EP2004953B1 - Verfahren zur optimierung der erzeugung einer bohrlochgruppe - Google Patents
Verfahren zur optimierung der erzeugung einer bohrlochgruppe Download PDFInfo
- Publication number
- EP2004953B1 EP2004953B1 EP07727816A EP07727816A EP2004953B1 EP 2004953 B1 EP2004953 B1 EP 2004953B1 EP 07727816 A EP07727816 A EP 07727816A EP 07727816 A EP07727816 A EP 07727816A EP 2004953 B1 EP2004953 B1 EP 2004953B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- well
- production
- wells
- cluster
- commingled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 287
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000004907 flux Effects 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 8
- 230000003993 interaction Effects 0.000 claims description 60
- 239000012530 fluid Substances 0.000 claims description 41
- 238000012360 testing method Methods 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 21
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000010779 crude oil Substances 0.000 claims description 12
- 238000012512 characterization method Methods 0.000 claims description 11
- 239000003921 oil Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000007726 management method Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000013439 planning Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 claims description 2
- 230000004936 stimulating effect Effects 0.000 claims description 2
- 238000013024 troubleshooting Methods 0.000 claims description 2
- 238000010200 validation analysis Methods 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims 2
- 230000002596 correlated effect Effects 0.000 claims 1
- 238000009795 derivation Methods 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000000638 stimulation Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 18
- 238000005457 optimization Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 238000011958 production data acquisition Methods 0.000 description 5
- 238000009530 blood pressure measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
-
- E21B41/0092—
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
Definitions
- the invention relates to a method for optimising the production of a hydrocarbon production system comprising a cluster of hydrocarbon production wells and an associated fluid separation assembly.
- fluid streams produced by individual wells of a well cluster are commingled into multiphase streams in one or more production manifold (header) conduits and routed via a fluid separation assembly (comprising one or more bulk separators and/or production separators) into fluid outlet conduits for transportation and sales of at least nominally separated streams of liquids, gas and/or other fluids.
- a fluid separation assembly comprising one or more bulk separators and/or production separators
- a problem associated with management of fluid flow at the outlets of the bulk or production separator is that this fluid flow stems from the commingled flux from all the wells of the cluster and does not provide information about the composition and flux of fluids produced by the individual wells. Consequently, the individual flux of fluids produced by the individual wells cannot customarily be tracked accurately in real time or instantaneously.
- the production from the wells often interact due to limited capacity in the manifold and the separator to handle the full potential productions from the wells. As an example, over-production of gas in one well may reduce the total oil production in the cluster of wells.
- a further problem with monitoring and controlling the production of a hydrocarbon production well is that such a well may produce a mixture of crude oil, gas, water and condensates and that the production may contain irregular slugs of crude oil, water, solids and/or condensates.
- Multiphase flowmeters are often too expensive, have too restricted an operating envelop and are too complex to install on individual well flowlines to allow individual oil, water and gas components of the well production to be measured continuously in real time, particularly as the well multiphase flow characteristic changes significantly over the life of the well.
- These multiphase flowmeters also require calibration at start up and/or from time to time thereafter. Consequently, in the vast plurality of cases, the production of fluids by the individual wells is not customarily measured directly accurately continuously, or in real time.
- PU RTM Production Universe Real Time Monitoring
- the PU RTM method allows accurate real time estimation of the contributions of individual wells to the total commingled production of a cluster of crude oil, gas and/or other fluid production wells, based on well models derived from well test data and updated regularly using commingled production dynamic data.
- the PU RTM method also does not require the deployment of multiphase meters at each monitored well.
- SPE 83978 discloses the concept of real-time optimization in general terms.
- An object of the present invention is to provide a method and system to optimise production of a cluster of wells on the basis of an estimation of the contributions of individual wells to the production of the cluster of wells, tailored to the particular constraints and requirements of the oil and gas production environment.
- the wells in the cluster may differ in terms of nature and flux of its effluents, and/or mode of operation, stimulation and/or manipulation.
- the wells may also produce from multiple subsurface zones or branches.
- the wellheads of the wells in the cluster may be located on land or offshore, above the surface of the sea or on the seabed.
- the method according to the invention may be used to generate one or more optimisation models, taking into account only significantly relevant well and production system characteristics and effects.
- a method for optimising production of a cluster of wells of which well effluent streams are commingled and separated in a fluid separation assembly into at least partly separated streams of crude oil, gas and/or other fluids comprising:
- the method according to the invention may further comprise the step of periodically repeating the optimisation method by aligning the prediction models with the current flows so that the aligned prediction models reflect the current flows as estimated by the dynamic reconciliation process.
- the optimisation target may be a revenue function relating accumulated or averaged combined and / or individual well production to actual net or gross or incremental monetary revenue, optionally including associated production costs.
- the optimisation target may be required to be achieved while obeying production constraints, consisting of bounds on the manipulated variables and / or the individual well productions, and / or well production quantities, including measurements, and / or that of groups of wells and / or on the interaction pressure(s), and / or on the commingled total productions.
- the method according to the invention may further comprise the step of performing an optimisation using any of a plurality of numerical optimization algorithms over the manipulated variables based on the operational optimisation target, optionally with constraints, and well and/or overall commingled production prediction models to yield a set of optimised manipulated variables that achieve the operational optimisation target.
- the production of well effluents of the wells may be varied by adjusting the opening of a production choke valve at the wellhead of the wells or in flowlines connected to the wells, or of a flow control valve in a lift gas injection system of the wells, or by other means of stimulating or restricting the production of the wells.
- the production of well effluents of the wells may be varied by adjusting the interaction pressure(s) of the production system by means of rerouting well production through parallel production manifold conduits that are connected between upstream and downstream manifolds, or by adjusting the pressure of the fluid separation assembly or assemblies.
- Required adjustments predicted by the method according to the invention to achieve the optimisation targets may be automatically transmitted to the wells and the production system, or alternatively, after validation by a human operator.
- estimation and/or prediction models may optionally be generated in part or in full from theoretical and/or empirical physical and/or mechanical and/or chemical characterization of the wells and/or the production system.
- the optimization target can be adjusted in reaction to and/or in anticipation of changes to the production requirements and/or costs and/or revenues and/or production infrastructure and/or state of the wells and/or the state of the production facilities; and optionally followed up by the conduct of the optimization process, the results of which are implemented and/or used for analysis and planning and/or recorded for future action.
- the method and system outlined herein is further applicable to the case where the optimisation target is achieved by optional means of temporary close in of production in one or more wells of the well cluster, or the initiation of production of wells of the well cluster that were initially not in production.
- estimation and/or prediction models may optionally be compared and/or evaluated against theoretical and/or empirical physical and/or mechanical and/or chemical characterization of the wells and/or the production system; for the purposes of troubleshooting and/or diagnosis and/or for improving the models and/or for analysis leading to longer time horizon production management and optimization activities.
- the methods of this invention apply also when one or more of the wells from the cluster of wells are periodically, or intermittently, operated, or are operated from time to time, and the production or associated quantities to be optimised, and optionally, constrained, are evaluated, for example averaged, over fixed periods of time larger than that characteristic of the periodicity or intermittent operation.
- the methods of this invention apply also when one or more of the wells from the cluster of wells are periodically, or intermittently, operated, or are operated from time to time, and the duration of its operation, as a proportion of a fixed period of time, is taken a manipulated variable for the well.
- the methods of this invention apply additionally to an optimization target defined on wells in the well cluster with two or more subsurface zones.
- zone production estimation models and “zone production prediction models” are generated in addition to the “well production estimation models” and “well production prediction models”.
- the method according to the invention allows the characterization of the behaviour of wells individually and within the context of the overall production facility as a function of variables that can be freely manipulated at the wells and also for the overall facility.
- the characterization of the wells and their interactions with the facility allows directly the accurate real time prediction and optimisation of well production within the context of the production facility.
- the method according to the invention may include consideration of constraints on the production, arising from both the interactions between wells due to the limitations on the facilities, as well as externally imposed constraints.
- the method according to the invention is also referred to as "Production Universe Real Time Optimisation" (PU RTO).
- the "PU RTO” method according to the invention has several advantages over prior art methods, for example, as outlined in PU RTM described in International patent application PCT/EP2005/055680 .
- the "PU RTO” method according to the invention may be used to derive various well and production system characteristics from simple well and production testing at the well and production facility alone, enabling easier model maintenance and dispensing with measurements and quantities not continuously measured, but nevertheless unpredictably variable over periods of time in a production environment, such as piping surface roughness, reservoir pressure-volume-temperature fluid characteristics and composition, equipment and well performance curves, and similar.
- "PU RTO” is "data driven”.
- the "overall well and production system model" of the commingled well production system may be constructed without preconceptions as to its underlying physical nature other than the use basic fundamental topological and physical relations, and purely from measured data.
- the method according to the present invention may be used to provide characterization of the combined well and production system that will be of benefit additionally for offline analysis and planning activities.
- FIG. 1 depicts a simple embodiment of a production system comprising a cluster of wells of which effluents are commingled at a production manifold and routed to a production separator.
- Well 1 is shown in detail, and may be taken as representative of the other wells in the cluster.
- the other wells in the cluster may however differ in terms of nature and flux of its effluents, and / or mode of operation / stimulation / manipulation.
- Well 1 comprises a well casing 3 secured in a borehole in the underground formation 4 and production tubing 5 extending from surface to the underground formation.
- the well 1 further includes a wellhead 10 provided with monitoring equipment for making well measurements, typically for measuring Tubing Head Pressure (THP) 13 and Flowline Pressure(FLP) 14.
- monitoring equipment for making subsurface measurements, for example Downhole Tubing Pressure(DHP) 18, and/or subsurface and/or surface tubing and/or flowline differential pressure meters, for example wet gas meters (not shown).
- DHP Downhole Tubing Pressure
- the wells may also produce from multiple subsurface zones or branches.
- the wellheads of the wells in the cluster may be located on land or offshore, above the surface of the sea or on the seabed.
- the well 1 will also have some means of adjusting production, such as: a production control choke 11 or a fixed bean choke (not shown) and/or a lift-gas injection control system 12 or downhole interval control valves (not shown), which control the production from one or more inflow regions of the well.
- a production control choke 11 or a fixed bean choke not shown
- a lift-gas injection control system 12 or downhole interval control valves not shown
- Numerical "manipulated variables" are associated with each of these means of adjusting production.
- the production system further includes a plurality of well production flow lines 20, extending from the wellheads 10 to a production manifold 21, a production pipeline 23 and a means of separating the commingled multiphase flow, in this case a production separator 25.
- Production manifold pressure measurement 22 and production separator pressure measurement 26 will often be available on the production manifold and the production separator as shown. There will be some means of regulating the level of the production separator, and optionally its pressure or the pressure difference between the separator its the single-phase outlets. For simplicity a pressure control loop 27 is show in FIG. 1 .
- the production manifold pressure measurement 22 (alternatively the production separator pressure measurement 26) will be used as "interaction pressure", the variation of which as the well production rates are varied, is an indicator of the degree of interaction between the wells.
- the production separator 25 is provided with outlets for water, oil and gas 35, 36 and 37 respectively. Each outlet 35, 36 or 37 is provided with flow metering devices, 45, 46 and 47 respectively. Optionally, the water and oil outlets can be combined.
- the production separator pressure may optionally be controlled by regulating the gas flow from 37, thereby affecting the manifold pressure 26 and the flowline pressure 14 and thus the production of the individual wells.
- the well measurements comprising at least data from 13 and optionally from 14, 18, liftgas injection rate from 12, position of production choke 11, and other measurements as available, are continuously transmitted to the "Production Data Acquisition and Control System” 50.
- the commingled production measurements 45, 46, 47 are continuously transmitted to the "Production Data Acquisition and Control System” 50.
- the typical data transmission paths are illustrated as 14a and 45a.
- the data in 50 is stored and is then subsequently available for non-real time data retrieval for data analysis and model construction as outlined in this patent.
- the data in the "Production Data Acquisition and Control System” is also accessed by "PU RTM" in real time for use in conjunction with "well production estimation models” for the continuous real time estimation of individual well productions.
- Some well production rate controls will also be adjustable from "Production Data Acquisition and Control System” 50 for remotely adjusting and optimising the well production, for example, the production choke opening or the liftgas injection rate, and the signal line for liftgas injection rate control is shown as 12a.
- An associated well testing facility may optionally and is preferably to be available for the individual testing and characterization of the wells. In the absence of a well testing facility, testing for well model construction may be conducted utilizing measurements 45, 46, 47 from the production separator.
- FIG. 2 provides one preferred embodiment of the "data driven” modelling process for this invention.
- the intent is to generate sustainably useful models fit for the purpose of the invention, taking into account only significantly relevant well and production system characteristics and effects.
- "PU RTM” is run online to produce continuous real time estimates of production at each individual well 70.
- the symbols A i , B i can be envisaged as either matrices or functionals operating on ⁇ v i and ⁇ w .
- cross terms and second and higher order terms on ⁇ v i and ⁇ w can be inserted without loss of generality.
- the well optimisation, 78 may then be conducted to solve for the optimal value of v i , 79, the manipulated variable at well i .
- the well optimisation necessarily assumes the common well interaction variable w , which is an variable affected by the collective production of the wells and variables at the overall production system level, is unchanged by the well optimisation, or has negligible effect on the optimisation result.
- the optimised variables 84 may be directly computed or an automated numerical iterative optimisation procedure applied.
- automated numerical iterative optimisation approaches that are applicable depending on the form of 83.
- manipulated variables are continuous variables, and 83 is defined by continuous smooth nonlinear model and revenue functions and inequality constraints
- SQL sequential quadratic programme
- the set of "optimised manipulated variables” is then available for further action.
- the "optimised manipulated variables” are reported to the production facility operators for implementation at the wells and the facility, or alternatively, directly transmitted to the "Production Data Acquisition & Control System” 50 for automated implementation.
- optimised manipulated variables is conducted from time to time, and is controlled by a "Optimization Initiation System” 90.
- "Well Operational Production Optimisation” and the “Overall Facility Operational Production Optimisation” are initiated on a periodic basis, for example once every day, and/or on demand, in anticipation of changes to the state of the philosophy of management of the wells or of the production system or of the constraints or of the optimisation target.
- changes in gaslift availability will automatically initiate an optimisation.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Feedback Control In General (AREA)
- Geophysics And Detection Of Objects (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Steroid Compounds (AREA)
- Heat Treatment Of Steel (AREA)
- Forging (AREA)
Claims (18)
- Verfahren zum Optimieren der Förderung aus einem Cluster von Schächten, deren Schachtaustragströme vermischt sind und in einer Fluidtrennanordnung in zumindest teilweise getrennte Ströme aus Rohöl, Gas und/oder anderen Fluiden getrennt werden, wobei das Verfahren umfaßt:a) Ausführen eines Schachttests an jedem der Schächte, während die Förderung aus dem getesteten Schacht variiert wird und eine oder mehrere einzelne Schachtfördervariablen überwacht werden;b) Erzeugen eines Schätzmodells (61) für jeden Schacht aus den durch die Schachttests gewonnenen Daten (60), das sich auf die Variation der Strömungsmuster der Austragströme, die von dem getesteten Schacht gefördert werden, und der überwachten Schachtfördervaria-blen bezieht;c) Einführen des Schachtclusters in normal vermischte Öl- und/oder Gasförderung;d) Überwachen während des Schrittes c) eines dynami-schen Fluidströmungsmusters der zumindest teilweise getrennten Strömen aus Rohöl, Gas und/oder anderen Fluiden mittels Durchflußmessern, die in den zumindest teilweise getrennten Strömen aus Rohöl, Gas und/ oder anderen Fluiden stromabwärts der Fluidtrennanordnung angeordnet sind;e) Überwachen während des Schrittes c) einer oder mehrerer Schachtfördervariablen, die sich auf die Merkmale der Mehrphasenströme beziehen, die von den einzelnen Schächten gefördert werden;f) wiederholtes Schätzen eines dynamisch vermischten Fluidströmungsmusters des Clusters von Schächten auf der Basis des Schätzmodells (61) gemäß Schritt b) und der Fördervariablen, die gemäß dem Schritt e) überwacht werden;g) Durchführen eines dynamischen Verträglichkeitsverfahrens während einer ausgewählten Verträglichkeitspe-riode:- es wird angenommen, daß das geschätzte dyna- mische vermischte Fluidströmungsmuster gemäß Schritt f) eine Ansammlung von einzelnen Schachtförder-Schätzmodellen ist, die durch unbekannte Gewichtskoeffizienten multipliziert werden;- die unbekannten Gewichtskoeffizienten werden durch iteratives Variieren jedes Gewichtskoeffizienten geschätzt, bis das geschätzte dynamische vermischte Fluidströmungsmuster im wesentlichen dem überwachten dynamischen Fluidströmungsmuster entspricht; und- die besten Schätzungen des Förderstromes werden für die ausgewählte Verträglichkeitsperiode bereitgestellt, wobei die einzelnen Schachtverträglichkeitsfaktoren mit den Schätzmodellen verwendet werden, um die Förderung aus jedem Schacht für eine nächste Verträglichkeitsperiode zu schätzen;h) ein betriebliches Optimierungsziel wird definiert, das aus einem zu optimierenden Ziel hinsichtlich der Förderung aus einem oder mehreren Schächten und/oder des Clusters von Schächten definiert wird;i) Einstellen der Förderung der Schachtausträge des Schachtclusters derart, daß das Optimierungsziel angenähert wird; undj) die Schritte g) und i) werden von Zeit zu Zeit wiederholt.
- Verfahren nach Anspruch 1, das ferner die Schritte aufweist:- Identifizieren für zumindest einen der Schächte in dem Cluster einer oder mehrerer numerischer manipulierter Schachtfördervariablen, die direkt manipuliert werden können, um die Förderung des Schachtes zu variieren, und danach Ableiten aus den Daten, die aus den Schachttests und/oder während der normalen vermischten Förderung erhalten wurden, und/oder dem Schätzmodell, ein Vorhersagemodell, das sich auf die manipulierten Schachtvariablen zur Variation des Flusses und/oder Strömungsmusters und/oder anderer Merkmale der geförderten Schachtausträge bezieht, wobei irgendwelche Schächte ohne identifizierte manipulierte Schachtfördervariablen Vorhersagemodelle aufweisen, die konstante Zahlen gleich einer geschätzten Nennförderung der Schächte sind;- Summieren der Vorhersagemodelle aller Schächte des Schachtclusters zur Schaffung eines Gesamtvermischtförderungs-Vorhersagemodells;- Einstellen der Förderung der Schachtausträge mittels der manipulierten Schachtvariablen, geführt von den einzelnen Schachtvorhersagemodellen und des Gesamtvermischtförderungs-Vorhersagemodells zur Erzielung des Optimierungszieles.
- Verfahren nach Anspruch 2, das ferner die Schritte aufweist:- Messen eines oder mehrerer Interaktionsdrücke, wie eines Druckes innerhalb eines oder mehrerer Förderverteiler in den Schachtströmungsleitungen, die mit den Schachtköpfen der Schächte des Clusters von Schächten verbunden sind, wobei in diesen Verteilern der Fluß aus einer Vielzahl von Schachtströmungsleitungen vermischt wird, wobei die Variation des Interaktionsdruckes, wenn die Gesamtschachtförderungen variieren, angezeigt und die Interaktionen zwischen den Austragströmen von verschiedenen Schächten verlinkt werden;- Erzeugen aus dynamischen Daten, welche die Varia- tionen der Interaktionsdrücke auf die gemessenen Variablen der Schächte beziehen, aus der normalen Vermischtförderung und/oder während Perioden der Förderungsstörung und/oder des Durchführens einer Reihe von Schachtinteraktionstests, während welchen der Interaktionsdruck variiert wird;- Erzeugen aus den dynamischen Daten, die sich auf die Variationen des Interaktionsdruckes bzw. der Interaktionsdrücke zu den gemessenen Variablen der Schächte beziehen, von Schachtvorhersagemodellen, die sich auf die Variationen der manipulierten Schachtvariable(n) und des Interaktionsdruckes bzw. der Interaktionsdrücke zur Förderung der Schächte beziehen;- Erzeugen dynamischer Daten, die sich auf die Variationen eines oder mehrerer Interaktionsdrücke zur Gesamtvermischtförderung beziehen, aus Zeitspannen normaler Vermischtförderung und/oder während Zeitspannen der Förderungsstörung und/oder des Durchführens einer Reihe von Tests, während denen der Interaktionsdruck variiert wird, und danach eines oder mehrerer Verteilerinteraktionsmodelle, die sich auf die Variation eines oder mehrerer Interaktionsdrücke zu den Gesamtvermischtförderströmen beziehen, die durch die Verteiler strömen;- Kombinieren der Schachtvorhersagemodelle mit den Interaktionsdruckmodellen zur Erzielung eines Gesamtvermischtförderungs-Vorhersagemodells.
- Verfahren nach den Ansprüchen 2 und 3, wobei das Verfahren ferner umfaßt
periodisches Wiederholen der Optimierungsmethode durch Ausrichten der Vorhersagemodelle mit den vorhandenen Strömungen derart, daß die ausgerichteten Vorhersagemodelle die vorhandenen Strömungen als durch das dynamische Verträglichkeitsverfahren geschätzt reflektieren. - Verfahren nach einem der Ansprüche 1-4, bei welchem das Optimierungsziel eine Gewinnfunktion ist, welche einen Bezug der angesammelten oder durchschnittlich kombinierten und/oder einzelnen Schachtförderung zu dem tatsächlichen Netto- oder Gesamt- oder Teilgeldgewinn herstellt, gegebenenfalls einschließlich assoziierter Förderkosten.
- Verfahren nach Anspruch 5, bei welchem das Optimierungsziel erreicht werden soll, während Förderungszwänge beachtet werden, die aus den Grenzen der manipulierten Varia-blen und/oder der einzelnen Schachtförderungen und/oder Schachtfördermengen, einschließlich Messungen, und/oder der Gruppen von Schächten und/oder einem oder mehreren Interaktionsdrücken und/oder der vermischten Gesamtförderung des Schachtclusters bestehen.
- Verfahren nach Anspruch 5 oder 6, das ferner den Schritt des Durchführens einer Optimierung unter Verwendung jedes einer Vielzahl von numerischen Optimierungsalgorithmen gegenüber den manipulierten Variablen umfaßt, basierend auf dem Betriebsoptimierungsziel, gegebenenfalls mit Zwängen, und den Schacht- und/oder Gesamtvermischtförderungs-Vorhersagemodellen, um einen Satz von optimierten manipulierten Variablen zu erzeugen, welche das Betriebsoptimierungsziel erreichen.
- Verfahren nach einem der Ansprüche 1-7, bei welchem die Förderung der Schachtausträge der Schächte durch Einstellen der Öffnung des Förderdrosselventils am Schachtkopf der Schächte oder in Strömungsleitungen, die mit den Schächten verbunden sind, oder eines Durchflußsteuerungsventils in einem Liftgaseinspritzsystem der Schächte, oder durch andere Mittel der Stimulierung oder Beschränkung der Förderung der Schächte variiert wird, wie irgendwelche Mittel des reversiblen und gesteuerten Schließens und Öffnens eines Schachtes, eines Einstellpunktes einer Steuerschleife des Schachtes mit dem Förderdrosselventil als Betätiger, eines Einstellpunktes einer Steuerschleife an dem Schachtgaslift-Einspritzdurchsatz oder -druck, der Dauer des Abschaltens des Gaslifteinspritzens, der Dauer des Anschaltens der Gaslifteinspritzung, des Schachtgaslift-Einspritzungsdurchsatzes, eines Setzpunktes einer Steuerschleife an der Schachtdüsenpumpen-Einspritzleitung für hydraulisches Fluid, der Geschwindigkeit einer elektrischen Schachttauchpumpe (ESP), der Schachtstangenpumpen-Motorgeschwindigkeit, der Dauer des Abschaltens der Schachtstabpumpe und/oder der Öffnung des Bohrlochintervall-Steuerventils.
- Verfahren nach einem der Ansprüche 1-8, bei welchem die Förderung von Schachtausträgen der Schächte variiert wird, indem ein oder mehrere Interaktionsdrücke des Fördersystems dadurch eingestellt werden, daß die Schachtförderung durch parallele Förderverteilleitungen umgeleitet wird, die zwischen dem stromaufwärtigen und dem stromabwärtigen Verteiler eingeschaltet sind, und/oder durch Einstellen des Druckes der Fluidtrennanordnung und/oder durch Einstellen der Ventile zum Umleiten der Schachtausträge zu einem oder mehreren Verteilern, welche die Förderung vermischen oder die vermischte Förderung zu einem oder mehrerer Fördertrenneinrichtungen leiten, und/oder durch Einstellen der Geschwindigkeit eines Kompressors in einer Auslaßleitung der Fluidtrennanordnung.
- Verfahren nach einem der Ansprüche 1-9, bei welchem die erforderlichen Einstellungen, die vorhergesagt sind, um Optimierungsziele zu erreichen, automatisch an die Schächte und das Fördersystem, gegebenenfalls nach der Validierung durch einen menschlichen Betreiber, übertragen werden.
- Verfahren nach einem der Ansprüche 1-10, bei welchem eine oder mehrere der Schätzungs- und/oder Vorhersagemodelle gegebenenfalls teilweise oder zur Gänze aus theoretischen und/oder empirisch physikalischen und/oder mechanischen und/oder chemischen Merkmalen der Schächte und/oder des Fördersystems erzeugt werden können.
- Verfahren nach einem der Ansprüche 1-11, bei welchem das Optimierungsziel in Reaktion auf und/oder in Erwartung der Änderungen der Förderanforderungen und/oder Kosten und/oder Erträge und/oder Produktionsinfrastruktur und/oder des Status der Schächte und/oder des Status der Förderanlagen eingestellt wird; und gegebenenfalls gefolgt von der Durchführung des Optimierungsverfahrens, dessen Ergebnisse implementiert und/oder zur Analyse und zur Planung und/ oder Aufzeichnung weiterer Aktionen verwendet werden.
- Verfahren nach einem der Ansprüche 1-12, bei welchem das Optimierungsziel durch allfällige Mittel zum temporären Stillsetzen der Förderung in einem oder mehreren Schächten des Schachtclusters oder durch Initiierung der Förderung von Schächten des Schachtclusters, die ursprünglich nicht in Förderung waren, erreicht wird.
- Verfahren nach den Ansprüchen 2 und 3, bei welchen eines oder mehrere der Schätz- und/oder Vorhersagemodelle gegebenenfalls mit theoretischen und/oder empirischen physikalischen und/oder mechanischen und/oder chemischen Merkmalen der Schächte und/oder des Fördersystems verglichen und/oder ausgewertet werden; zum Zwecke der Überprüfung und/oder Diagnose und/oder Verbesserung der Modelle und/oder zur Analyse, die zu längerem Zeithorizontfördermanagement und Optimierungsaktivitäten führen.
- Verfahren nach den Ansprüchen 1-13, bei welchen einer oder mehrere der Schächte aus dem Cluster von Schächten periodisch oder intermittierend betrieben wird, oder von Zeit zu Zeit betrieben wird, und die Förderung oder assoziierte Mengen, die optimiert werden sollen und gegebenenfalls beschränkt sind, ausgewertet werden, beispielsweise als Durchschnitt ausgewertet werden, über feststehende Zeitspannen, die größer als dieses Merkmal des periodischen oder intermittierenden Betriebes sind.
- Verfahren nach Anspruch 15, bei welchem einer oder mehrere der Schächte aus dem Cluster von Schächten periodisch oder intermittierend betrieben wird, oder von Zeit zu Zeit betrieben wird, und die Betriebsdauer als Teil einer feststehenden Zeitspanne als manipulierte Variable für den Schacht genommen wird.
- Verfahren nach einem der Ansprüche 1-13, bei welchem das Verfahren zusätzlich zu einem Optimierungsziel angewendet wird, das an den Schächten des Schachtclusters mit zwei oder mehr unterirdischen Einströmzonen definiert ist, in welchem Fall die "Zonenförderung-Schätzmodelle" und die Zonenförderungs-Vorhersagemodelle" zusätzlich zu den "Schachtförderungs-Schätzmodellen" und "Schachtförderungs-Vorhersagemodellen" erzeugt werden.
- Verfahren nach Anspruch 1, bei welchem die Schachtfördervariablen, wie Druck und/oder Fluiddurchflußmerkmale der einzelnen Schachtaustragströme, eine oder mehrere der folgenden Variablen umfassen: den Schachtrohrkopfdruck, den Schachtströmungsleitungsdruck, die Schachtrohrkopftemperatur, die Schachtströmungsleitungstemperatur, Differentialdrücke über das Schachtförderungs-Drosselventil, Differentialdrücke über Differentialerzeuger, einschließlich eines Nassgas-Venturi, an der Schachtströmungsleitung, Durchflußmesser, die für eine Einphasenströmung nominal geeignet sind, aber die geeignet sind, um einen Input für die Schachtschätzmodelle zu liefern, selbst wenn der Schacht ein Mehrphasen-Strömungsschacht ist, die Öffnungs- oder Schließposition des Schachtdrosselventils, den Öffnungsstatus oder die Position irgendwelcher Mittel zum rever-siblen und kontrollierten Schließen und Öffnen des Schachtes, die Schachtliftgas-Einspritzrate, die Schachtdüsenpumpen-Hydraulikfluid-Einspritzrate, den Schachtförderauskleidungsdruck, die elektrische Schachttauchpumpengeschwindigkeit, den Schachttauchpumpen-Eingangsdruck, den Schachtbohrloch-Ausgangsdruck, den Schachttauchpumpen-Bohrloch-Venturi-Differentialdruck, den Schachtbohrlochpumpen-Energieverbrauch, den Schachttauchpumpenmotor-Phasenstrom, den Schachtpumpenmotor-Energieeintrag, die Schachtpumpenmotorgeschwindigkeit, den Schachtpumpenmotorhub, die Schachtpumpenmotor-Ladezelle, die Position des Pumpengetriebeschaftes, die Schachtpumpenstangen-Differentialgeschwindigkeit / den Motor/Getriebekastenschlupf, den Schachtbohrlochdruck, den Schachtbohrloch-Ringdruck, die Schachtbohrloch- oder Ringdrucktemperatur, oder verschiedene Ableitungen derselben, die von verteilten Temperatursensoren gemessen werden, das Schachtbohrloch-Steuerventil-Öffnungsintervall, die Amplitude einer Auswahl von Tonfrequenzen aus einem oder mehreren Tonsensoren, die in der Schachtströmungsleitung montiert sind, die Fortpflanzungsverzögerung der zugehörigen Tonmuster bei einer Auswahl von Frequenzen aus zwei oder mehr Sensoren, die in stromaufwärtiger oder stromabwärtiger Richtung an einer Schachtströmungsleitung montiert sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07727816A EP2004953B1 (de) | 2006-04-07 | 2007-04-05 | Verfahren zur optimierung der erzeugung einer bohrlochgruppe |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06112401 | 2006-04-07 | ||
EP06112440 | 2006-04-10 | ||
EP07727816A EP2004953B1 (de) | 2006-04-07 | 2007-04-05 | Verfahren zur optimierung der erzeugung einer bohrlochgruppe |
PCT/EP2007/053348 WO2007116008A1 (en) | 2006-04-07 | 2007-04-05 | Method for optimising the production of a cluster of wells |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2004953A1 EP2004953A1 (de) | 2008-12-24 |
EP2004953B1 true EP2004953B1 (de) | 2009-10-07 |
Family
ID=38110150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07727816A Active EP2004953B1 (de) | 2006-04-07 | 2007-04-05 | Verfahren zur optimierung der erzeugung einer bohrlochgruppe |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP2004953B1 (de) |
AT (1) | ATE445083T1 (de) |
AU (1) | AU2007235959B2 (de) |
BR (1) | BRPI0708835B1 (de) |
CA (1) | CA2645902C (de) |
DE (1) | DE602007002702D1 (de) |
EA (1) | EA200802116A1 (de) |
NO (1) | NO341307B1 (de) |
NZ (1) | NZ571278A (de) |
WO (1) | WO2007116008A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11180976B2 (en) | 2018-12-21 | 2021-11-23 | Exxonmobil Upstream Research Company | Method and system for unconventional gas lift optimization |
KR20230040097A (ko) * | 2021-09-15 | 2023-03-22 | 광성지엠(주) | 유가스정 지중 생산 조건 및 장애 요소를 반영한 esp 및 튜빙 모니터링 시스템의 시험 방법(tubing leakage) |
KR20230040096A (ko) * | 2021-09-15 | 2023-03-22 | 광성지엠(주) | 유가스정 지중 생산 조건 및 장애 요소를 반영한 esp 및 튜빙 모니터링 시스템의 시험 방법(esp mapping and surging) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009024545A1 (en) | 2007-08-17 | 2009-02-26 | Shell Internationale Research Maatschappij B.V. | Method for controlling production and downhole pressures of a well with multiple subsurface zones and/or branches |
CA2694014C (en) | 2007-08-17 | 2016-06-14 | Shell Internationale Research Maatschappij B.V. | Method for virtual metering of injection wells and allocation and control of multi-zonal injection wells |
CA2690991C (en) | 2007-08-24 | 2013-12-24 | Exxonmobil Upstream Research Company | Method for multi-scale geomechanical model analysis by computer simulation |
US8768672B2 (en) | 2007-08-24 | 2014-07-01 | ExxonMobil. Upstream Research Company | Method for predicting time-lapse seismic timeshifts by computer simulation |
WO2009029135A1 (en) | 2007-08-24 | 2009-03-05 | Exxonmobil Upstream Research Company | Method for predicting well reliability by computer simulation |
US8548782B2 (en) | 2007-08-24 | 2013-10-01 | Exxonmobil Upstream Research Company | Method for modeling deformation in subsurface strata |
BRPI0817402A2 (pt) | 2007-11-10 | 2019-09-24 | Landmark Graphics Corp A Halliburton Company | dispositivos e métodos para automação de fluxos de trabalho, adaptação e integração |
CN102640163B (zh) | 2009-11-30 | 2016-01-20 | 埃克森美孚上游研究公司 | 用于储层模拟的适应性牛顿法 |
US9134454B2 (en) | 2010-04-30 | 2015-09-15 | Exxonmobil Upstream Research Company | Method and system for finite volume simulation of flow |
US9754056B2 (en) | 2010-06-29 | 2017-09-05 | Exxonmobil Upstream Research Company | Method and system for parallel simulation models |
EP2599032A4 (de) | 2010-07-29 | 2018-01-17 | Exxonmobil Upstream Research Company | Verfahren und system zur reservoirmodellierung |
AU2011283190A1 (en) | 2010-07-29 | 2013-02-07 | Exxonmobil Upstream Research Company | Methods and systems for machine-learning based simulation of flow |
AU2011283193B2 (en) | 2010-07-29 | 2014-07-17 | Exxonmobil Upstream Research Company | Methods and systems for machine-learning based simulation of flow |
GB2502432B (en) | 2010-09-20 | 2018-08-01 | Exxonmobil Upstream Res Co | Flexible and adaptive formulations for complex reservoir simulations |
RU2457320C1 (ru) * | 2011-03-29 | 2012-07-27 | Общество С Ограниченной Ответственностью "Дискрит" | Способ эксплуатации скважины |
US9489176B2 (en) | 2011-09-15 | 2016-11-08 | Exxonmobil Upstream Research Company | Optimized matrix and vector operations in instruction limited algorithms that perform EOS calculations |
CA2883169C (en) | 2012-09-28 | 2021-06-15 | Exxonmobil Upstream Research Company | Fault removal in geological models |
AU2013366546B2 (en) * | 2012-12-21 | 2017-10-19 | Seabed Separation As | Method for separating substances mixed in fluids from oil wells |
US9952603B2 (en) | 2013-06-28 | 2018-04-24 | Sitepp Sistemas Y Technologia Para El Petroleo, S.A. De C.V. | System and method for enhancing the production level of wells |
US9702243B2 (en) | 2013-10-04 | 2017-07-11 | Baker Hughes Incorporated | Systems and methods for monitoring temperature using a magnetostrictive probe |
US9957781B2 (en) | 2014-03-31 | 2018-05-01 | Hitachi, Ltd. | Oil and gas rig data aggregation and modeling system |
US10319143B2 (en) | 2014-07-30 | 2019-06-11 | Exxonmobil Upstream Research Company | Volumetric grid generation in a domain with heterogeneous material properties |
US10012059B2 (en) | 2014-08-21 | 2018-07-03 | Exxonmobil Upstream Research Company | Gas lift optimization employing data obtained from surface mounted sensors |
BR112017006129B1 (pt) * | 2014-09-25 | 2022-05-03 | Total S.A. | Produção de hidrocarbonetos com contador métrico |
BR112017006134B1 (pt) * | 2014-09-25 | 2021-07-13 | Total S.A. | Produção de hidrocarbonetos com separador de teste |
US10803534B2 (en) | 2014-10-31 | 2020-10-13 | Exxonmobil Upstream Research Company | Handling domain discontinuity with the help of grid optimization techniques |
US11409023B2 (en) | 2014-10-31 | 2022-08-09 | Exxonmobil Upstream Research Company | Methods to handle discontinuity in constructing design space using moving least squares |
US10101194B2 (en) | 2015-12-31 | 2018-10-16 | General Electric Company | System and method for identifying and recovering from a temporary sensor failure |
US10401207B2 (en) | 2016-09-14 | 2019-09-03 | GE Oil & Gas UK, Ltd. | Method for assessing and managing sensor uncertainties in a virtual flow meter |
US11940318B2 (en) | 2016-09-27 | 2024-03-26 | Baker Hughes Energy Technology UK Limited | Method for detection and isolation of faulty sensors |
HUE064459T2 (hu) | 2016-12-23 | 2024-03-28 | Exxonmobil Technology & Engineering Company | Eljárás és rendszer stabil és hatékony tározó szimulációhoz stabilitási proxyk alkalmazásával |
US10364655B2 (en) | 2017-01-20 | 2019-07-30 | Saudi Arabian Oil Company | Automatic control of production and injection wells in a hydrocarbon field |
US11041976B2 (en) | 2017-05-30 | 2021-06-22 | Exxonmobil Upstream Research Company | Method and system for creating and using a subsurface model in hydrocarbon operations |
US20190093474A1 (en) * | 2017-09-22 | 2019-03-28 | General Electric Company | System and method for determining production from a plurality of wells |
SG11202007061WA (en) * | 2018-01-26 | 2020-08-28 | Ge Inspection Technologies Lp | Determination of virtual process parameters |
US20200240259A1 (en) * | 2019-01-25 | 2020-07-30 | Ge Inspection Technologies, Lp | Flow network model analysis |
US11591936B2 (en) | 2019-09-04 | 2023-02-28 | Saudi Arabian Oil Company | Systems and methods for proactive operation of process facilities based on historical operations data |
CN113898323B (zh) * | 2020-06-22 | 2024-02-23 | 中国石油化工股份有限公司 | 海上油气田水下生产系统及其设计方法 |
CN112580851B (zh) * | 2020-11-17 | 2024-06-18 | 西安中控天地科技开发有限公司 | 丛式井场抽油机井群错峰开井间抽运行调度方法 |
CN113153281A (zh) * | 2021-03-29 | 2021-07-23 | 中国地质大学(北京) | 一种实现海上平台油气井协同生产的优化模型 |
WO2023154808A1 (en) * | 2022-02-09 | 2023-08-17 | Schlumberger Technology Corporation | Integrated asset modeling for energy consumption and emission |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6434435B1 (en) * | 1997-02-21 | 2002-08-13 | Baker Hughes Incorporated | Application of adaptive object-oriented optimization software to an automatic optimization oilfield hydrocarbon production management system |
AU2002213981A1 (en) * | 2000-10-04 | 2002-04-15 | Sofitech N.V. | Production optimization methodology for multilayer commingled reservoirs using commingled reservoir production performance data and production logging information |
-
2007
- 2007-04-05 EP EP07727816A patent/EP2004953B1/de active Active
- 2007-04-05 WO PCT/EP2007/053348 patent/WO2007116008A1/en active Application Filing
- 2007-04-05 AT AT07727816T patent/ATE445083T1/de not_active IP Right Cessation
- 2007-04-05 EA EA200802116A patent/EA200802116A1/ru unknown
- 2007-04-05 BR BRPI0708835-3A patent/BRPI0708835B1/pt active IP Right Grant
- 2007-04-05 NZ NZ571278A patent/NZ571278A/en unknown
- 2007-04-05 DE DE602007002702T patent/DE602007002702D1/de not_active Expired - Fee Related
- 2007-04-05 CA CA2645902A patent/CA2645902C/en active Active
- 2007-04-05 AU AU2007235959A patent/AU2007235959B2/en active Active
-
2008
- 2008-10-30 NO NO20084606A patent/NO341307B1/no unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11180976B2 (en) | 2018-12-21 | 2021-11-23 | Exxonmobil Upstream Research Company | Method and system for unconventional gas lift optimization |
KR20230040097A (ko) * | 2021-09-15 | 2023-03-22 | 광성지엠(주) | 유가스정 지중 생산 조건 및 장애 요소를 반영한 esp 및 튜빙 모니터링 시스템의 시험 방법(tubing leakage) |
KR20230040096A (ko) * | 2021-09-15 | 2023-03-22 | 광성지엠(주) | 유가스정 지중 생산 조건 및 장애 요소를 반영한 esp 및 튜빙 모니터링 시스템의 시험 방법(esp mapping and surging) |
Also Published As
Publication number | Publication date |
---|---|
NZ571278A (en) | 2011-08-26 |
NO20084606L (no) | 2008-10-30 |
WO2007116008A1 (en) | 2007-10-18 |
AU2007235959B2 (en) | 2010-11-11 |
NO341307B1 (no) | 2017-10-02 |
EP2004953A1 (de) | 2008-12-24 |
DE602007002702D1 (de) | 2009-11-19 |
AU2007235959A1 (en) | 2007-10-18 |
EA200802116A1 (ru) | 2009-04-28 |
ATE445083T1 (de) | 2009-10-15 |
CA2645902C (en) | 2014-05-20 |
BRPI0708835A2 (pt) | 2011-06-14 |
BRPI0708835B1 (pt) | 2017-09-26 |
CA2645902A1 (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2004953B1 (de) | Verfahren zur optimierung der erzeugung einer bohrlochgruppe | |
US8290632B2 (en) | Method for controlling production and downhole pressures of a well with multiple subsurface zones and/or branches | |
CN101415905A (zh) | 优化井组产量的方法 | |
US8670966B2 (en) | Methods and systems for performing oilfield production operations | |
AU2008290584B2 (en) | Method for virtual metering of injection wells and allocation and control of multi-zonal injection wells | |
AU2007235957B2 (en) | Method for production metering of oil wells | |
US8818777B2 (en) | System and method for performing oilfield simulation operations | |
US7474969B2 (en) | Method and system for production metering of oil wells | |
Naus et al. | Optimization of commingled production using infinitely variable inflow control valves | |
Almedallah et al. | Combined well path, submarine pipeline network, route and flow rate optimization for shallow-water offshore fields | |
EP3339565B1 (de) | Systeme und verfahren zur beurteilung der herstellung und/oder inbetriebnahme eines einspritzsystems | |
Gutierrez et al. | A new approach to gas lift optimization using an integrated asset model | |
Bieker | Topics in offshore oil production optimization using real-time data | |
US20230313647A1 (en) | Methods to dynamically control fluid flow in a multi-well system, methods to dynamically provide real-time status of fluid flow in a multi-well system, and multi-well fluid flow control systems | |
AISSANI | Field management and information system using integrated production system modeling to optimize Hassi Messouad field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080909 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007002702 Country of ref document: DE Date of ref document: 20091119 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100118 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100208 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100207 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100107 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
26N | No opposition filed |
Effective date: 20100708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100405 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240229 Year of fee payment: 18 |