EP2014392A2 - Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank - Google Patents

Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank Download PDF

Info

Publication number
EP2014392A2
EP2014392A2 EP08007906A EP08007906A EP2014392A2 EP 2014392 A2 EP2014392 A2 EP 2014392A2 EP 08007906 A EP08007906 A EP 08007906A EP 08007906 A EP08007906 A EP 08007906A EP 2014392 A2 EP2014392 A2 EP 2014392A2
Authority
EP
European Patent Office
Prior art keywords
molding
grain size
binder
particles
material mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08007906A
Other languages
German (de)
French (fr)
Other versions
EP2014392B1 (en
EP2014392A3 (en
Inventor
Bettina Wehren
Ralf-Joachim Gerlach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imerys Metalcasting Germany GmbH
Original Assignee
Minelco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39830346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2014392(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Minelco GmbH filed Critical Minelco GmbH
Priority to PL08007906T priority Critical patent/PL2014392T3/en
Priority to SI200830356T priority patent/SI2014392T1/en
Publication of EP2014392A2 publication Critical patent/EP2014392A2/en
Publication of EP2014392A3 publication Critical patent/EP2014392A3/en
Application granted granted Critical
Publication of EP2014392B1 publication Critical patent/EP2014392B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention relates to a molding material mixture for foundry purposes, consisting of molding sand, caustic soda, alkali-silicate-based binders and aggregates and a molding for foundry purposes, prepared using the molding material mixture.
  • the invention also relates to a method for producing a molded article.
  • Formstoffmischept of the type mentioned are for example from the DE 102004042535 A1 (AS LÜNGEN GmbH) known.
  • the binder used is an alkali water glass in combination with a particulate metal oxide, for example silica, alumina, titania or zinc oxide, in order to improve the strength of casting molds both immediately after shaping and curing and after storage and increased air humidity.
  • the particle size of the metal oxides is preferably less than 300 microns, according to the examples, the sieve residue on a sieve with a mesh size of 63 microns less than 10% by weight, preferably less than 8% by weight.
  • U.S. Pat US 5,641,015 Another method for producing molding mixtures which is intended to achieve high strength in combination with a polyphosphate or borate binder is disclosed in U.S. Pat US 5,641,015 described.
  • column 4, line 39 of the US patent the release of water is mentioned as a result of the drying of polyphosphate and borate-containing binders, which is to be absorbed by the addition of ultrafine silica.
  • the ultrafine silica consists of porous primary particles produced by a precipitation process with grain sizes between 10 and 60 nm, which agglomerate to secondary particles with a particle size of several ⁇ m (column 3, lines 64-66 of the US patent).
  • An inorganic binder system for molding materials is in the EP 1095719B1 described.
  • the flowability can be improved by adding 8-10% by weight of silicone oil with respect to the binder. This improvement was accompanied by a higher moisture content of the core sand.
  • Another important parameter is the progress of curing and the reduction of sensitivity to humidity.
  • the main quality feature is the surface quality of the casting achievable with the molding material mixture.
  • the known processes are not sufficiently stable under the conditions prevailing in mass production, so that again and again high reject rates and unacceptable additional costs result from reworking.
  • As a yardstick for the assessment of the surface quality the determination of the area fraction of sand deposits on the cast part has proven itself.
  • the drying process has an outstanding influence on the formation of the roughness on the surfaces of the moldings.
  • it is necessary to influence the distribution of the mountain and valley structure in such a way that a relief structure arises which has a height-depth difference ratio of at most 300 nm.
  • both thermal drying and microwave drying into consideration, with very good storage capabilities, especially without microwave drying were achieved even under extreme storage conditions at humidities above 78% and storage temperatures of more than 33 ° C.
  • the binder layer present on the particles in the molding material mixture shrinks to form a substructure of mountains and valleys.
  • a morphology of the substructure is formed, which is characterized by a height-depth difference of max. 300 nm, caused by cracking during the two-stage shrinking process.
  • energy is introduced directly into the moist binder shell.
  • the resulting hardening of the binder cover (surface) leads by the subsequent thermal drying to crack formation in the nano range (substructure).
  • the fluidity is given as GF-flowability, the determination was carried out according to Brunhuber, 16th edition, page 352/353.
  • test specimens standard test specimens measuring 22.5 ⁇ 22.5 ⁇ 180 mm were produced and subjected to the respective experimental conditions.
  • a quartz sand-based molding material mixture could be produced, which far exceeds the properties of the known products in terms of flowability, flexural strength and curing, if used as aggregate the two particle size classifications mentioned in claim 1 become.
  • the micrometer-sized, amorphous SiO 2 spheres are intended to allow the individual molding sand grains to be spaced apart from each other and to allow them to slide off relative to one another in a facilitated manner.
  • This "skating effect" was confirmed by flowability measurements, for example by the drastically sinking stirring resistance during the introduction of the suspension composed of two different grain classifications according to the invention in a wing mixer.
  • the power consumption of the wing mixer decreased by more than 50%, while the effect without surcharge was below 10%, based on the current consumption before addition.
  • the dosing order of the individual components and their mixing time must be taken into account.
  • the dosing order is: 1.
  • the quartz sand is mixed with caustic soda.
  • An alkali silicate binder is added.
  • the addition of suspension according to the invention with NanoSiO 2 and MikroSiO 2 plus water is added to the basic mixture.
  • the mixing time depends on the type of mixing unit used and should be determined experimentally. In this case, the minimum required duration for the mixture is the respectively desired state (homogenization / uniform distribution).
  • masterbatch indicates a mixture of foundry sand, NaOH and alkali silicate binder in varying composition.
  • Basic mixture of a classic binder system Halterner molding sand, determined according to Brunhuber p. 400 NaOH 0.20% Alkali silicate binder 1.80% GF flowability 73% additive: - GF flowability determined according to Brunhuber p.
  • FIG. 1 graphically reproduces the listed results. The comparison of the test results clearly shows that the suspension causes an improvement in flowability. In addition, it becomes clear that the addition of the equivalent amount of water from the suspension has no influence on the flowability.
  • FIG. 7 illustrates that the flowability (after GF) of the core sand increases by the inventive addition of present in 2 grain classifications SiO 2 balls.
  • the microSiO 2 spheres are kept at a distance by the NanoSiO 2 spheres and allow the so-called “roller skate effect", ie a rolling of the sand grains through the MikroSiO 2 spheres arranged between them
  • the determined bending strengths are in Fig. 2 graphically illustrated.
  • the comparison of the flexural strength of a core sand base mixture without additive C and the flexural strength of a core sand base mixture containing the additive C clearly shows that with a surcharge according to the invention a 3 increased flexural strength.
  • this time difference also does not matter, i. the strength of all three test bars are approximately equal.
  • test bars provided with the additive C are examined, it is found that the bending strength increases steadily during the test procedure (from the first to the second test bar).
  • the molding material mixtures were transferred to the storage bunker of a hot box core shooting machine from Rölperwerk foundry machines whose mold was heated to 180.degree.
  • the molding material mixtures were introduced into the mold by means of compressed air (5 bar) and remained in the mold for a further 35 seconds.
  • the mold was opened and the molding was removed. In order to achieve the maximum strength, the molding is post-dried in the microwave. Subsequently, the casting was poured off in open hand casting.
  • the molding was removed and the casting surface was evaluated for the type and amount of sand buildup.
  • FIG. 8 illustrates the molding used to make the casting used here.
  • the percentages of the sand adhesions relate to the outer surface in the region of the bulged casting region R, which is formed as a continuously curved bulge R in the molding.
  • FIG. 6 gives the test results graphically.
  • a significantly improved casting surface is achieved in comparison to the base mixture according to Ex. A) 1, according to US '015 (amorphous SiO 2 spheres constructed from nanoparticles) and according to DE' 535 (amorphous, synthetic silicic acid in spherical form).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Molding material mixture (I) for foundry purposes, comprises: molding sand; sodium hydroxide solution (0.1-10 wt.%); a binding agent based on alkali silicate; and additives, where: the molding sand particles comprise a grain size of 0.1-1 mm; sodium hydroxide solution comprises a concentration of 20-40 wt.%; (I) contains 0.1-5% of binding agent based on alkali silicate with a solid matter percentage of 20-70%; and the molding material mixture, as the additive, contains 0.1-3 wt.% of a suspension with a solid matter percentage of 30-70% of amorphous, spherical silicon dioxide. Molding material mixture (I) for foundry purposes, comprises: molding sand; sodium hydroxide solution (0.1-10 wt.%); a binding agent based on alkali silicate; and additives, where: the molding sand particles comprise a grain size of 0.1-1 mm; the sodium hydroxide solution comprises a concentration of 20-40 wt.%; (I) contains 0.1-5% of binding agent based on alkali silicate with a solid matter percentage of 20-70%; the molding material mixture, as the additive, contains 0.1-3 wt.% of a suspension with a solid matter percentage of 30-70% of amorphous, spherical silicon dioxide in two grain size classifications in the suspension with a first grain size classification (A) containing silicon dioxide particles with a grain size of 1-5 micrometers and with a second grain size classification (B) containing silicon dioxide particles with a grain size of 0.01-0.05 micrometers; and the distribution rule of 0.8-1.0 to 1.2-1 applied for the volume percentages of the two grain size area (A) and (B). Independent claims are included for: (1) a molded part for foundry purposes, produced from (I), where the surface of the individual molding sand grain in the molding part exhibits a primary structure made of silicon dioxide particles with a grain size of 1-5 micrometers; the micrometer-sized amorphous silicon dioxide spheres separate the individual quarts sand particles from one another and further characterized by a substructure of silicon dioxide particles with a grain size of 0.01-0.05 micrometers, which are distributed in a binding agent layer, which is 0.5-2 micrometers thick and is uniformly distributed on molding sand grains; and the nanometer-sized amorphous silicon dioxide spheres form adjoining peaks and valleys of up to 300 nanometers of height/depth; and (2) producing the molded part comprising: providing molding; mixing the sodium hydroxide solution with the binding agent based on alkali silicate; uniformly and homogeneously distributing the molding sand grains in the form of a binding agent envelope; adding a mixture of silicon dioxide particles with two grain size classifications in the binding agent envelope; and drying the molding material mixture to form a molded part, where the binding agent envelope shrinks during the drying process and forms a roughness structure with a maximum height differential of 300 nanometers.

Description

Die Erfindung betrifft eine Formstoffmischung für Gießereizwecke, bestehend aus Formsand, Natronlauge, Binder auf Alkali-Silikat-Basis und Zuschläge sowie einen Formling für Gießereizwecke, hergestellt unter Verwendung der Formstoffmischung. Die Erfindung betrifft ebenfalls ein Verfahren zur Herstellung eines Formlings.The invention relates to a molding material mixture for foundry purposes, consisting of molding sand, caustic soda, alkali-silicate-based binders and aggregates and a molding for foundry purposes, prepared using the molding material mixture. The invention also relates to a method for producing a molded article.

Formstoffmischungen der eingangs genannten Art sind beispielsweise aus der DE 102004042535 A1 (AS LÜNGEN GmbH) bekannt. Dabei wird als Bindemittel ein AlkaliWasserglas in Verbindung mit einem teilchenförmigen Metalloxid verwendet, beispielsweise Siliziumdioxid, Aluminiumoxid, Titanoxid oder Zinkoxid, um die Festigkeit von Gießformen sowohl unmittelbar nach der Formgebung und Aushärtung als auch nach einer Lagerung und erhöhter Luftfeuchtigkeit zu verbessern. Die Teilchengröße der Metalloxide beträgt vorzugsweise weniger als 300 µm, nach den Beispielen beträgt der Siebrückstand auf einem Sieb mit einer Maschenweite von 63 µm weniger als 10 Gew%, vorzugsweise weniger als 8 Gew%.Formstoffmischungen of the type mentioned are for example from the DE 102004042535 A1 (AS LÜNGEN GmbH) known. In this case, the binder used is an alkali water glass in combination with a particulate metal oxide, for example silica, alumina, titania or zinc oxide, in order to improve the strength of casting molds both immediately after shaping and curing and after storage and increased air humidity. The particle size of the metal oxides is preferably less than 300 microns, according to the examples, the sieve residue on a sieve with a mesh size of 63 microns less than 10% by weight, preferably less than 8% by weight.

Ein anderes Verfahren zur Herstellung von Formstoffmischungen, die eine hohe Festigkeit in Kombination mit einem polyphosphat- oder borathaltigen Binder erreichen soll, ist in US 5,641,015 beschrieben. In Spalte 4, Zeile 39 des US-Patents wird als Folge der Trocknung von polyphosphat- und borathaltigen Bindern die Freisetzung von Wasser genannt, welches durch den Zusatz von feinstteiligem Siliziumdioxid absorbiert werden soll. Das feinstteilige Siliziumdioxid besteht aus porösen, durch einen Fällungsprozess hergestellten Primärpartikeln mit Korngrößen zwischen 10 und 60 nm, die zu Sekundärteilchen mit einer Partikelgröße von mehreren µm agglomerieren (Spalte 3, Zeilen 64 - 66 des US-Patents).Another method for producing molding mixtures which is intended to achieve high strength in combination with a polyphosphate or borate binder is disclosed in U.S. Pat US 5,641,015 described. In column 4, line 39 of the US patent, the release of water is mentioned as a result of the drying of polyphosphate and borate-containing binders, which is to be absorbed by the addition of ultrafine silica. The ultrafine silica consists of porous primary particles produced by a precipitation process with grain sizes between 10 and 60 nm, which agglomerate to secondary particles with a particle size of several μm (column 3, lines 64-66 of the US patent).

Ein anorganisches Bindemittelsystem für Formstoffe ist in der EP 1095719B1 beschrieben. Gemäß der EP 1095719B1 kann bei einem Binder auf Alkalisilikat-Basis mit Natronlauge-Zusatz die Fliessfähigkeit durch Zusatz von 8-10 Masse% Silikonöl in Bezug auf den Binder verbessert werden. Diese Verbesserung ging einher mit einem höheren Feuchtigkeitsgehalt des Kernsandes.An inorganic binder system for molding materials is in the EP 1095719B1 described. According to the EP 1095719B1 For a binder based on alkali metal silicate with addition of sodium hydroxide, the flowability can be improved by adding 8-10% by weight of silicone oil with respect to the binder. This improvement was accompanied by a higher moisture content of the core sand.

Neben den bekannten Maßnahmen zur Verbesserung der Festigkeit, insbesondere der Biegefestigkeit von Formlingen sind noch weitere Einflussgrößen zu berücksichtigen, die die Qualität einer Formstoffmischung bestimmen:

  • Hier ist an erster Stelle die Fließfähigkeit zu nennen, die als wichtiger Parameter für die Eignung des Formstoffes beim Verschießen in einer Kernschießmaschine bekannt ist.
In addition to the known measures for improving the strength, in particular the flexural strength of molded articles, further influencing variables which determine the quality of a molding material mixture must be taken into account:
  • Here, the flowability is first mentioned, which is known as an important parameter for the suitability of the molding material when shooting in a core shooting machine.

Ein anderer wichtiger Parameter ist der Verlauf der Aushärtung sowie die Reduzierung der Empfindlichkeit gegenüber Luftfeuchte.Another important parameter is the progress of curing and the reduction of sensitivity to humidity.

Als Hauptqualitätsrnerkmal ist jedoch die mit der Formstoffmischung erzielbare Oberflächengüte des Gussteils anzusehen. Leider sind hier die bekannten Verfahren unter den in einer Massenproduktion herrschenden Bedingungen nicht ausreichend stabil, sodass es immer wieder zu hohen Ausschussquoten und unakzeptablen Zusatzkosten durch Nachbearbeitung kommt. Als Maßstab für die Beurteilung der Oberflächengüte hat sich die Bestimmung des Flächenanteils von Sandanhaftungen am Gussteil bewährt.The main quality feature, however, is the surface quality of the casting achievable with the molding material mixture. Unfortunately, the known processes are not sufficiently stable under the conditions prevailing in mass production, so that again and again high reject rates and unacceptable additional costs result from reworking. As a yardstick for the assessment of the surface quality, the determination of the area fraction of sand deposits on the cast part has proven itself.

Aufgabe der vorliegenden Erfindung ist es daher, eine neue Formstoffmischung für Gießereizwecke und einen durch einfachen Trocknungsprozess herstellbaren Formling bereitzustellen, bei der die oben genannten Kriterien, also gute Fließfähigkeit, hohe Biegefestigkeit und eine hohe Aushärtegeschwindigkeit erreicht werden und gleichzeitig die Oberflächengüte, gemessen durch den Flächenanteil an Sandanhaftungen erheblich verbessert wird.It is therefore an object of the present invention to provide a novel molding material mixture for foundry purposes and a molded article which can be produced by a simple drying process, in which the abovementioned criteria, ie good flowability, high flexural strength and a high curing speed are achieved, and at the same time the surface quality, measured by the area fraction at Sandanhaftungen is significantly improved.

Diese Aufgabe wird erfindungsgemäß durch die in den Patentansprüchen angegebenen Merkmale erreicht.This object is achieved by the features specified in the claims.

Es hat sich gezeigt, dass die Verwendung eines Zuschlages aus amorphem, sphärisch geformtem Sililziumdioxid die erwünschten Vorteile bringt, wenn die feinstteiligen Siliziumdioxidkörner in zwei engen Kornspektren zu etwa gleichen Volumenanteilen in Form einer Suspension eingesetzt werden, wobei eine entscheidende Maßnahme darin besteht, diese Suspension gleichförmig in der Formstoffmischung zu verteilen und durch die nachfolgende Trocknung eine spezifisch ausgebildete Substruktur zu erzielen.It has been found that the use of an aggregate of amorphous, spherically-formed silica provides the desired benefits when the finely divided silica grains are used in approximately two equal particle sizes in the form of a suspension, a crucial measure being uniformity of the suspension to distribute in the molding material mixture and to achieve a specifically formed substructure by the subsequent drying.

Die Maßnahmen der Verteilung und Trocknung sind in den Verfahrensansprüchen dargestellt, wobei noch weitere Maßnahmen als bevorzugte Verfahrensschritte aus den abhängigen Ansprüchen entnehmbar sind. Insbesondere ist darauf zu achten, dass keine Agglomeration der feinstteiligen Partikel während des Mischens auftritt, sondern dass vielmehr in der jeweiligen Kornklassierung eine gleichmäßige Verteilung der Partikel erfolgt. Hierzu haben sich insbesondere Fluidmischer und darunter speziell die Flügelmischer im Dauerbetrieb bewährt.The measures of distribution and drying are shown in the method claims, with even more measures as preferred method steps from the dependent claims can be removed. In particular, care must be taken that no agglomeration of the finely divided particles occurs during mixing, but rather that a uniform distribution of the particles takes place in the respective grain classification. Fluid mixers, and especially the wing mixers in continuous operation, have proved their worth.

Bei der Ausbildung der Substruktur hat das Trocknungsverfahren einen herausragenden Einfluss auf die Ausbildung der Rauigkeiten an den Oberflächen der Formlinge. Hier gilt es insbesondere die Verteilung der Berg- und Talstruktur so zu beeinflussen, dass eine Relief-Struktur entsteht, die ein Höhen-Tiefen-Differenzverhältnis von maximal 300 nm aufweist. Als Trocknungsverfahren kommen sowohl thermisches Trocknen als auch Mikrowellentrocknung in Betracht, wobei auch unter extremen Lagerbedingungen bei Luftfeuchten über 78 % und Lagertemperaturen von mehr als 33°C sehr gute Lagerfähigkeiten, insbesondere ohne Mikrowellentrocknung erreicht wurden.In the formation of the substructure, the drying process has an outstanding influence on the formation of the roughness on the surfaces of the moldings. In particular, it is necessary to influence the distribution of the mountain and valley structure in such a way that a relief structure arises which has a height-depth difference ratio of at most 300 nm. As a drying process, both thermal drying and microwave drying into consideration, with very good storage capabilities, especially without microwave drying were achieved even under extreme storage conditions at humidities above 78% and storage temperatures of more than 33 ° C.

Während der Trocknung schrumpft die im Formstoffgemisch auf den Partikeln vorhandene Binderschicht unter Ausbildung einer Substruktur von Bergen und Tälern auf. Durch sukzessives Anschrumpfen und Restschrumpfen wird eine Morphologie der Substruktur ausgebildet, die durch eine Höhen-Tiefen-Differenz von max. 300 nm gekennzeichnet ist, entstanden durch Rissbildung während des zweistufigen Schrumpfvorgangs. Bei der in der 1. Stufe verwendeten physikalischen Trocknung, beispielsweise durch Mikrowelle, wird Energie direkt in die feuchte Binderhülle eingebracht. Die sich dabei einstellende Verfestigung der Binderhülle (Oberfläche) führt durch die anschließende thermische Trocknung zur Rissbildung im Nanobereich (Substruktur).During drying, the binder layer present on the particles in the molding material mixture shrinks to form a substructure of mountains and valleys. By successive shrinking and residual shrinkage, a morphology of the substructure is formed, which is characterized by a height-depth difference of max. 300 nm, caused by cracking during the two-stage shrinking process. In the physical drying used in the first stage, for example by microwave, energy is introduced directly into the moist binder shell. The resulting hardening of the binder cover (surface) leads by the subsequent thermal drying to crack formation in the nano range (substructure).

In den nachfolgenden Beispielen ist die Erfindung im Vergleich zu anderen Formstoffmischungen und den daraus hergestellten Formlingen beschrieben. Zur Standardisierung wurden jeweils gleiche Grundmischungen aus Halterner Formsand mit einer mittleren Korngröße von 0,32 mm verwendet. Die Korngrößenbestimmung erfolgte nach Brunhuber, 16. Auflage, Seite 400. Als Additiv wurde die erfindungsgemäße Suspension, enthaltend 25 Vol% NanoSiO2 und 25 Vol% MikroSiO2 sowie 50 Vol% Wasser, verwendet.In the following examples, the invention is described in comparison to other molding material mixtures and molded articles produced therefrom. For standardization, the same basic mixtures of Haltern foundry sand with a mean grain size of 0.32 mm were used. Grain size determination was carried out according to Brunhuber, 16th edition, page 400. The suspension according to the invention containing 25% by volume of NanoSiO 2 and 25% by volume of MikroSiO 2 and 50% by volume of water was used as the additive.

Die Fließfähigkeit wird als GF-Fließfähigkeit angegeben, die Bestimmung erfolgte nach Brunhuber, 16. Auflage, Seite 352/353.The fluidity is given as GF-flowability, the determination was carried out according to Brunhuber, 16th edition, page 352/353.

Als Prüfkörper wurden Normprüfkörper der Abmessung 22,5 x 22,5 x 180 mm hergestellt und den jeweiligen Versuchsbedingungen unterworfen.As test specimens standard test specimens measuring 22.5 × 22.5 × 180 mm were produced and subjected to the respective experimental conditions.

Zusammenfassend ergeben sich in überzeugender Form die Verbesserungen der erfindungsgemäß zusammengesetzten Formstoffmischungen hinsichtlich der Fließfähigkeit sowie der verringerten Benetzbarkeit gegenüber flüssigem Aluminium. Da flüssiges Aluminium im Gießprozess gegenüber Siliziumdioxid stark benetzende Eigenschaften aufweist und insbesondere dazu neigt, SiO2-Partikel vollständig zu benetzen und die Zwischenräume zu penetrieren, war es in hohem Maße überraschend, dass mit dem erfindungsgemäß eingestellten Formling nur geringe sandanhaftende Oberflächenbereiche von weniger als 10 % erreicht wurden.In summary, the improvements of the molding compound mixtures assembled according to the invention in terms of flowability and reduced wettability with respect to liquid aluminum result convincingly. Since liquid aluminum has strongly wetting properties in the casting process compared with silicon dioxide and in particular tends to completely wet SiO.sub.2 particles and penetrate the interstices, it was highly surprising that with the mold set according to the invention only small sand-adhering surface areas of less than 10% were achieved.

In Kombination mit einem Alkaliwasserglasbinder, der gleichmäßig auf den Formsandpartikeln verteilt ist, konnte ein Formstoffgemisch auf Quarzsandbasis hergestellt werden, das in seiner Fließfähigkeit, Biegefestigkeit und seinem Aushärtungsverlauf die Eigenschaften der bekannten Produkte weit übertrifft, sofern als Zuschlag die in Anspruch 1 genannten zwei Korngrößenklassierungen verwendet werden.In combination with an alkali water glass binder, which is uniformly distributed on the molding sand particles, a quartz sand-based molding material mixture could be produced, which far exceeds the properties of the known products in terms of flowability, flexural strength and curing, if used as aggregate the two particle size classifications mentioned in claim 1 become.

In der eingestellten Formstoffmischung sollen die mikrometergroßen, amorphen SiO2-Kugeln die einzelnen Formsandkörner gegeneinander beabstanden und erleichtert gegeneinander abgleiten lassen. Dieser "Rollschuheffekt" wurde durch Fließfähigkeitsmessungen bestätigt, beispielsweise durch den drastisch absinkenden Rührwiderstand während des Einbringens der erfindungsgemäß zusammengesetzten Suspension aus zwei unterschiedlichen Kornklassierungen in einem Flügelmischer. Dabei sank die Stromaufnahme des Flügelmischers um mehr als 50 %, während der Effekt ohne Zuschlag unterhalb von 10 %, bezogen auf die Stromaufnahme vor Zugabe lag.In the adjusted molding material mixture, the micrometer-sized, amorphous SiO 2 spheres are intended to allow the individual molding sand grains to be spaced apart from each other and to allow them to slide off relative to one another in a facilitated manner. This "skating effect" was confirmed by flowability measurements, for example by the drastically sinking stirring resistance during the introduction of the suspension composed of two different grain classifications according to the invention in a wing mixer. The power consumption of the wing mixer decreased by more than 50%, while the effect without surcharge was below 10%, based on the current consumption before addition.

Für den Mischvorgang ist insbesondere die Dosierreihenfolge der einzelnen Komponenten und ihre Mischdauer zu beachten. Die Dosierreihenfolge ist: 1. Der Quarzsand wird mit Natronlauge vermischt. 2. Ein Alkalisilikatbinder wird hinzugefügt. 3. Der erfindungsgemäße Zuschlag aus Suspension mit NanoSiO2 und MikroSiO2 plus Wasser wird zur Grundmischung ergänzt.For the mixing process, the dosing order of the individual components and their mixing time must be taken into account. The dosing order is: 1. The quartz sand is mixed with caustic soda. 2. An alkali silicate binder is added. 3. The addition of suspension according to the invention with NanoSiO 2 and MikroSiO 2 plus water is added to the basic mixture.

Die Mischdauer ist von der Art des verwendeten Mischaggregates abhängig und experimentell festzulegen. Hierbei ist als Mindestdauer für die Mischung der jeweils angestrebte Zustand (Homogenisierung/gleichmäßige Verteilung) festzulegen.The mixing time depends on the type of mixing unit used and should be determined experimentally. In this case, the minimum required duration for the mixture is the respectively desired state (homogenization / uniform distribution).

Ausführungsbeispiele:EXAMPLES

  • Bei den Versuchen wurde als Grundmischung Halterner Formsand verwendet. Die experimentelle Vorgehensweise wird nachfolgend anhand eines Vergleiches mit einem klassischen Bindemittelsystem erläutert:In the experiments, Halterner foundry sand was used as a basic mixture. The experimental procedure is explained below by comparison with a traditional binder system:
a) Verbesserung der Fliessfähigkeita) Improvement of fluidity

Zur Verdeutlichung der verbesserten Fließfähigkeit, durch die kombinierte Zugabe von NanoSiO2 (0,01-0,05 µm) und MikroSiO2 (1-5 µm) wurden folgende Versuchsergebnisse gegenübergestellt.

  1. 1. die Grundmischung ohne erfindungsgemäße Suspension, nachfolgend auch als Additiv C bezeichnet,
  2. 2. die Grundmischung mit Suspension, welche sich zusammensetzt aus einer Suspension aus 25% NanoSiO2 25% MikroSiO2 und 50% Wasser, und
  3. 3. die Grundmischung mit der äquivalenten Wassermenge und Formsand aus der Suspension.
To illustrate the improved flowability, through the combined addition of NanoSiO 2 (0.01-0.05 μm) and MicroSiO 2 (1-5 μm), the following test results were compared.
  1. 1. the base mixture without suspension according to the invention, hereinafter also referred to as additive C,
  2. 2. the masterbatch with suspension, which is composed of a suspension of 25% NanoSiO 2 25% MikroSiO 2 and 50% water, and
  3. 3. the basic mixture with the equivalent amount of water and molding sand from the suspension.

Der Begriff "Grundmischung" gibt eine Mischung aus Formsand, NaOH und Alkalisilikat-Binder in wechselnder Zusammensetzung an.
1. Grundmischung eines klassischen Bindemittelsystems
Halterner Formsand, bestimmt nach Brunhuber S. 400 NaOH 0,20% Alkalisilikat-Binder 1,80% GF-Fließfähigkeit 73% Additiv: - GF-Fließfähigkeit bestimmt nach Brunhuber S. 352/353; F = [(h1-h)/(h1-h2)]*100%
2. Grundmischung + Suspension NaOH 0,20% Alkalisilikat-Binder 1,80% GF-Fließfähigkeit 87% Additiv C* 1,00% (Additiv C: Suspension aus 25% NanoSiO2, 25% MikroSiO2 und 50% Wasser, wobei die NanoSiO2-Kugeln einen mittleren Durchmesser von 0,03 µm und die MikroSiO2-Kugeln einen mittleren Durchmesser von 3 µm aufweisen.)
3. Grundmischung und äquivalente Wassermenge und Formsand aus der Suspension NaOH 0,20% Alkalisilikat Binder 1,80% GF-Fließfähigkeit 73% Wasser + Formsand 0,50%
The term "masterbatch" indicates a mixture of foundry sand, NaOH and alkali silicate binder in varying composition.
1. Basic mixture of a classic binder system
Halterner molding sand, determined according to Brunhuber p. 400 NaOH 0.20% Alkali silicate binder 1.80% GF flowability 73% additive: - GF flowability determined according to Brunhuber p. 352/353; F = [(h 1 -h) / (h 1 -h 2 )] * 100%
2nd basic mix + suspension NaOH 0.20% Alkali silicate binder 1.80% GF flowability 87% Additive C * 1.00% (Additive C: Suspension of 25% NanoSiO 2 , 25% MicroSiO 2, and 50% water, with the NanoSiO 2 spheres having a mean diameter of 0.03 μm and the MicroSiO 2 spheres having an average diameter of 3 μm.)
3. Basic mixture and equivalent amount of water and molding sand from the suspension NaOH 0.20% Alkali silicate binder 1.80% GF flowability 73% Water + molding sand 0.50%

Figur 1 gibt die aufgeführten Ergebnisse graphisch wieder. Bei der Gegenüberstellung der Versuchsergebnisse zeigt sich deutlich, dass die Suspension eine Verbesserung der Fliessfähigkeit bewirkt. Außerdem wird deutlich, dass die Zugabe der äquivalenten Wassermenge aus der Suspension keinen Einfluss auf die Fließfähigkeit besitzt. FIG. 1 graphically reproduces the listed results. The comparison of the test results clearly shows that the suspension causes an improvement in flowability. In addition, it becomes clear that the addition of the equivalent amount of water from the suspension has no influence on the flowability.

Zum Vergleich mit bekannten Verfahren wurden Formstoffmischungen, wie sie in der DE '535 des AS Luengen sowie in der EP '719 beschrieben sind, mit der gleichen Grundmischung hergestellt und wie vorbeschrieben untersucht. Die Ergebnisse sind in Fig. 7 graphisch wiedergegeben, wobei die Vergleichsbeispiele gemäß Fig. 6 ausgewählt wurden. Mischung Grundmischung Fliessfähigkeit Bindesystem gemäß EP'719 73% Formstoffgemisch gemäß DE '535 80% Grundmischung + Additiv C 87% For comparison with known processes, molding material mixtures as described in DE '535 of AS Luengen and in EP' 719 were prepared with the same base mixture and investigated as described above. The results are in Fig. 7 graphically reproduced, wherein the comparative examples according to Fig. 6 were selected. Mix of basic mix flowability Binding system according to EP'719 73% Molding material mixture according to DE '535 80% Basic mixture + additive C 87%

Figur 7 veranschaulicht, dass durch die erfindungsgemäße Zugabe von in 2 Kornklassifizierungen vorliegenden SiO2-Kugeln die Fliessfähigkeit (nach GF) des Kernsands ansteigt. Dabei werden die MikroSiO2-Kugeln durch die NanoSiO2-Kugeln auf Abstand gehalten und ermöglichen den sog. "Rollschuh-Effekt", d.h. ein Abrollen der Sandkörner durch die zwischen ihnen angeordneten MikroSiO2-Kugeln FIG. 7 illustrates that the flowability (after GF) of the core sand increases by the inventive addition of present in 2 grain classifications SiO 2 balls. The microSiO 2 spheres are kept at a distance by the NanoSiO 2 spheres and allow the so-called "roller skate effect", ie a rolling of the sand grains through the MikroSiO 2 spheres arranged between them

b) Steigerung der Biegefestigkeit:b) Increasing the bending strength:

1. Grundmischung NaOH 0,20% Alkalisilikat- Binder 1,40% Additiv: - Biegefestigkeit Entnahmefestigkeit: 289 N/cm2 Kernlagerzeit 1 h: 284 N/cm2 Kernlagerzeit 3h: 281 N/cm2 Kernlagerzeit 24h: 287 N/cm2 2. Grundmischung + Additiv C NaOH 0,20% Alkalisilikat- Binder 1,40% Additiv C* 1,00% (Additiv C: Suspension aus 25% NanoSiO2, 25% Mikro-SiO2 und 50% Wasser) Biegefestigkeit Entnahmefestigkeit: 475 N/cm2 Kernlagerzeit 1 h: 483 N/cm2 Kernlagerzeit 3h: 476 N/cm2 Kernlagerzeit 24h: 475 N/cm2 1st basic mix NaOH 0.20% Alkali silicate binder 1.40% additive: - flexural strength Removal strength: 289 N / cm 2 Core storage time 1 h: 284 N / cm 2 Core storage time 3h: 281 N / cm 2 Core storage time 24h: 287 N / cm 2 2. Base Mix + Additive C NaOH 0.20% Alkali silicate binder 1.40% Additive C * 1.00% (Additive C: Suspension of 25% NanoSiO 2 , 25% Micro-SiO 2 and 50% Water) flexural strength Removal strength: 475 N / cm 2 Core storage time 1 h: 483 N / cm 2 Core storage time 3h: 476 N / cm 2 Core storage time 24h: 475 N / cm 2

Die ermittelten Biegefestigkeiten sind in Fig. 2 graphisch veranschaulicht. Der Vergleich der Biegefestigkeit einer Kernsandgrundmischung ohne Additiv C und der Biegefestigkeit einer Kernsandgrundmischung, welche das Additiv C (Suspension aus 25% NanoSiO2 + 25% MikroSiO2 und 50% Wasser) enthält, zeigt deutlich, dass man mit erfindungsgemäßem Zuschlag eine um 2/3 gesteigerte Biegefestigkeit erhält.The determined bending strengths are in Fig. 2 graphically illustrated. The comparison of the flexural strength of a core sand base mixture without additive C and the flexural strength of a core sand base mixture containing the additive C (suspension of 25% NanoSiO 2 + 25% microSiO 2 and 50% water) clearly shows that with a surcharge according to the invention a 3 increased flexural strength.

c) Steigerung der Aushärtungsgeschwindigkeit:c) Increasing the cure rate:

1. Grundmischung NaOH 0,20% Alkalisilikat-Binder 1,40% Additiv: - Entnahmefestigkeit Entnahmefestigkeit Entnahmefestigkeit 1. Prüfriegel (nach 25 sec) 64 N/cm2 65 N/cm2 65 N/cm2 2. Prüfriegel (nach 50 sec) 62 N/cm2 65 N/cm2 64 N/cm2 3. Prüfriegel (nach 75 sec) 63 N/cm2 64 N/cm2 65 N/cm2 2. Grundmischung + Additiv C NaOH 0,20% AWB-AL Binder 1,40% Additiv C* 1,00% (Additiv C: Suspension aus 25% NanoSiO2, 25 MikroSiO2 und 50% Wasser) Entnahmefestigkeit Entnahmefestigkeit Entnahmefestigkeit 1. Prüfriegel (nach 25 sec) 81 N/cm2 84 N/cm2 80 N/cm2 2. Prüfriegel (nach 50 sec) 95 N/cm2 92 N/cm2 95 N/cm2 3. Prüfriegel (nach 75 sec) 109 N/cm2 102 N/cm2 105 N/cm2 1st basic mix NaOH 0.20% Alkali silicate binder 1.40% additive: - extraction strength extraction strength extraction strength 1st test bar (after 25 sec) 64 N / cm 2 65 N / cm 2 65 N / cm 2 2nd test bar (after 50 sec) 62 N / cm 2 65 N / cm 2 64 N / cm 2 3. Test bar (after 75 sec) 63 N / cm 2 64 N / cm 2 65 N / cm 2 2. Base Mix + Additive C NaOH 0.20% AWB-AL binder 1.40% Additive C * 1.00% (Additive C: suspension of 25% NanoSiO 2 , 25 microSiO 2 and 50% water) extraction strength extraction strength extraction strength 1st test bar (after 25 sec) 81 N / cm 2 84 N / cm 2 80 N / cm 2 2nd test bar (after 50 sec) 95 N / cm 2 92 N / cm 2 95 N / cm 2 3. Test bar (after 75 sec) 109 N / cm 2 102 N / cm 2 105 N / cm 2

Die Ergebnisse der Versuche sind in Figur 3 graphisch dargestellt. Bedingt durch den vorliegenden Versuchsaufbau kommt es dazu, dass die drei gleichzeitig hergestellten Prüfriegel, nur einzeln und mit Abstand von ca. 25 sec. geprüft werden können.The results of the experiments are in FIG. 3 shown graphically. Due to the present experimental set-up, it is possible that the three simultaneously produced test bars can only be tested individually and at intervals of about 25 seconds.

Bei der Bestimmung der Biegefestigkeit der Grundmischung fällt diese Zeitdifferenz auch nicht ins Gewicht, d.h. die Festigkeit aller drei Prüfriegel sind annähernd gleich.In determining the flexural strength of the masterbatch, this time difference also does not matter, i. the strength of all three test bars are approximately equal.

Prüft man hingegen die Prüfriegel, welche mit dem Additiv C versehen sind, stellt man fest, dass die Biegefestigkeit im Verlauf des Prüfvorgangs (vom ersten zum zweiten Prüfriegel) stetig steigt.On the other hand, if the test bars provided with the additive C are examined, it is found that the bending strength increases steadily during the test procedure (from the first to the second test bar).

d) Reduzierung der Empfindlichkeit gegenüber Luftfeuchte:d) Reduction of the sensitivity to air humidity:

1. Grundmischung NaOH 0,20% Alkalisilikat- Binder 2,40% Silikonöl: 0,10% Grundmischung Kernlagerzeit [h] (Lagerung im Feuchteschrank) Biegefestigkeit mit Mikrowelletrocknung Biegefestigkeit ohne Mikrowelletrocknung 0 289 N/cm2 57 N/cm2 1 240 N/cm2 86 N/cm2 3 200 N/cm2 50 N/cm2 24 25 N/cm2 22 N/cm2 2. Grundmischung + Additiv C NaOH 0,20% Alkalisilikat-Binder 1,40% Additiv C* 1,00% (Additiv C: Suspension aus 25% NanoSiO2, 25% MikroSiO2 und 50% Wasser) Grundmischung mit Additiv C Kernlagerzeit [h] (Lagerung im Feuchteschrank) Biegefestigkeit mit Mikrowellentrocknung Biegefestigkeit ohne Mikrowelletrocknung 0 475 N/cm2 87 N/cm2 1 409 N/cm2 106 N/cm2 3 303 N/cm2 73 N/cm2 24 85 N/cm2 87 N/cm2 1st basic mix NaOH 0.20% Alkali silicate binder 2.40% Silicone oil: 0.10% masterbatch Core storage time [h] (storage in a humidity cabinet) Flexural strength with microwave drying Bending strength without microwave drying 0 289 N / cm 2 57 N / cm 2 1 240 N / cm 2 86 N / cm 2 3 200 N / cm 2 50 N / cm 2 24 25 N / cm 2 22 N / cm 2 2. Base Mix + Additive C NaOH 0.20% Alkali silicate binder 1.40% Additive C * 1.00% (Additive C: suspension of 25% NanoSiO 2 , 25% MicroSiO 2 and 50% water) Basic mixture with additive C Core storage time [h] (storage in a humidity cabinet) Bending strength with microwave drying Bending strength without microwave drying 0 475 N / cm 2 87 N / cm 2 1 409 N / cm 2 106 N / cm 2 3 303 N / cm 2 73 N / cm 2 24 85 N / cm 2 87 N / cm 2

Die Ergebnisse der Versuche sind in den Figuren 4 und 5 graphisch veranschaulicht. Zur Beurteilung der Lagerfähigkeit der Kerne auch unter extremen Bedingungen (Luftfeuchte 78%; Temperatur 33°C), wurden die Kerne in einem Feuchteschrank gelagert.The results of the experiments are in the FIGS. 4 and 5 graphically illustrated. To assess the shelf life of the cores even under extreme conditions (air humidity 78%, temperature 33 ° C), the cores were stored in a humidity cabinet.

In den Figuren 4 und 5 ist die Auswertung dargestellt, aus der hervor geht, dass sich das Additiv C positiv auf die Lagerfähigkeit auswirkt.In the FIGS. 4 and 5 the evaluation is shown, which shows that the additive C has a positive effect on the storage life.

Besonders wenn die Kerne nicht in der Mikrowelle getrocknet wurden (Fig. 5) kommt dieser Effekt zum tragen.Especially if the cores were not dried in the microwave ( Fig. 5 ) this effect comes to bear.

e) Oberflächenvergleich mehrerer Gussstücke hinsichtlich der Sandanhaftungene) Surface comparison of several castings with regard to sand buildup

Erläuterungen zu Fig. 6:

  • Zur Bestimmung der Qualität von Gussstückoberflächen wurden wannenförmige Kerne mit den Abmessungen 150 mm x 80 mm verwendet werden. Dieser Kern wird aus dem zu prüfenden Formstoff in einem Laborflügelmischer der Firma Vogel und Schemann AG gemischt. Dazu wurde zunächst der Quarzsand vorgelegt und unter Rühren erstens NaOH und das Wasserglas als nächstes zugegeben. Nachdem die Mischung für 1 Minute gerührt worden war, wurde das amorphe Siliziumdioxid (erfindungsgemäße Beispiele) bzw. für die Vergleichsbeispiele Polyphosphatlösung (gemäß US 5,641,015 oder amorphes SiO2 in Kugelform, gemäß DE '535) unter weiteren Rühren zugegeben. Die Mischung wurde anschließend noch eine weitere Minute gerührt.
Explanations to Fig. 6 :
  • Trough-shaped cores measuring 150 mm x 80 mm were used to determine the quality of casting surfaces. This core is mixed from the test material to be tested in a laboratory wing mixer Vogel and Schemann AG. For this purpose, the quartz sand was initially introduced and, with stirring, firstly NaOH and the waterglass were added next. After the mixture was stirred for 1 minute, the amorphous silica (Examples of the present invention) and for the comparative examples, polyphosphate solution (according to US 5,641,015 or amorphous SiO 2 in spherical form, according to DE '535) with further stirring. The mixture was then stirred for a further minute.

Die Formstoffmischungen wurden in den Vorratsbunker einer Hotbox-Kernschießmaschine der Firma Rölperwerk Gießereimaschinen überführt, deren Formwerkzeug auf 180°C erwärmt war. Die Formstoffmischungen wurden mittels Druckluft (5 bar) in das Formwerkzeug eingebracht und verblieben für weitere 35 Sekunden im Formwerkzeug. Das Formwerkzeug wurde geöffnet und der Formling wurde entnommen. Um die maximale Festigkeit zu erreichen wird der Formling in der Mikrowelle nachgetrocknet. Anschließend wurde im offenen Handguss das Gussteil abgegossen.The molding material mixtures were transferred to the storage bunker of a hot box core shooting machine from Rölperwerk foundry machines whose mold was heated to 180.degree. The molding material mixtures were introduced into the mold by means of compressed air (5 bar) and remained in the mold for a further 35 seconds. The mold was opened and the molding was removed. In order to achieve the maximum strength, the molding is post-dried in the microwave. Subsequently, the casting was poured off in open hand casting.

Nach dem Erkalten des Gussstückes wurde der Formling entfernt und die Gussstückoberfläche nach Art und Menge der Sandanhaftungen beurteilt.After cooling the casting, the molding was removed and the casting surface was evaluated for the type and amount of sand buildup.

Gießparameter:
Abmessungen Gussstück: 150 x 80 x 40 mm
Gewicht Gussstück: 900 g
Verwendete Legierung: AlSi 7 mg
Gießtemperatur: 740°C
Statische Gießhöhe: 200 mm
Gemessene Sandanhaftungen in Flächenprozent bezogen auf die jeweilige Oberfläche Mischung Oberfläche mit Sandanhaftungen Grundmischung ohne Zuschlag 75 % Grundmischung mit Polyphosphat- und Boratanteil 60 % (US '015) Grundmischung mit Glasperlen von 100 bis 200 µm Dicke gemäß Tabelle 5 Nr. 3.7 von AS Lüngen DE 102004042535 25 % (DE'535) Erfindungsgemäße Grundmischung mit gespreiztem Kornspektrum < 10% (Erfindung) nach Beispiel a) 2
casting parameters:
Dimensions casting: 150 x 80 x 40 mm
Weight casting: 900 g
Alloy used: AlSi 7 mg
Casting temperature: 740 ° C
Static casting height: 200 mm
Measured sand deposits in area percent related to the respective surface mixture Surface with sand deposits Basic mixture without surcharge 75% Basic mixture with polyphosphate and borate content 60% (US '015) Base mixture with glass beads of 100 to 200 μm thickness according to Table 5 No. 3.7 of AS Lüngen DE 102004042535 25% (DE'535) Inventive base mixture with spread grain spectrum <10% (invention) according to example a) 2

Figur 8 veranschaulicht den Formling, welcher zur Herstellung des hier verwendeten Gussteils eingesetzt wurde. Die Prozentzahlen der Sandanhaftungen beziehen sich auf die Außenfläche im Bereich des ausgewölbten Gussteilbereiches R, welcher als kontinuierlich geschwungene Ausbuchtung R im Formling ausgebildet ist. FIG. 8 illustrates the molding used to make the casting used here. The percentages of the sand adhesions relate to the outer surface in the region of the bulged casting region R, which is formed as a continuously curved bulge R in the molding.

Figur 6 gibt die Versuchsergebnisse graphisch wieder. Mit der erfindungsgemäßen Formstoffmischung wird eine deutliche verbesserte Gussteiloberfläche im Vergleich zur Grundmischung nach Bsp. A) 1, nach US '015 (amorphe aus Nanopartikeln aufgebaute SiO2-Kugeln) und nach DE '535 (amorphe, synthetische Kieselsäure in Kugelform) erzielt. FIG. 6 gives the test results graphically. With the molding material mixture according to the invention, a significantly improved casting surface is achieved in comparison to the base mixture according to Ex. A) 1, according to US '015 (amorphous SiO 2 spheres constructed from nanoparticles) and according to DE' 535 (amorphous, synthetic silicic acid in spherical form).

Claims (7)

Formstoffmischung für Gießereizwecke, bestehend aus Formsand, Natronlauge, Binder auf Alkali-Silikat-Basis und Zuschlägen, dadurch gekennzeichnet, dass die Formsandpartikel eine Korngröße von 0,1 - 1 mm aufweisen, dass die Formstoffmischung 0,1 - 10 Gewichts% Natronlauge bezogen auf das Sandgewicht enthält, wobei die Natronlauge eine Konzentration von 20 bis 40 Gewichts% aufweist, dass die Formstoffmischung 0,1 - 5% Binder auf Alkali-Silikat-Basis mit einem Feststoffanteil von 20 - 70% enthält, dass das Formstoffgemisch als Zuschlag 0,1-3 Gewichts% einer Suspension mit einem Feststoffanteil zwischen 30 - 70% an amorphem, kugelförmigem SiO2 enthält, wobei das amorphe, kugelförmige SiO2 in zwei Korngrößenklassierungen in der Suspension enthalten ist mit einer ersten Korngrößenklassierung A, beinhaltend SiO2 -Partikel mit einer Korngröße zwischen 1 - 5 Mikrometern und einer zweiten Korngrößenklassierung B, beinhaltend SiO2 -Partikel mit einer Korngröße zwischen 0,01 - 0,05 Mikrometern und wobei für die Volumenanteile der beiden Korngrößenbereiche A, B folgende Verteilungsregel gilt: 0,8 zu 1,0 bis 1,2 zu 1.Formstoffmischung for foundry purposes, consisting of molding sand, sodium hydroxide, binders based on alkali silicate and aggregates, characterized in that the molding sand particles have a particle size of 0.1 - 1 mm, that the molding material 0.1 - 10% by weight sodium hydroxide based on contains the sand weight, wherein the sodium hydroxide solution has a concentration of 20 to 40% by weight, that the molding material mixture 0.1 - 5% binder based on alkali silicate with a solids content of 20 - 70% that the molding material mixture as a supplement 0, Contains 1-3% by weight of a suspension having a solids content between 30-70% of amorphous, spherical SiO 2 , wherein the amorphous, spherical SiO 2 in two particle size grades in the suspension is included with a first particle size classification A, including SiO 2 particles with a grain size between 1 - 5 microns and a second grain size classification B, including SiO 2 particles with a particle size between 0.0 1 - 0.05 micrometers and wherein for the volume fractions of the two particle size ranges A, B the following distribution rule applies: 0.8 to 1.0 to 1.2 to 1. Formling für Gießereizwecke, hergestellt mit einer Formstoffmischung nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche des einzelnen Formsandkornes im Formling eine Primärstruktur aus SiO2-Partikeln mit einer Korngröße zwischen 1 - 5 Mikrometern aufweist, bei der die mikrometergroßen, amorphen SiO2 Kugeln die einzelnen Quarzsandkörner gegeneinander beabstanden und weiter gekennzeichnet durch eine Substruktur aus SiO2-Partikeln mit einer Korngröße zwischen 0,01 - 0,05 Mikrometern, die in einer 0,5 - 2 Mikrometer dicken, gleichmäßig auf Formsandkörnern verteilten Binderschicht enthaltend verteilt sind, wobei die nanometergroßen, amorphen SiO2-Kugeln aneinandergrenzende Berge und Täler von bis zu 300 Nanometer Höhe/Tiefe bilden.Mold for foundry purposes, produced with a molding material mixture according to claim 1, characterized in that the surface of the individual molding sand grain in the molding a primary structure of SiO 2 particles having a particle size between 1 - 5 micrometers, in which the micrometer-sized, amorphous SiO 2 balls the individual quartz sand grains spaced apart from each other and further characterized by a substructure of SiO 2 particles with a grain size between 0.01 - 0.05 micrometers, which are distributed in a 0.5 - 2 microns thick, uniformly distributed on molding sand grains binder layer distributed, wherein the nanometer-sized, amorphous SiO 2 spheres forming contiguous mountains and valleys up to 300 nanometers in height / depth. Verfahren zur Herstellung eines Formlings nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Formsand vorgelegt wird, mit der Natronlauge vermischt und mit dem Binder auf Alkali-Silikat-Basis versetzt wird, dann der Binder gleichmäßig und homogen über alle Formsandkörner als Binderhülle verteilt wird, in die Binderhülle ein Gemisch aus SiO2-Partikeln mit zwei Korngrößenklassierungen eingespeist und das Formstoffgemisch zum Formling getrocknet wird, wobei die Binderhülle beim Trocknen schrumpft und dabei eine Rauigkeitsstruktur mit maximal 300 Nanometern Höhendifferenz bildet.Process for producing a molded article according to the preceding claim, characterized in that the foundry sand is initially charged, mixed with the sodium hydroxide solution and admixed with the alkali-silicate-based binder, then the binder is uniformly and homogeneously distributed over all the molding sand grains as a binder shell, in the binder coat, a mixture of SiO 2 particles is fed with two particle size gradings and the molding material mixture is dried to form, wherein the binder shell shrinks during drying and thereby forms a roughness structure with a maximum of 300 nanometers height difference. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass 0,10 bis 0,30% Natronlauge mit dem Formsand vermischt wird, dann 1 bis 4% Binder auf Alkalisilikatbasis hinzu gegeben wird und der Binder gleichmäßig und homogen über die Formsandkörner in Form einer 0,5 bis 2 Mikrometer dicken Binderhülle verteilt wird.A method according to claim 3, characterized in that 0.10 to 0.30% sodium hydroxide solution is mixed with the molding sand, then 1 to 4% binder on alkali silicate basis is added and the binder uniformly and homogeneously over the molding sand grains in the form of a 0.5 up to 2 microns thick binder cover is distributed. Verfahren nach einem der vorhergehenden Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Binderhülle um 50 bis 70 Vol% während des Trocknens geschrumpft wird.Method according to one of the preceding claims 3 or 4, characterized in that the binder shell is shrunk by 50 to 70% by volume during drying. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Trocknung physikalisch erfolgt, wobei die Binderhülle um 40% bis 60 Vol% angeschrumpft wird und die Restschrumpfung anschließend thermisch erfolgt.Method according to one of claims 3 to 5, characterized in that the drying takes place physically, wherein the binder shell is shrunk by 40% to 60% by volume and the residual shrinkage then takes place thermally. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, dass das Trocknen in einer Mikrowelle erfolgt.Method according to one of the preceding claims 3 to 6, characterized in that the drying takes place in a microwave.
EP08007906A 2007-06-12 2008-04-24 Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank Revoked EP2014392B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL08007906T PL2014392T3 (en) 2007-06-12 2008-04-24 Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank
SI200830356T SI2014392T1 (en) 2007-06-12 2008-04-24 Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007027577A DE102007027577A1 (en) 2007-06-12 2007-06-12 Molding material mixture, molded article for foundry purposes and method for producing a molded article

Publications (3)

Publication Number Publication Date
EP2014392A2 true EP2014392A2 (en) 2009-01-14
EP2014392A3 EP2014392A3 (en) 2010-07-21
EP2014392B1 EP2014392B1 (en) 2011-06-01

Family

ID=39830346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007906A Revoked EP2014392B1 (en) 2007-06-12 2008-04-24 Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank

Country Status (19)

Country Link
US (1) US8006745B2 (en)
EP (1) EP2014392B1 (en)
JP (1) JP4719248B2 (en)
KR (1) KR101027030B1 (en)
CN (1) CN101323008B (en)
AR (1) AR066992A1 (en)
AT (1) ATE511419T1 (en)
AU (1) AU2008202587B2 (en)
BR (1) BRPI0803387A2 (en)
CA (1) CA2631908C (en)
DE (1) DE102007027577A1 (en)
DK (1) DK2014392T3 (en)
ES (1) ES2365827T3 (en)
MX (1) MX2008007515A (en)
NZ (1) NZ568939A (en)
PL (1) PL2014392T3 (en)
RU (1) RU2385201C2 (en)
SI (1) SI2014392T1 (en)
UA (1) UA88412C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020509A1 (en) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
WO2020229623A1 (en) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of a particulate material comprising a particle-shaped synthetic amorphic silicon dioxide as an additive for a molding material mixture, corresponding method, mixtures, and kits

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023644A1 (en) * 2009-07-01 2011-01-05 Ksm Castings Gmbh Method for casting a material, use of the method, casting mold for carrying out the method and articles produced by the method or in the casting mold and core for insertion into such a casting mold
KR101199111B1 (en) * 2009-10-30 2012-11-09 현대자동차주식회사 Core material mixture for casting, method for manufacturing core for casting and core for casting using the same
US8974587B2 (en) 2010-11-15 2015-03-10 Honda Motor Co., Ltd. Casting sand core composition
JP4920794B1 (en) * 2011-11-02 2012-04-18 株式会社ツチヨシ産業 Mold material, mold and mold manufacturing method
DE102012103705A1 (en) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Method for producing molds and cores for casting metal, and molds and cores produced by this method
DE102012020510B4 (en) 2012-10-19 2019-02-14 Ask Chemicals Gmbh Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
DE102012020511A1 (en) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
DE102013106276A1 (en) * 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithium-containing molding material mixtures based on an inorganic binder for the production of molds and cores for metal casting
WO2015055838A1 (en) 2013-10-19 2015-04-23 Peak Deutschland Gmbh Method for producing lost cores or molded parts for the production of cast parts
DE102013111626A1 (en) * 2013-10-22 2015-04-23 Ask Chemicals Gmbh Mixtures of molding materials containing an oxidic boron compound and methods for producing molds and cores
DE102014106178A1 (en) * 2014-05-02 2015-11-05 Ask Chemicals Gmbh Process for the layered construction of bodies comprising refractory base molding material and resoles and molds or cores produced by this process
DE102014109598A1 (en) * 2014-07-09 2016-01-14 Tenedora Nemak, S.A. De C.V. Casting core, use of a foundry core and method of making a foundry core
CN104174810A (en) * 2014-08-29 2014-12-03 无锡柯马机械有限公司 Casting process
CN104384437A (en) * 2014-11-17 2015-03-04 无锡市百顺机械厂 Foundry technology
KR101527909B1 (en) * 2014-12-16 2015-06-10 한국생산기술연구원 inorganic binder composition for castings
KR101614401B1 (en) * 2015-03-10 2016-04-21 (주)피알테크 Inorganic binder composition for molding sand
DE102016110752A1 (en) 2016-06-10 2017-12-14 Dr Axion Co., Ltd. BINDER COMPOSITION FOR FORGING
EP3501690A1 (en) * 2017-12-20 2019-06-26 Imertech Sas Method of making particulate refractory material foundry articles, and product made by such method
DE102019123372A1 (en) 2019-08-30 2021-03-04 Bindur Gmbh Thermosetting molding material for the production of cores and molds in the sand molding process
DE102019123374A1 (en) 2019-08-30 2021-03-04 Bindur Gmbh Process for the production of cores and molds using the sand molding process
CN114101593B (en) * 2021-11-26 2023-08-01 陕西科技大学 High-collapsibility recyclable silica-based ceramic core and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641015A (en) 1992-12-23 1997-06-24 Borden (Uk) Limited Water dispersible molds
EP1095719B1 (en) 1999-10-26 2005-12-28 Hydro Aluminium Deutschland GmbH Binder, core sand and process for their production
DE102004042535A1 (en) 2004-09-02 2006-03-09 AS Lüngen GmbH & Co. KG Molding material mixture for the production of casting molds for metalworking

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380945A (en) * 1942-07-11 1945-08-07 Austenal Lab Inc Refractory mold
US4316744A (en) * 1973-07-17 1982-02-23 E. I. Du Pont De Nemours And Company High ratio silicate foundry sand binders
US4162238A (en) * 1973-07-17 1979-07-24 E. I. Du Pont De Nemours And Company Foundry mold or core compositions and method
SU807542A1 (en) * 1979-07-05 1984-04-15 Всесоюзный Проектно-Технологический Институт Литейного Производства Mold and core making sand
SU1072980A1 (en) * 1982-04-07 1984-02-15 Всесоюзный Проектно-Технологический Институт Литейного Производства Method of preparing silicate bond
SU1217551A1 (en) * 1984-01-13 1986-03-15 Всесоюзный Проектно-Технологический Институт Литейного Производства Method of producing silicate binder ,particularly, for making moulds and cores
SU1243883A1 (en) * 1985-01-02 1986-07-15 Всесоюзный Проектно-Технологический Институт Литейного Производства Method of producing silicate binder
DE20321077U1 (en) * 2003-05-09 2005-11-03 Hydro Aluminium Deutschland Gmbh Material used to make molds and molding cores for aluminum castings, comprises quartz-free sand mixed with waterglass binder
DE102004014573A1 (en) * 2004-03-25 2005-10-27 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Method for producing a muffle for fine or model casting, method for producing a metallic, ceramic or glass-ceramic cast or pressed object and kit for producing such an object
DE102004017892B3 (en) * 2004-04-13 2005-11-03 Daimlerchrysler Ag Destructible mold core for metal casting, manufacture and use
CN1721103A (en) * 2004-07-17 2006-01-18 王继启 Molding sand adhesive for casting
DE102006036381A1 (en) * 2006-08-02 2008-02-07 Minelco Gmbh Molded material, foundry-molding material mixture and method for producing a mold or a molded article
CN100515600C (en) * 2006-11-20 2009-07-22 包正权 Hot precoated sand stack casting process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641015A (en) 1992-12-23 1997-06-24 Borden (Uk) Limited Water dispersible molds
EP1095719B1 (en) 1999-10-26 2005-12-28 Hydro Aluminium Deutschland GmbH Binder, core sand and process for their production
DE102004042535A1 (en) 2004-09-02 2006-03-09 AS Lüngen GmbH & Co. KG Molding material mixture for the production of casting molds for metalworking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020509A1 (en) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
EP3950168A1 (en) 2012-10-19 2022-02-09 ASK Chemicals GmbH Mould material mixtures on the basis of inorganic binders, and method for producing moulds and cores for metal casting
WO2020229623A1 (en) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of a particulate material comprising a particle-shaped synthetic amorphic silicon dioxide as an additive for a molding material mixture, corresponding method, mixtures, and kits

Also Published As

Publication number Publication date
RU2385201C2 (en) 2010-03-27
AU2008202587A1 (en) 2009-01-08
UA88412C2 (en) 2009-10-12
BRPI0803387A2 (en) 2009-08-04
CN101323008B (en) 2012-11-21
DE102007027577A1 (en) 2008-12-18
EP2014392B1 (en) 2011-06-01
CA2631908A1 (en) 2008-12-12
DK2014392T3 (en) 2011-09-12
EP2014392A3 (en) 2010-07-21
SI2014392T1 (en) 2011-09-30
ATE511419T1 (en) 2011-06-15
CN101323008A (en) 2008-12-17
RU2008123122A (en) 2009-12-20
AU2008202587B2 (en) 2010-01-28
CA2631908C (en) 2011-07-12
US20080314549A1 (en) 2008-12-25
PL2014392T3 (en) 2011-10-31
NZ568939A (en) 2009-09-25
KR20080109624A (en) 2008-12-17
KR101027030B1 (en) 2011-04-11
JP2008307604A (en) 2008-12-25
ES2365827T3 (en) 2011-10-11
JP4719248B2 (en) 2011-07-06
US8006745B2 (en) 2011-08-30
MX2008007515A (en) 2009-03-04
AR066992A1 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
EP2014392B1 (en) Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank
EP1884300B1 (en) Moulding material, casting moulding material mixture and method for manufacturing a form or blank
EP2908968B1 (en) Mould material mixtures on the basis of inorganic binders, and method for producing moulds and cores for metal casting
EP3010669B1 (en) Method for producing a lithium-containing molding material mixture based on an inorganic binder for producing molds and cores for metal casting
DE102012020510B4 (en) Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
EP1934001B1 (en) Borosilicate glass-containing molding material mixtures
EP2760607B1 (en) Coating compositions for inorganic casting moulds and cores and use thereof and method for sizing
EP2916976B1 (en) Method for producing lost cores or molded parts for the production of cast parts
EP3137245B1 (en) Mould material mixture containing resols and amorpous silicon dioxide, moulds and cores produced therefrom and method for the production thereof
EP2763807B1 (en) Coating compositions for inorganic casting molds and cores, containing salts, and use thereof
DE102015118160A1 (en) A method of producing a core and a cast product using an inorganic binder
DE102012020511A1 (en) Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
EP2836318A2 (en) Salt-based cores, method for the production thereof and use thereof
DE102017107655A1 (en) Use of an acid-containing sizing composition in the foundry industry
EP2308614B1 (en) Green aerosand
EP1228128A1 (en) Resol based binding agent containing aluminium and boron
EP3986634A1 (en) Sized molds obtainable from a molding material mixture containing an inorganic bonding agent and phosphatic compounds and oxidic boron compounds and method for production and use thereof
EP1832357B1 (en) Mould or blank, casting moulding material mix and method for its manufacture
DE2716168A1 (en) PROCESS FOR MANUFACTURING CASTING FORMS OR CASTING FORM CORES AND MOLDED MATERIAL FOR USE IN THIS PROCESS FROM AN AQUATIC MIXTURE OF MOLDING SAND, BINDING AGENT, AND CARBON MATERIAL
EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
DE1508913C (en) Mold lining
EP4108641A1 (en) Mould made from opaque quartz glass and method of manufacturing the same
DE102005024524B4 (en) Mold and method for its production
DE102021116930A1 (en) PROCESS FOR LAYERING UP OF MOLDS AND CORE WITH A BINDER CONTAINING WATER GLASS
CH642876A5 (en) Coating for moulds and cores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MINELCO GMBH

17P Request for examination filed

Effective date: 20091211

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003732

Country of ref document: DE

Effective date: 20110714

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110601

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20110601

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9711

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365827

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012129

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111001

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111003

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ASK CHEMICALS GMBH

Effective date: 20120301

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008003732

Country of ref document: DE

Effective date: 20120301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20120423

Year of fee payment: 5

Ref country code: HU

Payment date: 20120419

Year of fee payment: 5

Ref country code: LT

Payment date: 20120412

Year of fee payment: 5

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20120413

Year of fee payment: 5

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130424

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 511419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130424

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008003732

Country of ref document: DE

Representative=s name: HASELTINE LAKE KEMPNER LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008003732

Country of ref document: DE

Representative=s name: HASELTINE LAKE LLP, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170427

Year of fee payment: 10

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IMERYS METALCASTING GERMANY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20180427

Year of fee payment: 11

Ref country code: DK

Payment date: 20180426

Year of fee payment: 11

Ref country code: SK

Payment date: 20180404

Year of fee payment: 11

Ref country code: ES

Payment date: 20180503

Year of fee payment: 11

Ref country code: DE

Payment date: 20180427

Year of fee payment: 11

Ref country code: FI

Payment date: 20180427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180404

Year of fee payment: 11

Ref country code: FR

Payment date: 20180425

Year of fee payment: 11

Ref country code: IT

Payment date: 20180423

Year of fee payment: 11

Ref country code: SI

Payment date: 20180405

Year of fee payment: 11

Ref country code: TR

Payment date: 20180406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502008003732

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502008003732

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20190507

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20190507

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 9711

Country of ref document: SK

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 511419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507