so that the surface of the element acting as a piston, opposite the compression chamber is subjected to this pressure. The frequency associated with the element acting as a piston engine can then be modified by the adjustment of this pressure by a suitable device. This synchronization mechanism may also comprise non-compulsorily stops which limit the displacement amplitude of the element acting as piston to a value ensuring the optimal operation of the device used in motor mode. A device for controlling the element acting as a piston engine can also be added. He then understands electromechanical converter associated with a control circuit that controls the amplitude and / or the frequency and / or the damping associated with the element acting as a piston.

La conception du dispositif conforme à l'invention lui permet d'être utilisable en moteur, dans le but de transformer une énergie thermique en une énergie mécanique, ou bien en refroidisseur, c'est-à-dire en vue de transformer une énergie mécanique en énergie thermique.The design of the device according to the invention allows it to be used as a motor, in order to transform a thermal energy into a mechanical energy, or as a cooler, that is to say in order to transform a mechanical energy in thermal energy.

De multiples configurations peuvent être envisagées pour la liaison thermique entre les chambres de détente et de compression et les sources de chaleur. Il est ainsi possible de prévoir des agencements particuliers tels que des ailettes, de manière à augmenter la surface d'échange avec les sources de chaleur.Multiple configurations can be envisaged for the thermal connection between the expansion and compression chambers and the heat sources. It is thus possible to provide particular arrangements such as fins, so as to increase the exchange surface with the heat sources.

Pour un fonctionnement en mode moteur, l'énergie mécanique produite au niveau de l'élément jouant le rôle de piston peut être utilisée et convertie de différentes manières, par exemple en énergie électrique, par l'emploi de convertisseurs de type varié tel qu'électrostatique, électromagnétique ou piézoélectrique par exemple. On peut noter que dans ce cas, le convertisseur utilisé peut faire partie du dispositif de pilotage du moteur.For operation in motor mode, the mechanical energy produced at the element acting as piston can be used and converted in various ways, for example into electrical energy, by the use of converters of varied type such as electrostatic, electromagnetic or piezoelectric for example. It may be noted that in this case, the converter used may be part of the engine control device.

A l'inverse, dans le cas d'un fonctionnement en mode refroidisseur, le piston agissant sur la chambre de compression peut être associé à un organe apte à en provoquer le déplacement par l'emploi de convertisseurs de type varié tel qu'électrostatique, électromagnétique ou piézoélectrique par exemple.Conversely, in the case of operation in cooler mode, the piston acting on the compression chamber may be associated with a member capable of causing displacement by the use of converters of various types such as electrostatic, electromagnetic or piezoelectric for example.

Description sommaire des figuresBrief description of the figures

La manière de réaliser l'invention ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, à l'appui des figures annexées dans lesquelles :

  • La figure 1 est une vue en coupe schématique de la partie principale du dispositif conforme à l'invention, montrée uniquement dans ce qui concerne les éléments essentiels en rapport avec l'invention.
  • Les figures 2 et 3 sont des vues en coupe de solutions alternatives concernant le positionnement et l'orientation du régénérateur ainsi que la réalisation du déplaceur.
  • La figure 4 est une vue en coupe selon le plan IV-IV' de la figure 3, montrant des agencements spécifiques du régénérateur et du canal de connexion.
  • Les figures 5 et 6 sont des vues en coupe schématiques de deux variantes de réalisation montrant le dispositif réalisé sous la forme de deux composants interconnectés.
  • La figure 7 est une vue en coupe d'une variante de réalisation concernant l'emplacement des différentes chambres caractéristiques de l'invention.
  • Les figures 8 et 9 sont des vues en coupe de la figure 7 selon le plan respectivement VIII-VIII' et IX-IX'.
The manner of carrying out the invention as well as the advantages which result therefrom will emerge from the description of the embodiment which follows, in support of the appended figures in which:
  • The figure 1 is a schematic sectional view of the main part of the device according to the invention, shown only with respect to the essential elements in connection with the invention.
  • The Figures 2 and 3 are sectional views of alternative solutions concerning the positioning and orientation of the regenerator and the construction of the displacer.
  • The figure 4 is a sectional view along the plane IV-IV 'of the figure 3 , showing specific arrangements of the regenerator and the connection channel.
  • The Figures 5 and 6 are schematic sectional views of two alternative embodiments showing the device embodied as two interconnected components.
  • The figure 7 is a sectional view of an alternative embodiment concerning the location of the various characteristic chambers of the invention.
  • The Figures 8 and 9 are sectional views of the figure 7 according to the plan respectively VIII-VIII 'and IX-IX'.

Manière de réaliser l'inventionWay of realizing the invention

Comme déjà évoqué, l'invention concerne un dispositif miniaturisé, du type MEMS, fonctionnant selon un cycle thermodynamique de Stirling. La figure 1 illustre un tel dispositif (1), dans lequel sont uniquement montrés les éléments essentiels à la compréhension de l'invention, et dans laquelle n'est pas représenté tout l'environnement de l'invention, qui peut être nécessaire au fonctionnement de l'invention.As already mentioned, the invention relates to a miniaturized device, of the MEMS type, operating according to a thermodynamic cycle of Stirling. The figure 1 illustrates such a device (1), in which are only shown the essential elements for understanding the invention, and in which is not shown the entire environment of the invention, which may be necessary for the operation of the invention.

Ainsi, le dispositif (1) illustré dans la figure 1 comporte une chambre de détente (2), une chambre de compression (3), qui sont reliées par un régénérateur (4). Conformément à l'invention, le dispositif (1) comporte également une chambre complémentaire (5) qui est séparée de la chambre de détente (2) par un mécanisme déplaceur (6).Thus, the device (1) illustrated in the figure 1 comprises an expansion chamber (2), a compression chamber (3), which are connected by a regenerator (4). According to the invention, the device (1) also comprises a complementary chamber (5) which is separated from the expansion chamber (2) by a displacer mechanism (6).

Cette chambre complémentaire (5) est reliée à la chambre de compression (3) par l'intermédiaire d'un canal de connexion (7), ou de manière générale par une connexion spécifique. La chambre de compression (3) présente une de ses parois (8) qui est mobile, de manière à pouvoir faire varier son volume. Cette paroi jouant le rôle de piston (8) se déplace à l'intérieur d'un volume (9) prévu à cet effet. En fonction de la configuration de ce volume (9), de la pression qui y règne, et de la nature du gaz qu'il contient, on peut favoriser l'isolation thermique entre les chambres de compression et de détente.This complementary chamber (5) is connected to the compression chamber (3) via a connection channel (7), or generally by a specific connection. The compression chamber (3) has one of its walls (8) which is movable, so as to vary its volume. This wall acting as a piston (8) moves inside a volume (9) provided for this purpose. Depending on the configuration of this volume (9), the pressure therein, and the nature of the gas that it contains, it is possible to promote thermal insulation between the compression and expansion chambers.

Ainsi, le déplaceur (6) possède sa face supérieure (12) qui est au contact de la chambre de détente (2), tandis que la face inférieure (13) de ce même déplaceur (6) est au contact de la chambre complémentaire (5), reliée à la chambre de compression (3). La connexion spécifique (7) assure le maintien d'une différence de température entre la chambre intermédiaire (5) et la chambre de compression (3), de telle sorte que le gradient de la température à l'intérieur du déplaceur (6) est plus réduit que dans les systèmes traditionnels, à hypothèse de rendement théorique identique.Thus, the displacer (6) has its upper face (12) which is in contact with the expansion chamber (2), whereas the lower face (13) of this same displacer (6) is in contact with the complementary chamber ( 5), connected to the compression chamber (3). The specific connection (7) maintains a temperature difference between the intermediate chamber (5) and the compression chamber (3), so that the temperature gradient inside the displacer (6) is smaller than in traditional systems, assuming the same theoretical yield.

Comme illustré à la figure 1, la face inférieure (13) du déplaceur (6) présente une superficie inférieure à la superficie de la face supérieure (12) du même régénérateur, qui est en contact avec la chambre de détente (2). Cette dissymétrie entre les deux faces du déplaceur est avantageuse en ce qui concerne le démarrage et le maintien d'un déphasage optimal entre le mouvement du déplaceur et celui du piston associé à la chambre de compression.As illustrated in figure 1 the underside (13) of the displacer (6) has an area smaller than the area of the upper face (12) of the same regenerator, which is in contact with the expansion chamber (2). This dissymmetry between the two faces of the displacer is advantageous with regard to starting and maintaining an optimum phase shift between the movement of the displacer and that of the piston associated with the compression chamber.

Cette dissymétrie peut être générée par des géométries différentes des deux faces (12) et (13) du déplaceur (6), ou bien la présence de raidisseurs spécifiques présents sur l'une de ses deux faces. La réalisation du déplaceur (6) peut intégrer la prise en compte des paramètres de raideur que l'on souhaite donner au déplaceur.This asymmetry can be generated by different geometries of the two faces (12) and (13) of the displacer (6), or the presence of specific stiffeners present on one of its two faces. The embodiment of the displacer (6) can integrate the taking into account of the stiffness parameters that it is desired to give the displacer.

Dans le cas où le dispositif (1) fonctionne en moteur, la chambre de détente (2) est thermiquement reliée à une source de chaleur (non représentée), qui peut être de natures très diverses. Ainsi, il peut s'agir d'un contact avec une chambre de combustion, ou bien un capteur thermique, susceptible de recevoir de l'énergie par conduction, convection ou radiation.In the case where the device (1) operates as a motor, the expansion chamber (2) is thermally connected to a heat source (not shown), which can be of very different natures. Thus, it may be a contact with a room of combustion, or a thermal sensor, capable of receiving energy by conduction, convection or radiation.

De même, le piston (8), mobile au cours du fonctionnement du dispositif peut être associé à divers convertisseurs électriques permettant de transformer le mouvement du piston (8) en une énergie électrique agissant selon différents principes, en fonction des applications. Ainsi, la conversion peut intervenir par un effet piézoélectrique, électrostatique ou électromagnétique par exemple.Similarly, the piston (8), mobile during operation of the device can be associated with various electrical converters for transforming the movement of the piston (8) into an electrical energy acting according to different principles, depending on the applications. Thus, the conversion can take place by a piezoelectric, electrostatic or electromagnetic effect for example.

En pratique, le dispositif conforme à l'invention peut être réalisé au sein d'un même composant, comme illustré aux figures 2 et 3. Ainsi, comme illustré à la figure 2, la chambre de détente (22) est reliée à la chambre de la compression (23) par l'intermédiaire du régénérateur (24). La chambre complémentaire (25) est elle-même reliée à la chambre de compression (23) par l'intermédiaire du canal de connexion (27).In practice, the device according to the invention can be produced within the same component, as illustrated in FIGS. Figures 2 and 3 . Thus, as illustrated in figure 2 the expansion chamber (22) is connected to the compression chamber (23) via the regenerator (24). The complementary chamber (25) is itself connected to the compression chamber (23) via the connection channel (27).

Dans cette configuration, le régénérateur et le canal de connexion (24, 27) présentent une configuration pluritubulaire, parallèle à la direction (28) reliant la chambre de compression (23) à la chambre de détente (22). Autrement dit, ces régénérateurs sont constitués par des canalisations creusées dans l'épaisseur de la matière (26) séparant la chambre complémentaire (25) de la chambre de compression (23).In this configuration, the regenerator and the connection channel (24, 27) have a multi-tubular configuration, parallel to the direction (28) connecting the compression chamber (23) to the expansion chamber (22). In other words, these regenerators are constituted by channels dug in the thickness of the material (26) separating the complementary chamber (25) from the compression chamber (23).

Dans une configuration alternative, illustrée à la figure 3, la chambre de détente (32) est reliée à la chambre de compression (33) par l'intermédiaire du régénérateur composé d'une première portion (34) tubulaire, parallèle à la direction (38) reliant les chambres de compression (33) et de détente (32). Cette première portion (34) se prolonge par une portion plane (35), s'étendant dans un plan perpendiculaire à la direction (38) reliant les chambres de compression et de détente. Une troisième portion (36) parallèle à la direction (38) relie la portion plane (35) du régénérateur à la chambre de compression.In an alternative configuration, illustrated in figure 3 , the expansion chamber (32) is connected to the compression chamber (33) via the regenerator composed of a first tubular portion (34) parallel to the direction (38) connecting the compression chambers (33) and relaxing (32). This first portion (34) is extended by a flat portion (35) extending in a plane perpendicular to the direction (38) connecting the compression and expansion chambers. A third portion (36) parallel to the direction (38) connects the flat portion (35) of the regenerator to the compression chamber.

La figure 4 illustre la géométrie que peut adopter les différents éléments qui constituent la partie active du régénérateur. Ainsi, une première fraction de cette partie active du régénérateur est illustrée avec des canaux (40) séparés par des portions quasi rectilignes (41). Ces canaux (40) permettent de définir une surface de contact relativement importante, et de limiter les pertes de charge occasionnées par le passage du fluide de travail au sein de la partie active du régénérateur.The figure 4 illustrates the geometry that can adopt the different elements that constitute the active part of the regenerator. Thus, a first fraction of this active part of the regenerator is illustrated with channels (40) separated by quasi-rectilinear portions (41). These channels (40) make it possible to define a relatively large contact area, and to limit the pressure drops caused by the passage of the working fluid within the active part of the regenerator.

Dans la fraction gauche du régénérateur illustrée à la figure 4, les éléments permettant de jouer l'effet tampon thermique se présentent sous la forme de plots (43) répartis en quinconce, dans l'hypothèse où l'on souhaite créer des turbulences dans le but d'améliorer l'échange thermique entre le fluide de travail et les éléments actifs du régénérateur.In the left fraction of the regenerator illustrated in figure 4 , the elements making it possible to play the thermal buffer effect are in the form of studs (43) distributed in staggered rows, in the event that it is desired to create turbulences in order to improve the heat exchange between the fluid of work and the active elements of the regenerator.

De manière générale, le dispositif conformément à l'invention peut être réalisé par des techniques classiques dans le domaine de la réalisation des MEMS. Selon l'échelle des dispositifs, il est également possible d'employer d'autres techniques, permettant de réaliser des membranes. Ainsi, ces membranes peuvent être réalisées à partir de films qui sont étirés de manière à générer une tension uniforme dans l'épaisseur de ceux-ci. Les films étirés ainsi prétendus seront assemblés sur le dispositif de manière à obtenir le déplaceur d'une part et le piston d'autre part. Avantageusement, cette tension sera telle que le comportement dynamique du dispositif conformément à l'invention dépendant des fréquences de résonances des membranes jouant le rôle de piston et déplaceur soit adapté aux conditions de fonctionnement.In general, the device according to the invention can be realized by conventional techniques in the field of the embodiment of MEMS. Depending on the scale of the devices, it is also possible to use other techniques for making membranes. Thus, these membranes can be made from films that are stretched to generate a uniform tension in the thickness thereof. The stretched films thus claimed will be assembled on the device so as to obtain the displacer on the one hand and the piston on the other hand. Advantageously, this voltage will be such that the dynamic behavior of the device according to the invention depending on the resonant frequencies of the membranes acting as piston and displacer is adapted to the operating conditions.

La configuration illustrée aux figures 5 et 6 présente un avantage en termes d'isolation thermique entre la chambre de détente et la chambre de compression. Plus précisément, la chambre de détente (52) illustrée à la figure 5 est séparée de la chambre complémentaire (55) par l'intermédiaire du déplaceur (56), qui présente une configuration dissymétrique. Les chambres de détente (52) et complémentaire (55) sont réalisées à l'intérieur d'un premier composant (51), qui comporte différentes canalisations (58), (59) permettant la liaison avec un second composant (60) qui renferme la chambre de compression (53), le régénérateur (54) et la connexion spécifique (57). Les canalisations (62, 63) qui relient les deux composants (51, 60) présentent la géométrie et notamment la longueur souhaitée, en fonction de l'éloignement des deux composants (51, 60).The configuration illustrated in Figures 5 and 6 has an advantage in terms of thermal insulation between the expansion chamber and the compression chamber. More specifically, the relaxation chamber (52) illustrated in FIG. figure 5 is separated from the complementary chamber (55) via the displacer (56), which has an asymmetrical configuration. The expansion chambers (52) and complementary (55) are formed inside a first component (51), which comprises different pipes (58), (59) for connection with a second component (60) which encloses the compression chamber (53), the regenerator (54) and the specific connection (57). The pipes (62, 63) connecting the two components (51, 60) have the geometry and in particular the desired length, depending on the distance between the two components (51, 60).

Dans la configuration illustrée à la figure 6, les deux composants (51, 60) sont représentés cote à cote, et peuvent notamment être réalisés au niveau d'un même substrat. Dans ce cas, les canalisations (66) reliant la chambre de détente (52) et le régénérateur (54), ainsi que la canalisation (67) reliant la chambre complémentaire (55) et le canal de connexion (57) sont réalisés de manière appropriée, soit à l'extérieur des deux composants (51, 60), soit peuvent être formés dans l'épaisseur même du matériau permettant de réaliser les deux composants et des contraintes géométriques d'implantation.In the configuration illustrated in figure 6 , the two components (51, 60) are shown side by side, and can in particular be made at the same substrate. In this case, the pipes (66) connecting the expansion chamber (52) and the regenerator (54), as well as the pipe (67) connecting the complementary chamber (55) and the connecting channel (57) are made appropriate, either outside the two components (51, 60), or can be formed in the thickness of the material to achieve both components and geometric implantation constraints.

Une telle configuration est notamment décrite à la figure 7 dans laquelle la chambre de détente (72) est réalisée au-dessus de la chambre complémentaire (75) dont elle est séparée par le déplaceur (76). La chambre de compression (73) est réalisée dans une portion décalée du composant global, et présente un piston (78) qui définit la partie supérieure. Ce piston (78) peut se déplacer entre des butées (79, 80) formées respectivement dans la chambre de compression (73) et le volume (81) situé de l'autre côté du piston (78).Such a configuration is particularly described in figure 7 wherein the expansion chamber (72) is formed above the complementary chamber (75) from which it is separated by the displacer (76). The compression chamber (73) is formed in an offset portion of the overall component, and has a piston (78) defining the upper portion. This piston (78) can move between abutments (79, 80) formed respectively in the compression chamber (73) and the volume (81) located on the other side of the piston (78).

Comme illustré à la figure 1, la chambre de compression est reliée à la chambre complémentaire par une canalisation (83), qui pourrait inclure un dispositif thermique (non représenté). De même, la chambre de compression (73) est reliée à la chambre de détente (72) par l'intermédiaire du régénérateur, dont une partie (84) apparaît sur la figure 8, et qui se prolonge par une fraction supplémentaire (85) visible à la figure 9. Les deux portions (84, 85) du régénérateur principal sont reliées par une portion traversant l'épaisseur qui sépare les deux plans de coupe VIII-VIII', IX-IX'.As illustrated in figure 1 , the compression chamber is connected to the complementary chamber by a pipe (83), which could include a thermal device (not shown). Similarly, the compression chamber (73) is connected to the expansion chamber (72) via the regenerator, a part (84) of which appears on the figure 8 , and which is prolonged by an additional fraction (85) visible at the figure 9 . The two portions (84, 85) of the main regenerator are connected by a portion passing through the thickness which separates the two section planes VIII-VIII ', IX-IX'.

Bien entendu, beaucoup d'autres géométries peuvent être adoptées pour améliorer différents facteurs, liés soit aux performances du dispositif, soit à des contraintes technologiques de fabrication ou d'intégration. Dans la forme illustrée aux figures 7 à 9, les chambres de compression et de détente présentent une géométrie circulaire, favorable à leur robustesse mécanique.Of course, many other geometries can be adopted to improve various factors, related either to the performance of the device, or technological constraints of manufacturing or integration. In the form illustrated in Figures 7 to 9 , the compression and expansion chambers have a circular geometry, favorable to their mechanical strength.

Il ressort de ce qui précède que le dispositif conforme à l'invention présente l'avantage majeur de permettre une miniaturisation des machines Stirling, tout en conservant un niveau de rendement satisfaisant, par le maintien d'un écart de température important entre la chambre de détente et la chambre de compression. De plus, l'absence de cinématique complexe et de liaisons permet de s'affranchir des problématiques d'usure mécanique de pièces en mouvement relatif et de l'apparition de jeu générant chocs et vibrations. Les faibles inerties en mouvement limitent également les vibrations transmises par le dispositif à son environnement limitant ainsi le bruit généré.It follows from the above that the device according to the invention has the major advantage of allowing miniaturization Stirling machines, while maintaining a satisfactory level of performance, by maintaining a significant temperature difference between the chamber of relaxation and the compression chamber. In addition, the absence of complex kinematics and connections makes it possible to overcome the problems of mechanical wear of parts in relative movement and the appearance of play generating shocks and vibrations. The low inertia in motion also limit the vibrations transmitted by the device to its environment thus limiting the noise generated.

Applications industriellesIndustrial applications

Le dispositif conforme à l'invention peut trouver de multiples applications, parmi lesquelles on peut citer la micro génération d'énergie électrique, la récupération et valorisation d'énergie thermique, ainsi que le refroidissement de systèmes électroniques notamment.
Dans le cas de la génération électrique, à partir d'une source d'énergie chimique, l'énergie thermique nécessaire est générée par combustion catalytique puis le dispositif conforme à l'invention permet la conversion efficace de l'énergie thermique en énergie mécanique finalement convertie en énergie électrique exploitable par un convertisseur intégré au dispositif. La génération électrique pourra être également envisagée par l'exploitation du dispositif conforme à l'invention en série et disposé de telle façon à ce que l'énergie thermique de l'environnement (rayonnement solaire, énergie thermique dissipée par un processus) est convertie efficacement en énergie électrique.
The device according to the invention can find multiple applications, among which include the micro generation of electrical energy, the recovery and recovery of thermal energy, as well as the cooling of electronic systems in particular.
In the case of electrical generation, from a source of chemical energy, the necessary thermal energy is generated by catalytic combustion and the device according to the invention allows the efficient conversion of heat energy into mechanical energy finally converted into usable electrical energy by a converter built into the device. Electrical generation may also be envisaged by operating the device according to the invention in series and arranged in such a way that the thermal energy of the environment (solar radiation, thermal energy dissipated by a process) is converted efficiently. in electrical energy.

Le dispositif conforme à l'invention utilisé en mode refroidisseur peut être appliqué au refroidissement de composants électroniques informatiques qui nécessitent un contrôle en température. La gamme de différence de température accessible par l'utilisation de dispositif fonctionnant en cycle de Stirling permet d'envisager son utilisation dans les applications de refroidissement à basse température pour les capteurs infrarouge de caméra thermique par exemple.The device according to the invention used in cooler mode can be applied to the cooling of electronic computer components that require temperature control. The range of temperature difference accessible by the use of a device operating in the Stirling cycle makes it possible to envisage its use in low temperature cooling applications for thermal camera infrared sensors for example.

Claims (10)

  1. Miniaturised device (1), which can operate as an engine or a cooler according to a Stirling thermodynamic cycle, comprising an expansion chamber (2) and a compression chamber (3), which are interconnected by means of a regenerator (4) enabling the working fluid to flow through from the expansion chamber (2) to the compression chamber (3) and vice versa, under the effect of the movement of a displacing mechanism (6), a fraction (8) of the compression chamber (3) being mobile and operating as a piston in order to modify the volume of said compression chamber (3), characterised it also comprises a complementary chamber (5) which is connected to the compression chamber (3) by means of a complementary connection channel (7), said expansion chamber (2) and said complementary chamber (5) being connected by means of said compression chamber (3), the said complementary chamber (5) being at an intermediate temperature between the temperature of the compression chamber (3) and the temperature of the expansion chamber, the complementary chamber (5) being separated from the expansion chamber (2) by means of the displacing mechanism (6).
  2. Device according to Claim 1, characterised in that the connection channel includes a complementary regenerator (7).
  3. Device according to Claim 1, characterised in that the displacing mechanism (6) has two contact surfaces (12, 13), with the expansion chamber (2) and the complementary chamber (5) respectively, which have different areas.
  4. Device according to Claim 1, characterised in that the main regenerator (24) and/or the complementary connection (27) channel enable the working fluid to flow in a direction parallel to the direction (28) defined between the expansion chamber (22) and the compression chamber (23).
  5. Device according to Claim 1, characterised in that the main regenerator (35) and/or the complementary connection channel enable the working fluid to flow in a plane perpendicular (38) to the direction defined between the expansion chamber (32) and the compression chamber (33).
  6. Device according to Claim 1, characterised in that the expansion chamber (52) and the compression chamber (53) are arranged in two distinct components (51, 60), and are connected by lines (62, 63).
  7. Device according to Claim 1, characterised in that it comprises a synchronisation mechanism between the movement of the displacer and the movement of the element operating as a piston.
  8. Device according to Claim 1, the characterised in that the expansion chamber is thermally connected to a heat source and optionally comprises arrangements for increasing the heat exchange area with the heat source.
  9. Device according to Claim 1, characterised in that the element operating as a piston or the element operating as a displacer is associated with a member suitable for initiating its displacement.
  10. Device according to Claim 1, characterised in that the element operating as a piston is associated with a member suitable for converting its mechanical energy into electrical energy.
EP07766056.1A 2006-05-17 2007-05-16 Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle Not-in-force EP2019919B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0651785A FR2901320B1 (en) 2006-05-17 2006-05-17 MINIATURIZED DEVICE CAPABLE OF OPERATING AS A MOTOR OR COOLER ACCORDING TO A STIRLING THERMODYNAMIC CYCLE
PCT/FR2007/051282 WO2007132130A1 (en) 2006-05-17 2007-05-16 Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle

Publications (2)

Publication Number Publication Date
EP2019919A1 EP2019919A1 (en) 2009-02-04
EP2019919B1 true EP2019919B1 (en) 2017-06-07

Family

ID=37685182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07766056.1A Not-in-force EP2019919B1 (en) 2006-05-17 2007-05-16 Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle

Country Status (5)

Country Link
US (1) US7832209B2 (en)
EP (1) EP2019919B1 (en)
JP (1) JP5368297B2 (en)
FR (1) FR2901320B1 (en)
WO (1) WO2007132130A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201519475D0 (en) 2015-11-04 2015-12-16 Beckett John Heat pump and heat engine
CN110914610B (en) 2017-06-23 2021-02-19 菲力尔系统公司 MEMS cryocooler system and method
EP3695174B1 (en) 2017-10-11 2022-09-14 Teledyne FLIR Commercial Systems, Inc. Cryocooler controller systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604821A (en) * 1969-08-13 1971-09-14 Mc Donnell Douglas Corp Stirling cycle amplifying machine
US4350012A (en) * 1980-07-14 1982-09-21 Mechanical Technology Incorporated Diaphragm coupling between the displacer and power piston
JPS62248857A (en) * 1986-04-23 1987-10-29 Matsushita Electric Ind Co Ltd Free piston type stirling engine
US5749226A (en) * 1993-02-12 1998-05-12 Ohio University Microminiature stirling cycle cryocoolers and engines
AU6235094A (en) * 1993-02-12 1994-08-29 Ohio University Microminiature stirling cycle cryocoolers and engines
US5867991A (en) * 1996-04-03 1999-02-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ferroelectric Stirling-cycle refrigerator
ZA974029B (en) * 1996-05-15 1998-02-19 Bayer Ag Inhibition of matrix metalloproteinases by substituted phenethyl compounds.
US6148635A (en) * 1998-10-19 2000-11-21 The Board Of Trustees Of The University Of Illinois Active compressor vapor compression cycle integrated heat transfer device
US6272866B1 (en) * 1999-12-08 2001-08-14 Industrial Technology Research Institute Micro cooling engine array system
JP3072982U (en) * 2000-01-12 2000-11-07 財団法人工業技術研究院 Micro cooling engine matrix system
US6385973B1 (en) 2001-07-12 2002-05-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Micro-scalable thermal control device
JP2005002919A (en) * 2003-06-12 2005-01-06 Sharp Corp Stirling engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2007132130A1 (en) 2007-11-22
US7832209B2 (en) 2010-11-16
FR2901320B1 (en) 2008-07-04
JP2009537783A (en) 2009-10-29
EP2019919A1 (en) 2009-02-04
JP5368297B2 (en) 2013-12-18
FR2901320A1 (en) 2007-11-23
US20090056330A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
EP2534357B1 (en) Thermoacoustic machine having an electric feedback loop
EP1366280B1 (en) Power unit with reciprocating linear movement based on stirling motor, and method used in said power plant
EP2019919B1 (en) Miniaturised device that can operate as an engine or a cooler according to a stirling thermodynamic cycle
EP2556236B1 (en) Stirling machine
CA2565573C (en) Acoustic power transmitting unit for thermoacoustic systems
FR2942305A1 (en) MAGNETOCALORIC THERMAL GENERATOR
EP0218554A1 (en) Stirling machine
JP2007333246A (en) Variable conductance heat pipe and temperature adjusting device using the same
CA3124292A1 (en) Regenerator and method for manufacturing such a regenerator
FR2971552A1 (en) Thermo-acoustic machine e.g. wave generator, has power feedback circuit transferring electrical energy generated at outlet of energy conversion system to inlet of another energy conversion system
FR2969421A1 (en) DEVICE FOR GENERATING ELECTRIC ENERGY
FR3132737A1 (en) ALTERNATIVE THERMAL ENGINE
EP3189224B1 (en) Engine with differential evaporation pressures
EP0860667B1 (en) Conditioning system of components operating at cryogenic temperature
EP2318785B1 (en) Magnetocaloric thermal generator
WO2023099185A1 (en) Thermoacoustic machine with phase-shift modulation
FR3120916A1 (en) Cartridge for thermal machine with thermodynamic cycle and module for associated thermal machine
FR2957137A1 (en) Heat exchanger module for stirling engine utilized for boilers, has two exchangers, where one of exchangers is placed on two sides of other heat exchanger and operated at temperature different from that of former exchanger
WO2023118041A1 (en) Acoustic power modulation in a thermoacoustic machine
FR2966203A1 (en) Stirling type thermodynamic device for autonomous heat pump, has chambers arranged on working liquid circuits, and shifter connected to lower parts of chambers so that each chamber is entirely filled with fluid when shifter is put in motion
FR3128984A1 (en) Thermoacoustic machine with phase inversion control
FR2760076A1 (en) Double effect pressure oscillator for electronic component cooling
FR2816687A1 (en) Play adjustment of guide rings for piston inside cylinder are provided between piston rings and comprise initial guide play adjustment and expansion absorption means

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17Q First examination report despatched

Effective date: 20100614

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170308

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899426

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007051252

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 899426

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007051252

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007051252

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180516

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607