EP2017678B2 - Verfahren und Vorrichtung zur Übertragung von Signalen von einer Positionsmesseinrichtung zu einer Auswerteeinheit - Google Patents
Verfahren und Vorrichtung zur Übertragung von Signalen von einer Positionsmesseinrichtung zu einer Auswerteeinheit Download PDFInfo
- Publication number
- EP2017678B2 EP2017678B2 EP08007259.8A EP08007259A EP2017678B2 EP 2017678 B2 EP2017678 B2 EP 2017678B2 EP 08007259 A EP08007259 A EP 08007259A EP 2017678 B2 EP2017678 B2 EP 2017678B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- reference pulse
- signal
- position signals
- state
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000011156 evaluation Methods 0.000 title abstract description 53
- 230000005540 biological transmission Effects 0.000 claims abstract description 53
- 230000008054 signal transmission Effects 0.000 claims description 41
- 238000001514 detection method Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/50—Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
Definitions
- the invention relates to a method and a device for transmitting position signals and reference pulses as well as an error condition indicating warning signals from a position-measuring device to an evaluation unit according to the preamble of claims 1 and 7.
- a position measuring device is used to determine the relative position of two mutually movable objects, for example, two mutually movable machine parts of a machine tool.
- a material measure for example in the form of a scale graduation, connected to one and a scanning unit with the other of the two objects, so that can be determined by scanning the scale division, the extent of movement of the two objects to each other along the scale division.
- the generation of position signals by means of the position measuring device takes place by scanning, for example by optical scanning, the scale division by means of a transducer of the position measuring device during the relative movement of the scanning unit and the scale division.
- the respective position of the one object can be determined with respect to the other object, either in the form of an absolute position using a scale scale formed by a code track, or in the form of relative position changes when using an incremental, periodic scale scale.
- the generation of the different types of position signals can be effected by using optical, magnetic, inductive or capacitive scanning units.
- an incremental position measuring device for position measurement produced by sampling a periodic scale division by means of the sampling on the output side at least two mutually phase-shifted, periodic analog position signals that are evaluated to determine the relative position of the graduation scale and the scanning in an evaluation unit, for example, from a numerical control of a Machine tool exists.
- the incremental position signals generated by the position measuring device are transmitted in parallel form to the downstream evaluation unit via two or four signal transmission lines, depending on the type of transmission.
- the position measuring device delivers two position signals which are phase-shifted by 90 ° in the case of a single-ended transmission.
- an inverse position signal is additionally transmitted from the position measuring device to the evaluation unit for each of the two position signals which are phase-shifted by 90 °.
- reference pulses are transmitted from the position measuring device to the evaluation unit, which are generated by linking reference pulse signals derived from reference marks on the graduation scale with the position signals.
- a reference pulse is transmitted via a further signal transmission line to the evaluation unit and further processed there, while in a differential transmission two further signal transmission lines are provided, via which a reference pulse and an inverted reference pulse are transmitted.
- the position measuring device can issue a warning signal to the evaluation unit if, for example, the permissible signal amplitudes are undershot or other events which jeopardize safe operation occur, that of a position measuring device connected to or integrated in the position measuring device Warning signal donating monitoring unit are detected.
- a warning signal from the position measuring device to the evaluation is transmitted via an additional output of the position measuring device and an additional warning signal transmission line, a single-ended signal to the evaluation, which assumes a high level, for example, in the normal state, when transmitting rectangular warning signals with logical high and low levels, while the warning state corresponds to a low level.
- the JP 64-50785 A proposes to transmit a plurality of position signals in a multiplex mode via a signal line. In this way signal transmission lines are saved.
- all the outputs of the position measuring device can be switched to high impedance for warning signal output, so that in the warning state instead of the differential signals only present signals with the same level, the subsequent electronics the evaluation unit recognizes as a fault condition.
- This type of transmission of a warning signal has the advantage that the warning signal does not require its own warning signal transmission line and that in addition a line break the warning signal transmission line can be detected, since in this case the low-level of the subsequent electronics of the evaluation unit, which corresponds to a warning state.
- a major disadvantage of this type of transmission of a warning signal is that in the warning state, the transmission of all signals is interrupted and provided with the position measuring machine must be stopped immediately.
- the object of the present invention is to specify a method and a device of the type mentioned above, which require no additional signal transmission line for the transmission of a warning signal and also enables a transmission of the position signals and the reference pulses in the warning state.
- the solutions of the invention require no additional signal transmission line for transmitting a warning signal from the position measuring device to the evaluation and thus meet the requirement to keep the cost of required signal connections as low as possible and to ensure compatibility with the usual number of signal transmission lines.
- the inventive method and the device according to the invention ensure that the incremental position signals and reference pulses can continue to be transmitted in the warning state, so that the machine equipped with the position measuring device does not have to be stopped immediately when a warning state occurs.
- the evaluation unit Since the evaluation unit detects the slow speed or the standstill of the machine by the transmission of position signals and reference pulses, it evaluates the transmission of warning signals at slow feed or standstill of the machine as an alarm signal that leads to shutdown of the machine and / or one with appropriate programming corresponding acknowledgment of the alarm signal requires. After a manual acknowledgment and / or removal of the error state associated with the separate alarm message, the controller returns to the normal state.
- the inventive solutions are based on the idea to use the warning signal using the existing signal transmission lines for the transmission of the position signals and reference pulses, preferably the signal transmission lines of the reference pulses, in a single-ended transmission or in a differential transmission, for the distinction between a reference pulse and a a warning signal indicating a warning signal in the normal operation for the output of the reference pulse invalid state combination of the position signals and reference pulses is used.
- the output of the warning signal is possible both in a single-ended transmission and in a differential transmission, wherein in a single-ended transmission two phase-offset position signals and one with the phase-shifted position signals in error-free normal operation periodically occurring valid state combinations associated reference pulse is transmitted from the position measuring device to the evaluation, while at a differential transmission at least four incremental position signals, each with two offset by 90 ° phase first position signals and two to the first position signals inverted second position signals and one in error-free normal operation to periodically occurring valid state combinations associated with the first position signals first reference pulse and each one in error-free normal operation periodically occurring valid state combinations with the second position signals link be transmitted second reference pulse.
- a device for transmitting substantially rectangular position signals and reference pulses and an error condition indicating warning signals from a position measuring device for determining the position of two relatively movable parts of a machine via signal transmission lines to an evaluation unit wherein the position measuring device comprises a logic unit consisting of scanning signals of an incremental graduation scale graduation phase-offset incremental position signals and a reference pulse generated from reference marks of the scale graduation and the position signals is characterized in that the logic unit generates the reference pulse RI from the phase-shifted, incremental position signals P1, P2 and from the reference marks of the scale graduation such that in the error-free state in Each state valid and invalid for the output of the reference pulse RI state combinations occur, and one an error state indicating warning signal WRN during an error-free state for the output of the reference pulse RI invalid state combination of the position signals P1, P2 and the reference pulse RI in the signal transmission from the position measuring device to the evaluation unit, and that the evaluation unit has an error detection unit that during a fault-free State for the output of the reference pulse RI invalid state combination of the position signals P1,
- the logic unit contains a Time step, which is initiated with the occurrence of the invalid for the transmission of the reference pulse state combination and outputs a signal to a first input of an AND gate after a predetermined period of time, the second input can be acted upon by a warning signal and an alarm signal to the evaluation outputs when a signal is present at both inputs.
- a Time step which is initiated with the occurrence of the invalid for the transmission of the reference pulse state combination and outputs a signal to a first input of an AND gate after a predetermined period of time, the second input can be acted upon by a warning signal and an alarm signal to the evaluation outputs when a signal is present at both inputs.
- To transmit the alarm signal invalid for the transmission of the reference pulse state combination is forced and transmit the alarm signal as a warning signal.
- the control returns to the normal state, if necessary after the elimination of a fault condition.
- the logic unit determines the valid state combinations from the combination of the position signals with the base reference pulses to the reference pulses and this link the program of the evaluation is known, the evaluation recognizes a fault condition during the occurrence of a signal during an invalid state combination and can be a preprogrammed response, for example Immediately stop the machine.
- This form of information transmission from the position measuring device to the evaluation unit can be further refined by the fact that, in the event of a transmission of a warning signal exceeding a predetermined signal length, the machine is stopped immediately, while if the warning signal has a signal length which is less than the predetermined signal length, only an optical and / or acoustic signal, optionally coupled with an indicating the cause of error indicator corresponding to the respective signal length, is triggered.
- the logic unit On the output side, the logic unit is connected to an input of a reference pulse driver module or a differential driver.
- the error detection unit is the input side with outputs of signal receivers or differential signal receivers of the evaluation unit for phase-shifted incremental position signals and reference pulses and the output connected to a signal output unit.
- At least three signal transmission lines are arranged between the position measuring device and the evaluation unit, on which two phase-shifted incremental position signals and one associated with the incremental position signals reference pulse of the position measuring device to the evaluation unit are transmittable or arranged at least six signal transmission lines on which two phase-shifted incremental position signals and two incremental position signals inverted thereto and each associated with the phase-shifted incremental position signals and the incremental position signals associated therewith reference pulse from the position measuring device to the evaluation are transferable.
- Fig. 1 shows a block diagram of a position measuring system with a position measuring device 1, which comprises a scale graduation 2 and a scanning unit 3 movable relative thereto.
- the position measuring device 1 generates position signals P1, P2 and a reference pulse RI linked to the position signals P1, P2, which signals are transmitted via signal transmission lines 51, 53, 55 to an evaluation unit 4.
- the graduation scale 2 and the scanning unit 3 are connected, for example, to mutually movable parts of a machine tool whose relative position is to be determined to each other, while the evaluation unit 4 consists for example of a numerical machine tool control or integrated into it.
- the solution according to the invention can also be used in position measuring systems with rotational movements of the mutually movable parts.
- the graduation scale 2 for example in the form of a glass scale, contains an incremental graduation 21 with a predetermined graduation period and reference marks 22.
- the generation of the position signals P1, P2 and reference pulses RI can be performed using optical or photoelectric, magnetic, inductive or capacitive sensing principles with appropriate graduation scale design 2 and the scanning unit 3 done.
- the graduation scale of a glass scale with a graduated graduation as incremental graduation and reference mark consist, which is associated with a scanning plate at a small distance to the glass scale.
- a parallel light beam generated by a semiconductor light source projects a plurality of scanning fields of the scanning plate onto the glass scale, behind the scanning fields associated with the photodiodes are arranged.
- the pitch of the scanning fields is the same as that on the glass scale and aligned parallel thereto is, with a relative movement of the glass scale and the scanning the transmitted luminous flux is modulated, which is converted in the photodiodes with the light intensity due to the opaque lines on the glass scale varying light intensity in a corresponding electric current.
- the signals of the photodiodes can be phase-shifted. These signals can be converted into square-wave signals using circuit means known per se.
- a reflection or incident light method can be used in which the scale consists of a nontransparent material to which the graduation of a highly reflective material is applied.
- the sampling unit 3 includes a position signal generation unit 5 which outputs two incremental signals 90 ° out of phase as position signals P1, P2, and a reference pulse generation unit 6 which generates a rectangular base from a reference mark 22 detected by the sampling unit 3 and the resulting analog reference pulse signal Reference pulse RI 'forms.
- the position signal generation unit 5 and the reference pulse generation unit 6 comprise a plurality of light sources, scanning structures on the graduation scale 2 and optoelectronic detector elements when using the photoelectric measuring principle.
- the two phase-offset by 90 ° position signals P1, P2 at the in Fig. 1 shown single-ended transmission in parallel to two downstream first and second driver modules 31, 32, whose outputs are connected via two signal transmission lines 51, 53 to the inputs of a respective signal receiver 41, 42 of the evaluation unit 4.
- the reference pulse RI thus generated is transmitted from the logic unit 7 via a driver module 33 and a signal transmission line 55 to a signal receiver 43 of the evaluation unit 4. At the same time sets the logic unit 7 so that the valid state combination in the transmission of the reference pulse RI.
- Fig. 2 shows from top to bottom timing diagrams of the base reference pulse RI ', the base warning signal WRN', the two phase-shifted by 90 ° and formed as rectangular pulses position signals P1 and P2 and from the above-described combination of the base reference pulse RI 'with the position signals P1 and P2 formed reference pulse RI over the phase angle ⁇ .
- a state combination that is invalid in normal operation or in the fault-free state of the signal generation for the output of the reference pulse RI thus results in the case of a deviation from the above condition.
- a monitoring unit 8 arranged in or connected to the scanning unit 3 gives a basic warning signal WRN 'when a fault condition is detected, for example when the permissible signal amplitudes are undershot. to the input side connected both to the outputs of the position signal generating unit 5 and to the output of the reference pulse generating unit 6 logic unit 7.
- the rectangular warning signal WRN is output to the evaluation unit 4 via the further driver module 33 and the signal transmission line 55 for the reference pulse RI.
- the evaluation unit 4 comprises, in addition to the signal receivers 41, 42, 43, an error detection unit 10 which is connected on the input side to the outputs of the signal receivers 41, 42, 43 and which is connected on the output side to a signal output unit 9.
- the signal output unit 9 is connected, for example, to or integrated in a numerical machine tool control and has a monitor or is connected to optical and / or acoustic signal transmitters.
- the error detection unit 10 is used to detect valid and for the output of the reference pulse RI invalid state combinations of the position signals P1, P2 and the reference pulse RI and indicates at a in the range of an invalid for the output of the reference pulse combination RI base warning signal WRN 'a warning signal WRN the signal output unit 9 of the evaluation unit 4, which outputs a suitable optical and / or acoustic signal or engages in the numerical machine tool control.
- Fig. 1 schematically illustrated block diagram is essentially the explanation of the functional relationship in the detection, generation and transmission of the position signals P1 and P2, the base reference pulse RI ', the reference pulse RI, the base warning signal WRN' and the warning signal WRN.
- the individual components of the position-measuring device 1 and evaluation unit 4 can deviate from the in Fig. 1 illustrated embodiment and linked together.
- the reference pulse generating unit 6 can be integrated into the logic unit 7, which additionally monitors the signal amplitudes of the scanning signals and reference marks in order to detect, for example, falling below predetermined signal amplitudes for an error message.
- the error detection unit 10 can be integrated into the signal output unit 9 with corresponding logic modules.
- Fig. 3 illustrated in the form of a schematic block diagram, which substantially with the block diagram of a position measuring system with a single-ended transmission according to Fig. 1 , is consistent, so that reference is made to the above description.
- 90 ° out of phase incremental signals are output as position signals P1, P2 to downstream first and second differential drivers 34, 35 from the two position signals P1 and P2 both position signals P1 +, P2 + and this inverted position signals P1-, P2- generate and transmitted via a total of four signal transmission lines 51 to 54 in parallel to first and second differential receiver 44, 45 of the evaluation unit 4.
- the position measuring device 1 thus provides with a relative movement of graduation scale 2 and scanning unit 3 two phase-shifted by 90 ° incremental and to each of the two phase-shifted incremental an inverted incremental signal, which is also transmitted to the evaluation unit 4 for further processing via the signal transmission lines 51 to 54.
- the base reference pulse RI' is in the downstream logic unit 7 with the Position signals P1, P2 to the reference pulse RI as described above in connection with the description of the circuit according to Fig. 1 linked and delivered to a downstream third differential driver 36 of the sampling unit 3, which generates from the reference pulse RI a reference pulse RI + and a reference pulse RI- inverted thereto.
- Both reference pulses RI + and RI- are transmitted via signal transmission lines 55, 56 to the inputs of a third differential receiver 46 of the evaluation unit 4, which at its output formed from the reference pulse RI + and the inverted reference pulse RI- reference pulse RI to the signal output unit 9 and error detection unit 10th the evaluation unit 4 outputs.
- the solution according to the invention thus makes it possible to transmit a warning signal WRN or WRN + and WRN- from the position measuring device 1 to the downstream evaluation unit 4 using only the existing signal transmission lines 51 to 53 or 51 to 56 in the case of a single-ended transmission as well as a differential signal transmission that no additional cabling is required.
- the compatibility with the number of previous connections between the position-measuring device 1 and the evaluation unit 4 is ensured and the warning signal WRN or the warning signals WRN + and WRN can or can in the warning state with continuous transmission of the position signals P1, P2; P1 +, P1-, P2 +, P2- and the reference pulse RI; RI +, RI-, so that the machine controlled by the position measuring system does not have to be stopped immediately when a warning condition occurs.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Control Of Position Or Direction (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007033009A DE102007033009A1 (de) | 2007-07-12 | 2007-07-12 | Verfahren und Vorrichtung zur Übertragung von Signalen von einer Positionsmesseinrichtung zu einer Auswerteeinheit |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2017678A1 EP2017678A1 (de) | 2009-01-21 |
EP2017678B1 EP2017678B1 (de) | 2009-09-30 |
EP2017678B2 true EP2017678B2 (de) | 2019-05-29 |
Family
ID=39877494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08007259.8A Not-in-force EP2017678B2 (de) | 2007-07-12 | 2008-04-12 | Verfahren und Vorrichtung zur Übertragung von Signalen von einer Positionsmesseinrichtung zu einer Auswerteeinheit |
Country Status (6)
Country | Link |
---|---|
US (1) | US7847704B2 (ja) |
EP (1) | EP2017678B2 (ja) |
JP (1) | JP5490381B2 (ja) |
CN (1) | CN101344388B (ja) |
AT (1) | ATE444503T1 (ja) |
DE (2) | DE102007033009A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011083042A1 (de) | 2010-11-29 | 2012-05-31 | Dr. Johannes Heidenhain Gmbh | Überwachungseinheit und Verfahren zur Überwachung von Positionssignalen inkrementaler Positionsmesseinrichtungen |
CN102930346B (zh) * | 2012-10-15 | 2016-05-04 | 庞善臣 | 一种soa服务平均故障间隔时间预测方法 |
DE102013209019A1 (de) | 2013-05-15 | 2014-11-20 | Dr. Johannes Heidenhain Gmbh | Verfahren zur Übertragung von Daten zwischen einer Positionsmesseinrichtung und einer zugeordneten Verarbeitungseinheit sowie Positionsmesseinrichtung hierfür |
US10184807B2 (en) * | 2016-09-26 | 2019-01-22 | Infineon Technologies Ag | True-power-on and diagnostic-capable incremental interface for angular sensors |
US10379530B2 (en) * | 2016-11-04 | 2019-08-13 | Infineon Technologies Ag | Signal protocol fault detection system and method |
EP3577422B1 (de) | 2017-02-02 | 2021-11-24 | Sew-Eurodrive GmbH & Co. KG | Verfahren und vorrichtung zum überwachen der spursignale eines positionsänderungssensors |
DE102017205267A1 (de) * | 2017-03-29 | 2018-10-04 | Dr. Johannes Heidenhain Gmbh | Positionsmesseinrichtung und Verfahren zum Betreiben einer Positionsmesseinrichtung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3323281C2 (ja) † | 1983-06-28 | 1987-05-21 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut, De | |
JPS6450785A (en) † | 1987-08-20 | 1989-02-27 | Yaskawa Denki Seisakusho Kk | Ac servo-encoder |
DE19639316A1 (de) † | 1996-09-25 | 1998-03-26 | Heidenhain Gmbh Dr Johannes | Positionsmeßsystem und Meßverfahren |
EP1271107A1 (de) † | 2001-06-27 | 2003-01-02 | Dr. Johannes Heidenhain GmbH | Positionsmesseinrichtung |
DE202005018989U1 (de) † | 2005-12-05 | 2007-04-12 | Pepperl & Fuchs | Programmierbarer Inkrementalweggeber |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19711215C1 (de) * | 1997-03-18 | 1998-05-07 | Heidenhain Gmbh Dr Johannes | Verfahren und Vorrichtung zur Umschaltung zwischen verschiedenen Ausgangssignal-Arten einer Positionsmeßeinrichtung |
DE19711216C1 (de) * | 1997-03-18 | 1998-05-07 | Heidenhain Gmbh Dr Johannes | Verfahren und Vorrichtung zur Übertragung von Daten zwischen einer Positionsmeßeinrichtung und einer Auswerteeinheit |
DE10224627A1 (de) * | 2002-06-04 | 2003-12-24 | Heidenhain Gmbh Dr Johannes | Verfahren zur seriellen Datenübertragung zwischen einer Positionsmesseinrichtung und einer Verarbeitungseinheit |
-
2007
- 2007-07-12 DE DE102007033009A patent/DE102007033009A1/de not_active Withdrawn
-
2008
- 2008-04-12 EP EP08007259.8A patent/EP2017678B2/de not_active Not-in-force
- 2008-04-12 AT AT08007259T patent/ATE444503T1/de active
- 2008-04-12 DE DE502008000126T patent/DE502008000126D1/de active Active
- 2008-07-09 US US12/217,850 patent/US7847704B2/en not_active Expired - Fee Related
- 2008-07-11 JP JP2008181273A patent/JP5490381B2/ja not_active Expired - Fee Related
- 2008-07-11 CN CN2008101315821A patent/CN101344388B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3323281C2 (ja) † | 1983-06-28 | 1987-05-21 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut, De | |
JPS6450785A (en) † | 1987-08-20 | 1989-02-27 | Yaskawa Denki Seisakusho Kk | Ac servo-encoder |
DE19639316A1 (de) † | 1996-09-25 | 1998-03-26 | Heidenhain Gmbh Dr Johannes | Positionsmeßsystem und Meßverfahren |
EP1271107A1 (de) † | 2001-06-27 | 2003-01-02 | Dr. Johannes Heidenhain GmbH | Positionsmesseinrichtung |
DE202005018989U1 (de) † | 2005-12-05 | 2007-04-12 | Pepperl & Fuchs | Programmierbarer Inkrementalweggeber |
Also Published As
Publication number | Publication date |
---|---|
CN101344388B (zh) | 2012-11-14 |
DE502008000126D1 (de) | 2009-11-12 |
CN101344388A (zh) | 2009-01-14 |
EP2017678A1 (de) | 2009-01-21 |
US20090015423A1 (en) | 2009-01-15 |
EP2017678B1 (de) | 2009-09-30 |
JP2009020112A (ja) | 2009-01-29 |
DE102007033009A1 (de) | 2009-01-15 |
JP5490381B2 (ja) | 2014-05-14 |
ATE444503T1 (de) | 2009-10-15 |
US7847704B2 (en) | 2010-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2017678B2 (de) | Verfahren und Vorrichtung zur Übertragung von Signalen von einer Positionsmesseinrichtung zu einer Auswerteeinheit | |
DE19628765B4 (de) | Verfahren und Vorrichtung zur Positionsbestimmung von nicht-geradlinig bewegten, insbesondere rotierenden Maschinenteilen | |
DE112013006990B4 (de) | Encoder und Servomotor | |
EP0254772A2 (de) | Verfahren zur Ermittlung des Durchmessers der Räder von Schienenfahrzeugen und Einrichtung hierzu | |
EP2093537A1 (de) | Verfahren und Vorrichtung zur Ermittlung einer Ausrichtung von zwei drehbar gelagerten Maschinenteilen, einer Ausrichtung von zwei hohlzylinderförmigen Maschinenteilen oder zur Prüfung einer Komponente auf Geradheit entlang einer Längsseite | |
EP2458342B1 (de) | Überwachungseinheit und Verfahren zur Überwachung von Positionssignalen inkrementaler Positionsmesseinrichtungen | |
EP1995566A2 (de) | Maßstab für eine Positionsmesseinrichtung und Positionsmesseinrichtung | |
EP2600113B1 (de) | Verfahren und Vorrichtung zur Messung des Drehwinkels zweier relativ zueinander rotierender Objekte | |
EP1949039B1 (de) | Positionsmesssystem | |
EP0866305B1 (de) | Verfahren und Vorrichtung zur Umschaltung zwischen verschiedenen Ausgangssignal-Arten einer Positionsmesseinrichtung | |
DE10309679B4 (de) | Abtasteinheit zum Abtasten einer Maßverkörperung | |
DE3323281C2 (ja) | ||
EP2616300B1 (de) | Verfahren zum betreiben eines positionsgebers für ein mechanisches bewegteil und positionsgeber für ein mechanisches bewegteil | |
DE19621015A1 (de) | Verfahren und Vorrichtung zur Positionierung von bewegten Maschinenteilen | |
EP3382348B1 (de) | Positionsmesseinrichtung und verfahren zum betreiben einer positionsmesseinrichtung | |
EP2869035B1 (de) | Positionsmesssystem und Regelungsverfahren für verkettete Linearmotoren | |
EP0206139B1 (de) | Fehlergesicherte inkrementale Positionsmesseinrichtung | |
EP2116814A1 (de) | Messeinrichtung zur Ermittlung einer Lage und/oder einer Geschwindigkeit | |
DE10200436B4 (de) | Vorrichtung zur sicheren Positionsüberwachung | |
DE3522809C2 (ja) | ||
DE4009749C2 (ja) | ||
DE3528796A1 (de) | Digitale elektrische laengen- oder winkelmesseinrichtung mit einer schaltungsanordnung zur fehlerueberwachung | |
EP3239663B1 (de) | Verfahren zur überprüfung elektrischer bzw. elektronischer systeme | |
EP0332892B1 (de) | Vorrichtung zur Bestimmung der relativen Bewegung zweier Messstellen zueinander | |
EP4279792B1 (de) | Lichtvorhang |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081024 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502008000126 Country of ref document: DE Date of ref document: 20091112 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SICK STEGMANN GMBH Effective date: 20100629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091231 |
|
BERE | Be: lapsed |
Owner name: DR. JOHANNES HEIDENHAIN G.M.B.H. Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100401 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100412 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 444503 Country of ref document: AT Kind code of ref document: T Effective date: 20130412 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130412 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SICK STEGMANN GMBH Effective date: 20100629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20190529 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502008000126 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190418 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210423 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220420 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008000126 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |