EP1993082A1 - Detection and location identification of a fire - Google Patents

Detection and location identification of a fire Download PDF

Info

Publication number
EP1993082A1
EP1993082A1 EP07108317A EP07108317A EP1993082A1 EP 1993082 A1 EP1993082 A1 EP 1993082A1 EP 07108317 A EP07108317 A EP 07108317A EP 07108317 A EP07108317 A EP 07108317A EP 1993082 A1 EP1993082 A1 EP 1993082A1
Authority
EP
European Patent Office
Prior art keywords
fire
detector
unit
pipe
detector unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07108317A
Other languages
German (de)
French (fr)
Other versions
EP1993082B1 (en
Inventor
Thomas Goulet
Peter Stahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Schweiz AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG, Siemens AG filed Critical Siemens Schweiz AG
Priority to EP07108317A priority Critical patent/EP1993082B1/en
Priority to AT07108317T priority patent/ATE517407T1/en
Priority to US12/600,286 priority patent/US8629780B2/en
Priority to PCT/EP2008/055726 priority patent/WO2008138877A1/en
Publication of EP1993082A1 publication Critical patent/EP1993082A1/en
Application granted granted Critical
Publication of EP1993082B1 publication Critical patent/EP1993082B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a method, a fire detector and a fire alarm system for detecting and determining the location of a fire in at least one monitored room.
  • Detection units such as optical fire detectors, gas detectors, etc. are used to detect a fire characteristic.
  • a special type of fire detectors are the so-called aspirated smoke detectors. These fire detectors are supplied by an intake manifold by means of a suction device such as a fan or a fan, at least a portion of a room or equipment air and suck continuously air samples and analyze, for example, their smoke content. Often, the air is sucked in from several intake points of the pipe system. These points can be several meters apart and assigned to different objects or premises. If a fire characteristic is detected by the detector unit connected to the pipe system, it is important that the location of the fire is determined as accurately as possible, that measures for combating it can be initiated as quickly as possible.
  • Fire parameters are understood to be physical quantities which are subject to measurable changes in the environment of an incipient fire, for example the ambient temperature, the proportion of solid or liquid or gas in the ambient air or ambient radiation.
  • the formation of smoke particles or smoke aerosols or the formation of steam or combustion gases is detected.
  • the WO 02/095703 A2 also describes a way to locate and detect a fire.
  • a detector unit is supplied via an intake manifold air from the monitoring chambers.
  • sub-detectors located at the intake openings are switched on, with the aid of which the location determination takes place.
  • the object of the present invention is to propose an efficient and cost-effective way to detect and locate a fire.
  • a core of the invention is to be seen in that for the detection and localization of a fire in at least one monitored space, a first detector unit and a second detector unit are used for detecting a fire characteristic.
  • the two detector units are equipped with an evaluation unit for Evaluation of the detected fire characteristic connected.
  • the first detector unit is supplied via a first pipeline and the second detector unit via a second pipeline at least part of the room air contained in the at least one monitored space.
  • the first and the second pipeline are arranged in each monitored space and provided with suction openings.
  • the room air is supplied by means of at least one suction unit, for example a fan, a fan, etc., the two detector units.
  • the two pipes are such that the average air velocity of the supplied room air in the first pipe is different from the average air velocity in the second pipe. If at least one parameter of the fire characteristic variable is detected, at least one time difference between the detection of the at least one parameter or threshold value of the fire characteristic variable of the first detector unit and the detection of the same of at least one parameter of the second detector unit is determined by the evaluation unit. Together with the at least one specific time difference, the location of the fire is determined as a function of the average air velocities in the first and the second pipeline.
  • the average air speed is determined, for example, on the basis of a given intake speed of the at least one intake unit and the geometry of the pipeline, for example when commissioning the detector units, during maintenance, when detecting a fire characteristic, etc., and stored or determined, for example, in the evaluation unit ,
  • the different air velocities between the first and the second pipeline can be achieved in that the pipes have at least a partially different inner diameter.
  • the inner diameter of a pipe can therefore either on the entire length of Piping may be different from the other pipeline or only in a section of the pipeline, for example, by a taper, a widening of a pipe section, orifices, etc.
  • the first pipe at least partially have a smaller inner diameter than the second pipe.
  • a tube which has two separate flow paths of different inner diameter.
  • Intake passages are ideally placed in both pipelines or pipe segments at the same locations, so that the suction holes of the first and second pipelines are adjacent.
  • the two detector units and the suction ports of the first and second pipes are arranged such that the distances between the first detector unit and the suction ports of the first pipe are equal to the distances between the second detector unit and the suction ports of the second pipe.
  • the two pipes can be guided parallel to each other.
  • the suction ports of the first pipe may have a different diameter than the suction ports of the second pipe.
  • any type of detector for detecting a fire characteristic can be used as the detector unit, in particular an optical detector, a gas detector, etc.
  • the two detector units can be of the same type or the same type, for example two optical detector units or two Gas alarm units used.
  • the two detector units can be integrated in a single fire detector or represent separate units.
  • the first and the second detector unit have the same sensitivity.
  • the at least part of the room air can be sucked in by a suction unit, such as a fan, a fan, etc., and the two detector units via the respective Pipelines are supplied.
  • a separate suction unit is used per pipe.
  • the intake speed of the intake room air can be varied, so that the average air speed is different in the two pipes.
  • An advantage of the method according to the invention is that the location of a fire can be localized by a very simple manner.
  • Another advantage is that with only two detector units, the number of possible rooms to be monitored is very large compared to the known methods. This requires much fewer detector units for a building, which can significantly reduce installation and maintenance costs.
  • FIG. 1 shows a fire detection system according to the invention in normal operation. Normal operation should mean here that no alarm case exists.
  • the two detector units D1 and D2 are optical detector units and the suction unit ASE integrated in a housing.
  • the evaluation unit AWE can also be contained in this housing.
  • the evaluation unit AWE can, for example, also be integrated in a fire control panel connected to the two detector units.
  • the first detector unit D1 is supplied via a first pipeline R1 and the second detector unit is supplied via a second pipe R2 at least a portion of the room air from the detector units D1, D2 to be monitored spaces.
  • the two pipes R1, R2 are arranged in each monitored space and have suction holes ALR1, ALR2 for drawing in the room air from the monitored space.
  • the intake openings ALR1 or holes of the first pipeline R1 can have a different size or a different diameter than the intake openings ALR2 of the second pipeline R2.
  • the suction holes ALR1 of the first pipe R1 are the same distance to the first detector unit D1 as the suction holes ALR2 of the second pipe R2 to the detector unit D2. They are therefore ideally located directly adjacent.
  • the two pipes R1, R2 may be separate pipes R1, R2 or integrated in a pipe. In this case, the two pipes basically have separate flow paths, they R1, R2 are therefore not connected to each other so that room air can flow from one pipe R1 into the other pipe R2. This also applies to the detector units D1 and D2.
  • the first detector unit D1 is exclusively room air via the first pipe R1 and the second detector unit D2 is supplied exclusively room air via the second pipe R2. Due to a possible different geometry of the two pipes R1, R2 results in a different average air velocity in the two pipes.
  • the first pipe R1 has a smaller cross section or a smaller one Inner diameter than the second pipe R2 and thus the average air velocity v 1 in the first pipe R1 is greater than the average air velocity v 2 in the second pipe R2 (see formula 1).
  • formula 1 : v 1 > v 2
  • the different mean air velocities in the pipes R1 and R2 are represented by the arrows of different sizes.
  • a fan or a fan or other suitable unit can be used to aspirate the room air.
  • only one suction unit ASE is used for the two detector units D1, D2.
  • such an arrangement could be used to generate a different air velocity in the two pipes R1, R2.
  • the two pipes R1, R2 have the same inner diameter.
  • FIG. 2 shows a fire alarm system according to the invention, as shown in FIG. 1 described in the detection of a fire.
  • Smoke from a monitored room is sucked in via the intake holes ALR1 "Number or Room 3", ALR2 "Number or Room 3” and fed via the two pipes R1, R2 to the two detector units D1, D2.
  • the first detector unit D1 first detects the fire characteristic and thus the fire. From the first detector unit D1, a corresponding alarm is output at the time t 1 , which is forwarded, for example, to a fire alarm panel.
  • FIG. 3 shows that under Fig. 1 and 2 described fire detection system according to the invention and the determination of the location of the fire.
  • the second detection unit D2 detects the fire and also outputs an alarm.
  • An evaluation unit AWE connected to the two detector units determines the time difference between the first and second alarms (see formula 2).
  • the distance to the intake holes ALR1, ALR2 is then determined, via which the smoke-containing room air was sucked. This determines the location of the fire, ie the room in which the fire is located.
  • the time differences with respect to the detection of different successive parameters or threshold values of a fire parameter are permanently determined. The first time difference is thus determined upon reaching the threshold value 1, the second time difference on reaching the threshold value 2 and so on.
  • the air velocities can either be determined empirically from the physical quantities, ie for given pipe geometries, intake hole diameter, intake speeds of the at least one suction unit, etc., or calculated or numerically approximated with the available physical quantities.
  • the air velocities v 1 and v 2 can therefore be considered as average air velocities.
  • the distance d is given by a function dependent on t1, t2, v1, v2, and must be approximated accordingly by mathematical methods.
  • FIG. 4 shows a fire detector according to the invention with a first detector unit D1, a second detector unit D2, a suction unit ASE and a connected to the two detector units evaluation unit AWE for performing the method according to the FIGS. 1 to 3 ,
  • the first detector unit D1 is connected to a first pipeline R1 and the second detector unit D2 is connected to a second pipeline R2.
  • the pipelines are arranged in each monitored space and have suction holes ALR1, ALR2 for sucking the room air from the room.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

The method involves supplying air to detectors (D1, D2) by a suction unit (ASE) e.g. ventilator, via respective pipe conduits (R1, R2), where air speed in each pipe conduits is different. A time difference between the detection of a threshold value at the detector (D1) and the detection of the same threshold value at the detector (D2) is determined by an evaluation unit if the threshold value is detected. A location of fire (C) is determined according to the air speed in the pipe conduits using the determined time difference.

Description

Die Erfindung betrifft ein Verfahren, einen Brandmelder und ein Brandmeldesystem zur Detektion und Ortsbestimmung eines Brandes in mindestens einem überwachten Raum.The invention relates to a method, a fire detector and a fire alarm system for detecting and determining the location of a fire in at least one monitored room.

Detektionseinheiten, wie zum Beispiel optische Brandmelder, Gasmelder etc., werden dazu benutzt eine Brandkenngrösse zu erkennen. Eine besondere Art dieser Branddetektoren bilden die sogenannten Ansaugbranddetektoren (Aspirated Smoke Detektors). Diesen Branddetektoren werden durch ein Ansaugrohrsystem mittels einer Ansaugvorrichtung wie zum Beispiel einem Ventilator bzw. einen Lüfter, zumindest ein Teil einer Raum- oder Geräteluft zugeführt und saugen kontinuierlich Luftproben an und analysieren zum Beispiel deren Rauchgehalt. Oftmals wird dabei von mehreren Ansaugpunkten des Rohrsystems die Luft angesaugt. Diese Punkte können mehrere Meter voneinander entfernt sein und verschiedenen Objekten oder Räumlichkeiten zugeordnet sein. Wird nun von der mit dem Rohrsystem verbundenen Detektoreinheit eine Brandkenngrösse erkannt, ist es wichtig, dass der Ort des Brandes möglichst genau bestimmt wird, dass schnellstmöglich Maßnahmen zur Bekämpfung eingeleitet werden können.Detection units, such as optical fire detectors, gas detectors, etc., are used to detect a fire characteristic. A special type of fire detectors are the so-called aspirated smoke detectors. These fire detectors are supplied by an intake manifold by means of a suction device such as a fan or a fan, at least a portion of a room or equipment air and suck continuously air samples and analyze, for example, their smoke content. Often, the air is sucked in from several intake points of the pipe system. These points can be several meters apart and assigned to different objects or premises. If a fire characteristic is detected by the detector unit connected to the pipe system, it is important that the location of the fire is determined as accurately as possible, that measures for combating it can be initiated as quickly as possible.

Als Brandkenngrössen werden physikalische Grössen verstanden, die in der Umgebung eines Entstehungsbrandes messbaren Veränderungen unterliegen, zum Beispiel die Umgebungstemperatur, der Feststoff- oder Flüssigkeits- oder Gasanteil in der Umgebungsluft oder Umgebungsstrahlung. Insbesondere wird die Bildung der Rauchpartikel oder Rauchaerosolen oder die Bildung von Dampf oder Brandgasen detektiert.Fire parameters are understood to be physical quantities which are subject to measurable changes in the environment of an incipient fire, for example the ambient temperature, the proportion of solid or liquid or gas in the ambient air or ambient radiation. In particular, the formation of smoke particles or smoke aerosols or the formation of steam or combustion gases is detected.

Aus dem Europäischen Patent EP 1634261 B1 ist ein Verfahren und eine Vorrichtung zum Erkennen und Lokalisieren eines Brandes bekannt. Bei Detektion einer Brandkenngrösse wird die angesaugte und sich im Ansaugrohrsystem befindliche Luft mit einer Ausblasvorrichtung ausgeblasen. Diese Ausblasvorrichtung kann als Ventilator bzw. Lüfter ausgestaltet sein. Nach dem Ausblasen der angesaugten Luft werden erneut Luftproben aus den Überwachungsräumen angesaugt. Anhand der Laufzeit bis zur erneuten Detektion der Brandkenngrösse wird dann der Ort des Brandes bestimmt.From the European patent EP 1634261 B1 For example, a method and apparatus for detecting and locating a fire is known. Upon detection of a fire characteristic, the sucked and located in the intake manifold air is blown out with a blow-out. This blower can be configured as a fan or fan. After blowing out the sucked air air samples are sucked in from the monitoring rooms again. On the basis of the time to re-detection of the fire characteristic then the location of the fire is determined.

Die WO 02/095703 A2 beschreibt ebenfalls eine Möglichkeit zur Ortsbestimmung und Detektion eines Brandes. Auch hier wird einer Detektoreinheit über ein Ansaugrohrsystem Luft von den Überwachungsräumen zugeführt. Bei Detektion einer Brandkenngrösse werden an den Ansaugöffnungen befindliche Sub-Detektoren eingeschaltet, mit deren Hilfe die Ortsbestimmung erfolgt.The WO 02/095703 A2 also describes a way to locate and detect a fire. Again, a detector unit is supplied via an intake manifold air from the monitoring chambers. When a fire characteristic is detected, sub-detectors located at the intake openings are switched on, with the aid of which the location determination takes place.

Die Aufgabe der vorliegenden Erfindung ist darin zu sehen, eine effiziente und kosteneffektive Möglichkeit zur Detektion und Ortsbestimmung eines Brandes vorzuschlagen.The object of the present invention is to propose an efficient and cost-effective way to detect and locate a fire.

Die Aufgabe wird erfindungsgemäß jeweils durch die Gegenstände der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved in each case by the subject matters of the independent claims. Further developments of the invention are specified in the subclaims.

Ein Kern der Erfindung ist darin zu sehen, dass zur Detektion und Ortsbestimmung eines Brandes in mindestens einem überwachten Raum eine erste Detektoreinheit und eine zweite Detektoreinheit zum Detektieren einer Brandkenngrösse verwendet werden. Die beiden Detektoreinheiten sind mit einer Auswerteinheit zum Auswerten der detektierten Brandkenngrösse verbunden. Erfindungsgemäss wird der ersten Detektoreinheit über eine erste Rohrleitung und der zweiten Detektoreinheit über eine zweite Rohrleitung zumindest ein Teil der im mindestens einen überwachten Raum enthaltenen Raumluft zugeführt. Dabei werden die erste und die zweite Rohrleitung in jedem überwachten Raum angeordnet und mit Ansaugöffnungen versehen. Die Raumluft wird mittels mindestens einer Ansaugeinheit, zum Beispiel ein Ventilator, ein Lüfter etc., den beiden Detektoreinheiten zugeführt. Erfindungsgemäss sind die beiden Rohrleitungen so beschaffen, dass die mittlere Luftgeschwindigkeit der zugeführten Raumluft in der ersten Rohrleitung unterschiedlich zur mittleren Luftgeschwindigkeit in der zweiten Rohrleitung ist. Wird nun mindestens ein Parameter der Brandkenngrösse detektiert, wird von der Auswerteinheit mindestens eine Zeitdifferenz zwischen der Detektion des mindestens einen Parameters bzw. Schwellwertes der Brandkenngrösse der ersten Detektoreinheit und der Detektion desselben mindestens einen Parameters der zweiten Detektoreinheit bestimmt. Zusammen mit der mindestens einen bestimmten Zeitdifferenz wird in Abhängigkeit der mittleren Luftgeschwindigkeiten in der ersten und der zweiten Rohrleitung der Ort des Brandes bestimmt. Die mittlere Luftgeschwindigkeit wird zum Beispiel aufgrund einer gegebenen Ansauggeschwindigkeit der mindestens einer Ansaugeinheit und der Geometrie der Rohrleitung, zum Beispiel bei Inbetriebnahme der Detektoreinheiten, bei der Wartung, bei Detektion einer Brandkenngrösse etc., ermittelt und zum Beispiel in der Auswerteinheit gespeichert bzw. dort bestimmt. Die unterschiedlichen Luftgeschwindigkeiten zwischen der ersten und der zweiten Rohrleitung kann dabei dadurch erreicht werden, dass die Rohrleitungen zumindest einen teilweisen unterschiedlichen Innendurchmesser haben. Der Innendurchmesser der einen Rohrleitung kann also entweder auf der gesamten Länge der Rohrleitung unterschiedlich zur anderen Rohrleitung sein oder nur in einem Abschnitt der Rohrleitung, zum Beispiel durch eine Verjüngung, eine Verbreiterung eines Rohrabschnitts, Blenden etc. So kann zum Beispiel die erste Rohrleitung zumindest teilweise einen kleineren Innendurchmesser als die zweite Rohrleitung aufweisen. Erfindungsgemäss ist auch vorstellbar, dass ein Rohr verwendet wird, das zwei getrennte Strömungswege unterschiedlicher Innendurchmesser aufweist. In beide Rohrleitungen bzw. Rohrsegmenten werden idealerweise an denselben Orten Ansauglöcher gesetzt, sodass die Ansauglöcher der ersten und der zweiten Rohrleitung benachbart sind. Es werden also die beiden Detektoreinheiten und die Ansaugöffnungen der ersten und der zweiten Rohrleitung derart angeordnet, dass die Abstände zwischen der ersten Detektoreinheit und den Ansaugöffnungen der ersten Rohrleitung gleich den Abständen zwischen der zweiten Detektoreinheit und den Ansaugöffnungen der zweiten Rohrleitung entsprechen. Erfindungsgemäss können die beiden Rohrleitungen parallel zueinander geführt werden. Auch können die Ansaugöffnungen der ersten Rohrleitung einen unterschiedlichen Durchmesser als die Ansaugöffnungen der zweiten Rohrleitung aufweisen. Als Detektoreinheit kann grundsätzlich jede Art von Detektor zum Erkennen einer Brandkenngrösse verwendet werden, insbesondere ein optischer Detektor, ein Gasmelder etc. Dabei können die beiden Detektoreinheiten von der 1 gleichen Art bzw. vom gleichen Typ sein, es werden zum Beispiel zwei optische Detektoreinheiten oder zwei Gasmeldeeinheiten verwendet. Die beiden Detektoreinheiten können in einem einzigen Brandmelder integriert sein oder separate Einheiten darstellen. Erfindungsgemäss weisen die erste und die zweite Detektoreinheit die gleiche Empfindlichkeit auf. Der zumindest eine Teil der Raumluft kann durch eine Ansaugeinheit, wie etwa ein Ventilator, ein Lüfter etc. angesaugt und den beiden Detektoreinheiten über die jeweiligen Rohrleitungen zugeführt werden. Es ist jedoch auch vorstellbar, dass pro Rohrleitung eine eigene Ansaugeinheit verwendet wird. So kann zum Beispiel auch die Ansauggeschwindigkeit der angesaugten Raumluft variiert werden, sodass in den beiden Rohrleitungen die mittlere Luftgeschwindigkeit unterschiedlich ist.A core of the invention is to be seen in that for the detection and localization of a fire in at least one monitored space, a first detector unit and a second detector unit are used for detecting a fire characteristic. The two detector units are equipped with an evaluation unit for Evaluation of the detected fire characteristic connected. According to the invention, the first detector unit is supplied via a first pipeline and the second detector unit via a second pipeline at least part of the room air contained in the at least one monitored space. In this case, the first and the second pipeline are arranged in each monitored space and provided with suction openings. The room air is supplied by means of at least one suction unit, for example a fan, a fan, etc., the two detector units. According to the invention, the two pipes are such that the average air velocity of the supplied room air in the first pipe is different from the average air velocity in the second pipe. If at least one parameter of the fire characteristic variable is detected, at least one time difference between the detection of the at least one parameter or threshold value of the fire characteristic variable of the first detector unit and the detection of the same of at least one parameter of the second detector unit is determined by the evaluation unit. Together with the at least one specific time difference, the location of the fire is determined as a function of the average air velocities in the first and the second pipeline. The average air speed is determined, for example, on the basis of a given intake speed of the at least one intake unit and the geometry of the pipeline, for example when commissioning the detector units, during maintenance, when detecting a fire characteristic, etc., and stored or determined, for example, in the evaluation unit , The different air velocities between the first and the second pipeline can be achieved in that the pipes have at least a partially different inner diameter. The inner diameter of a pipe can therefore either on the entire length of Piping may be different from the other pipeline or only in a section of the pipeline, for example, by a taper, a widening of a pipe section, orifices, etc. Thus, for example, the first pipe at least partially have a smaller inner diameter than the second pipe. According to the invention it is also conceivable that a tube is used which has two separate flow paths of different inner diameter. Intake passages are ideally placed in both pipelines or pipe segments at the same locations, so that the suction holes of the first and second pipelines are adjacent. Thus, the two detector units and the suction ports of the first and second pipes are arranged such that the distances between the first detector unit and the suction ports of the first pipe are equal to the distances between the second detector unit and the suction ports of the second pipe. According to the invention, the two pipes can be guided parallel to each other. Also, the suction ports of the first pipe may have a different diameter than the suction ports of the second pipe. In principle, any type of detector for detecting a fire characteristic can be used as the detector unit, in particular an optical detector, a gas detector, etc. In this case, the two detector units can be of the same type or the same type, for example two optical detector units or two Gas alarm units used. The two detector units can be integrated in a single fire detector or represent separate units. According to the invention, the first and the second detector unit have the same sensitivity. The at least part of the room air can be sucked in by a suction unit, such as a fan, a fan, etc., and the two detector units via the respective Pipelines are supplied. However, it is also conceivable that a separate suction unit is used per pipe. Thus, for example, the intake speed of the intake room air can be varied, so that the average air speed is different in the two pipes.

Ein Vorteil des erfindungsgemässen Verfahrens liegt darin, dass durch eine sehr einfache Art und Weise der Ort eines Brandes lokalisiert werden kann.An advantage of the method according to the invention is that the location of a fire can be localized by a very simple manner.

Ein weiterer Vorteil besteht darin, dass mit nur zwei Detektoreinheiten die Anzahl der möglichen zu überwachenden Räumen sehr groß gegenüber den bekannten Verfahren ist. Damit werden viel weniger Detektoreinheiten für ein Gebäude benötigt, was die Installations- und die Wartungskosten erheblich senken kann.Another advantage is that with only two detector units, the number of possible rooms to be monitored is very large compared to the known methods. This requires much fewer detector units for a building, which can significantly reduce installation and maintenance costs.

Die Erfindung wird anhand eines in einer Figur dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigen

Figur 1
ein erfindungsgemässes Brandmeldesystem im Normalbetrieb,
Figur 2
ein erfindungsgemässes Brandmeldesystem bei der Detektion eines Brandes,
Figur 3
ein erfindungsgemässes Brandmeldesystem bei der Bestimmung des Brandortes und
Figur 4
einen erfindungsgemässen Brandmelder.
The invention will be explained in more detail with reference to an embodiment shown in a figure. Show
FIG. 1
an inventive fire alarm system in normal operation,
FIG. 2
a fire detection system according to the invention in the detection of a fire,
FIG. 3
a fire detection system according to the invention in determining the location of the fire and
FIG. 4
a fire detector according to the invention.

Figur 1 zeigt ein erfindungsgemässes Brandmeldesystem im Normalbetrieb. Normalbetrieb soll hier bedeuten, dass kein Alarmfall vorliegt. In diesem Beispiel sind die beiden Detektoreinheiten D1 und D2 optische Detektoreinheiten und mit der Ansaugeinheit ASE in einem Gehäuse integriert. Selbstverständlich kann in diesem Gehäuse auch die Auswerteinheit AWE enthalten sein. Die Auswerteinheit AWE kann zum Beispiel aber auch in einer mit den beiden Detektoreinheiten verbundenen Brandmeldezentrale integriert sein. Der erste Detektoreinheit D1 wird über eine erste Rohrleitung R1 und der zweiten Detektoreinheit wird über eine zweite Rohrleitung R2 zumindest ein Teil der Raumluft von den Detektoreinheiten D1, D2 zu überwachenden Räumen zugeführt. Die beiden Rohrleitungen R1, R2 sind in jedem überwachten Raum angeordnet und weisen Ansauglöcher ALR1, ALR2 zum Ansaugen der Raumluft aus dem überwachten Raum auf. Dabei können die Ansaugöffnungen ALR1 bzw. -löcher der ersten Rohrleitung R1 eine unterschiedliche Grösse bzw. einen unterschiedlichen Durchmesser als die Ansaugöffnungen ALR2 der zweiten Rohrleitung R2 aufweisen. Die Ansauglöcher ALR1 der ersten Rohrleitung R1 weisen die gleiche Distanz zur ersten Detektoreinheit D1 wie die Ansauglöcher ALR2 der zweiten Rohrleitung R2 zur Detektoreinheit D2 auf. Sie sind idealerweise also direkt benachbart angeordnet. Die beiden Rohrleitungen R1, R2 können separate Rohrleitungen R1, R2 oder in einem Rohr integriert sein. Dabei weisen die beiden Rohrleitungen grundsätzlich voneinander getrennte Strömungswege auf, sie R1, R2 sind also nicht derart miteinander verbunden, dass Raumluft von einer Rohrleitung R1 in die andere Rohrleitung R2 strömen kann. Das gilt auch für die Detektoreinheiten D1 und D2. Der ersten Detektoreinheit D1 wird ausschließlich Raumluft über die erste Rohrleitung R1 und der zweiten Detektoreinheit D2 wird ausschließlich Raumluft über die zweite Rohrleitung R2 zugeführt. Aufgrund einer möglichen unterschiedlichen Geometrie der beiden Rohrleitungen R1, R2 ergibt sich bei den beiden Rohrleitungen eine unterschiedliche mittlere Luftgeschwindigkeit. In diesem Beispiel weist die erste Rohrleitung R1 einen geringeren Querschnitt bzw. einen kleineren Innendurchmesser als die zweite Rohrleitung R2 auf und somit ist die mittlere Luftgeschwindigkeit v1 in der ersten Rohrleitung R1 größer als die mittlere Luftgeschwindigkeit v2 in der zweiten Rohrleitung R2 (siehe Formel 1). Formel 1 : v 1 > v 2

Figure imgb0001
FIG. 1 shows a fire detection system according to the invention in normal operation. Normal operation should mean here that no alarm case exists. In this example, the two detector units D1 and D2 are optical detector units and the suction unit ASE integrated in a housing. Of course, the evaluation unit AWE can also be contained in this housing. However, the evaluation unit AWE can, for example, also be integrated in a fire control panel connected to the two detector units. The first detector unit D1 is supplied via a first pipeline R1 and the second detector unit is supplied via a second pipe R2 at least a portion of the room air from the detector units D1, D2 to be monitored spaces. The two pipes R1, R2 are arranged in each monitored space and have suction holes ALR1, ALR2 for drawing in the room air from the monitored space. In this case, the intake openings ALR1 or holes of the first pipeline R1 can have a different size or a different diameter than the intake openings ALR2 of the second pipeline R2. The suction holes ALR1 of the first pipe R1 are the same distance to the first detector unit D1 as the suction holes ALR2 of the second pipe R2 to the detector unit D2. They are therefore ideally located directly adjacent. The two pipes R1, R2 may be separate pipes R1, R2 or integrated in a pipe. In this case, the two pipes basically have separate flow paths, they R1, R2 are therefore not connected to each other so that room air can flow from one pipe R1 into the other pipe R2. This also applies to the detector units D1 and D2. The first detector unit D1 is exclusively room air via the first pipe R1 and the second detector unit D2 is supplied exclusively room air via the second pipe R2. Due to a possible different geometry of the two pipes R1, R2 results in a different average air velocity in the two pipes. In this example, the first pipe R1 has a smaller cross section or a smaller one Inner diameter than the second pipe R2 and thus the average air velocity v 1 in the first pipe R1 is greater than the average air velocity v 2 in the second pipe R2 (see formula 1). formula 1 : v 1 > v 2
Figure imgb0001

Die unterschiedlichen mittleren Luftgeschwindigkeiten in den Rohrleitungen R1 und R2 werden durch die unterschiedlich großen Pfeile dargestellt. Für die Ansaugeinheit ASE kann zum Ansaugen der Raumluft ein Ventilator bzw. ein Lüfter oder eine andere dafür geeignete Einheit verwendet werden. In diesem Bespiel wird für die beiden Detektoreinheiten D1, D2 nur eine Ansaugeinheit ASE verwendet. Selbstverständlich wäre es auch erfindungsgemäss möglich je eine Ansaugeinheit ASE pro Detektoreinheit D1, D2 zu verwenden. Insbesondere könnte eine derartige Anordnung dazu verwendet werden eine unterschiedliche Luftgeschwindigkeit in den beiden Rohrleitungen R1, R2 zu erzeugen. Dadurch wäre es auch vorstellbar, dass die beiden Rohrleitungen R1, R2 den gleichen Innendurchmesser haben.The different mean air velocities in the pipes R1 and R2 are represented by the arrows of different sizes. For the suction unit ASE, a fan or a fan or other suitable unit can be used to aspirate the room air. In this example, only one suction unit ASE is used for the two detector units D1, D2. Of course, it would also be possible according to the invention to use one suction unit ASE per detector unit D1, D2. In particular, such an arrangement could be used to generate a different air velocity in the two pipes R1, R2. As a result, it would also be conceivable that the two pipes R1, R2 have the same inner diameter.

Figur 2 zeigt ein erfindungsgemässes Brandmeldesystem, wie es in Figur 1 beschrieben wurde, bei der Detektion eines Brandes. Rauch von einem überwachten Raum wird über die Ansauglöcher ALR1 "Nummer bzw. Raum 3", ALR2 "Nummer bzw. Raum 3" angesaugt und über die beiden Rohrleitungen R1, R2 den beiden Detektoreinheiten D1, D2 zugeführt. Aufgrund der unterschiedlichen Geometrien und damit der unterschiedlichen Luftgeschwindigkeiten in den Rohrleitungen R1, R2 detektiert die erste Detektoreinheit D1 zuerst die Brandkenngrösse und damit den Brand. Von der ersten Detektoreinheit D1 wird zum Zeitpunkt t1 ein entsprechender Alarm ausgegeben, der zum Beispiel an eine Brandmeldezentrale weitergeleitet wird. FIG. 2 shows a fire alarm system according to the invention, as shown in FIG. 1 described in the detection of a fire. Smoke from a monitored room is sucked in via the intake holes ALR1 "Number or Room 3", ALR2 "Number or Room 3" and fed via the two pipes R1, R2 to the two detector units D1, D2. Due to the different geometries and thus the different air velocities in the pipes R1, R2, the first detector unit D1 first detects the fire characteristic and thus the fire. From the first detector unit D1, a corresponding alarm is output at the time t 1 , which is forwarded, for example, to a fire alarm panel.

Figur 3 zeigt das unter Fig. 1 und 2 beschriebene erfindungsgemässe Brandmeldesystem und die Bestimmung des Brandortes. Zum Zeitpunkt t2 detektiert auch die zweite Detektionseinheit D2 den Brand und gibt ebenfalls einen Alarm aus. Eine mit den beiden Detektoreinheiten verbundene Auswerteinheit AWE bestimmt die Zeitdifferenz zwischen dem ersten und zweiten Alarm (siehe Formel 2). Formel 2 : Δt = t 2 - t 1

Figure imgb0002
FIG. 3 shows that under Fig. 1 and 2 described fire detection system according to the invention and the determination of the location of the fire. At time t 2 , the second detection unit D2 detects the fire and also outputs an alarm. An evaluation unit AWE connected to the two detector units determines the time difference between the first and second alarms (see formula 2). formula 2 : .delta.t = t 2 - t 1
Figure imgb0002

Zusammen mit den beiden Luftgeschwindigkeiten v1 und v2 wird dann die Distanz zu den Ansauglöchern ALR1, ALR2 bestimmt, über welche die Rauch enthaltende Raumluft angesaugt wurde. Damit wird der Ort des Brandes bestimmt, also der Raum in dem der Brand sich befindet. Um die Genauigkeit der Distanzbestimmung von den Detektoreinheiten zu den betreffenden Ansauglöchern zu erhöhen, ist es auch denkbar, dass permanent die Zeitdifferenzen betreffend die Detektion verschiedener aufeinander folgender Parameter bzw. Schwellwerte einer Brandkenngrösse bestimmt werden. Die erste Zeitdifferenz wird also bei Erreichen des Schwellwertes 1, die zweite Zeitdifferenz bei Erreichen des Schwellwertes 2 und so weiter bestimmt. Die Luftgeschwindigkeiten lassen sich entweder empirisch aus den physikalischen Grössen, also bei gegebenen Rohrleitungsgeometrien, Ansauglöcherdurchmesser, Ansauggeschwindigkeiten der mindestens einen Ansaugeinheit etc. bestimmen oder mit den zur Verfügung stehenden physikalischen Grössen berechnen bzw. numerisch nähern. Die Luftgeschwindigkeiten v1 und v2 können daher als mittlere Luftgeschwindigkeiten betrachtet werden. Idealerweise lässt sich die Distanz d zwischen den Detektoreinheiten D1, D2 und den Ansauglöchern ALR1, ALR2 über denen der Rauch angesaugt wurde, bestimmen durch Formel 3 : d = ( v 1 - v 2 ) t 2 - t 1

Figure imgb0003
Together with the two air velocities v 1 and v 2 , the distance to the intake holes ALR1, ALR2 is then determined, via which the smoke-containing room air was sucked. This determines the location of the fire, ie the room in which the fire is located. In order to increase the accuracy of the distance determination from the detector units to the relevant suction holes, it is also conceivable that the time differences with respect to the detection of different successive parameters or threshold values of a fire parameter are permanently determined. The first time difference is thus determined upon reaching the threshold value 1, the second time difference on reaching the threshold value 2 and so on. The air velocities can either be determined empirically from the physical quantities, ie for given pipe geometries, intake hole diameter, intake speeds of the at least one suction unit, etc., or calculated or numerically approximated with the available physical quantities. The air velocities v 1 and v 2 can therefore be considered as average air velocities. Ideally, the distance d between the detector units D1, D2 and the Intake holes ALR1, ALR2 over which the smoke was sucked in, determine by formula 3 : d = ( v 1 - v 2 ) t 2 - t 1
Figure imgb0003

Im Allgemeinen ist die Distanz d durch eine Funktion, die von t1, t2, v1, v2 abhängig ist, gegeben und muss entsprechend mit mathematischen Methoden genähert werden.In general, the distance d is given by a function dependent on t1, t2, v1, v2, and must be approximated accordingly by mathematical methods.

Figur 4 zeigt einen erfindungsgemässen Brandmelder mit einer ersten Detektoreinheit D1, einer zweiten Detektoreinheit D2, einer Ansaugeinheit ASE und einer mit den beiden Detektoreinheiten verbundenen Auswerteinheit AWE zum Durchführen des Verfahrens gemäss den Figuren 1 bis 3. Die erste Detektoreinheit D1 ist mit einer ersten Rohrleitung R1 und die zweite Detektoreinheit D2 ist mit einer zweiten Rohrleitung R2 verbunden. Dabei sind die Rohrleitungen in jedem überwachten Raum angeordnet und weisen Ansauglöcher ALR1, ALR2 zum Ansaugen der Raumluft aus dem Raum auf. FIG. 4 shows a fire detector according to the invention with a first detector unit D1, a second detector unit D2, a suction unit ASE and a connected to the two detector units evaluation unit AWE for performing the method according to the FIGS. 1 to 3 , The first detector unit D1 is connected to a first pipeline R1 and the second detector unit D2 is connected to a second pipeline R2. In this case, the pipelines are arranged in each monitored space and have suction holes ALR1, ALR2 for sucking the room air from the room.

Claims (15)

Verfahren zur Detektion und Ortsbestimmung eines Brandes in mindestens einem überwachten Raum, mit einer ersten Detektoreinheit (D1) und einer zweiten Detektoreinheit (D2) zum Detektieren einer Brandkenngrösse, wobei eine mit den beiden Detektoreinheiten verbundene Auswerteinheit (AWE) zum Auswerten der detektierten Brandkenngrösse verwendet wird,
dadurch gekennzeichnet,
dass der ersten Detektoreinheit (D1) über eine erste Rohrleitung (R1) und der zweiten Detektoreinheit (D2) über eine zweite Rohrleitung (R1) zumindest ein Teil der im mindestens einen überwachten Raum enthaltenen Raumluft zugeführt wird, wobei die erste (R1) und die zweite Rohrleitung (R2) in jedem überwachten Raum angeordnet und mit Ansaugöffnungen (ALR1, ALR2) versehen wird, wobei die Raumluft mittels mindestens einer Ansaugeinheit (ASE) den beiden Detektoreinheiten (D1, D2) zugeführt wird und wobei die mittlere Luftgeschwindigkeit der zugeführten Raumluft in der ersten Rohrleitung (R1) unterschiedlich zur mittleren Luftgeschwindigkeit in der zweiten Rohrleitung (R2) ist,
dass bei Detektion mindestens eines Schwellwertes der Brandkenngrösse von der Auswerteinheit (AWE) mindestens eine Zeitdifferenz zwischen der Detektion des mindestens einen Schwellwertes bei der ersten Detektoreinheit (D1) und der Detektion desselben mindestens einen Schwellwertes bei der zweiten Detektoreinheit (D2) bestimmt wird und
dass mit der mindestens einen bestimmten Zeitdifferenz in Abhängigkeit der mittleren Luftgeschwindigkeiten in der ersten (R1) und der zweiten Rohrleitung (R2) der Ort des Brandes bestimmt wird.
Method for detecting and determining the location of a fire in at least one monitored space, comprising a first detector unit (D1) and a second detector unit (D2) for detecting a fire characteristic, wherein an evaluation unit (AWE) connected to the two detector units is used to evaluate the detected fire characteristic .
characterized,
in that the first detector unit (D1) is supplied via a first pipeline (R1) and the second detector unit (D2) via a second pipeline (R1) at least part of the room air contained in the at least one monitored room, the first (R1) and the second conduit (R2) is arranged in each monitored space and provided with suction openings (ALR1, ALR2), wherein the room air by means of at least one suction unit (ASE) the two detector units (D1, D2) is supplied and wherein the average air velocity of the supplied room air in the first pipeline (R1) is different from the mean air velocity in the second pipeline (R2),
in that at least one time difference between the detection of the at least one threshold value in the first detector unit (D1) and the detection of the same at least one threshold value in the second detector unit (D2) is determined by the evaluation unit (AWE) upon detection of at least one threshold value of the fire characteristic variable;
that with the at least one specific time difference as a function of the average air velocities in the first (R1) and the second pipeline (R2) the location of the fire is determined.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass für die erste Rohrleitung (R1) zumindest teilweise ein unterschiedlicher Innendurchmesser als für die zweite Rohrleitung (R2) verwendet wird.
Method according to claim 1,
characterized,
that for the first pipe (R1) at least partially a different inner diameter than for the second pipe (R2) is used.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass für die erste Rohrleitung (R1) zumindest teilweise ein kleinerer Innendurchmesser als für die zweite Rohrleitung (R2) verwendet wird.
Method according to claim 2,
characterized,
that for the first pipe (R1) at least partially a smaller inner diameter than for the second pipe (R2) is used.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass als erste (R1) und zweite Rohrleitung (R2) ein Rohr mit zwei getrennten Strömungswegen unterschiedlicher Innendurchmesser verwendet wird.
Method according to claim 1,
characterized,
in that a tube with two separate flow paths of different inner diameters is used as the first (R1) and second (R2) tubes.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die beiden Detektoreinheiten (D1, D2) und die Ansaugöffnungen (ALR1, ALR2) der ersten (R1) und der zweiten Rohrleitung (R2) derart angeordnet werden, dass die Abstände zwischen der ersten Detektoreinheit (D1) und den Ansaugöffnungen (ALR1) der ersten Rohrleitung (R1) gleich den Abständen zwischen der zweiten Detektoreinheit (D2) und den Ansaugöffnungen (ALR2) der zweiten Rohrleitung (R2) entsprechen.
Method according to one of the preceding claims,
characterized,
in that the two detector units (D1, D2) and the suction openings (ALR1, ALR2) of the first (R1) and the second pipeline (R2) are arranged such that the distances between the first detector unit (D1) and the suction openings (ALR1) of the first pipe (R1) equal to the distances between the second detector unit (D2) and the suction ports (ALR2) of the second pipe (R2).
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass für die Ansaugöffnungen (ALR1) der ersten Rohrleitung (R1) ein unterschiedlicher Durchmesser als bei den Ansaugöffnungen (ALR2) der zweiten Rohrleitung (R2) verwendet wird.
Method according to one of the preceding claims,
characterized,
that the suction openings (ALR1) of the first pipe (R1), a different diameter than the suction openings (ALR2) of the second pipe (R2) is used.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die erste (R1) und die zweite Rohrleitung (R2) parallel zueinander geführt werden.
Method according to one of the preceding claims,
characterized,
in that the first (R1) and the second pipeline (R2) are guided parallel to one another.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als Detektoreinheit (D1, D2) entweder eine optische Detektionseinheit oder eine Gasmeldeeinheit verwendet werden.
Method according to one of the preceding claims,
characterized,
in that either an optical detection unit or a gas detection unit is used as the detector unit (D1, D2).
Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
dass für die beiden Detektoreinheiten (D1, D2) jeweils die gleiche Art der Detektoreinheit verwendet wird.
Method according to claim 8,
characterized,
that for the two detector units (D1, D2) is respectively the same type of detector unit used.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Detektoreinheiten (D1, D2) entweder in einem Brandmelder integriert oder separate Einheiten sind.
Method according to one of the preceding claims,
characterized,
that the detector units (D1, D2) either integrated in a fire alarm or separate units.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass für die erste (D1) und die zweite Detektoreinheit (D2) die gleiche Empfindlichkeit verwendet wird.
Method according to one of the preceding claims,
characterized,
that for the first (D1) and the second detector unit (D2) have the same sensitivity is used.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als mindestens eine Ansaugeinheit (ASE) ein Ventilator und/oder ein Lüfter verwendet werden.
Method according to one of the preceding claims,
characterized,
in that a fan and / or a fan are used as at least one suction unit (ASE).
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass für die erste (R1) und die zweite Rohrleitung (R2) je eine eigene Ansaugeinheit (ASE) verwendet wird.
Method according to one of the preceding claims,
characterized,
that for the first (R1) and second pipe conduit (R2) each have their own suction unit (ASE) is used.
Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
dass in der ersten (R1) und in der zweiten Rohrleitung (R2) durch die jeweilige Ansaugeinheit (ASE) eine unterschiedliche Ansauggeschwindigkeit der den Detektoreinheiten (D1, D2) zugeführten Raumluft erzeugt wird.
Method according to claim 13,
characterized,
in that in the first (R1) and in the second pipeline (R2), a different suction speed of the room air supplied to the detector units (D1, D2) is generated by the respective suction unit (ASE).
Brandmeldesystem zur Detektion und Ortsbestimmung eines Brandes in mindestens einem überwachten Raum, - mit einer ersten Detektoreinheit (D1) und einer zweiten Detektoreinheit (D2) zum Detektieren einer Brandkenngrösse, wobei der ersten Detektoreinheit (D1) über eine erste Rohrleitung (R1) und der zweiten Detektoreinheit (D2) über eine zweite Rohrleitung (R2) zumindest ein Teil der im mindestens einen überwachten Raum enthaltenen Raumluft zugeführt wird, wobei die erste (R1) und die zweite Rohrleitung (R2) in jedem überwachten Raum angeordnet und mit Ansaugöffnungen (ALR1, ALR2) versehen ist, - mit mindestens einer Ansaugeinheit (ASE) zum Zuführen der Raumluft in die beiden Detektoreinheiten (D1, D2), - mit einer mit den beiden Detektoreinheiten (D1, D2) verbundenen Auswerteinheit (AWE) zum Auswerten der Brandkenngrösse, bei Detektion eines Brandes zur Bestimmung mindestens einer Zeitdifferenz zwischen der Detektion mindestens eines Schwellwertes der Brandkenngrösse bei der ersten Detektoreinheit (D1) und der Detektion desselben mindestens einen Schwellwertes bei der zweiten Detektoreinheit (D2) und zum Bestimmen des Ortes des Brandes mit der mindestens einen bestimmten Zeitdifferenz in Abhängigkeit der Luftgeschwindigkeiten in der ersten (R1) und der zweiten Rohrleitung (R2) - mit einer Brandmeldezentrale zum Ausgeben eines Alarms unter Angabe des Brandortes. 16. Brandmelder zur Detektion und Ortsbestimmung eines Brandes in mindestens einem überwachten Raum, - mit einer ersten Detektoreinheit (D1) und einer zweiten Detektoreinheit (D2) zum Detektieren einer Brandkenngrösse, wobei der ersten Detektoreinheit (D1) über eine erste Rohrleitung (R1) und der zweiten Detektoreinheit (D2) über eine zweite Rohrleitung (R2) zumindest ein Teil der im mindestens einen überwachten Raum enthaltenen Raumluft zugeführt wird, wobei die erste (R1) und die zweite Rohrleitung (R2) in jedem überwachten Raum angeordnet und mit Ansaugöffnungen (ALR1, ALR2) versehen wird, - mit mindestens einer Ansaugeinheit (ASE) zum Zuführen der Raumluft in die beiden Detektoreinheiten (D1, D2), - mit einer mit den beiden Detektoreinheiten (D1, D2) verbundenen Auswerteinheit (AWE) zum Auswerten der Brandkenngrösse, bei Detektion eines Brandes zur Bestimmung mindestens einer Zeitdifferenz zwischen der Detektion mindestens eines Schwellwertes der Brandkenngrösse bei der ersten Detektoreinheit (D1) und der Detektion desselben mindestens einen Schwellwertes bei der zweiten Detektoreinheit (D2) und zum Bestimmen des Ortes des Brandes mit der mindestens einen bestimmten Zeitdifferenz in Abhängigkeit der Luftgeschwindigkeiten in der ersten (R1) und der zweiten Rohrleitung (R2). Fire alarm system for the detection and location of a fire in at least one monitored room, - With a first detector unit (D1) and a second detector unit (D2) for detecting a fire characteristic, wherein the first detector unit (D1) via a first pipe (R1) and the second detector unit (D2) via a second pipe (R2) at least one Part of the contained in at least one monitored room Room air is supplied, wherein the first (R1) and the second pipe (R2) arranged in each monitored space and provided with suction openings (ALR1, ALR2), with at least one suction unit (ASE) for supplying the room air into the two detector units (D1, D2), - With an evaluation unit (AWE) connected to the two detector units (D1, D2) for evaluating the fire characteristic, upon detection of a fire to determine at least one time difference between the detection of at least one threshold value of the fire characteristic in the first detector unit (D1) and the detection thereof at least one threshold value at the second detector unit (D2) and for determining the location of the fire with the at least one specific time difference as a function of the air velocities in the first (R1) and the second pipeline (R2) - with a fire alarm panel to give an alarm stating the location of the fire. 16. Fire detector for the detection and location of a fire in at least one monitored room, - With a first detector unit (D1) and a second detector unit (D2) for detecting a fire characteristic, wherein the first detector unit (D1) via a first pipe (R1) and the second detector unit (D2) via a second pipe (R2) at least one Part of the room air contained in at least one monitored space is supplied, wherein the first (R1) and the second pipe (R2) arranged in each monitored space and provided with suction openings (ALR1, ALR2), with at least one suction unit (ASE) for supplying the room air into the two detector units (D1, D2), - With an evaluation unit (AWE) connected to the two detector units (D1, D2) for evaluating the fire characteristic, upon detection of a fire to determine at least one time difference between the detection of at least one threshold value of the fire characteristic in the first detector unit (D1) and the detection thereof at least one threshold value at the second detector unit (D2) and for determining the location of the fire with the at least one specific time difference as a function of the air velocities in the first (R1) and the second pipeline (R2).
EP07108317A 2007-05-16 2007-05-16 Detection and location identification of a fire Not-in-force EP1993082B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07108317A EP1993082B1 (en) 2007-05-16 2007-05-16 Detection and location identification of a fire
AT07108317T ATE517407T1 (en) 2007-05-16 2007-05-16 DETECTION AND LOCATION OF A FIRE
US12/600,286 US8629780B2 (en) 2007-05-16 2008-05-09 Method of detecting and localizing a fire based on a time difference and air speeds of monitored air in pipe conduits
PCT/EP2008/055726 WO2008138877A1 (en) 2007-05-16 2008-05-09 Detection and localization of a fire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07108317A EP1993082B1 (en) 2007-05-16 2007-05-16 Detection and location identification of a fire

Publications (2)

Publication Number Publication Date
EP1993082A1 true EP1993082A1 (en) 2008-11-19
EP1993082B1 EP1993082B1 (en) 2011-07-20

Family

ID=38582085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07108317A Not-in-force EP1993082B1 (en) 2007-05-16 2007-05-16 Detection and location identification of a fire

Country Status (4)

Country Link
US (1) US8629780B2 (en)
EP (1) EP1993082B1 (en)
AT (1) ATE517407T1 (en)
WO (1) WO2008138877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700548A (en) * 2013-12-05 2015-06-10 生命安全销售股份公司 Redundant input pipe networks in aspirated smoke detectors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042700B4 (en) 2010-10-20 2013-12-24 Siemens Aktiengesellschaft Detection and localization of a fire with a double pipe aspirating smoke detector with common detector unit
KR20150068963A (en) * 2012-10-16 2015-06-22 엑스트랄리스 테크놀로지 리미티드 Addressability in particle detection
AU2013200353B2 (en) * 2012-10-16 2015-03-19 Garrett Thermal Systems Limited Addressability in particle detection
AU2014336978B2 (en) 2013-10-16 2019-07-11 Garrett Thermal Systems Limited Aspirated particle detection with various flow modifications
CN105528850A (en) * 2016-01-27 2016-04-27 博迈科海洋工程股份有限公司 Arrangement method for smog detectors based on very early stage
DE102017215450B4 (en) * 2017-09-04 2021-06-10 Mahle International Gmbh Air conditioning system of a vehicle
EP3828853B1 (en) * 2019-11-29 2023-10-04 Carrier Corporation Aspiration smoke detector system
DE102021204398A1 (en) 2021-05-03 2022-04-07 Siemens Schweiz Ag Detection and localization of a fire in a rack storage system with aspirating smoke detectors or with linear heat detectors in a matrix arrangement
US12037220B1 (en) * 2023-07-21 2024-07-16 The Adt Security Corporation Systems for monitoring smoke and heat in elevator hoistways

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692706A2 (en) * 1994-07-14 1996-01-17 Siemens Aktiengesellschaft Procedure and device for determining the location of an accumulation of noxious matter
EP1811478A1 (en) * 2006-01-07 2007-07-25 Hekatron Vertriebs GmbH Fire detection method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692706A2 (en) * 1994-07-14 1996-01-17 Siemens Aktiengesellschaft Procedure and device for determining the location of an accumulation of noxious matter
EP1811478A1 (en) * 2006-01-07 2007-07-25 Hekatron Vertriebs GmbH Fire detection method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700548A (en) * 2013-12-05 2015-06-10 生命安全销售股份公司 Redundant input pipe networks in aspirated smoke detectors

Also Published As

Publication number Publication date
WO2008138877A1 (en) 2008-11-20
US8629780B2 (en) 2014-01-14
ATE517407T1 (en) 2011-08-15
US20120319853A1 (en) 2012-12-20
EP1993082B1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP1993082B1 (en) Detection and location identification of a fire
EP1811478B1 (en) Fire detection method and device
DE69221756T2 (en) Leak detection system
DE102004021663A1 (en) Environmental condition detector with multiple sensors and a single control unit
WO2009018971A1 (en) Method and device for the detection of a leakage in a double pipe
DE60300172T2 (en) Apparatus and method for measuring breath alcohol
DE2415889C3 (en) Method for processing the increase in the proportion of particles contained in a gaseous fluid, in particular air, of less than five microns as a signal for the presence of a fire hazard, and device for carrying out the method
DE69215222T2 (en) DEVICE FOR DETERMINING THE TOTAL FLOW IN A VENTILATION SYSTEM
EP2893945A1 (en) Extracorporeal blood treatment machine with leakage detection and a method of detecting leaks of dialysis fluid systems
DE112015004729T5 (en) Multiple application opening Kondensatableitvorrichtung
EP1638062B1 (en) Aspirating smoke detector and method of its operation
WO2022128890A1 (en) Method and test device for verifying the functionality of an intake particle detection system
WO2018146508A1 (en) Air-guiding component
EP0692706A2 (en) Procedure and device for determining the location of an accumulation of noxious matter
DE19605637C1 (en) Air current monitoring in fire alarm using two flow sensors
DE102005055464B4 (en) Method for determining and / or monitoring the effectiveness of a filter
EP3407981B1 (en) Mist extinguishing system
EP3851809B1 (en) Fluid flow measuring device, processing machine with fluid flow measuring device, control and / or regulating device and method
DD297706A5 (en) METHOD FOR VERIFYING THE EXISTENCE OF A PIPING CONNECTION BETWEEN TWO FINISH POINTS
EP1360669B1 (en) Method and device for monitoring underground installations
EP3497420A1 (en) Differential pressure measurement arrangement and method for identifying blocked differential pressure lines
DE102010042700B4 (en) Detection and localization of a fire with a double pipe aspirating smoke detector with common detector unit
EP1542188A1 (en) Apparatus and process for detecting the formation of a fire
DE29816225U1 (en) Measuring device for in-situ functional testing of a filter in a filter system by determining the number of particles in a gas sample and filter system for separating particles from a gas stream
DE102020128688B4 (en) Oil mist detector with gas pumping device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 20090519

17Q First examination report despatched

Effective date: 20090619

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007705

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007007705

Country of ref document: DE

Effective date: 20120423

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007007705

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 517407

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170508

Year of fee payment: 11

Ref country code: FR

Payment date: 20170526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170526

Year of fee payment: 11

Ref country code: AT

Payment date: 20170406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170807

Year of fee payment: 11

Ref country code: DE

Payment date: 20170721

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007007705

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 517407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531