EP2005808B1 - Method and device for placing electronic components, especially semiconductor chips, on a substrate - Google Patents

Method and device for placing electronic components, especially semiconductor chips, on a substrate Download PDF

Info

Publication number
EP2005808B1
EP2005808B1 EP06725721A EP06725721A EP2005808B1 EP 2005808 B1 EP2005808 B1 EP 2005808B1 EP 06725721 A EP06725721 A EP 06725721A EP 06725721 A EP06725721 A EP 06725721A EP 2005808 B1 EP2005808 B1 EP 2005808B1
Authority
EP
European Patent Office
Prior art keywords
tool
component
pivoting
substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06725721A
Other languages
German (de)
French (fr)
Other versions
EP2005808A1 (en
Inventor
Joachim Trinks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kulicke and Soffa Die Bonding GmbH
Original Assignee
Kulicke and Soffa Die Bonding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kulicke and Soffa Die Bonding GmbH filed Critical Kulicke and Soffa Die Bonding GmbH
Publication of EP2005808A1 publication Critical patent/EP2005808A1/en
Application granted granted Critical
Publication of EP2005808B1 publication Critical patent/EP2005808B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component

Definitions

  • the invention relates to a method for depositing electronic components, in particular semiconductor chips on a substrate.
  • a method for depositing electronic components for example, in the manufacture of semiconductor components in chip assembly machines (diebonders), the unhoused chip is picked by the already divided silicon wafer (wafer) and then deposited or bonded onto corresponding substrates. After the bonding process, further process steps such as e.g. Curing, wire bonding, melting solder joints, encapsulating, separating, etc.
  • connection process determines whether the chip must be turned before placement (flip-chip applications) or not (non-flip applications). Turning of the chip is expressly understood below not a relative movement with respect to a spatial axis or spatial plane, but a turning with respect to the original bearing side. In the case of non-flip applications, the chip is not turned over and, after being picked up by the wafer film, transported directly in one step to the substrate, whereby the pickup tool is simultaneously used as a bonding tool. The support side with which the chip was glued onto the wafer film is then also the side with which the chip is glued onto the substrate.
  • a known device of this kind is for example in EP 1 049 140 mentioned or become known by the company magazine "Newsline 1/2002" the applicant (machine type “Easyline”).
  • the chip is deposited with its structure side after turning on the substrate, that is, the support side, with the chip was glued to the wafer, after placing then the side facing away from the substrate.
  • Modern Diebondersysteme are increasingly demanding in terms of manufacturing costs, throughput, accuracy and process flexibility. Nevertheless, the machines should not exceed existing equipment in terms of height, machine layout, weight, etc. This leads to an ever greater complexity of the machines in terms of mechanics, motion sequences and control.
  • a device has become known in which semiconductor chips are picked up by a rotatable picking tool with three tool heads and transported from there to a higher level and taken over by a further tool which guides the chips in a linear movement over the substrate and deposits it there.
  • Picking plane and substrate plane run parallel, but at different levels. This makes it possible for the wafer table to be driven under the substrate table, which is obviously advantageous, especially for large wafers, because this makes it possible to keep the overall base area of the machine small.
  • the chip is evidently always turned over by the transfer operation, so that it is not deposited with its support side but with its structure side on the substrate (flip-chip application).
  • the rotatable picking tool needs to overcome the height difference between the picking plane and the discharge plane has a relatively large outer diameter, which is not advantageous in terms of both the kinematics and for reasons of space.
  • WO 97/32460 a device has become known in which a chip is transported in two work cycles from a receiving plane to a delivery plane. It is sold at a stopover and there either swiveled or rotated.
  • the primary tool lays back a first curve movement with the component, transfers the component in a transfer position to at least one pivoting tool, which covers a second curve movement up to the delivery level.
  • the curve radii are much smaller than when the stroke of the component must be covered by a single turning tool.
  • much smaller masses must be accelerated or decelerated, which reduces the energy consumption and enables faster movement sequences.
  • several pivoting tools could be connected in series, so that the hub in more than two separate pivoting movements would be covered.
  • the at least one pivoting tool must be arranged in the effective range of the primary tool.
  • the primary tool passes the component to an intermediate pivoting tool, which detects the component on the support side and, after a pivoting movement, transfers it to an end pivoting tool, which in turn captures the component on the structural side and pivots it into the deployment plane, where it is is transferred to the secondary tool, where it is finally deposited with the structure side on the substrate.
  • the intermediate pivoting tool assumes the function of transferring the component to the end pivoting tool in such a way that it can be detected on the structure side. Only under this condition, the component is last deposited by the secondary tool again with the structure side, if a repeated turning should be avoided.
  • the opposite direction of curvature allows short distances and the most direct possible overcoming of the hub between the level of the storage station and the deployment level.
  • the movement of the secondary tool from the acquisition of the component to over the substrate is advantageously linear. Again, however, a curved movement would be conceivable.
  • a particularly advantageous machine arrangement and movement guidance results when the transport of the component from the supply station to the substrate is essentially on an approximately vertical transport plane. All drive elements and auxiliary devices can be arranged as evident along this plane. As a result, the visual observation of the workflow and the maintenance of the machine is much easier. Further advantages can be achieved if the actual position (position and angle) of the component on the supply station is determined before recording with a first image recognition device, and or if the actual position of the component in the delivery plane is determined before transport to the substrate with a second image recognition device , and / or if the actual position of the substrate with a third image recognition device is determined, wherein deviations between the determined actual values and a predetermined target position of the component are preferably corrected during transport.
  • the image recognition devices may, for example, be CCD cameras. With a total of only three such cameras, a very high degree of precision or an optimal correction possibility can be achieved. Depending on the application, it would also be conceivable, for example, to measure only the actual position of the component in the deployment plane.
  • the determination of the actual position is advantageously carried out with one of the image recognition devices whenever the primary tool or the secondary tool or the end pivot tool releases the image field of the actual position to be determined. Transport movement and image recognition thus take place in such a way that they do not hinder each other.
  • the first image recognition device is arranged in such a way that the acquisition of the image field assigned to it occurs in both operating modes from within the swivel range of the primary tool.
  • the second image recognition device for the second operating mode be arranged such that the detection of the image field associated with it takes place from within the pivoting range of the Endschwenktechnikmaschines.
  • the first and the second image recognition device or their optical axes at the output opening can be arranged on mutually offset vertical axes.
  • another arrangement would be possible, for example, if the axes of rotation of the primary tool and the Endschwenktechnikmaschines lie on a common vertical.
  • the third image recognition device for detecting the actual position of the substrate can be arranged on a preferably linearly displaceable carriage. This allows the camera to be moved to an observation position, regardless of the position of the secondary tool. This simplifies the construction of the substrate feed. Namely, for substrates having a matrix-like arrangement of settling positions, the substrates need only be displaced in one direction (x), while the other direction (y) can be achieved by the image recognition device movable in this spatial direction and the secondary tool also movable in this spatial direction. In addition, this evidently increases the flexibility of the processes and thus improves the throughput, since the measurement can be decoupled from the position of the secondary tool and thus processes can be parallelized. For high-precision applications, it may also be expedient to arrange the third image recognition device directly on the carriage of the secondary tool.
  • the storage station is designed as a transport station for the preferably linear passage of a plurality of substrates.
  • a means of transport can be used per se known clamping devices, conveyor belts or the like.
  • a wafer cassette can be arranged, which is movable for loading wafer frames on the supply station in different loading positions, in which the storage station and the wafer cassette are at least partially arranged on the same plane, wherein the wafer cassette is movable to a rest position in which the supply station for executing a loaded wafer frame is at least partially displaceable over the wafer cassette in the horizontal working plane.
  • the wafer cassette can thus be arranged in a very space-saving manner without impairing its function when loading the workstation.
  • FIG. 1 is shown in a highly simplified manner a known arrangement, in which an already divided semiconductor wafer 18 is glued to a wafer foil 19, which in turn is stretched in a wafer frame 20.
  • the semiconductor chips 1 are already isolated by the sawing lines, which is indicated by the intersecting lines.
  • Each chip 1 has a support side 4 with which it adheres to the wafer foil 19 before detachment.
  • Semiconductor structure is applied on the side opposite the support side 4, which is why it is referred to below as the structure side 17. If the electronic component is not a semiconductor chip, the structure side simply corresponds to the top side of the component.
  • the separation of the chips by sawing or the detachment process from the wafer film with the aid of needles and other auxiliaries are already sufficiently known to the person skilled in the art.
  • a storage station 5 On a machine frame, a storage station 5 is arranged, which in the present Case as wafer table for receiving prepared wafer frames according to FIG. 1 is trained.
  • the supply station can be moved on a horizontal plane in two spatial axes, so that each individual chip can be moved to a detachment position. From a wafer cassette 27, which is lowered here in the rest position, if necessary, further wafer frames can be added.
  • the storage station 3, to which the components must be transported from the storage station, is here designed as a feed system 39, on which in the direction of arrow x substrates 2 can be cyclically fed.
  • the individual chips are lifted by a primary tool 6 from the supply station 5 and pivoted upwards and then alternatively transferred to an intermediate pivoting tool 41 or directly to a final pivoting tool 42.
  • the latter passes the chip to the secondary tool 8, which is displaceable along a carriage guide 21 to above the storage station 3.
  • FIG. 3 For the transport of the individual chips 1, first of all a height difference between the level 47 of the supply station and the supply level 7 has to be overcome, which practically coincides with the level of the depositing station 3 with the substrates 2.
  • This height difference is carried out in the manner described in more detail below at least two pivotal movements of the primary tool 6 and the Endschwenktechnikmaschines 42 and optionally still covered by an intermediate pivotal movement of the insects fürschwenktechnikmaschines 41.
  • the secondary tool 8 is attached to a carriage 15 which is linearly displaceable on a guide rail 21. On the secondary tool correction movements in the x and y axes and about an axis of rotation before settling of the component are possible if this is necessary due to the determination of the actual position.
  • the various work tools are provided with picking tools for holding a component e.g. provided by means of negative pressure. These receiving tools may preferably perform at least one further movement in its longitudinal axis and / or about its longitudinal axis.
  • each a wildablagestation 40a and 40b is arranged in the pivoting range of the primary tool 6 and the Endschwenkwerkmaschines 42 .
  • these intermediate stations serve to temporarily place a chip in a waiting position for further transport at a later time. Similar to the work tools for the transport of the components and the intermediate storage stations are provided with recording tools.
  • a first camera 10 determines the actual position of a chip 1 at the storage station 5 before lifting.
  • a second lower camera 11a recognizes the position of a chip when transfer to the secondary tool 8 has already taken place.
  • a second upper camera 11b detects the position of a chip on the end pivot tool 42 before transferring to the secondary tool 8. It can be seen that alternatively one of the two second cameras 11a is used or 11b, depending on whether the secondary tool detects the chip on the support side or on the structure side.
  • a third camera 12 can detect the actual position of the substrate 2 on the storage station 3. This third camera 12 is arranged on a carriage 16, which is displaceable along a guide rail 22. Further details of these components can be found in the FIGS. 8 to 10 ,
  • the storage station 5 Since the storage station 3 and the storage station 5 are at different levels, it can be seen, the storage station 5, so the wafer table with regard to its range of movement under the storage station, so push under the supply system, whereby the floor plan of the machine frame 26 can be kept very small.
  • the storage station 5 must be horizontally displaceable in two spatial axes, since each individual chip to be removed is to be driven exactly under the lifting primary tool 6 in each case. Such controls are already known to the skilled person.
  • the wafer cassette 27 has different pockets in a known manner, wherein in each compartment a prepared wafer frame with subdivided wafer (according to FIG FIG. 1 ) is included.
  • the wafer cassette is vertically movable and a removal mechanism, not shown here, can remove a wafer frame from each floor and transfer it to the storage station 5.
  • the wafer cassette 27 is lowered below the level of the storage station. In this position, the storage station 5, which can be displaced in two spatial axes, can be pushed both under the storage station 3 and over the wafer cassette 27, whereby, as can be seen, the machine floor plan can be kept very small.
  • FIG. 4 is the wafer cassette 27 in the lowest unloading position, in which from the top floor a wafer frame can be removed.
  • a wafer frame is picked empty, it is pushed back to the corresponding empty floor and from the next floor a new wafer frame is removed until the last floor is reached.
  • the wafer cassette 27 is in the uppermost removal position, what in FIG. 5 is shown.
  • the wafer cassette 27 is returned to the rest position after each loading or unloading operation FIG. 3 lowered.
  • FIG. 6 shows more details of the entire transport device.
  • the primary tool 6 is arranged at the end and on the outside of an L-shaped rotary arm 23.
  • the rotary arm rotates about a horizontal axis 13 and is rotatably driven by a motor 25.
  • the primary tool describes a turning circle or pitch circle 14, wherein the motor 25 allows actuation in both directions of rotation.
  • a still described camera housing 24 with a lens exit is disposed within the turning circle 14.
  • the final pivoting train 42 is pivotable about an axis 44 on a turning circle 45 on an L-shaped pivot arm 43. Again, a camera body 24 'projects into the interior of the turning circle 45, but with an upwardly directed lens output.
  • an intermediate pivoting tool 41 is still arranged in the effective range of the primary tool 6 or of the end pivoting tool 42.
  • This rotates about an axis 50 and describes a turning circle 51. Since no chamber housing has to be stored within the turning circle, the arrangement on an L-shaped turning arm is not required.
  • the provisioning level 7 practically forms a horizontal tangent to the turning circle 45. Above the provisioning level 7, the guide rail 21 extends for the carriage 15 of the secondary tool 8 FIG. 6 shown position, the secondary tool 8 has just taken over a semiconductor chip from Endschwenktechnikmaschinemaschinesch and transported it in the direction of the storage station. All tools are provided in a conventional manner with recording tools, which required for their operation pneumatic lines and control devices are not shown.
  • FIG. 7 shows the geometric relationship of in FIG. 6 shown tools to one another and in particular the curve of a component 1 between the level 47 of the storage station and the supply level 7.
  • the axes of rotation 13, 44 and 50 of the working tools form a triangle to each other, wherein the revolving circuits 14, 45 and 51 touch on the legs of the triangle or approximately touching and thereby form a first transfer position 52, a second transfer position 53 and a third transfer position 54.
  • the primary tool 6 Starting from the receiving position 55, the primary tool 6 returns a pivoting movement which, depending on the operating mode, leads via a first sector S1 to the first transfer position 52 or via a second sector S2 to the second transfer position 53.
  • the intermediate pivoting tool 41 is either inactive or always puts a pivoting movement between the first transfer position 52 and the third transfer position 54 back.
  • the Endschwenkwerkmaschine 42 defines a pivoting path between the second transfer position 53 and the discharge position 56 or between the third transfer position 54 and the discharge position 56 depending on the operating mode.
  • the radii of different circles form differently.
  • additional pivoting tools so that the stroke between the two levels 7 and 47 is covered in several cornering movements.
  • the intermediate deposition stations 40a, 40b arranged along the curved path could also be designed as pivoting tools which are capable of transporting a component away.
  • the following is based on the FIGS. 8 to 10 the operation and arrangement of the first camera 10 and the lower second camera 11a described.
  • the cameras are each arranged in an elongated camera housing 24 or 24 ', which projects into the turning circle of the primary tool 6 or the end pivot tool 42.
  • the exit opening 29 is directed downwards against the plane 47 of the supply station.
  • the exit opening 29 ' is directed upwardly against the delivery plane.
  • the image area 37 is completely released in each case for the corresponding camera.
  • FIGS. 11a to 11e described the deposition process of a semiconductor chip, in which the chip is placed with the same support side on the substrate, with which he previously adhered to the wafer (non-flip application).
  • the rotary arm 23 is in a vertical position, in which the primary tool 6 detects a semiconductor chip from the storage station 5.
  • the Endschwenktechnikmaschinesch 42 passes an already preloaded chip in the deployment level 7 the secondary tool. 8
  • the secondary tool 8 has reached its dispensing position above the substrate 2.
  • the primary tool 6 transfers its chip to the final pivoting tool 42 and at the same time the next chip 1 to be picked up on the storage station 5 is measured with the aid of the first camera 10.
  • the secondary tool 8 has deposited its chip on the substrate 2.
  • the primary tool 6 has returned counterclockwise to its receiving position.
  • the Endschwenktechnikmaschinesch 42 was pivoted back counterclockwise in its dispensing position.
  • FIG. 11e the empty secondary tool 8 on its way back to receive a new chip.
  • both the upper second camera 11b for determining the actual position of the chip on the end pivoting tool 42 and the third camera 12 for determining the actual position of the substrate 2 can be actuated in an intermediate position.
  • the cycle begins according to FIG. 11a again from scratch.
  • the unnecessary lower second camera 11 a and the septschwenktechnikmaschine 41 omitted were in the FIGS. 11a to 11e the unnecessary lower second camera 11 a and the insects.
  • the device can be operated in another operating mode.
  • the intermediate pivoting device 41 is actuated, as from the FIGS. 12a to 12e is apparent.
  • the upper second camera 11b which is not required in this operating mode, has been omitted in these figures.
  • the primary tool 6 receives a chip at the supply station 5.
  • a chip is deposited on the substrate 2 at the storage station 3 by the secondary tool 8.
  • the Endschwenkwerkmaschine 42 receives from insectsschwenktechnikmaschine 41 a previously loaded chip. The different cameras are inactive.
  • the primary tool 6 was pivoted with its recorded chip counterclockwise to the first transfer position.
  • the insects 41 was pivoted back counterclockwise to accommodate a new chip can.
  • the Endschwenktechnikmaschine has pivoted the previously loaded chip back into the dispensing position and also the secondary tool 8 has reached its original position in which it can accommodate a new chip.
  • the actual position of the newly to be loaded substrate 2 is measured at the discharge station 3.
  • the chip is transferred to the end tool 42 to the secondary tool 8.
  • the primary tool 6 remains in the first transfer position.
  • the Endschwenktechnikmaschinezeug 42 pivots back again, can be determined with the lower second camera 11a, the actual position of the now fixed to the secondary tool 8 chips.
  • the actual position of the next chip to be picked up at the storage station 5 is determined with the first camera 10.
  • the primary tool can transfer its previously loaded chip to the intermediate pivoting tool 41.
  • FIG. 12e swing the primary tool 6 back into its receiving position.
  • the intermediate pivoting tool moves 41 has its previously loaded chip in the third transfer position and the secondary tool 8 has reached its dispensing position above the substrate 2. Then the cycle starts according to FIG. 12a again from scratch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Die Bonding (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)

Abstract

An apparatus for the placement of a semiconductor chip on a substrate is provided. The apparatus includes: (a) a supply station adapted to include a semiconductor wafer in a substantially horizontal position, the semiconductor wafer including the semiconductor chip; (b) a placement station positioned entirely above the supply station, the placement station being adapted to support the substrate; and (c) a transport apparatus entirely above the supply station, the transport apparatus moving the semiconductor chip from the semiconductor wafer to the substrate, the transport apparatus including (1) a pivoting pick-up tool that removes the semiconductor chip from the semiconductor wafer, the pivoting pick-up tool being arranged on a rotary arm, the rotary arm rotates about a horizontal axis to raise the semiconductor chip to a transfer position entirely above the semiconductor wafer through an ascending curved movement, (2) a placement tool that moves the semiconductor chip to the placement station and bonds the semiconductor chip on the substrate at the placement station, and (3) at least one pivoting transfer tool that transfers the semiconductor chip from the pivoting pick-up tool to the placement tool, each of the at least one pivoting transfer tool being arranged on a respective rotary arm to rotate about a respective horizontal axis to raise the semiconductor chip along a respective ascending curved movement.

Description

Die Erfindung betrifft ein Verfahren zum Ablegen von elektronischen Bauteilen, insbesondere Halbleiterchips auf einem Substrat. Mit einem derartigen Verfahren wird beispielsweise bei der Herstellung von Halbleiterbauteilen in Chipmontageautomaten (Diebondern) der ungehäuste Chip von der bereits unterteilten Siliziumscheibe (Wafer) gepickt und dann auf entsprechende Substrate abgelegt bzw. gebondet. Nach dem Bondprozess folgen weitere Prozessschritte wie z.B. Aushärten, Wirebonding, Aufschmelzen von Lötverbindungen, Verkapseln, Vereinzeln, usw.The invention relates to a method for depositing electronic components, in particular semiconductor chips on a substrate. With such a method, for example, in the manufacture of semiconductor components in chip assembly machines (diebonders), the unhoused chip is picked by the already divided silicon wafer (wafer) and then deposited or bonded onto corresponding substrates. After the bonding process, further process steps such as e.g. Curing, wire bonding, melting solder joints, encapsulating, separating, etc.

Für das Platzieren des Chips auf dem Substrat gibt es eine Vielzahl verschiedener Prozesse, wie z.B. Kleben, Löten oder Laminieren. Die Art des Verbindungsprozesses bestimmt auch, ob der Chip vor der Platzierung gewendet werden muss (Flipchip-Anwendungen) oder nicht (Nonflip-Anwendungen). Unter Wenden des Chips wird nachstehend ausdrücklich nicht eine Relativbewegung bezüglich einer Raumachse oder Raumebene verstanden, sondern ein Wenden in Bezug auf die ursprünglich Auflageseite. Im Falle von Nonflip Anwendungen wird der Chip nicht gewendet und nach der Aufnahme von der Waferfolie direkt in einem Schritt zum Substrat transportiert, wobei das Pickup-Werkzeug gleichzeitig auch als Bondwerkzeug verwendet wird. Die Auflageseite, mit der der Chip auf der Waferfolie aufgeklebt war, ist dann auch die Seite, mit der der Chip auf das Substrat aufgeklebt wird. Eine bekannte Vorrichtung dieser Art ist beispielsweise in EP 1 049 140 erwähnt oder durch die Firmenzeitschrift "Newsline 1/2002" der Anmelderin (Maschinentyp "Easyline") bekannt geworden. Im Falle von Flipchip Anwendungen wird der Chip mit seiner Strukturseite nach dem Wenden auf das Substrat abgesetzt, das heisst die Auflageseite, mit der der Chip auf der Waferfolie aufgeklebt war, ist nach dem Platzieren dann die dem Substrat abgewandte Seite. An modernen Diebondersysteme werden immer grössere Anforderungen gestellt bezüglich Herstellungskosten, Durchsatz, Genauigkeit und Prozessflexibilität. Trotzdem sollten die Maschinen bezüglich Bauhöhe, Maschinengrundriss, Gewicht usw. bestehende Vorrichtungen nicht übertreffen. Dies führt zu einer immer grösseren Komplexität der Maschinen hinsichtlich Mechanik, Bewegungsabläufe und Steuerung. Durch die US 2005/0132567 ist eine Vorrichtung bekannt geworden, bei welcher Halbleiterchips von einem drehbaren Pickwerkzeug mit drei Werkzeugköpfen aufgenommen werden und von dort auf eine höhere Ebene transportiert und von einem weiteren Werkzeug übernommen werden, das die Chips in einer linearen Bewegung über das Substrat führt und dort absetzt. Pickebene und Substratebene verlaufen parallel, jedoch auf unterschiedlichen Niveaus. Dadurch wird es möglich, dass der Wafertisch unter den Substrattisch gefahren werden kann, was ersichtlicherweise besonders bei grossen Wafern vorteilhaft ist, weil dadurch die Gesamtgrundfläche der Maschine klein gehalten werden kann. Allerdings wird hierbei der Chip durch die Übergabeoperation ersichtlicherweise immer gewendet, sodass er nicht mit seiner Auflageseite, sondern mit seiner Strukturseite auf das Substrat abgesetzt wird (Flipchip-Anwendung). Ausserdem benötigt das drehbare Pickwerkzeug zur Überwindung der Höhendifferenz zwischen der Pickebene und der Abgabeebene einen relativ grossen Aussendurchmesser, was sowohl bezüglich der Kinematik als auch aus Platzgründen nicht vorteilhaft ist.For the placement of the chip on the substrate, there are a variety of different processes, such as gluing, soldering or laminating. The nature of the connection process also determines whether the chip must be turned before placement (flip-chip applications) or not (non-flip applications). Turning of the chip is expressly understood below not a relative movement with respect to a spatial axis or spatial plane, but a turning with respect to the original bearing side. In the case of non-flip applications, the chip is not turned over and, after being picked up by the wafer film, transported directly in one step to the substrate, whereby the pickup tool is simultaneously used as a bonding tool. The support side with which the chip was glued onto the wafer film is then also the side with which the chip is glued onto the substrate. A known device of this kind is for example in EP 1 049 140 mentioned or become known by the company magazine "Newsline 1/2002" the applicant (machine type "Easyline"). In the case of flip-chip applications, the chip is deposited with its structure side after turning on the substrate, that is, the support side, with the chip was glued to the wafer, after placing then the side facing away from the substrate. Modern Diebondersysteme are increasingly demanding in terms of manufacturing costs, throughput, accuracy and process flexibility. Nevertheless, the machines should not exceed existing equipment in terms of height, machine layout, weight, etc. This leads to an ever greater complexity of the machines in terms of mechanics, motion sequences and control. By the US 2005/0132567 For example, a device has become known in which semiconductor chips are picked up by a rotatable picking tool with three tool heads and transported from there to a higher level and taken over by a further tool which guides the chips in a linear movement over the substrate and deposits it there. Picking plane and substrate plane run parallel, but at different levels. This makes it possible for the wafer table to be driven under the substrate table, which is obviously advantageous, especially for large wafers, because this makes it possible to keep the overall base area of the machine small. However, in this case, the chip is evidently always turned over by the transfer operation, so that it is not deposited with its support side but with its structure side on the substrate (flip-chip application). In addition, the rotatable picking tool needs to overcome the height difference between the picking plane and the discharge plane has a relatively large outer diameter, which is not advantageous in terms of both the kinematics and for reasons of space.

Durch die WO 97/32460 ist eine Vorrichtung bekannt geworden, bei des ein Chip in zwei Arbeitstakten von einer Aufnahmeebene zu einer Abgabeebene transportiert wird. Dabei wird es an einer Zwischenstation abgesetzt und dort wahlweise geschwenkt oder gedreht.By the WO 97/32460 a device has become known in which a chip is transported in two work cycles from a receiving plane to a delivery plane. It is sold at a stopover and there either swiveled or rotated.

Es ist daher eine Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art zu schaffen, bei welchem die Höhendifferenz zwischen der Ebene der Vorratsstation und einer höher gelegenen Bereitstellungsebene mit geringerem Platzbedarf und kinematisch vorteilhafter überwunden werden kann und bei dem ausserdem Bauteile auch mit der gleichen Auflageseite wieder auf das Substrat abgesetzt werden können (Nonflip-Anwendung), wobei ein möglichst hoher Durchsatz mit einer verbesserten Absetzgenauigkeit erzielbar ist. Es soll ausserdem die Möglichkeit bestehen, bei Raumtemperatur zur picken, aber unter Umständen auch heiss platzieren zu können. Ausserdem soll es mit dem gleichen Verwahren bzw. mit der gleichen Vorrichtung möglich sein, sowohl Flipchip- als auch Nonflip-Anwendungen zu fahren, um das Einsatzspektrum mit geringen Mehrkosten erheblich zu verbreitern. Die Lage des Chips soll mit den entsprechenden optischen Bilderkennungseinrichtungen an verschiedenen Stellen möglichst optimal erfassbar sein. Schliesslich soll die Vorrichtung auch möglichst kompakt aufgebaut sein und einen möglichst kleinen Maschinengrundriss aufweisen. Diese Aufgabe wird in verfahrensmässiger Hinsicht mit einem Verfahren gelöst, das die Merkmale in Anspruch 1 aufweist. In vorrichtungsmässiger Hinsicht wird die Aufgabe mit einer Vorrichtung gelöst, welche die Merkmale im Anspruch 11 aufweist.It is therefore an object of the invention to provide a method of the type mentioned, in which the height difference between the level of the supply station and a higher level deployment can be overcome with less space and kinematically more advantageous and in addition also components can be placed on the substrate again with the same support page (non-flip application), with the highest possible throughput can be achieved with an improved Absetzgenauigkeit. It should also be possible to pick at room temperature, but may also be able to place hot. In addition, it should be possible with the same storage or with the same device to drive both flip-chip and non-flip applications in order to widen the range of use at low additional cost considerably. The position of the chip should be optimally detectable with the corresponding optical image recognition devices at different points. Finally, the device should also be as compact as possible and have the smallest possible machine floor plan. This object is achieved in procedural terms with a method having the features in claim 1. In terms of the device, the object is achieved with a device having the features in claim 11.

Wenn der Weg des Bauteils zwischen der Ebene der Vorratsstation und der Bereitstellungsebene in wenigstens zwei getrennten, aufsteigenden Kurvenbewegungen zurückgelegt wird, kann ersichtlicherweise bezogen auf den Grundriss Platz eingespart werden. Das Primärwerkzeug legt dabei mit dem Bauteil eine erste Kurvenbewegung zurück, übergibt das Bauteil in einer Übergabeposition wenigstens einem Schwenkwerkzeug, welches bis zur Bereitstellungsebene eine zweite Kurvenbewegung zurücklegt. Die Kurvenradien sind dabei wesentlich kleiner, als wenn der Hub des Bauteils durch ein einziges Drehwerkzeug zurückgelegt werden muss. Ausserdem müssen wesentlich kleinere Massen beschleunigt bzw. verzögert werden, was den Energieaufwand reduziert und schnellere Bewegungsabläufe ermöglicht. Bei entsprechend grossen Höhendifferenzen könnten selbstverständlich mehrere Schwenkwerkzeuge hintereinander geschaltet werden, so dass der Hub in mehr als zwei getrennten Schwenkbewegungen zurückgelegt würde. Ersichtlicherweise muss das wenigstens eine Schwenkwerkzeug im Wirkbereich des Primärwerkzeugs angeordnet sein.If the path of the component between the level of the supply station and the supply level is covered in at least two separate, ascending curve movements, space can obviously be saved with respect to the ground plan. The primary tool lays back a first curve movement with the component, transfers the component in a transfer position to at least one pivoting tool, which covers a second curve movement up to the delivery level. The curve radii are much smaller than when the stroke of the component must be covered by a single turning tool. In addition, much smaller masses must be accelerated or decelerated, which reduces the energy consumption and enables faster movement sequences. With correspondingly large height differences of course, several pivoting tools could be connected in series, so that the hub in more than two separate pivoting movements would be covered. Evidently, the at least one pivoting tool must be arranged in the effective range of the primary tool.

Für eine Flipchip-Anwendung ist es besonders vorteilhaft, wenn das Primärwerkzeug das Bauteil einem Zwischenschwenkwerkzeug übergibt, welches das Bauteil an der Auflageseite erfasst und nach einer Schwenkbewegung einem Endschwenkwerkzeug übergibt, welches das Bauteil wiederum an der Strukturseite erfasst und in die Bereitstellungsebene schwenkt, wo es dem Sekundärwerkzeug übergeben wird, wobei es zuletzt mit der Strukturseite auf das Substrat abgesetzt wird. Das Zwischenschwenkwerkzeug übernimmt dabei ersichtlicherweise die Funktion, das Bauteil dem Endschwenkwerkzeug so zu übergeben, dass es an der Strukturseite erfasst werden kann. Nur unter dieser Bedingung, wird das Bauteil zuletzt vom Sekundärwerkzeug auch wieder mit der Strukturseite abgesetzt, wenn ein nochmaliges Wenden vermieden werden soll.For a flip-chip application, it is particularly advantageous if the primary tool passes the component to an intermediate pivoting tool, which detects the component on the support side and, after a pivoting movement, transfers it to an end pivoting tool, which in turn captures the component on the structural side and pivots it into the deployment plane, where it is is transferred to the secondary tool, where it is finally deposited with the structure side on the substrate. Evidently, the intermediate pivoting tool assumes the function of transferring the component to the end pivoting tool in such a way that it can be detected on the structure side. Only under this condition, the component is last deposited by the secondary tool again with the structure side, if a repeated turning should be avoided.

Dagegen ist es bei Nonflip-Anwendungen zweckmässig, wenn das Primärwerkzeug das Bauteil direkt einem Endschwenkwerkzeug übergibt, welches das Bauteil an der Auflageseite erfasst und in die Bereitstellungsebene schwenkt, wo es dem Sekundärwerkzeug übergeben wird, wobei es zuletzt wieder mit der gleichen Auflageseite auf das Substrat abgesetzt wird. Ersichtlicherweise bewirkt so bereits die Übergabe des Bauteils vom Primärwerkzeug an das Endschwenkwerkzeug, das es vom Sekundärwerkzeug an der Strukturseite erfasst und somit auch wieder mit der Auflageseite abgesetzt werden kann.In contrast, it is useful in non-flip applications when the primary tool passes the component directly to a Endschwenkwerkzeug which detects the component on the support side and pivots in the deployment plane, where it is passed to the secondary tool, where it last again with the same support side to the substrate is discontinued. Evidently, so already causes the transfer of the component from the primary tool to the Endschwenkwerkzeug that it can be detected by the secondary tool on the structure side and thus also discontinued again with the support side.

Besonders vielseitige Einsatzmöglichkeiten ergeben sich jedoch, wenn die Bauteile in einem ersten Betriebsmodus über das Zwischenschwenkwerkzeug und in einem zweiten Betriebsmodus direkt dem Endschwenkwerkzeug übergeben werden, wobei die Schwenkbewegung des Primärwerkzeugs im ersten bzw. im zweiten Betriebsmodus ausgehend von der Aufnahme an der Vorratsstation vorzugsweise auf separaten Bewegungsabschnitten z.B. Sektoren verläuft. Damit können wahlweise Flipchip-Anwendungen und Nonflip-Anwendungen gefahren werden. Die Ausführung der Schwenkbewegung des Primärwerkzeugs auf separaten Bewegungsabschnitten in Abhängigkeit vom gewählten Betriebsmodus ermöglicht eine optimale Anordnung des Zwischenschwenkwerkzeugs bzw. des Endschwenkwerkzeugs bzw. einen geometrisch optimalen Kurvenverlauf. Anstelle von Teilkreisbogenbewegungen könnten je nach Wahl der eingesetzten Getriebe jedoch auch andere Kurvenbewegungen gefahren werden, wie z.B. eine Zykloide oder eine Spirale. Die gegensinnig verlaufende Krümmung ermöglicht kurze Wege und eine möglichst direkte Überwindung des Hubs zwischen der Ebene der Vorratsstation und der Bereitstellungsebene. Die Bewegung des Sekundärwerkzeugs von der Übernahme des Bauteils bis über das Substrat verläuft vorteilhaft linear. Auch hier wäre allerdings eine gekrümmte Bewegung denkbar.Particularly versatile applications arise, however, when the components in a first operating mode on the Zwischenschwenkwerkzeug and in a second operating mode directly The pivoting movement of the primary tool in the first or in the second operating mode, starting from the receptacle on the supply station preferably extends to separate movement sections, for example sectors. This allows either flip-chip applications and non-flip applications to be run. The execution of the pivoting movement of the primary tool on separate movement sections depending on the selected operating mode allows an optimal arrangement of the intermediate pivoting tool or the Endschwenkwerkzeugs or a geometrically optimal curve. Instead of partial arc movements, however, depending on the choice of gear used, other curve movements could be driven, such as a cycloid or a spiral. The opposite direction of curvature allows short distances and the most direct possible overcoming of the hub between the level of the storage station and the deployment level. The movement of the secondary tool from the acquisition of the component to over the substrate is advantageously linear. Again, however, a curved movement would be conceivable.

Eine besonders vorteilhafte Maschinenanordnung und Bewegungsführung ergibt sich, wenn der Transport des Bauteils von der Vorratsstation bis auf das Substrat im Wesentlichen auf einer etwa vertikalen Transportebene verläuft. Alle Antriebselemente und Hilfseinrichtungen können so ersichtlicherweise entlang dieser Ebene angeordnet werden. Dadurch wird auch die visuelle Beobachtung des Arbeitsablaufs und die Wartung der Maschine wesentlich vereinfacht. Weitere Vorteile können erreicht werden, wenn die Istlage (Position und Winkel) des Bauteils auf der Vorratsstation vor der Aufnahme mit einer ersten Bilderkennungseinrichtung ermittelt wird, und oder wenn die Istlage des Bauteils in der Bereitstellungsebene vor dem Transport zum Substrat mir einer zweiten Bilderkennungseinrichtung ermittelt wird, und/oder wenn die Istlage des Substrats mit einer dritten Bilderkennungseinrichtung ermittelt wird, wobei Abweichungen zwischen den ermittelten Istwerten und einer vorbestimmten Solllage des Bauteils vorzugsweise während des Transports korrigiert werden. Bei den Bilderkennungseinrichtungen kann es sich beispielsweise um CCD-Kameras handeln. Mit insgesamt nur drei solcher Kameras lässt sich dabei eine sehr hohe Präzision bzw. eine optimale Korrekturmöglichkeit erreichen. Je nach Anwendungsfall wäre es aber auch denkbar, beispielsweise lediglich die Istlage des Bauteils in der Bereitstellungsebene zu vermessen.A particularly advantageous machine arrangement and movement guidance results when the transport of the component from the supply station to the substrate is essentially on an approximately vertical transport plane. All drive elements and auxiliary devices can be arranged as evident along this plane. As a result, the visual observation of the workflow and the maintenance of the machine is much easier. Further advantages can be achieved if the actual position (position and angle) of the component on the supply station is determined before recording with a first image recognition device, and or if the actual position of the component in the delivery plane is determined before transport to the substrate with a second image recognition device , and / or if the actual position of the substrate with a third image recognition device is determined, wherein deviations between the determined actual values and a predetermined target position of the component are preferably corrected during transport. The image recognition devices may, for example, be CCD cameras. With a total of only three such cameras, a very high degree of precision or an optimal correction possibility can be achieved. Depending on the application, it would also be conceivable, for example, to measure only the actual position of the component in the deployment plane.

Im Hinblick auf die Möglichkeit der eingangs erwähnten unterschiedlichen Betriebsmodi ist es zweckmässig, wenn die Ermittlung der Istlage des Bauteils in der Bereitstellungsebene durch die zweite Bilderkennungseinrichtung im ersten Betriebsmodus von unten nach oben gegen das am Sekundärwerkzeug gehaltene Bauteil und im zweiten Betriebsmodus von oben nach unten gegen das am Endschwenkwerkzeug gehaltene Bauteil erfolgt. Damit ist gewährleistet, dass unabhängig vom Betriebsmodus in der Bereitstellungsebene das Bauteil immer an der Strukturseite vermessen werden kann.With regard to the possibility of the different operating modes mentioned above, it is expedient if the determination of the actual position of the component in the deployment plane by the second image recognition device in the first operating mode from bottom to top against the component held on the secondary tool and in the second operating mode from top to bottom against the component held on the end pivoting tool takes place. This ensures that regardless of the operating mode in the deployment level, the component can always be measured on the structure side.

Die Ermittlung der Istlage erfolgt vorteilhaft mit je einer der Bilderkennungseinrichtungen immer dann, wenn das Primärwerkzeug bzw. das Sekundärwerkzeug bzw. das Endschwenkwerkzeug das Bildfeld der zu ermittelnden Istlage freigibt. Transportbewegung und $ilderkennung laufen somit derart ab, dass sie sich gegenseitig nicht behindern.The determination of the actual position is advantageously carried out with one of the image recognition devices whenever the primary tool or the secondary tool or the end pivot tool releases the image field of the actual position to be determined. Transport movement and image recognition thus take place in such a way that they do not hinder each other.

Weitere Vorteile können erreicht werden, wenn die erste Bilderkennungseinrichtung derart angeordnet ist, dass die Erfassung des ihr zugeordneten Bildfeldes in beiden Betriebsmodi von innerhalb des Schwenkbereichs des Primärwerkzeugs erfolgt. Ebenso kann die zweite Bilderkennungseinrichtung für den zweiten Betriebsmodus derart angeordnet sein, dass die Erfassung des ihr zugeordneten Bildfeldes von innerhalb des Schwenkbereichs des Endschwenkwerkzeugs erfolgt. Die erste und die zweite Bilderkennungseinrichtung bzw. deren optische Achsen an der Ausgangsöffnung können dabei auf zueinander versetzten vertikalen Achsen angeordnet sein. Auch eine andere Anordnung wäre aber möglich, beispielsweise wenn die Drehachsen des Primärwerkzeugs und des Endschwenkwerkzeugs auf einer gemeinsamen Vertikalen liegen.Further advantages can be achieved if the first image recognition device is arranged in such a way that the acquisition of the image field assigned to it occurs in both operating modes from within the swivel range of the primary tool. Likewise, the second image recognition device for the second operating mode be arranged such that the detection of the image field associated with it takes place from within the pivoting range of the Endschwenkwerkzeugs. The first and the second image recognition device or their optical axes at the output opening can be arranged on mutually offset vertical axes. However, another arrangement would be possible, for example, if the axes of rotation of the primary tool and the Endschwenkwerkzeugs lie on a common vertical.

Die dritte Bilderkennungseinrichtung für das Erkennen der Istlage des Substrats kann an einem vorzugsweise linear verschiebbaren Schlitten angeordnet sein. Damit kann die Kamera unabhängig von der jeweiligen Stellung des Sekundärwerkzeugs in eine Beobachtungsposition gefahren werden. Dies vereinfacht die Konstruktion der Substratzuführung. Bei Substraten mit matrixartiger Anordnung von Absetzpositionen müssen die Substrate nämlich nur in eine Richtung (x) verschoben werden, während die andere Richtung (y) von der in diese Raumrichtung bewegbaren Bilderkennungseinrichtung und dem ebenso in dieser Raumrichtung bewegbaren Sekundärwerkzeug erreichbar ist. Zudem erhöht dies ersichtlicherweise die Flexibilität der Abläufe und verbessert so den Durchsatz, da die Messung entkoppelt von der Position des Sekundärwerkzeugs erfolgen kann und damit Prozesse parallelisiert werden können. Für hochgenaue Anwendungen kann es aber auch zweckmässig sein, die dritte Bilderkennungseinrichtung direkt am Schlitten des Sekundärwerkzeugs anzuordnen.The third image recognition device for detecting the actual position of the substrate can be arranged on a preferably linearly displaceable carriage. This allows the camera to be moved to an observation position, regardless of the position of the secondary tool. This simplifies the construction of the substrate feed. Namely, for substrates having a matrix-like arrangement of settling positions, the substrates need only be displaced in one direction (x), while the other direction (y) can be achieved by the image recognition device movable in this spatial direction and the secondary tool also movable in this spatial direction. In addition, this evidently increases the flexibility of the processes and thus improves the throughput, since the measurement can be decoupled from the position of the secondary tool and thus processes can be parallelized. For high-precision applications, it may also be expedient to arrange the third image recognition device directly on the carriage of the secondary tool.

Weitere Vorteile können erreicht werden, wenn die Ablagestation als Transportstation für den vorzugsweise linearen Durchlauf einer Mehrzahl von Substraten ausgebildet ist. Als Transportmittel können dabei an sich bekannte Klemmeinrichtungen, Förderbänder oder dergleichen eingesetzt werden.Further advantages can be achieved if the storage station is designed as a transport station for the preferably linear passage of a plurality of substrates. As a means of transport can be used per se known clamping devices, conveyor belts or the like.

Neben der Vorratsstation kann eine Waferkassette angeordnet sein, welche zum Laden von Waferframes auf die Vorratsstation in verschiedene Ladepositionen bewegbar ist, in denen die Vorratsstation und die Waferkassette wenigstens teilweise auf der gleichen Ebene angeordnet sind, wobei die Waferkassette in eine Ruheposition bewegbar ist, in welcher die Vorratsstation zum Abarbeiten eines geladenen Waferframes wenigstens teilweise in der horizontalen Arbeitsebene über die Waferkassette verschiebbar ist. Ersichtlicherweise kann so die Waferkassette sehr Platz sparend angeordnet werden, ohne dass ihre Funktion beim Beladen der Arbeitsstation beeinträchtigt wird.In addition to the supply station, a wafer cassette can be arranged, which is movable for loading wafer frames on the supply station in different loading positions, in which the storage station and the wafer cassette are at least partially arranged on the same plane, wherein the wafer cassette is movable to a rest position in which the supply station for executing a loaded wafer frame is at least partially displaceable over the wafer cassette in the horizontal working plane. As can be seen, the wafer cassette can thus be arranged in a very space-saving manner without impairing its function when loading the workstation.

Weitere Vorteile können schliesslich auch noch erreicht werden, wenn im Schwenkbereich des Primärwerkzeugs und/oder des Endschwenkwerkzeugs eine oder mehrere Zwischenablagestationen angeordnet sind, an denen ein Bauteil vor der Übergabe an das Sekundärwerkzeug vorübergehend ablegbar ist. Ersichtlicherweise können so einzelne Bauteile vorübergehend aus dem Arbeitsprozess ausgeschieden und zwischengelagert werden, um zu einem späteren Zeitpunkt wieder weiterverarbeitet zu werden. Im Hinblick auf die heutigen Qualitätsanforderungen bei der Fertigung ist es nämlich teilweise erforderlich, beispielsweise Chips qualitätsmässig zu differenzieren. Um eine möglichst hohe Ausbeute zu erhalten, kann es erforderlich sein, dass nur qualitativ hochwertige Chips auf qualitativ hochwertige Substratpositionen abgesetzt werden, wobei qualitativ schlechtere Chips auf qualitativ schlechteren Substratpositionen eingesetzt werden können. Die Zwischenablagestation ermöglicht auf besonders einfache Weise eine qualitative Steuerung des Ablageprozesses.Further advantages can finally be achieved even if one or more intermediate storage stations are arranged in the pivoting area of the primary tool and / or the final pivoting tool, on which a component can be temporarily stored before being transferred to the secondary tool. As can be seen, individual components can be temporarily removed from the working process and stored temporarily in order to be further processed at a later time. In view of today's quality requirements in the production, it is partially necessary, for example, to differentiate chips in terms of quality. In order to obtain the highest possible yield, it may be necessary to sell only high-quality chips to high-quality substrate positions, whereby lower quality chips can be used on lower-quality substrate positions. The Zwischenablagestation allows a particularly simple way a qualitative control of the filing process.

Ersichtlicherweise sind verschiedene Ausgestaltungen der Erfindung denkbar, ohne den Gegenstand des Schutzbereichs zu verlassen. So könnten z.B. zwei getrennte Endschwenkwerkzeuge Bauteile von einem gemeinsamen Primärwerkzeug übernehmen und an zwei getrennte Sekundärwerkzeuge übergeben.Evidently, various embodiments of the invention are conceivable without departing from the subject matter of the scope. For example, two separate Endschwenkwerkzeuge components from a common primary tool and passed to two separate secondary tools.

Weitere Einzelmerkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels und aus den Zeichnungen. Es zeigen:

Figur 1
Eine vereinfachte Darstellung eines unterteilten Wafers mit einem vergrössert dargestellten Halb- leiterchip,
Figur 2
eine perspektivische Gesamtdarstellung einer Vorrichtung,
Figur 3
eine stark vereinfachte Seitendarstellung der Vorrichtung gemäss Figur 2 mit einer Waferkasset- te in Ruhestellung,
Figur 4
die Vorrichtung gemäss Figur 3 mit der Waferkas- sette in der untersten Zufuhrstellung,
Figur 5
die Vorrichtung gemäss Figur 3 mit der Waferkas- sette in der obersten Zufuhrstellung,
Figur 6
eine perspektivische Darstellung eines Primär- werkzeugs, eines Zwischenschwenkwerkzeugs und ei- nes Endschwenkwerkzeugs sowie eines Sekundärwerk- zeugs,
Figur 7
eine schematische Darstellung des Kurvenverlaufs der Werkzeuge an der Vorrichtung gemäss Figur 6,
Figur 8
eine Seitendarstellung der ersten Bilderkennungs- einrichtung am Primärwerkzeug,
Figur 9
eine Seitendarstellung der zweiten Bilderkennungseinrichtung am Endschwenkwerkzeug,
Figur 10
eine Frontalansicht der beiden Bilderkennungseinrichtungen gemäss den Figuren 8
Figur 11a-l1e
und verschiedene Sequenzen eines Arbeitsvorgangs ohne Wenden des Bauteils, und
Figur 12a-12e
verschiedene Sequenzen eines Arbeitsvorgangs mit Wenden des Bauteils.
Further individual features and advantages of the invention will become apparent from the following description of an embodiment and from the drawings. Show it:
FIG. 1
A simplified representation of a subdivided wafer with an enlarged semiconductor chip,
FIG. 2
an overall perspective view of a device,
FIG. 3
a greatly simplified page representation of the device according to FIG. 2 with a wafer cassette at rest,
FIG. 4
the device according to FIG. 3 with the wafer cassette in the lowest feed position,
FIG. 5
the device according to FIG. 3 with the wafer cassette in the upper feed position,
FIG. 6
3 a perspective view of a primary tool, an intermediate pivoting tool and an end pivoting tool as well as a secondary tool,
FIG. 7
a schematic representation of the curve of the tools on the device according to FIG. 6 .
FIG. 8
a page representation of the first image recognition device on the primary tool,
FIG. 9
a side view of the second image recognition device on Endschwenkwerkzeug,
FIG. 10
a frontal view of the two image recognition devices according to the FIGS. 8
FIGS. 11a-1e
and various sequences of a work operation without turning the component, and
FIGS. 12a-12e
different sequences of a work process with turning of the component.

In Figur 1 ist stark vereinfacht eine an sich bekannte Anordnung dargestellt, bei welcher ein bereits unterteilter Halbleiterwafer 18 auf eine Waferfolie 19 geklebt ist, die ihrerseits in einem Waferframe 20 gespannt ist. Die Halbleiterchips 1 sind bereits durch die Sägelinien vereinzelt, was durch die sich kreuzenden Linien angedeutet ist. Jeder Chip 1 verfügt über eine Auflageseite 4, mit welcher er vor dem Ablösen auf der Waferfolie 19 haftet. Auf der der Auflageseite 4 gegenüberliegenden Seite ist Halbleiterstruktur aufgebracht, weshalb sie nachstehend als Strukturseite 17 bezeichnet wird. Falls es sich beim elektronischen Bauteil nicht um einen Halbleiterchip handelt, entspricht die Strukturseite jeweils einfach der Oberseite des Bauteils. Das Vereinzeln der Chips durch Sägen bzw. der Ablösevorgang von der Waferfolie mit Hilfe von Nadeln und anderen Hilfsmitteln sind dem Fachmann bereits hinreichend bekannt.In FIG. 1 is shown in a highly simplified manner a known arrangement, in which an already divided semiconductor wafer 18 is glued to a wafer foil 19, which in turn is stretched in a wafer frame 20. The semiconductor chips 1 are already isolated by the sawing lines, which is indicated by the intersecting lines. Each chip 1 has a support side 4 with which it adheres to the wafer foil 19 before detachment. Semiconductor structure is applied on the side opposite the support side 4, which is why it is referred to below as the structure side 17. If the electronic component is not a semiconductor chip, the structure side simply corresponds to the top side of the component. The separation of the chips by sawing or the detachment process from the wafer film with the aid of needles and other auxiliaries are already sufficiently known to the person skilled in the art.

Zunächst werden anhand von Figur 2 die wesentlichen funktionellen Einheiten einer Vorrichtung beschrieben. Auf einem Maschinengestell ist eine Vorratsstation 5 angeordnet, welche im vorliegenden Fall als Wafertisch für die Aufnahme von vorbereiteten Waferframes gemäss Figur 1 ausgebildet ist. Die Vorratsstation kann auf einer horizontalen Ebene in zwei Raumachsen verschoben werden, so dass jeder einzelne Chip in eine Ablöseposition gefahren werden kann. Aus einer Waferkassette 27, welche hier in die Ruheposition abgesenkt ist, können bei Bedarf weitere Waferframes nachgeschoben werden. Die Ablagestation 3, zu welcher die Bauteile von der Vorratsstation transportiert werden müssen, ist hier als Zufuhrsystem 39 ausgebildet, auf welchem in Pfeilrichtung x Substrate 2 taktweise zugeführt werden können.First, based on FIG. 2 describes the essential functional units of a device. On a machine frame, a storage station 5 is arranged, which in the present Case as wafer table for receiving prepared wafer frames according to FIG. 1 is trained. The supply station can be moved on a horizontal plane in two spatial axes, so that each individual chip can be moved to a detachment position. From a wafer cassette 27, which is lowered here in the rest position, if necessary, further wafer frames can be added. The storage station 3, to which the components must be transported from the storage station, is here designed as a feed system 39, on which in the direction of arrow x substrates 2 can be cyclically fed.

Die einzelnen Chips werden von einem Primärwerkzeug 6 von der Vorratsstation 5 abgehoben und hoch geschwenkt und danach alternativ einem Zwischenschwenkwerkzeug 41 oder direkt einem Endschwenkwerkzeug 42 übergeben. Letzteres übergibt den Chip dem Sekundärwerkzeug 8, das entlang einer Schlittenführung 21 bis über die Ablagestation 3 verschiebbar ist.The individual chips are lifted by a primary tool 6 from the supply station 5 and pivoted upwards and then alternatively transferred to an intermediate pivoting tool 41 or directly to a final pivoting tool 42. The latter passes the chip to the secondary tool 8, which is displaceable along a carriage guide 21 to above the storage station 3.

Weitere Einzelheiten der Vorrichtung sind aus Figur 3 ersichtlich. Für den Transport der einzelnen Chips 1 muss zunächst eine Höhendifferenz zwischen der Ebene 47 der Vorratsstation und der Bereitstellungsebene 7 überwunden werden, welche praktisch zusammenfällt mit der Ebene der Ablagestation 3 mit den Substraten 2. Diese Höhendifferenz wird auf nachstehend noch genauer beschriebene Art und Weise durch wenigstens zwei Schwenkbewegungen des Primärwerkzeugs 6 bzw. des Endschwenkwerkzeugs 42 und gegebenenfalls noch durch eine dazwischen liegende Schwenkbewegung des Zwischenschwenkwerkzeugs 41 zurückgelegt. Das Sekundärwerkzeug 8 ist an einem Schlitten 15 befestigt, welcher linear auf einer Führungsschiene 21 verschiebbar ist. Am Sekundärwerkzeug sind Korrekturbewegungen in den x- und y- Achsen sowie um eine Drehachse vor dem Absetzten des Bauteils möglich, wenn dies aufgrund der Ermittlung der Istlage erforderlich ist.Further details of the device are off FIG. 3 seen. For the transport of the individual chips 1, first of all a height difference between the level 47 of the supply station and the supply level 7 has to be overcome, which practically coincides with the level of the depositing station 3 with the substrates 2. This height difference is carried out in the manner described in more detail below at least two pivotal movements of the primary tool 6 and the Endschwenkwerkzeugs 42 and optionally still covered by an intermediate pivotal movement of the Zwischenschwenkwerkzeugs 41. The secondary tool 8 is attached to a carriage 15 which is linearly displaceable on a guide rail 21. On the secondary tool correction movements in the x and y axes and about an axis of rotation before settling of the component are possible if this is necessary due to the determination of the actual position.

Die verschiedenen Arbeitswerkzeuge sind mit Aufnahmewerkzeugen zum Festhalten eines Bauteils z.B. mittels Unterdruck versehen. Diese Aufnahmewerkzeuge können vorzugsweise noch wenigstens eine weitere Bewegung in ihrer Längsachse und/oder um ihre Längsachse ausführen.The various work tools are provided with picking tools for holding a component e.g. provided by means of negative pressure. These receiving tools may preferably perform at least one further movement in its longitudinal axis and / or about its longitudinal axis.

Im Schwenkbereich des Primärwerkzeugs 6 bzw. des Endschwenkwerkzeugs 42 ist je eine Zwischenablagestation 40a bzw. 40b angeordnet. Wie eingangs erwähnt, dienen diese Zwischenstationen dazu, einen Chip vorübergehend in einer Warteposition zu platzieren, um ihn zu einem späteren Zeitpunkt weiter zu transportieren. Ähnlich wie die Arbeitswerkzeuge für den Transport der Bauteile sind auch die Zwischenablagestationen mit Aufnahmewerkzeugen versehen.In the pivoting range of the primary tool 6 and the Endschwenkwerkzeugs 42 each a Zwischenablagestation 40a and 40b is arranged. As mentioned above, these intermediate stations serve to temporarily place a chip in a waiting position for further transport at a later time. Similar to the work tools for the transport of the components and the intermediate storage stations are provided with recording tools.

Für die Überwachung und Korrektur verschiedener Istlagen sind verschiedene Kameras an der Vorrichtung angeordnet. Eine erste Kamera 10 ermittelt die Istlage eines Chips 1 an der Vorratsstation 5 vor dem Abheben. Eine zweite untere Kamera 11a erkennt die Lage eines Chips bei bereits erfolgter Übergabe an das Sekundärwerkzeug 8. Eine zweite obere Kamera 11b erkennt dagegen die Lage eines Chips am Endschwenkwerkzeug 42 vor der Übergabe an das Sekundärwerkzeug 8. Ersichtlicherweise wird alternativ eine der beiden zweiten Kameras 11a oder 11b aktiviert, je nach dem, ob das Sekundärwerkzeug den Chip an der Auflageseite oder an der Strukturseite erfasst. Schliesslich vermag eine dritte Kamera 12 die Istlage des Substrats 2 auf der Ablagestation 3 zu erkennen. Diese dritte Kamera 12 ist an einem Schlitten 16 angeordnet, der entlang einer Führungsschiene 22 verschiebbar ist. Weitere Einzelheiten zu diesen Komponenten ergeben sich aus den Figuren 8 bis 10.For the monitoring and correction of different actual positions different cameras are arranged on the device. A first camera 10 determines the actual position of a chip 1 at the storage station 5 before lifting. A second lower camera 11a recognizes the position of a chip when transfer to the secondary tool 8 has already taken place. A second upper camera 11b, in contrast, detects the position of a chip on the end pivot tool 42 before transferring to the secondary tool 8. It can be seen that alternatively one of the two second cameras 11a is used or 11b, depending on whether the secondary tool detects the chip on the support side or on the structure side. Finally, a third camera 12 can detect the actual position of the substrate 2 on the storage station 3. This third camera 12 is arranged on a carriage 16, which is displaceable along a guide rail 22. Further details of these components can be found in the FIGS. 8 to 10 ,

Da die Ablagestation 3 und die Vorratsstation 5 auf unterschiedlichen Ebenen liegen, lässt sich ersichtlicherweise die Vorratsstation 5, also der Wafertisch im Hinblick auf seinen Bewegungsbereich unter die Ablagestation, also unter das Zufuhrsystem schieben, womit der Grundriss des Maschinengestells 26 sehr klein gehalten werden kann. Die Vorratsstation 5 muss in zwei Raumachsen horizontal verschiebbar sein, da jeder einzelne abzuhebende Chip jeweils exakt unter das abhebende Primärwerkzeug 6 zu fahren ist. Derartige Steuerungen sind dem Fachmann bereits bekannt.Since the storage station 3 and the storage station 5 are at different levels, it can be seen, the storage station 5, so the wafer table with regard to its range of movement under the storage station, so push under the supply system, whereby the floor plan of the machine frame 26 can be kept very small. The storage station 5 must be horizontally displaceable in two spatial axes, since each individual chip to be removed is to be driven exactly under the lifting primary tool 6 in each case. Such controls are already known to the skilled person.

Aus den Figuren 3 bis 5 sind weitere Einzelheiten zur Verschiebbarkeit der Vorratsstation 5 in Kombination mit der Waferkassette 27 ersichtlich. Die Waferkassette 27 verfügt auf an sich bekannte Weise über verschiedene Einschubfächer, wobei in jedem Fach ein vorbereiteter Waferframe mit unterteiltem Wafer (gemäss Figur 1) enthalten ist. Die Waferkassette ist vertikal bewegbar und ein hier nicht näher dargestellter Entnahmemechanismus kann aus jeder Etage einen Waferframe entnehmen und auf die Vorratsstation 5 transferieren. Gemäss Figur 3 ist die Waferkassette 27 unter das Niveau der Vorratsstation abgesenkt. In dieser Position kann die in zwei Raumachsen verschiebbare Vorratsstation 5 sowohl unter die Ablagestation 3 als auch über die Waferkassette 27 geschoben werden, womit ersichtlicherweise der Maschinengrundriss sehr klein gehalten werden kann.From the FIGS. 3 to 5 Further details on the displaceability of the storage station 5 in combination with the wafer cassette 27 can be seen. The wafer cassette 27 has different pockets in a known manner, wherein in each compartment a prepared wafer frame with subdivided wafer (according to FIG FIG. 1 ) is included. The wafer cassette is vertically movable and a removal mechanism, not shown here, can remove a wafer frame from each floor and transfer it to the storage station 5. According to FIG. 3 the wafer cassette 27 is lowered below the level of the storage station. In this position, the storage station 5, which can be displaced in two spatial axes, can be pushed both under the storage station 3 and over the wafer cassette 27, whereby, as can be seen, the machine floor plan can be kept very small.

Gemäss Figur 4 steht die Waferkassette 27 in der untersten Entladeposition, in welcher aus der obersten Etage ein Waferframe entnommen werden kann. In der Folge wird jedes Mal, wenn ein Waferframe leer gepickt ist, dieser in die entsprechende leere Etage zurückgeschoben und aus der nächsten Etage ein neuer Waferframe entnommen, bis die letzte Etage erreicht ist. Dabei befindet sich die Waferkassette 27 in der obersten Entnahmeposition, was in Figur 5 dargestellt ist. Selbstverständlich wird die Waferkassette 27 nach jedem Lade- bzw. Entladevorgang wieder in die Ruheposition gemäss Figur 3 abgesenkt.According to FIG. 4 is the wafer cassette 27 in the lowest unloading position, in which from the top floor a wafer frame can be removed. As a result, each time a wafer frame is picked empty, it is pushed back to the corresponding empty floor and from the next floor a new wafer frame is removed until the last floor is reached. In this case, the wafer cassette 27 is in the uppermost removal position, what in FIG. 5 is shown. Of course, the wafer cassette 27 is returned to the rest position after each loading or unloading operation FIG. 3 lowered.

Figur 6 zeigt weitere Einzelheiten der gesamten Transportvorrichtung. Das Primärwerkzeug 6 ist dabei am Ende und auf der Aussenseite eines L-förmigen Dreharms 23 angeordnet. Der Dreharm dreht sich um eine horizontale Achse 13 und ist über einen Motor 25 drehantreibbar. Das Primärwerkzeug beschreibt dabei einen Drehkreis bzw. Teilkreis 14, wobei der Motor 25 eine Betätigung in beide Drehrichtungen ermöglicht. Ein nachstehend noch beschriebenes Kameragehäuse 24 mit einem Objektivausgang ist innerhalb des Drehkreises 14 angeordnet. Auf gleiche oder ähnliche Weise ist das Endschwenkwerkzug 42 an einem L-förmigen Dreharm 43 um eine Achse 44 auf einem Drehkreis 45 schwenkbar. Auch hier ragt ein Kameragehäuse 24' ins Innere des Drehkreises 45, jedoch mit einem nach oben gerichteten Objektivausgang. FIG. 6 shows more details of the entire transport device. The primary tool 6 is arranged at the end and on the outside of an L-shaped rotary arm 23. The rotary arm rotates about a horizontal axis 13 and is rotatably driven by a motor 25. The primary tool describes a turning circle or pitch circle 14, wherein the motor 25 allows actuation in both directions of rotation. A still described camera housing 24 with a lens exit is disposed within the turning circle 14. In a similar or similar manner, the final pivoting train 42 is pivotable about an axis 44 on a turning circle 45 on an L-shaped pivot arm 43. Again, a camera body 24 'projects into the interior of the turning circle 45, but with an upwardly directed lens output.

Schliesslich ist im Wirkbereich des Primärwerkzeugs 6 bzw. des Endschwenkwerkzeugs 42 noch ein Zwischenschwenkwerkzeug 41 angeordnet. Dieses dreht sich um eine Achse 50 und beschreibt dabei einen Drehkreis 51. Da hier innerhalb des Drehkreises kein Kammeragehäuse gelagert werden muss, ist die Anordnung an einem L-förmigen Dreharm nicht erforderlich. Die Bereitstellungsebene 7 bildet praktisch eine horizontale Tangente zum Drehkreis 45. Über der Bereitstellungsebene 7 erstreckt sich die Führungsschiene 21 für den Schlitten 15 des Sekundärwerkzeugs 8. In der in Figur 6 dargestellten Position hat das Sekundärwerkzeug 8 gerade einen Halbleiterchip vom Endschwenkwerkzeug 42 übernommen und transportiert diesen in Richtung der Ablagestation. Sämtliche Werkzeuge sind auf an sich bekannte Weise mit Aufnahmewerkzeugen versehen, wobei die für deren Betrieb erforderlichen pneumatischen Leitungen und Steuervorrichtungen nicht dargestellt sind.Finally, an intermediate pivoting tool 41 is still arranged in the effective range of the primary tool 6 or of the end pivoting tool 42. This rotates about an axis 50 and describes a turning circle 51. Since no chamber housing has to be stored within the turning circle, the arrangement on an L-shaped turning arm is not required. The provisioning level 7 practically forms a horizontal tangent to the turning circle 45. Above the provisioning level 7, the guide rail 21 extends for the carriage 15 of the secondary tool 8 FIG. 6 shown position, the secondary tool 8 has just taken over a semiconductor chip from Endschwenkwerkzeug 42 and transported it in the direction of the storage station. All tools are provided in a conventional manner with recording tools, which required for their operation pneumatic lines and control devices are not shown.

Figur 7 zeigt die geometrische Beziehung der in Figur 6 dargestellten Werkzeuge zueinander und insbesondere den Kurvenverlauf eines Bauteils 1 zwischen der Ebene 47 der Vorratsstation und der Bereitstellungsebene 7. Die Drehachsen 13, 44 und 50 der Arbeitswerkzeuge bilden zueinander ein Dreieck, wobei sich die Drehkreise 14, 45 und 51 auf den Schenkeln des Dreiecks berühren bzw. annähernd berühren und dabei eine erste Übergabeposition 52, eine zweite Übergabeposition 53 und eine dritte Übergabeposition 54 bilden. Das Primärwerkzeug 6 legt ausgehend von der Aufnahmeposition 55 eine Schwenkbewegung zurück, die je nach Betriebsmodus über einen ersten Sektor S1 bis zur ersten Übergabeposition 52 oder über einen zweiten Sektor S2 bis zur zweiten Übergabeposition 53 führt. Das Zwischenschwenkwerkzeug 41 ist entweder inaktiv oder legt stets eine Schwenkbewegung zwischen der ersten Übergabeposition 52 und der dritten Übergabeposition 54 zurück. Das Endschwenkwerkzeug 42 legt je nach Betriebsmodus einen Schwenkweg zwischen der zweiten Übergabeposition 53 und der Abgabeposition 56 oder zwischen der dritten Übergabeposition 54 und der Abgabeposition 56 zurück. Ersichtlicherweise ist es je nach den konstruktiven Gegebenheiten möglich, die Radien der verschiedenen Drehkreise unterschiedlich auszubilden. Es wäre ausserdem denkbar, noch zusätzliche Schwenkwerkzeuge zu integrieren, sodass der Hub zwischen den beiden Ebenen 7 und 47 in mehreren Kurvenbewegungen zurückgelegt wird. Auch die entlang der Kurvenbahn angeordneten Zwischenablagestationen 40a, 40b könnten als Schwenkwerkzeuge ausgebildet werden, welche in der Lage sind, ein Bauteil wegzutransportieren. FIG. 7 shows the geometric relationship of in FIG. 6 shown tools to one another and in particular the curve of a component 1 between the level 47 of the storage station and the supply level 7. The axes of rotation 13, 44 and 50 of the working tools form a triangle to each other, wherein the revolving circuits 14, 45 and 51 touch on the legs of the triangle or approximately touching and thereby form a first transfer position 52, a second transfer position 53 and a third transfer position 54. Starting from the receiving position 55, the primary tool 6 returns a pivoting movement which, depending on the operating mode, leads via a first sector S1 to the first transfer position 52 or via a second sector S2 to the second transfer position 53. The intermediate pivoting tool 41 is either inactive or always puts a pivoting movement between the first transfer position 52 and the third transfer position 54 back. The Endschwenkwerkzeug 42 defines a pivoting path between the second transfer position 53 and the discharge position 56 or between the third transfer position 54 and the discharge position 56 depending on the operating mode. Evidently, it is possible depending on the structural conditions, the radii of different circles form differently. It would also be possible to integrate additional pivoting tools, so that the stroke between the two levels 7 and 47 is covered in several cornering movements. The intermediate deposition stations 40a, 40b arranged along the curved path could also be designed as pivoting tools which are capable of transporting a component away.

Nachstehend wird anhand der Figuren 8 bis 10 die Funktionsweise und Anordnung der ersten Kamera 10 und der unteren zweiten Kamera 11a beschrieben. Die Kameras sind jeweils in einem länglichen Kameragehäuse 24 bzw. 24' angeordnet, welches in den Drehkreis des Primärwerkzeugs 6 bzw. des Endschwenkwerkzeugs 42 hineinragt. Bei der ersten Kamera 10 ist die Ausgangsöffnung 29 nach unten gegen die Ebene 47 der Vorratsstation gerichtet. Dem gegenüber ist bei der unteren zweiten Kamera 11a die Ausgangsöffnung 29' nach oben gegen die Bereitstellungsebene gerichtet. Die Bildumlenkung erfolgt jeweils an einem Umlenkspiegel 36. Je nach Arbeitsposition des am Dreharm 23 angeordneten Primärwerkzeug 6 bzw. des am Dreharm 43 angeordnetem Endschwenkwerkzeugs 42 wird der Bildbereich 37 jeweils für die entsprechende Kamera vollständig freigegeben.The following is based on the FIGS. 8 to 10 the operation and arrangement of the first camera 10 and the lower second camera 11a described. The cameras are each arranged in an elongated camera housing 24 or 24 ', which projects into the turning circle of the primary tool 6 or the end pivot tool 42. In the first camera 10, the exit opening 29 is directed downwards against the plane 47 of the supply station. On the other hand, in the lower second camera 11a, the exit opening 29 'is directed upwardly against the delivery plane. Depending on the working position of the primary tool 6 arranged on the rotary arm 23 or of the end pivoting tool 42 arranged on the rotary arm 43, the image area 37 is completely released in each case for the corresponding camera.

Insbesondere aus Figur 10 ist ersichtlich, dass entsprechend der Drehachsen 13 und 44 auch die jeweiligen optischen Achsen im Bereich der Ausgangsöffnungen der Kameras seitlich zueinander versetzt angeordnet sind. In bestimmten Fällen wäre es aber auch denkbar, dass die Drehachsen 13 und 44 und damit auch die optische Achse im Bereich der Ausgangsöffnung auf einer gemeinsamen vertikalen Achse angeordnet sind.In particular from FIG. 10 It can be seen that corresponding to the axes of rotation 13 and 44, the respective optical axes in the region of the output openings of the cameras are laterally offset from each other. In certain cases, it would also be conceivable that the axes of rotation 13 and 44 and thus also the optical axis are arranged in the region of the outlet opening on a common vertical axis.

Nachstehend wird anhand der Figuren 11a bis 11e der Ablagevorgang eines Halbleiterchips beschrieben, bei dem der Chip mit der gleichen Auflageseite auf das Substrat aufgelegt wird, mit der er vorher auf der Waferfolie haftete (Nonflip-Anwendung). Gemäss Figur 11a steht der Dreharm 23 in einer vertikalen Position, in welcher das Primärwerkzeug 6 einen Halbleiterchip von der Vorratsstation 5 erfasst. Gleichzeitig übergibt das Endschwenkwerkzeug 42 einen bereits vorher geladenen Chip in der Bereitstellungsebene 7 dem Sekundärwerkzeug 8.The following is based on the FIGS. 11a to 11e described the deposition process of a semiconductor chip, in which the chip is placed with the same support side on the substrate, with which he previously adhered to the wafer (non-flip application). According to FIG. 11a the rotary arm 23 is in a vertical position, in which the primary tool 6 detects a semiconductor chip from the storage station 5. At the same time the Endschwenkwerkzeug 42 passes an already preloaded chip in the deployment level 7 the secondary tool. 8

Gemäss Figur 11b drehen sich das Primärwerkzeug 6 und das Endschwenkwerkzeug 42 jeweils im Uhrzeigersinn aufeinander zu, während das Sekundärwerkzeug 8 am Schlitten 15 gegen die Ablagestation 3 bewegt wird. Vor dem Erreichen der Ablagestation wird mit der dritten Kamera 12 am Schlitten 16 die Istlage des Substrats 2 festgestellt.According to FIG. 11b The primary tool 6 and the end pivot tool 42 rotate clockwise toward each other while the secondary tool 8 on the carriage 15 is moved against the storage station 3. Before reaching the storage station, the actual position of the substrate 2 is determined with the third camera 12 on the carriage 16.

Gemäss Figur 11c hat das Sekundärwerkzeug 8 seine Abgabeposition über dem Substrat 2 erreicht. Das Primärwerkzeug 6 übergibt seinen Chip dem Endschwenkwerkzeug 42 und gleichzeitig wird mit Hilfe der ersten Kamera 10 der nächste aufzunehmende Chip 1 auf der Vorratsstätion 5 vermessen.According to FIG. 11c the secondary tool 8 has reached its dispensing position above the substrate 2. The primary tool 6 transfers its chip to the final pivoting tool 42 and at the same time the next chip 1 to be picked up on the storage station 5 is measured with the aid of the first camera 10.

Gemäss Figur 11d hat das Sekundärwerkzeug 8 seinen Chip auf das Substrat 2 abgesetzt. Das Primärwerkzeug 6 ist im Gegenuhrzeigersinn in seine Aufnahmeposition zurückgekehrt. Ebenso wurde das Endschwenkwerkzeug 42 im Gegenuhrzeigersinn in seine Abgabeposition zurückgeschwenkt.According to FIG. 11d the secondary tool 8 has deposited its chip on the substrate 2. The primary tool 6 has returned counterclockwise to its receiving position. Likewise, the Endschwenkwerkzeug 42 was pivoted back counterclockwise in its dispensing position.

Schliesslich zeigt Figur 11e das leere Sekundärwerkzeug 8 auf seinem Weg zurück zur Aufnahme eines neuen Chips. Wie dargestellt, kann dabei in einer Zwischenposition sowohl die obere zweite Kamera 11b zur Ermittlung der Istlage des Chips am Endschwenkwerkzeug 42 als auch die dritte Kamera 12 zur Ermittlung der Istlage des Substrats 2 betätigt werden. Sobald das Sekundärwerkzeug 8 seine Ausgangslage erreicht hat, beginnt der Zyklus gemäss Figur 11a wieder von neuem. Aus Gründen der besseren Übersichtlichkeit wurden in den Figuren 11a bis 11e die nicht benötigte untere zweite Kamera 11a sowie das Zwischenschwenkwerkzeug 41 weggelassen.Finally shows FIG. 11e the empty secondary tool 8 on its way back to receive a new chip. As shown, both the upper second camera 11b for determining the actual position of the chip on the end pivoting tool 42 and the third camera 12 for determining the actual position of the substrate 2 can be actuated in an intermediate position. As soon as the secondary tool 8 has reached its initial position, the cycle begins according to FIG. 11a again from scratch. For the sake of clarity, were in the FIGS. 11a to 11e the unnecessary lower second camera 11 a and the Zwischenschwenkwerkzeug 41 omitted.

Wird eine Ablage des Chips auf das Substrat mit seiner Strukturseite gewünscht (Flipchip-Anwendung), kann die Vorrichtung in einem anderen Betriebsmodus gefahren werden. Dabei wird die Zwischenschwenkvorrichtung 41 betätigt, wie aus den Figuren 12a bis 12e ersichtlich ist. Aus Gründen der besseren Übersichtlichkeit wurde in diesen Figuren die in diesem Betriebsmodus nicht benötigte obere zweite Kamera 11b weggelassen.If it is desired to deposit the chip on the substrate with its structure side (flip-chip application), the device can be operated in another operating mode. In this case, the intermediate pivoting device 41 is actuated, as from the FIGS. 12a to 12e is apparent. For reasons of better clarity, the upper second camera 11b, which is not required in this operating mode, has been omitted in these figures.

Gemäss Figur 12a wird vom Primärwerkzeug 6 ein Chip an der Vorratsstation 5 aufgenommen. Gleichzeitig wird vom Sekundärwerkzeug 8 ein Chip auf das Substrat 2 an der Ablagestation 3 abgesetzt. Das Endschwenkwerkzeug 42 empfängt vom Zwischenschwenkwerkzeug 41 einen vorher geladenen Chip. Die verschiedenen Kameras sind inaktiv.According to FIG. 12a the primary tool 6 receives a chip at the supply station 5. At the same time, a chip is deposited on the substrate 2 at the storage station 3 by the secondary tool 8. The Endschwenkwerkzeug 42 receives from Zwischenschwenkwerkzeug 41 a previously loaded chip. The different cameras are inactive.

Gemäss Figur 12b wurde das Primärwerkzeug 6 mit seinem aufgenommenen Chip im Gegenuhrzeigersinn an die erste Übergabeposition geschwenkt. Ebenso wurde das Zwischenschwenkwerkzeug 41 im Gegenuhrzeigersinn zurückgeschwenkt, um einen neuen Chip aufnehmen zu können. Das Endschwenkwerkzeug hat den vorher geladenen Chip in die Abgabeposition zurückgeschwenkt und auch das Sekundärwerkzeug 8 hat seine Ausgangsposition wieder erreicht, in der es einen neuen Chip aufnehmen kann. Mit Hilfe der dritten Kamera 12 wird an der Abgabestation 3 die Istlage des neu zu bestückenden Substrats 2 vermessen.According to FIG. 12b the primary tool 6 was pivoted with its recorded chip counterclockwise to the first transfer position. Similarly, the Zwischenschwenkwerkzeug 41 was pivoted back counterclockwise to accommodate a new chip can. The Endschwenkwerkzeug has pivoted the previously loaded chip back into the dispensing position and also the secondary tool 8 has reached its original position in which it can accommodate a new chip. With the help of the third camera 12, the actual position of the newly to be loaded substrate 2 is measured at the discharge station 3.

Gemäss Figur 12c wird der Chip am Endschwenkwerkzeug 42 an das Sekundärwerkzeug 8 übergeben. Das Primärwerkzeug 6 verharrt in der ersten Übergabeposition. Sobald gemäss Figur 12d das Endschwenkwerkzeug 42 wieder zurückschwenkt, kann mit der unteren zweiten Kamera 11a die Istlage des nun am Sekundärwerkzeug 8 fixierten Chips ermittelt werden. Gleichzeitig wird mit der ersten Kamera 10 die Istlage des nächsten abzuhebenden Chips an der Vorratsstation 5 ermittelt. Das Primärwerkzeug kann seinen vorher geladenen Chip an das Zwischenschwenkwerkzeug 41 übergeben. Schliesslich kann gemäss Figur 12e das Primärwerkzeug 6 wieder in seine Aufnahmeposition zurückschwenken. Ebenso fährt das Zwischenschwenkwerkzeug 41 seinen vorher geladenen Chip in die dritte Übergabeposition und das Sekundärwerkzeug 8 hat seine Abgabeposition über dem Substrat 2 erreicht. Anschliessend beginnt der Zyklus gemäss Figur 12a wieder von neuem.According to FIG. 12c the chip is transferred to the end tool 42 to the secondary tool 8. The primary tool 6 remains in the first transfer position. As per FIG. 12d the Endschwenkwerkzeug 42 pivots back again, can be determined with the lower second camera 11a, the actual position of the now fixed to the secondary tool 8 chips. At the same time, the actual position of the next chip to be picked up at the storage station 5 is determined with the first camera 10. The primary tool can transfer its previously loaded chip to the intermediate pivoting tool 41. Finally, according to FIG. 12e swing the primary tool 6 back into its receiving position. Likewise, the intermediate pivoting tool moves 41 has its previously loaded chip in the third transfer position and the secondary tool 8 has reached its dispensing position above the substrate 2. Then the cycle starts according to FIG. 12a again from scratch.

Claims (28)

  1. A method for the placement of electronic components (1), in particular semiconductor chips, on a substrate (2) at a placement station (3), wherein the component bearing by a bearing side (4) at a supply station (5) is acquired by means of a primary tool (6) at a structure side (17) remote from the bearing side, is picked up and is transported by means of a rotational movement above the plane (47) of the supply station, and wherein the component is accepted by at least one secondary tool (8) in a provision plane (7) lying above the plane (47) of the supply station, is transported over the substrate and is deposited there, wherein the path of the component between the plane (47) of the supply station and the provision plane (7) is covered in at least two separate, ascending curve movements, wherein the primary tool (6) transfers the component to at least one pivoting tool (41, 42) in a transfer position.
  2. The method as claimed in claim 1, characterized in that the primary tool (6) transfers the component (1) to an intermediate pivoting tool (41), which acquires the component at the bearing side (4) and, after a pivoting movement, transfers it to a final pivoting tool (42), which acquires the component at the structure side (17) again and pivots it into the provision plane (7), where it is transferred to the secondary tool (8), wherein it is finally deposited onto the substrate (2) by the structure side (17).
  3. The method as claimed in claim 1, characterized in that the primary tool (6) transfers the component (1) directly to a final pivoting tool (42), which acquires the component at the bearing side (4) and pivots it into the provision plane (7), where it is transferred to the secondary tool (8), wherein it is finally deposited onto the substrate (2) once again by the same bearing side (4).
  4. The method as claimed in claim 2 and claim 3, characterized in that the components are transferred to the final pivoting tool (42) via the intermediate pivoting tool (41) in a first operating mode and directly in a second operating mode, wherein the pivoting movement of the primary tool (6) in the first and in the second operating mode, respectively, proceeding from the pick-up at the supply station, preferably proceeds on separate movement sections.
  5. The method as claimed in one of claims 1 to 4, characterized in that the curve movements are partial circle arc movements, of which preferably two successive movements proceed in a manner curved in opposite senses.
  6. The method as claimed in one of claims 1 to 5, characterized in that the movement of the secondary tool (8) from the acceptance of the component as far as over the substrate proceeds linearly.
  7. The method as claimed in one of claims 1 to 6, characterized in that the transport of the component (1) from the supply station (5) as far as onto the substrate (2) essentially proceeds on an approximately vertical transport plane.
  8. The method as claimed in one of claims 1 to 7, characterized in that the actual position of the component on the supply station (5) prior to the pick-up is determined by means of a first image recognition device (10), and/or in that the actual position of the component in the provision plane (7) prior to the transport to the substrate is determined by means of a second image recognition device (11a, 11b), and/or in that the actual position of the substrate (2) is determined by means of a third image recognition device (12), wherein deviations between the actual values determined and a predetermined desired position of the component are corrected.
  9. The method as claimed in claim 4 and claim 8, characterized in that the actual position of the component in the provision plane (7) is determined by the second image recognition device (11a, 11b) from below upward toward the component held at the secondary tool (8) in the first operating mode and from above downward toward the component held at the final pivoting tool (42) in the second operating mode.
  10. The method as claimed in claim 8 or claim 9, characterized in that the actual position is determined by means of a respective one of the image recognition devices whenever the primary tool (6) or the secondary tool (8) or the final pivoting tool (42) clears the image field of the actual position to be determined.
  11. An apparatus for the placement of electronic components (1), in particular semiconductor chips, on a substrate (2) at a placement station (3), wherein the component bearing by a bearing side (4) at a supply station (5) can be picked up by means of a primary tool (6) at a structure side (17) remote from the bearing side and by means of which the component can be transported above the plane (47) of the supply station, wherein the component can be accepted by at least one secondary tool (8) in a provision plane (7) lying above the plane (47) of the supply station, can be transported over the substrate (2) and can be deposited there, characterized in that at least one pivoting tool (41, 42) is arranged in the operative region of the primary tool (6), and a component can be transferred to said at least one pivoting tool from the primary tool (6) in a transfer position, wherein the path of the component between the plane (47) of the supply station and the provision plane (7) can be covered in at least two separate, ascending curve movements.
  12. The apparatus as claimed in claim 11, characterized in that an intermediate pivoting tool (41) is arranged in the operative region of the primary tool (6) and a final pivoting tool (42) is arranged in the operative region of the intermediate pivoting tool, and in that a component which is acquired by the primary tool (6) at the structure side (17) and raised can be acquired by the intermediate pivoting tool at the bearing side (4) and can be transferred to the final pivoting tool, wherein it can be acquired by the latter once again at the structure side (17) and can be pivoted into the provision plane (7), with the result that it can be acquired by the secondary tool (8) and can finally be deposited onto the substrate (2) by the structure side (17).
  13. The apparatus as claimed in claim 11, characterized in that a final pivoting tool (42) is arranged in the operative region of the primary tool (6), and in that a component (1) which is acquired by the primary tool (6) at the structure side (17) and raised can be acquired by the final pivoting tool at the bearing side (4) and can be pivoted into the provision plane (7), with the result that it can be acquired by the secondary tool (8) and can finally be deposited onto the substrate (2) once again by the same bearing side (4).
  14. The apparatus as claimed in claim 12 and claim 13, characterized in that both the intermediate pivoting tool (41) and the final pivoting tool (42) are arranged in the operative region of the primary tool (6), wherein the component (1) can be transported to the provision plane (7) alternatively via the intermediate pivoting tool in a first operating mode and directly via the final pivoting tool in a second operating mode.
  15. The apparatus as claimed in claim 14, characterized in that the primary tool (6) can be pivoted, in the first operating mode, in a first movement section from the pick-up position at the supply station as far as the transfer position to the intermediate pivoting tool (41) and, in the second operating mode, in an adjacent second movement section from the pick-up position at the supply station as far as the transfer position to the final pivoting tool (42).
  16. The apparatus as claimed in one of claims 11 to 15, characterized in that the primary tool (6) and the at least one pivoting tool (41, 42) can be pivoted in such a way that an acquired component executes a curve movement composed of circle arc sections.
  17. The apparatus as claimed in one of claims 11 to 16, characterized in that the secondary tool (8) is arranged at a linearly displaceable slide (15).
  18. The apparatus as claimed in one of claims 11 to 17, characterized in that the primary tool (6), the at least one pivoting tool (41, 41) and the secondary tool (8) can be moved essentially on a common, approximately vertical transport plane.
  19. The apparatus as claimed in one of claims 11 to 18, characterized in that a first image recognition device (10) is provided for determining the actual position of the component on the supply station (5) prior to the pick-up, and/or in that a second image recognition device (11a, 11b) is provided for determining the actual position of the component in the provision plane (7) prior to the transport to the substrate, and/or in that a third image recognition device (12) is provided for determining the actual position of the substrate (2), wherein deviations between the actual values determined and a predetermined desired position of the component can be corrected.
  20. The apparatus as claimed in claim 14 and as claimed in claim 19, characterized in that, for determining the actual position of the component in the provision plane (7), the second image recognition device (11a, 11b) is arranged below the provision plane in a manner directed from below upward for the first operating mode and above the provision plane in a manner directed from above downward for the second operating mode.
  21. The apparatus as claimed in claim 20, characterized in that a respective second image recognition device (11a, 11b) is arranged below and above the provision plane, which devices can be activated alternatively depending on the operating mode.
  22. The apparatus as claimed in one of claims 19 to 21, characterized in that the image recognition devices are positioned in such a way that the image field of the actual position to be determined can be completely captured in at least one operating position of the primary tool (6), of the at least one pivoting tool (41, 42) and/or of the secondary tool (8).
  23. The apparatus as claimed in one of claims 20 or 21 and claim 22, characterized in that the first image recognition device (10) is arranged in such a way that the image field assigned to it is captured from within the pivoting range of the primary tool (6), and in that the second image recognition device (11a), for the second operating mode, is arranged in such a way that the image field assigned to it is captured from within the pivoting range of the final pivoting tool (42).
  24. The apparatus as claimed in one of claims 19 to 23, characterized in that the first and the second image recognition device or the optical axes thereof, in the region of the exit opening, are arranged on mutually offset vertical axes.
  25. The apparatus as claimed in one of claims 19 to 24, characterized in that the third image recognition device (12) is arranged at a linearly displaceable slide (16).
  26. The apparatus as claimed in one of claims 11 to 25, characterized in that the placement station (3) is embodied as a feed system for the preferably linear passage of a plurality of substrates.
  27. The apparatus as claimed in one of claims 11 to 26, characterized in that a wafer cassette (27) with a plurality of wafers is arranged alongside the supply station (5) and can be moved, for the purpose of loading wafers onto the supply station, into different loading positions in which the supply station can be loaded with a wafer from the wafer cassette and can be unloaded, and in that the wafer cassette can be moved into a rest position in which the supply station, for processing a loaded wafer, can be displaced at least partly in the horizontal working plane over the wafer cassette.
  28. The apparatus as claimed in one of claims 11 to 27, characterized in that one or a plurality of intermediate placement stations (40a, 40b) at which a component can be placed temporarily prior to the transfer to the secondary tool (8) are arranged in the operative region of the primary tool (6) and/or of the at least one pivoting tool (41, 42).
EP06725721A 2006-04-12 2006-04-12 Method and device for placing electronic components, especially semiconductor chips, on a substrate Active EP2005808B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/061544 WO2007118511A1 (en) 2006-04-12 2006-04-12 Method and device for placing electronic components, especially semiconductor chips, on a substrate

Publications (2)

Publication Number Publication Date
EP2005808A1 EP2005808A1 (en) 2008-12-24
EP2005808B1 true EP2005808B1 (en) 2010-03-17

Family

ID=37499466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06725721A Active EP2005808B1 (en) 2006-04-12 2006-04-12 Method and device for placing electronic components, especially semiconductor chips, on a substrate

Country Status (9)

Country Link
US (1) US8914971B2 (en)
EP (1) EP2005808B1 (en)
JP (1) JP5027210B2 (en)
KR (1) KR101248719B1 (en)
AT (1) ATE461611T1 (en)
DE (1) DE502006006481D1 (en)
MY (1) MY143591A (en)
TW (1) TWI463576B (en)
WO (1) WO2007118511A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946989B2 (en) * 2008-07-07 2012-06-06 パナソニック株式会社 Electronic component bonding equipment
CN102204036A (en) 2008-09-02 2011-09-28 K&S芯片键合设备有限公司 Apparatus for manipulating objects, in particular semiconductor chips, and a flexible flat cable
KR20110059713A (en) * 2008-09-09 2011-06-03 쿨리케 앤드 소파 다이 본딩 게엠베하 A method for controlling the movement of an apparatus, in particular a place tool of a die bonder
EP2284863B1 (en) 2009-08-11 2012-04-04 Kulicke & Soffa Die Bonding GmbH Method and apparatus for inspecting a chip prior to bonding
EP2296168A1 (en) 2009-09-09 2011-03-16 Kulicke & Soffa Die Bonding GmbH Tool for picking a planar object from a supply station
WO2011089201A1 (en) 2010-01-21 2011-07-28 Kulicke & Soffa Die Bonding Gmbh A tool tip for a die placement tool
EP2381465A1 (en) 2010-04-22 2011-10-26 Kulicke & Soffa Die Bonding GmbH Tool tip interface for a die handling tool
CH705370A1 (en) * 2011-07-31 2013-01-31 Kulicke & Soffa Die Bonding Gmbh Method and apparatus for inspection of a semiconductor chip before assembly.
CH705802B1 (en) 2011-11-25 2016-04-15 Esec Ag Means for the mounting of semiconductor chips.
US9922853B2 (en) * 2012-12-12 2018-03-20 Fuji Machine Mfg. Co., Ltd. Die supply apparatus
US9093549B2 (en) 2013-07-02 2015-07-28 Kulicke And Soffa Industries, Inc. Bond heads for thermocompression bonders, thermocompression bonders, and methods of operating the same
CN108511364B (en) * 2017-02-28 2020-01-24 上海微电子装备(集团)股份有限公司 Chip bonding device
CN111434204B (en) * 2017-11-21 2022-05-13 哈里斯股份有限公司 Electronic component mounting device and method for manufacturing electronic device
CN108962791B (en) * 2018-07-10 2021-08-03 唐人制造(宁波)有限公司 Chip alignment and mounting device and method thereof
DE102018006760A1 (en) * 2018-08-27 2020-02-27 Mühlbauer Gmbh & Co. Kg Inspection when transferring electronic components from a first to a second carrier
TWI696230B (en) * 2019-03-04 2020-06-11 智優科技股份有限公司 Wafer pick and place equipment
US20220059406A1 (en) * 2020-08-21 2022-02-24 Advanced Semiconductor Engineering, Inc. Method for manufacturing semiconductor package

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161040A (en) * 1983-03-03 1984-09-11 Shinkawa Ltd Inner lead bonder
JPS6012799A (en) * 1983-07-01 1985-01-23 三洋電機株式会社 Remaining amount detector of chip-shaped electronic part
JPS6016433A (en) 1984-05-25 1985-01-28 Hitachi Ltd Assembling equipment
JPH07118493B2 (en) * 1989-06-26 1995-12-18 松下電器産業株式会社 Flip chip mounting equipment
JP2503082B2 (en) * 1989-09-05 1996-06-05 富士機械製造株式会社 Electronic component mounting device
WO1997032460A1 (en) * 1996-02-29 1997-09-04 Alphasem Ag Method and device for receiving, orientating and assembling of components
JP3399260B2 (en) * 1996-11-28 2003-04-21 松下電器産業株式会社 Flip chip mounting apparatus and flip chip mounting method
JP3420073B2 (en) * 1997-07-28 2003-06-23 松下電器産業株式会社 Component supply apparatus and method
EP1030349B2 (en) * 1999-01-07 2013-12-11 Kulicke & Soffa Die Bonding GmbH Method and apparatus for treating electronic components mounted on a substrate, in particular semiconductor chips
US6156124A (en) * 1999-06-18 2000-12-05 Applied Materials, Inc. Wafer transfer station for a chemical mechanical polisher
DE10203601A1 (en) 2002-01-30 2003-08-14 Siemens Ag Chip removal device, chip removal system, placement system and method for removing chips from a wafer
JP2004103923A (en) * 2002-09-11 2004-04-02 Tdk Corp Device for mounting electronic part and method for mounting the same
US6981312B2 (en) * 2003-03-31 2006-01-03 Intel Corporation System for handling microelectronic dies having a non-piercing die ejector
CH696103A5 (en) * 2003-06-06 2006-12-15 Esec Trading Sa Semiconductor assembly equipment.
JP2005215754A (en) * 2004-01-27 2005-08-11 Dainippon Printing Co Ltd Method for manufacturing sheet with ic tag and device for manufacturing the same

Also Published As

Publication number Publication date
MY143591A (en) 2011-05-31
KR20090007424A (en) 2009-01-16
JP2009533849A (en) 2009-09-17
US8914971B2 (en) 2014-12-23
ATE461611T1 (en) 2010-04-15
TW200802641A (en) 2008-01-01
US20090269178A1 (en) 2009-10-29
WO2007118511A1 (en) 2007-10-25
KR101248719B1 (en) 2013-03-28
EP2005808A1 (en) 2008-12-24
DE502006006481D1 (en) 2010-04-29
JP5027210B2 (en) 2012-09-19
TWI463576B (en) 2014-12-01

Similar Documents

Publication Publication Date Title
EP2005808B1 (en) Method and device for placing electronic components, especially semiconductor chips, on a substrate
EP3106241B1 (en) Machine tool and method for discharging workpiece parts
EP1470747B1 (en) Chip removal device chip, placing system and method for removing chips from a wafer
EP3585561B1 (en) Device and method for deblocking a lens
DE69937949T2 (en) METHOD AND DEVICE FOR REMOVING CLIPS FROM A WAFER AND FOR TRANSPORTING THE CLIPS TO A RECORDING STATION
DE102006023298B3 (en) Raising uppermost plastic plate from stack of plates involves uppermost plate that has been picked up undergoing alternating bending during lifting movement; lifting first takes place parallel to stack and then alternate bending occurs
EP3363043A1 (en) Component handling system
EP2831911B1 (en) Processing station for planar substrates and method for processing planar substrates
DE10392335T5 (en) Mounting device for electronic components and method for assembling electronic components
WO2008003502A1 (en) Apparatus and method for separating and transporting substrates
EP1918101A1 (en) Screen printing facility for solar cells comprising a positioning device
EP1952939A1 (en) Workpiece operation device
DE112015002397T5 (en) Automatic handling device
DE102017121557A1 (en) Method and device for conveying and positioning workpieces
CH705802A1 (en) Means for the mounting of semiconductor chips.
DE10228441B4 (en) Method and device for automatically loading a double-sided polishing machine with semiconductor wafers
EP1941536B1 (en) Method and device for the placement of electronic components, in particular semiconductor chips, on a substrate
DE10113898A1 (en) Device for feeding and / or removing magazines filled with objects
DE102007048410B4 (en) Feeding device for components to a placement for the placement of substrates with the components
EP1985559A1 (en) Method and device for applying parting agent to flat glass elements
EP3887295B1 (en) Device and method for folding and storing book documents
DE102010017497A1 (en) Loading and/or unloading device for substrate processing equipment, has conveyor comprising centering device, where equipment exhibits control for movement of conveyor, centering device, elements, lifting and lowering device and array
DE102020108037B4 (en) Positioning device and method for positioning workpieces
DE102008051947B3 (en) Supplying device for supplying component to loading vending machine for loading substrates with component, has component carrier with component, which is loaded on surface of component carrier
DE102022102720A1 (en) ROBOT CONTROLLED FEED DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KULICKE & SOFFA DIE BONDING GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006006481

Country of ref document: DE

Date of ref document: 20100429

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALPHASEM HOLDING GMBH

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100317

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KULICKE & SOFFA DIE BONDING GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KULICKE & SOFFA DIE BONDING GMBH

Free format text: ALPHASEM HOLDING GMBH#ANDHAUSEN 52#8572 BERG TG (CH) -TRANSFER TO- KULICKE & SOFFA DIE BONDING GMBH#ANDHAUSEN 52#8572 BERG TG (CH)

Ref country code: CH

Ref legal event code: PUE

Owner name: ALPHASEM HOLDING GMBH

Free format text: KULICKE & SOFFA DIE BONDING GMBH#ANDHAUSEN 52#8572 BERG TG (CH) -TRANSFER TO- ALPHASEM HOLDING GMBH#ANDHAUSEN 52#8572 BERG TG (CH)

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100618

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

BERE Be: lapsed

Owner name: KULICKE & SOFFA DIE BONDING GMBH

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100717

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

26N No opposition filed

Effective date: 20101220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110504

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110429

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100412

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120321

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 461611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 18

Ref country code: CH

Payment date: 20230502

Year of fee payment: 18