EP1811478B1 - Fire detection method and device - Google Patents

Fire detection method and device Download PDF

Info

Publication number
EP1811478B1
EP1811478B1 EP06000260A EP06000260A EP1811478B1 EP 1811478 B1 EP1811478 B1 EP 1811478B1 EP 06000260 A EP06000260 A EP 06000260A EP 06000260 A EP06000260 A EP 06000260A EP 1811478 B1 EP1811478 B1 EP 1811478B1
Authority
EP
European Patent Office
Prior art keywords
intake
fire
intake pipe
detector
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06000260A
Other languages
German (de)
French (fr)
Other versions
EP1811478A1 (en
Inventor
Beat Blaser
Hubert Scherzinger
Christian Sumser
Bernhard Kaiser
Ansgar Richard Vöhringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hekatron Vertriebs GmbH
Original Assignee
Hekatron Vertriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hekatron Vertriebs GmbH filed Critical Hekatron Vertriebs GmbH
Priority to DE502006000573T priority Critical patent/DE502006000573D1/en
Priority to EP06000260A priority patent/EP1811478B1/en
Priority to AT06000260T priority patent/ATE391325T1/en
Publication of EP1811478A1 publication Critical patent/EP1811478A1/en
Application granted granted Critical
Publication of EP1811478B1 publication Critical patent/EP1811478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a method for detecting a fire in which representative air quantities of the spaces to be monitored are removed via an intake pipe system and sensors for fire characteristics are supplied. Moreover, the invention relates to a device with which in particular the mentioned method can be carried out.
  • Devices of the type mentioned are, for example, from the DE 33 481 07 C2 or EP 1 056 062 B1 already known. These devices remove at certain points of an intake manifold representative quantities of air to be monitored spaces and lead the latter at least one sensor for fire characteristics, under a fire characteristic caused by a fire or fire, measurable environmental change in the form of temperature, temperature rise, smoke, gas evolution, Electromagnetic radiation or the like should be understood. The sensor signals are then examined by an evaluation unit, whereby a fire alarm is triggered if certain criteria are met. With such intake systems In contrast to individual punctiform hazard detectors, large areas of up to 1600 m 2 can be monitored. However, this disadvantage is also counteracted by the disadvantage of less accurate localization of the source of the fire.
  • each pipe is assigned therein a row or column address by providing either a separate detector per pipe or a multi-pipe multiplexer and a detector.
  • each pipe has a suction point at the points of intersection with the other pipes.
  • a location of the source of the fire happens here in that the control unit in the absence of a detection signal, the shut-off valves are set so that all suction simultaneously in open communication with the detector, and switches on receipt of a detection signal in a scanning mode, in which the suction lines one after the other or be brought in groups in open connection with the detector.
  • this procedure for detecting a source of fire presupposes that either each intake point is assigned its own valve or a comprehensive piping system must be installed in order to be able to produce these individually selectable connections.
  • the disadvantage of this is in addition to a fairly high installation effort also the fairly high time required for the necessary queries by opening and closing the valves.
  • an intake system and a method for detecting and locating a fire and / or the occurrence of a fire in one or more surveillance rooms is taken from the individual monitoring chambers via a common intake pipe system and fed to at least one detector for detecting at least one fire parameter in the air samples sucked in via the intake pipe system.
  • a representative air sample is taken from the individual monitoring chambers via a common intake pipe system and fed to at least one detector for detecting at least one fire parameter in the air samples sucked in via the intake pipe system.
  • the aspirated and located in the intake manifold air samples with a blower or suction / blowing device blown out.
  • the invention is therefore based on the object of specifying a method and a device in which the disadvantages identified and described above with reference to the prior art are avoided or at least reduced.
  • a time measurement is started and the first or a second detector is supplied from a second intake pipe end of the intake pipe system.
  • Timing is then terminated as soon as the fire characteristic is detected a second time, the second detection taking place in the detector flowing from the second intake pipe end of the intake pipe system. From the time difference thus obtained between the first recognition and the second recognition and a system-specific location-time function, finally, the suction point which has taken up the recognized fire parameter is identified.
  • the room air is sucked in via a pair of intake pipes consisting of a first intake pipe and a second intake pipe which is closely spaced therefrom.
  • air is taken from a monitored space at Ansaugstellencruen, wherein the Ansaugstellencrue consist of one intake on the first and on the second intake manifold and are mounted on the intake manifold so that both intake points of a Ansaugstellencrues similar air samples can be taken from a common monitoring area.
  • the recognizing detector from the first intake pipe has been flown during the first recognition of the fire parameter
  • the recognizing detector from the second intake pipe is supplied with the second detection of the fire parameter and vice versa.
  • the flow directions in the region of the intake points in the first and second intake pipes run simultaneously in opposite directions and are directed towards the first and second detectors. From the time difference between the first and second recognition of the fire characteristic is then closed by means of a suitable location-time function on the location of the intake pair, on which the fire parameter was recorded. In this way, the steps of separate blowing out and renewed suctioning, which are also necessary in the state of the art, can be dispensed with while at the same time requiring moderate installation effort.
  • a switching device is switched in a switching device after the first recognition of the fire characteristic of the first to the second intake manifold, so that before switching the room air is sucked in via the first intake pipe and after switching over the second intake pipe.
  • the first or a second detector from the second intake pipe end of the intake manifold is now flown. Since the switching takes place here completely non-time critical, also the location of the Ansaugstellenpases is determined over the time difference between the first and second recognition here.
  • the room air is withdrawn via an intake manifold consisting of at least a single intake manifold with multiple suction points distributed thereon, at the first Ansaugrohrende a first detector and at the second Ansaugrohrende there is a second detector.
  • the room air is sucked in so that the first detector is flowed from the first intake pipe end.
  • the flow direction in the intake pipe is reversed. This will be the second Detector with the room air flows and recognizes according to a dependent on the location of the intake, which has taken the fire indicator, dependent time also the fire characteristic. From the time difference between the first and second recognition of the fire characteristic and with the aid of a system-specific location-time function, the location of the suction point, which has recorded the fire parameter, is subsequently identified.
  • the intake of the air takes place from a ring-like installed intake pipe.
  • both Ansaugrohrenden be connected directly to a Ansaugbrandmelder or both Ansaugrohrenden are connected to a lying outside the Ansaugbrandmelders flow switch.
  • the second recognition can take place in the first detector and it is possible to dispense with the second detector.
  • the flow direction in the intake pipe is changed again and the time between the second reversal of the flow direction and a third recognition of the fire characteristic is measured after the second recognition of the fire characteristic and a dependent of the location of the identified suction time waiting time. From this time difference and a corresponding location-time function, either a further intake point, which has also taken up the fire parameter, is identified or the suction point identified first confirmed.
  • the suction points which have taken up the recognized fire characteristics, are in the process variants described above and their modifications in addition the measured time differences taken into account the transport times between individual suction points and the detectors.
  • the transport times are either measured during commissioning of the entire system and kept retrievable in a memory, or they are calculated from flow parameters such as the speed in the individual pipe sections.
  • the flow parameters are either measured or calculated using pipe parameters such as pipe length and diameter. Since the transport times frequently change during the operation of an intake system, stored transport times are corrected on the basis of measured values of an air flow monitoring customary in such systems.
  • the invention also relates to devices for detecting and locating a fire which are suitable for carrying out the method according to the invention.
  • a preferred device consists of a Ansaugbrandmelder, at least one intake manifold system with suction, which take representative air samples from a surveillance area, a time measuring device, a unit for identifying suction, which have received a detected fire characteristic.
  • the Ansaugrohrsystem consists of a pair of intake manifold with a first and a second intake pipe, which are mounted at a small distance next to each other and substantially parallel to each other. Suction point pairs are formed along the intake pipe pair, each consisting of a suction point in the first intake pipe and a suction point in the second pipe, both suction points are mounted so that they can take similar air samples from a common monitoring area.
  • the first and second Ansaugbrandmelder and / or the two intake pipes are arranged so that the flow direction in the region of the suction in the second intake pipe to the flow direction in the first intake pipe is in opposite directions.
  • a device for switching between the first and second intake pipe is provided.
  • the means for switching between the first and second intake pipes is located either in a Ansaugbrandmelder where the first intake pipe to the first intake pipe end of the intake pipe system and the second intake pipe to the second intake pipe end of the intake pipe system is connected or outside the Ansaugbrandmelders in a separate housing and There connected in the same way to the intake manifold and of course additionally connected to the Ansaugbrandmelder.
  • a further advantageous embodiment of the device according to the invention comprises an intake manifold consisting of a single intake manifold with a plurality of suction points, at the first Ansaugrohrende a first detector and at the second Ansaugrohrende a second detector are mounted. Furthermore, this device comprises the following devices: a flow switch, with which the flow direction in the intake pipe can be reversed, a time measuring device and a unit for identifying suction points, which have recorded a detected fire characteristic.
  • the first Ansaugrohrende with a first Ansaugbrandmelder and the second Ansaugrohrende connected to a second Ansaugbrandmelder can be done via a multi-way valve.
  • the multi-way valves also serve as a flow switch.
  • a further advantageous embodiment of the device according to the invention comprises an intake manifold consisting of a single, annularly installed intake manifold with multiple suction points.
  • both Ansaugrohrenden the intake manifold are either connected directly to a Ansaugbrandmelder containing at least one flow switch, or they are connected to a separate flow switch, which in turn is connected to the Ansaugbrandmelder.
  • a further advantageous embodiment of the device according to the invention consists of at least two Ansaugbrandmeldern, at least one Ansaugrohrsystem consisting of at least two intake manifolds with intake points that remove representative air samples from a surveillance area, a time measuring device and a unit for identifying suction, which have received a detected fire characteristic.
  • a first Ansaugbrandmelder is connected via a first multi-way valve to the first end of a first intake pipe.
  • the first intake pipe is further connected at its second end via a second multi-way valve with a second Ansaugbrandmelder and the second Ansaugbrandmelder via the second multi-way valve to the first end of a second intake pipe.
  • the second intake pipe is in turn connected at its second end via the first multi-way valve to the first intake fire detector.
  • the multiway valves also serve as flow switches. This results in a ring of two Ansaugbrandmeldern with two intake pipes, each having its own monitoring area.
  • this device is extended to n intake fire detectors, n intake pipes and n multi-way valves.
  • a (n-1) -th intake manifold with its first end via a (n-1) -th multi-way valve to with a (n-1) -th Ansaugbrandmelder and at its second end via an n-th multi-way valve with a n Ansaugbrandmelder connected.
  • the n-th Ansaugbrandmelder can in turn be connected to an n-th intake pipe and this finally with the first Ansaugbrandmelder.
  • Fig.1 is a Ansaugbranderkennungssystem (1) to recognize, with a first and second Ansaugbrandmelder (2, 17), each consisting of a detector (4, 14) for fire characteristics, one fan (3) and one each not shown control and evaluation in each a housing and with an intake pipe system (23) consisting of a first and second intake pipe (24, 25).
  • a first and second Ansaugbrandmelder (2, 17) to recognize, with a first and second Ansaugbrandmelder (2, 17), each consisting of a detector (4, 14) for fire characteristics, one fan (3) and one each not shown control and evaluation in each a housing and with an intake pipe system (23) consisting of a first and second intake pipe (24, 25).
  • the first intake pipe (24) is provided with a first intake pipe end (21) of the intake pipe system (23) and connected to the second Ansaugmelder (17), the second intake pipe (25) with a second intake pipe end (22) of the intake pipe system (23) is connected.
  • Both intake pipes (24, 25) are laid largely parallel to one another and close to the bottom.
  • suction points (6) are mounted at the same height, one suction point (6) of the first intake pipe (24) with a suction point of the second intake pipe (25) forming one intake point pair (7).
  • the individual suction points (6) of a suction point pair (7) are dimensioned and positioned so that both suction points (6) absorb the same amount of indoor air.
  • the Ansaugbrandmelder (2, 17) and the intake pipes (24, 25) are mounted so that the flow directions (8, 9) in the region of the suction points (6) in both intake pipes (24 25) extend in opposite directions.
  • the location of the suction point pair (7) can thus also be represented as a function of the time difference between the first recognition of a fire parameter in the first detector (4) and a second detection in a second detector (14). It is also obvious that the first detection can also take place in the second detector (14) when a fire occurs closer to it.
  • the location of the Ansaugstellenpases (7), which has received the detected fire characteristic, is after the second detection of the smoke from the measured time difference and a location-time function associated with the intake manifold (23). The time measurement and the determination of the location are performed in one of the Ansaugbrandmelder (2, 17), in a separate, not shown location determination unit or in a fire alarm unit, also not shown.
  • the above-described intake fire detection system (1) has the advantage that the maximum transport times between a suction point pair (7) and one of the two detectors (26, 27) compared with a single system Almost halve intake manifold. It is therefore also possible due to the maximum allowable transport times limited lengths of the intake pipes (24, 25) extend to twice the length of the previously possible.
  • the intake-fire detection systems (20) shown differ from the previously shown system in that instead of a second Ansaugbrandmelders (17) a pipe switching device (10) is provided and the other in that the flows (8, 9) in both intake pipes (5) in same direction. Therefore, here are the first Ansaugrohrende (21) and the second Ansaugrohrende (22) of the intake manifold (23) connected to the pipe switching device (10).
  • the room air is initially sucked only via a first intake pipe (24). If smoke now occurs at the intake point pair (7), it is transported in the first intake pipe (24) via the first intake pipe end (21) to the single detector (4) and detected there for a first time. Immediately thereafter, the pipe switching device (10) changes from the position (11) shown in solid lines to the position (12) shown in dashed lines. As a result, room air is now sucked in at the intake point pair (7) via the second intake pipe (25) and the second intake pipe end (22) of the intake pipe system and the time for the transport of the smoke begins again.
  • Ansaugbrandmelder (2) can also be a Ansaugbrandmelder (2) with two independent detectors, as in Fig. 6a is shown to be used, for example, to achieve a Zweidetektorbutkeit.
  • Fig. 2c In addition, a use in a so-called H system is shown.
  • additional branch detectors (13) are provided, which detect the branch of an H-system to which the detected fire parameter was recorded.
  • a suction fire detection system (30) which has a Ansaugbrandmelder (2) with a fan (3) and a first detector (4).
  • the first Ansaugrohrende (21) of a Ansaugrohrsystems (23) is mounted.
  • the second intake pipe end (22) of the intake pipe system (23) there is a second detector (14).
  • room air is sucked in by the intake fire detector (2) via the intake pipe (5) and flows out of the first intake pipe end (21) out to the first detector (4).
  • a fire occurs at one of the intake points (6), z. B. smoke absorbed and transported to the first detector (4).
  • the flow direction (8) is reversed.
  • the time required until the second detector can now also detect the smoke is dependent on the distance between the intake point (6), which has received the smoke and the second detector, and corresponds to the time between the first detection of the smoke in the first detector (4) and the second detection in the second detector (14), which is measured. From the measured time difference between the first and second recognition, the suction point (16), which has taken up the smoke, is again identified on the basis of a suitable location-time function.
  • foils can be provided on the inside of the suction points which close the suction points (6) as soon as the direction of flow reverses becomes.
  • an in Fig. 5 be used device shown in which at both ends of the intake manifold (23) each a Ansaugbrandmelder (2, 17).
  • the first intake fire detector (2) is connected via a first multi-way valve (15) to a first intake pipe end (21) of the intake pipe system (23).
  • the second intake fire detector (17) is connected via a second multiway valve (16).
  • room air is sucked in by the first intake fire detector (2) via the intake pipe (5), the first detector being flowed in from the first intake pipe end (21), while the second intake fire detector (17) otherwise drawing in room air via the second multiway valve (16) can.
  • the flow directions follow the solid arrows (8).
  • a fire parameter now occurs at a suction point (6), it is recorded there and sent to the first detector (4). transported in the first Ansaugbrandmelder (2), where it is detected a first time.
  • the valve positions in the first and second multi-way valve (15, 16) which are shown here as, for example, three-way valves, change from the solid position (11) to the position (12) shown in dashed lines.
  • the flow switch (15, 16) can be omitted and the two Ansaugrohrenden (21, 22) directly to the two Ansaugrauchmelder (2, 17) are connected. But always one of the fans (3) must be switched off.
  • the Ansaugbrandmelder (2, 17) with the fan off (3) for the pipe system (23) represents a certain resistance. After the first recognition of the fire characteristic of the first passive fan (3) is turned on and the other fan (3) off, whereby the flow direction in the intake pipe (5) reverses.
  • a further preferred embodiment of the device according to the invention is in the 6a shown.
  • first and second Ansaugbrandmelder (2, 17) to a single Ansaugbrandmelder (2) with a first and a second detector (4, 14) merged.
  • the two Ansaugrohrenden the intake manifold (23) are therefore connected to the single Ansaugbrandmelder (2).
  • the reversal of the flow direction (8, 9) takes place by mutual opening or closing of the two Ansaugrohrenden (21, 22).
  • the first Ansaugrohrende (21) to a first and the second Ansaugrohrende (22) to a second port of the Ansaugbrandmelders (2) is connected.
  • first and second flow switch (15, 16) At the two terminals are first and second flow switch (15, 16), which are initially in the position shown in solid (11).
  • room air which is sucked in via the intake pipe (5), flows from the first intake pipe end (21) to the first detector (4).
  • the first detector As soon as the first detector has first detected a fire parameter in the air flow directed to it, a time measurement is started, and the first and second flow switches (15, 16) change from the position (11) shown in solid line to the position shown in dashed lines (FIG. 12). Thereby, the flow direction in the intake pipe (5) is reversed from the direction shown by arrow (8) in the direction shown by arrow (9) and the room air sucked from the other end of the intake pipe (5), the second detector (14) from the second Ansaugrohrende (22) is flowed out.
  • the starting time of the transport time between the suction point (6) and the second detector (14) is known and a time measurement is started.
  • the time measurement is terminated and the location of a suction point (6), which has recorded the fire parameter, is determined using the measured time and a location-time function suitable for the intake system.
  • a flow switch (15) is designed as a four-way valve.
  • the two Ansaugrohrenden (21, 22) of the intake manifold (23) are connected.
  • the Ansaugbrandmelder (2) is connected, while the fourth way serves as an open pipe end of the intake pipe (5). If no open pipe end is desired, this can be closed separately, or a three-way valve can be selected, as in the Figure 5 and 7b is shown.
  • the identification of the suction point is essentially as described above, with the difference that the switching of the flow direction takes place in the four-way valve and that both the first and the second detection of the fire characteristic in a single detector (4).
  • FIG. 7a a further variant of the device according to the invention is shown. Essentially, the in 7a shown device in the Figure 5 illustrated device. However, it differs from this in that between the two flow switch (15, 16), a second intake pipe (18) is inserted with its own monitoring surface. In this case, the first Ansaugrohrende (21) of the intake pipe (18) to the second flow switch (16) and the second Ansaugrohrende (22) to the first flow switch (15) is connected.
  • the first intake fire detector (2) thus draws in room air via the first intake pipe (5) and the second intake fire detector (14) via the second intake pipe (18), which is assigned its own monitoring surface, the first detector (4) from the first Suction pipe end (21) of the first intake pipe (5) and the second detector from the first intake pipe end (21) of the second intake pipe (18) are flown.
  • the first detectors (4, 14) As soon as one of the detectors (4, 14) has now detected a fire characteristic in the air flow directed to it for the first time, a time measurement is started and the first and second flow switches (15, 16) change from the position (11) shown in solid lines in FIG dashed line position (12).
  • the first intake fire detector (2) now sucks room air via the second intake pipe (18) and the second Ansaugbrandmelder (17) via the first intake pipe (5), wherein now the first detector (4) from the second intake pipe end (22) of the second intake pipe ( 18) and the second detector from the second intake pipe end (22) of the first intake pipe (5) are flown.
  • the suction point (6) to be identified lies on the first intake pipe (5) and the second detection will be done in the second detector (14).
  • the second detection takes place in the first detector and the suction point (6) to be identified lies on the second suction tube (18).
  • the identification of the suction point (6) takes place, as described above, over the time difference between first and second recognition.
  • the second recognition of the fire characteristic and a waiting time which depends on the location of the first identified suction point, the flow direction (9) in the suction pipe (s) (s) ( 5, 17) again, and the time between the second switching of the flow direction (9) and a third recognition of the fire characteristic measured. From the time between the second switching of the flow direction and the third recognition, a second suction point (6) is then identified analogously to identify the first suction point (6). The waiting time must last at least until the intake pipe between the first detector and the identified intake point (6) is again free of the fire characteristic.
  • This variant of the method according to the invention can be used advantageously in the devices according to FIGS Fig.5 to 7b be performed.
  • the devices of Fig.5 to 7b also have the additional advantage that in case of an interruption in one of the intake pipes (5), which is detected by a customary in Ansaugbrandmeldern air flow monitoring, a suction of room air from both sides of the interrupted intake pipe is possible, and thus the monitoring of the entire surveillance area is maintained.
  • not all existing flow switch (15, 16) may be actuated, but it is only the adjacent to the affected intake flow switch (15, 16) to operate in a way that allows it from the otherwise separated Aspirating pipe part and, if necessary, suck in room air from another connected intake pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Abstract

The method involves sucking compartment air at suction points (6), and blowing a detector (4) from a suction pipe end (21) of a suction pipe system (23). A time measurement is started when a fire characteristic is detected by the detector. The detector (4) or a detector (14) is blown from a suction pipe end (22). The time measurement is terminated, when another fire characteristic is determined by one of the detectors. The suction point with both detected characteristics is identified based on a time difference between two detected characteristics and a system specific location-time function. An independent claim is also included for a device for detecting fire.

Description

Die Erfindung betrifft ein Verfahren zum Erkennen eines Brandes, bei denen über ein Ansaugrohrsystem, repräsentative Luftmengen der zu überwachenden Räume entnommen werden und Sensoren für Brandkenngrößen zugeführt werden. Außerdem betrifft die Erfindung eine Vorrichtung, mit welcher insbesondere das erwähnte Verfahren durchgeführt werden kann.The invention relates to a method for detecting a fire in which representative air quantities of the spaces to be monitored are removed via an intake pipe system and sensors for fire characteristics are supplied. Moreover, the invention relates to a device with which in particular the mentioned method can be carried out.

Vorrichtungen der eingangs erwähnten Art sind beispielsweise aus der DE 33 481 07 C2 oder EP 1 056 062 B1 bereits bekannt. Diese Vorrichtungen entnehmen an bestimmten Stellen eines Ansaugrohrsystems repräsentative Luftmengen der zu überwachenden Räume und führen letztere mindestens einem Sensor für Brandkenngrößen zu, wobei unter einer Brandkenngröße die durch einen Brand oder entstehenden Brand hervorgerufene, messbare Umweltveränderung in Form von Temperatur, Temperaturanstieg, Rauch, Gasentwicklung, elektromagnetischer Strahlung oder dergleichen verstanden werden soll. Die Sensorsignale werden dann von einer Auswerteeinheit untersucht, wobei ein Brandalarm ausgelöst wird, wenn bestimmte Kriterien erfüllt werden. Mit solchen Ansaugsystemen können, im Gegensatz zu einzelnen punktförmigen Gefahrenmeldern, große Flächen von bis zu 1600 m2 überwacht werden. Diesem Vorteil steht jedoch auch der Nachteil einer weniger genauen Lokalisierung des Brandherdes entgegen.
Um diesen Nachteil zu beseitigen, wurde in der EP 1 177. 539 B1 ein System vorgestellt, welches aus mehreren gitterförmig angeordneten Ansaugrohren besteht. Jedem Rohr wird darin eine Zeilen- bzw. Spaltenadresse zugeordnet, indem entweder ein eigener Detektor pro Rohr oder ein Multiplexer für mehrere Rohre und einen Detektor vorgesehen wird. Zusätzlich weist jedes Rohr an den Kreuzungspunkten mit den anderen Rohren eine Ansaugstelle auf. Wenn nun an einem Ansaugort, der durch zwei Ansaugstellen gebildet wird, ein Brand auftritt, wird er von zwei Detektoren erkannt und je einem Zeilen- und Spaltenrohr zugeordnet. Durch diese eindeutige Zuordnung von Zeilen- und Spaltenrohr und die dadurch entstehenden Zeilen- und Spaltenadressen, ist es möglich, den Ort der Ansaugstelle, an dem der Brand aufgetreten ist, genau zu identifizieren. Dieses matrixartige Ansaugsystem erfordert aber durch die Verlegung einer Vielzahl von Ansaugrohren einen enormen Installationsaufwand.
Devices of the type mentioned are, for example, from the DE 33 481 07 C2 or EP 1 056 062 B1 already known. These devices remove at certain points of an intake manifold representative quantities of air to be monitored spaces and lead the latter at least one sensor for fire characteristics, under a fire characteristic caused by a fire or fire, measurable environmental change in the form of temperature, temperature rise, smoke, gas evolution, Electromagnetic radiation or the like should be understood. The sensor signals are then examined by an evaluation unit, whereby a fire alarm is triggered if certain criteria are met. With such intake systems In contrast to individual punctiform hazard detectors, large areas of up to 1600 m 2 can be monitored. However, this disadvantage is also counteracted by the disadvantage of less accurate localization of the source of the fire.
To eliminate this disadvantage, was in the EP 1 177 539 B1 a system presented, which consists of several lattice-shaped intake manifolds. Each pipe is assigned therein a row or column address by providing either a separate detector per pipe or a multi-pipe multiplexer and a detector. In addition, each pipe has a suction point at the points of intersection with the other pipes. Now, if a fire occurs at a suction, which is formed by two suction, it is detected by two detectors and each associated with a row and column tube. This unique assignment of row and column tube and the resulting row and column addresses, it is possible to identify the exact location of the suction point at which the fire has occurred. But this matrix-type intake system requires a huge installation effort by laying a large number of intake pipes.

In der DE 101 25 687 A1 hingegen wurde vorgeschlagen jeder Entnahmestelle einen Subdetektor zu zuordnen, was aber dem zusätzlichen Einsatz von einzeln identifizierbaren punktförmigen Brandmeldern entspricht.In the DE 101 25 687 A1 On the other hand, it was proposed to assign a subdetector to each sampling point, which corresponds to the additional use of individually identifiable punctiform fire detectors.

Aus der deutschen Patentschrift DE 32 37 021 C2 hingegen ist ein selektives Gas-/Rauchdetektionssystem mit einer Anzahl von separat und an verschiedenen Messstellen in einem zu überwachenden Raum angeschlossenen Ansaugleitungen zum Entnehmen von Luft- oder Gasproben an diesen Messstellen bekannt. Ein an diese Leitungen angeschlossener Detektor gibt beim Vorhandensein eines bestimmten Gases und bei Überschreitung eines festgesetzten Schwellenwertes ein Detektionssignal ab, das eine Anzeige und/oder Alarmschaltung steuert. Weiterhin sind an den einzelnen Absaugleitungen angeordnete Verschlussventile vorgesehen, welche durch eine Art Multiplexer zyklisch und periodisch gesteuert erregbar sind.From the German patent DE 32 37 021 C2 whereas a selective gas / smoke detection system with a number of suction lines connected separately and at different measuring points in a space to be monitored for taking off air or gas samples at these measuring points is known. A connected to these lines detector gives in the presence of a specific gas and when exceeded a set threshold, a detection signal that controls a display and / or alarm circuit. Furthermore, arranged on the individual suction lines shutter valves are provided which can be cyclically and periodically controlled excitable by a kind of multiplexer.

Eine Ortung des Brandherdes geschieht hierbei, indem die Steuereinheit bei Abwesenheit eines Detektionssignals die Verschlussventile derart einstellt, dass alle Ansaugleitungen gleichzeitig in offener Verbindung mit dem Detektor stehen, und bei Erhalt eines Detektionssignals auf eine Abtastweise umschaltet, bei der die Absaugleitungen eine nach der anderen oder gruppenweise in offener Verbindung mit dem Detektor gebracht werden. Diese Arbeitsweise zur Erkennung eines Brandherdes setzt allerdings voraus, dass entweder jeder Ansaugstelle ein eigenes Ventil zugeordnet wird oder ein umfangsreiches Rohrleitungssystem installiert werden muss, um diese einzeln selektierbaren Verbindungen herstellen zu können. Nachteilig daran ist neben einem recht hohen Installationsaufwand außerdem der recht hohe Zeitbedarf für die notwendigen Abfragen durch Öffnen und Schließen der Ventile.A location of the source of the fire happens here in that the control unit in the absence of a detection signal, the shut-off valves are set so that all suction simultaneously in open communication with the detector, and switches on receipt of a detection signal in a scanning mode, in which the suction lines one after the other or be brought in groups in open connection with the detector. However, this procedure for detecting a source of fire presupposes that either each intake point is assigned its own valve or a comprehensive piping system must be installed in order to be able to produce these individually selectable connections. The disadvantage of this is in addition to a fairly high installation effort also the fairly high time required for the necessary queries by opening and closing the valves.

Überdies wurde in der US-A-5 708 218 auch ein System zur Lokalisierung von Schadstoffen vorgeschlagen, bei welchem zwei Stränge einer Sammelleitung eng nebeneinander und parallel zueinander als Vor- und Rückleitung verlegt sind. In diesen Leitungen wird ein Transportmittel in einander entgegengesetzten Richtungen geführt. Bei diesem System erfolgt die Ortung der Schadstoffkonzentration durch Auswertung der zeitlichen Differenz zwischen zwei Schadstoffdetektionen am Ende der Sammelleitung.Moreover, in the US-A-5,708,218 also proposed a system for the localization of pollutants, in which two strands of a manifold are laid close to each other and parallel to each other as a forward and return line. In these lines, a transport is performed in opposite directions. In this system, the location of the pollutant concentration takes place by evaluating the time difference between two pollutant detections at the end of the manifold.

Schließlich sind aus der DE 103 48 - 565 A1 ein Ansaugsystem und ein Verfahren zum Erkennen und Lokalisieren eines Brandes und/oder der Entstehung eines Brandes in einem oder mehreren Überwachungsräumen bekannt. In diesem Verfahren wird zunächst aus den einzelnen Überwachungsräumen eine repräsentative Luftprobe über ein gemeinsames Ansaugrohrsystem entnommen und zum Nachweis von zumindest einer Brandkenngröße in den über das Ansaugrohrsystem angesaugten Luftproben mindestens einem Detektor zugeführt. Zum Lokalisieren des Brandherdes werden nach dem Erkennen einer Brandkenngröße durch den Detektor die angesaugten und sich im Ansaugrohrsystem befindlichen Luftproben mit einer Ausblasvorrichtung oder Saug-/Blasvorrichtung ausgeblasen. Anschließend werden erneut Luftproben aus den einzelnen Überwachungsräumen über das Ansaugrohrsystem angesaugt, bis der Detektor erneut eine Brandkenngröße in einer Luftprobe nachweist. Danach kann aus der Laufzeit zwischen erneutem Ansaugen und erneuten Nachweis der Brandkenngröße der Ort der Entstehung des Brandes bestimmt werden. Schließlich wird ein Brandalarm mit Angabe des Ortes des Brandherdes ausgegeben. Ein solches System benötigt jedoch deutlich länger als bei herkömmlichen Ansaugsystemen bis ein Brandalarm abgegeben wird. Gegenüber punktförmigen Brandmeldern kann die Verzögerung sogar bis zu fünf Minuten dauern, da die in Ansaugsystemen notwendigerweise vorhandenen Transportzeiten gleich mehrfach anfallen. Dem kann zwar mit auf relativ kurze Rohrlängen und wenige Ansaugstellen beschränkten Ansaugsystemen entgegengewirkt werden, wodurch aber die eigentlichen Vorteile der Ansaugsysteme gegenüber punktförmigen Brandmeldern wieder geschmälert werden. Darüber hinaus ist nur eine einzige Ansaugstelle identifizierbar.Finally, from the DE 103 48 - 565 A1 an intake system and a method for detecting and locating a fire and / or the occurrence of a fire in one or more surveillance rooms. In this method, first of all, a representative air sample is taken from the individual monitoring chambers via a common intake pipe system and fed to at least one detector for detecting at least one fire parameter in the air samples sucked in via the intake pipe system. In order to locate the source of the fire, after detection of a fire parameter by the detector, the aspirated and located in the intake manifold air samples with a blower or suction / blowing device blown out. Subsequently, air samples from the individual monitoring chambers are sucked in again via the intake pipe system until the detector again detects a fire parameter in an air sample. Thereafter, from the period between re-aspiration and renewed detection of the fire characteristic of the place of origin of the fire can be determined. Finally, a fire alarm is issued stating the location of the source of the fire. However, such a system takes much longer than conventional intake systems until a fire alarm is issued. Compared with punctiform fire detectors, the delay can even take up to five minutes, since the transport times necessarily present in intake systems accumulate several times. Although this can be counteracted with limited to relatively short pipe lengths and a few suction intake systems, but the actual advantages of the intake systems against punctiform fire detectors are again reduced. In addition, only a single suction point is identifiable.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, bei welchem die vorstehend anhand des Standes der Technik identifizierten und geschilderten Nachteile vermieden oder aber wenigstens vermindert werden.The invention is therefore based on the object of specifying a method and a device in which the disadvantages identified and described above with reference to the prior art are avoided or at least reduced.

Die Lösung der Aufgabe erfolgt durch ein Verfahren nach dem Oberbegriff und den Merkmalen der Ansprüche eins und zwei und dazu geeigneter Vorrichtungen nach den unabhängigen Nebenansprüchen welche im Folgenden beschrieben werden.The object is achieved by a method according to the preamble and the features of claims one and two and to suitable devices according to the independent subclaims which are described below.

Im erfindungsgemäßen Verfahren wird zunächst Raumluft an Ansaugstellen, welche entlang eines Ansaugrohrsystems verteilt sind, von einem Ansaugbrandmelder angesaugt und mindestens ein erster Detektor aus einem ersten Ansaugrohrende angeströmt. Sobald in dem ersten Detektor eine Brandkenngröße in ausreichendem Maße erkannt wird, wird eine Zeitmessung gestartet und der erste oder ein zweiter Detektor aus einem zweiten Ansaugrohrende des Ansaugrohrsystems angeströmt. Die Zeitmessung wird dann beendet, sobald die Brandkenngröße ein zweites Mal erkannt wird, wobei die zweite Erkennung in dem Detektor, der aus dem zweiten Ansaugrohrende des Ansaugrohrsystems angeströmt wird, stattfindet. Aus der so gewonnenen Zeitdifferenz zwischen der ersten Erkennung und der zweiten Erkennung und einer systemspezifischen -Orts-Zeit-Funktion wird schließlich die Ansaugstelle, welche die erkannte Brandkenngröße aufgenommen hat, identifiziert.In the method according to the invention, first of all, ambient air at intake points, which are distributed along an intake pipe system, is sucked in by an intake fire detector and at least one first detector flows from a first intake pipe end. As soon as a fire parameter is detected to a sufficient extent in the first detector, a time measurement is started and the first or a second detector is supplied from a second intake pipe end of the intake pipe system. Timing is then terminated as soon as the fire characteristic is detected a second time, the second detection taking place in the detector flowing from the second intake pipe end of the intake pipe system. From the time difference thus obtained between the first recognition and the second recognition and a system-specific location-time function, finally, the suction point which has taken up the recognized fire parameter is identified.

In einer bevorzugten Prägung des Verfahrens wird die Raumluft über ein Paar von Ansaugrohren bestehend aus einem ersten Ansaugrohr und einem in geringem Abstand dazu parallel verlegten zweiten Ansaugrohr angesaugt. Dabei wird einem überwachten Raum Luft an Ansaugstellenpaaren entnommen, wobei die Ansaugstellenpaare aus je einer Ansaugstelle auf dem ersten und auf dem zweiten Ansaugrohr bestehen und auf den Ansaugrohren so angebracht sind, dass beide Ansaugstellen eines Ansaugstellenpaares gleichartige Luftproben aus einem gemeinsamen Überwachungsbereich entnehmen können. Ebenso wird dann, wenn beim ersten Erkennen der Brandkenngröße der erkennende Detektor aus dem ersten Ansaugrohr angeströmt wurde, beim zweiten Erkennen der Brandkenngröße der erkennende Detektor aus dem zweiten Ansaugrohr angeströmt und umgekehrt.In a preferred embossing of the method, the room air is sucked in via a pair of intake pipes consisting of a first intake pipe and a second intake pipe which is closely spaced therefrom. In this case, air is taken from a monitored space at Ansaugstellenpaaren, wherein the Ansaugstellenpaare consist of one intake on the first and on the second intake manifold and are mounted on the intake manifold so that both intake points of a Ansaugstellenpaares similar air samples can be taken from a common monitoring area. Likewise, when the recognizing detector from the first intake pipe has been flown during the first recognition of the fire parameter, the recognizing detector from the second intake pipe is supplied with the second detection of the fire parameter and vice versa.

Von besonderem Vorteil ist es hierbei, wenn in dem Paar von Ansaugrohren die Strömungsrichtungen im Bereich der Ansaugstellen in den ersten und zweiten Ansaugrohren gleichzeitig in entgegengesetzten Richtungen verlaufen und auf den ersten und zweiten Detektor gerichtet sind. Aus der Zeitdifferenz zwischen dem ersten und zweiten Erkennen der Brandkenngröße wird dann mit Hilfe einer passenden Orts-Zeit-Funktion auf den Ort des Ansaugpaares, an welchem die Brandkenngröße aufgenommen wurde, geschlossen. Damit können bei gleichzeitig moderatem Installationsaufwand die im Stand der Technik überdies notwendigen Schritte des separaten Ausblasens und erneuten Ansaugens entfallen.It is particularly advantageous in this case if, in the pair of intake pipes, the flow directions in the region of the intake points in the first and second intake pipes run simultaneously in opposite directions and are directed towards the first and second detectors. From the time difference between the first and second recognition of the fire characteristic is then closed by means of a suitable location-time function on the location of the intake pair, on which the fire parameter was recorded. In this way, the steps of separate blowing out and renewed suctioning, which are also necessary in the state of the art, can be dispensed with while at the same time requiring moderate installation effort.

In einer Variante des erfindungsgemäßen Verfahrens wird in einer Umschalteinrichtung nach dem ersten Erkennen der Brandkenngröße von dem ersten auf das zweite Ansaugrohr umgeschaltet, so dass vor dem Umschalten die Raumluft über das erste Ansaugrohr und nach dem Umschalten über das zweite Ansaugrohr angesaugt wird. Durch das Umschalten wird nun der erste oder ein zweiter Detektor aus dem zweiten Ansaugrohrende des Ansaugrohrsystems angeströmt. Da das Umschalten hierbei vollkommen zeitunkritisch erfolgt, wird auch hier der Ort des Ansaugstellenpaares über die Zeitdifferenz zwischen dem ersten und zweiten Erkennen bestimmt . Darüber hinaus wird es durch die Umschaltung vom erstem auf das zweite Ansaugrohr möglich, auf den zweiten Detektor in einem im vorigen Bespiel noch nötigen zweiten Ansaugbrandmelder zu verzichten. Das zweite Erkennen der Brandkenngröße findet in diesem Fall erneut im ersten Detektor statt.In a variant of the method according to the invention is switched in a switching device after the first recognition of the fire characteristic of the first to the second intake manifold, so that before switching the room air is sucked in via the first intake pipe and after switching over the second intake pipe. By switching now the first or a second detector from the second intake pipe end of the intake manifold is now flown. Since the switching takes place here completely non-time critical, also the location of the Ansaugstellenpaares is determined over the time difference between the first and second recognition here. In addition, it is possible by switching from the first to the second intake pipe, to dispense with the second detector in a previous sample still necessary second Ansaugbrandmelder. The second recognition of the fire parameter takes place in this case again in the first detector.

In einer weiteren bevorzugten Variante des erfinderischen Verfahrens wird die Raumluft über ein Ansaugrohrsystem bestehend aus mindestens einem einzelnen Ansaugrohr mit mehreren darauf verteilten Ansaugstellen entnommen, an dessen erstem Ansaugrohrende sich ein erster Detektor und an dessen zweitem Ansaugrohrende sich ein zweiter Detektor befindet. Zuerst wird die Raumluft so angesaugt, dass der erste Detektor aus dem ersten Ansaugrohrende angeströmt wird. Nach dem ersten Erkennen der Brandkenngröße im ersten Detektor wird die Strömungsrichtung im Ansaugrohr umgekehrt. Dadurch wird der zweite Detektor mit der Raumluft angeströmt und erkennt nach einer vom Ort der Ansaugstelle, welche die Brandkenngröße aufgenommen hat, abhängigen Zeit ebenfalls die Brandkenngröße. Aus der Zeitdifferenz zwischen dem ersten und zweiten Erkennen der Brandkenngröße und unter Zuhilfenahme einer systemspezifischen Orts-Zeit-Funktion wird anschließend der Ort der Ansaugstelle, welche die Brandkenngröße aufgenommen hat, identifiziert.In a further preferred variant of the inventive method, the room air is withdrawn via an intake manifold consisting of at least a single intake manifold with multiple suction points distributed thereon, at the first Ansaugrohrende a first detector and at the second Ansaugrohrende there is a second detector. First, the room air is sucked in so that the first detector is flowed from the first intake pipe end. After the first recognition of the fire parameter in the first detector, the flow direction in the intake pipe is reversed. This will be the second Detector with the room air flows and recognizes according to a dependent on the location of the intake, which has taken the fire indicator, dependent time also the fire characteristic. From the time difference between the first and second recognition of the fire characteristic and with the aid of a system-specific location-time function, the location of the suction point, which has recorded the fire parameter, is subsequently identified.

In einer leichten Abwandlung dieser Variante des erfindungsgemäßen Verfahrens erfolgt das Ansaugen der Raumluft aus einem ringartig verlegten Ansaugrohr. Dazu werden entweder beide Ansaugrohrenden direkt an einem Ansaugbrandmelder angeschlossen oder es werden beide Ansaugrohrenden an einen außerhalb des Ansaugbrandmelders liegenden Strömungsumschalter angeschlossen. Somit kann das zweite Erkennen im ersten Detektor stattfinden und es kann auf den zweiten Detektor verzichtet werden.In a slight modification of this variant of the method according to the invention, the intake of the air takes place from a ring-like installed intake pipe. For this purpose, either both Ansaugrohrenden be connected directly to a Ansaugbrandmelder or both Ansaugrohrenden are connected to a lying outside the Ansaugbrandmelders flow switch. Thus, the second recognition can take place in the first detector and it is possible to dispense with the second detector.

In einer besonders vorteilhaften weiteren Abwandlung dieser Variante des erfindungsgemäßen Verfahrens wird nach dem zweiten Erkennen der Brandkenngröße und einer vom Ort der identifizierten Ansaugstelle abhängigen Wartezeit die Strömungsrichtung im Ansaugrohr erneut geändert und die Zeit zwischen dem zweiten umkehren der Strömungsrichtung und einem dritten Erkennen der Brandkenngröße gemessen. Aus dieser Zeitdifferenz und einer entsprechenden Orts-Zeit-Funktion wird dann entweder eine weitere Ansaugstelle, die ebenfalls die Brandkenngröße aufgenommen hat, identifiziert oder die zuerst identifizierte Ansaugstelle bestätigt.In a particularly advantageous further modification of this variant of the method according to the invention, the flow direction in the intake pipe is changed again and the time between the second reversal of the flow direction and a third recognition of the fire characteristic is measured after the second recognition of the fire characteristic and a dependent of the location of the identified suction time waiting time. From this time difference and a corresponding location-time function, either a further intake point, which has also taken up the fire parameter, is identified or the suction point identified first confirmed.

Für die Identifizierung der Ansaugstellen, welche die erkannten Brandkenngrößen aufgenommen haben, werden in den oben beschriebenen Verfahrensvarianten und deren Abwandlungen neben den gemessenen Zeitdifferenzen die Transportzeiten zwischen einzelnen Ansaugstellen und den Detektoren berücksichtigt. Die Transportzeiten werden entweder bei der Inbetriebnahme des ganzen Systems gemessen und in einem Speicher abrufbar gehalten, oder sie werden aus Strömungsparametern wie der Geschwindigkeit in den einzelnen Rohrabschnitten berechnet. Die Strömungsparameter wiederum werden entweder gemessen oder anhand von Rohrparametern wie Rohrlänge und Durchmesser berechnet. Da sich die Transportzeiten während des Betriebs eines Ansaugsystems häufig ändern, werden gespeicherte Transportzeiten anhand von Messwerten einer in derartigen Systemen üblichen Luftstromüberwachung korrigiert.For the identification of the suction points, which have taken up the recognized fire characteristics, are in the process variants described above and their modifications in addition the measured time differences taken into account the transport times between individual suction points and the detectors. The transport times are either measured during commissioning of the entire system and kept retrievable in a memory, or they are calculated from flow parameters such as the speed in the individual pipe sections. In turn, the flow parameters are either measured or calculated using pipe parameters such as pipe length and diameter. Since the transport times frequently change during the operation of an intake system, stored transport times are corrected on the basis of measured values of an air flow monitoring customary in such systems.

Die Erfindung betrifft ferner auch Vorrichtungen zum Erkennen und Lokalisieren eines Brandes die zur Durchführung des erfindungsgemäßen Verfahrens geeignet sind.The invention also relates to devices for detecting and locating a fire which are suitable for carrying out the method according to the invention.

Eine bevorzugte Vorrichtung besteht aus einem Ansaugbrandmelder, mindestens einem Ansaugrohrsystem mit Ansaugstellen, die repräsentative Raumluftproben aus einem Überwachungsbereich entnehmen, einer Zeitmesseinrichtung, einer Einheit zum Identifizieren von Ansaugstellen, welche eine detektierte Brandkenngröße aufgenommen haben. Dabei besteht das Ansaugrohrsystem aus einem Ansaugrohrpaar mit einem ersten und einem zweiten Ansaugrohr, die in geringem Abstand nebeneinander und im Wesentlichen parallel zueinander angebracht sind. Entlang des Ansaugrohrpaares sind Ansaugstellenpaare ausgebildet, die aus je einer Ansaugstelle in dem ersten Ansaugrohr und einer Ansaugstelle in dem zweiten Rohr bestehen, wobei beide Ansaugstellen so angebracht sind, dass sie aus einem gemeinsamen Überwachungsbereich gleichartige Luftproben entnehmen können.A preferred device consists of a Ansaugbrandmelder, at least one intake manifold system with suction, which take representative air samples from a surveillance area, a time measuring device, a unit for identifying suction, which have received a detected fire characteristic. In this case, the Ansaugrohrsystem consists of a pair of intake manifold with a first and a second intake pipe, which are mounted at a small distance next to each other and substantially parallel to each other. Suction point pairs are formed along the intake pipe pair, each consisting of a suction point in the first intake pipe and a suction point in the second pipe, both suction points are mounted so that they can take similar air samples from a common monitoring area.

In einer vorteilhaften Ausführung der erfindungsgemäßen Vorrichtung sind ein erster Ansaugbrandmelder an einem ersten Ansaugrohrende des Ansaugrohrsystems mit dem ersten Ansaugrohr und ein zweiter Ansaugbrandmelder an einem zweiten Ansaugrohrende mit dem zweiten Ansaugrohr verbunden. Dabei sind der erste und zweite Ansaugbrandmelder und/oder die beiden Ansaugrohre so angeordnet, dass die Strömungsrichtung im Bereich der Ansaugstellen in dem zweiten Ansaugrohr zur Strömungsrichtung im ersten Ansaugrohr gegenläufig ist.In an advantageous embodiment of the device according to the invention, a first Ansaugbrandmelder at a first Ansaugrohrende the intake manifold with the first intake manifold and a second Ansaugbrandmelder at a second Ansaugrohrende connected to the second intake manifold. Here, the first and second Ansaugbrandmelder and / or the two intake pipes are arranged so that the flow direction in the region of the suction in the second intake pipe to the flow direction in the first intake pipe is in opposite directions.

In einer weiteren vorteilhaften Ausführung der erfindungsgemäßen Vorrichtung ist eine Einrichtung zum Umschalten zwischen dem ersten und zweiten Ansaugrohr vorgesehen. Die Einrichtung zum Umschalten zwischen dem ersten und zweiten Ansaugrohr befindet sich entweder in einem Ansaugbrandmelder, an dem das erste Ansaugrohr mit dem ersten Ansaugrohrende des Ansaugrohrsystems und das zweite Ansaugrohr mit dem zweiten Ansaugrohrende des Ansaugrohrsystems angeschlossen ist oder außerhalb des Ansaugbrandmelders in einem separaten Gehäuse und ist dort in gleicher Weise an das Ansaugrohrsystem angeschlossen und selbstverständlich zusätzlich mit dem Ansaugbrandmelder verbunden.In a further advantageous embodiment of the device according to the invention, a device for switching between the first and second intake pipe is provided. The means for switching between the first and second intake pipes is located either in a Ansaugbrandmelder where the first intake pipe to the first intake pipe end of the intake pipe system and the second intake pipe to the second intake pipe end of the intake pipe system is connected or outside the Ansaugbrandmelders in a separate housing and There connected in the same way to the intake manifold and of course additionally connected to the Ansaugbrandmelder.

Eine weitere vorteilhafte Ausführung der erfindungsgemäßen Vorrichtung weist ein Ansaugrohrsystem bestehend aus einem einzelne Ansaugrohr mit mehreren Ansaugstellen auf, an dessen ersten Ansaugrohrende ein erster Detektor und an dessen zweiten Ansaugrohrende ein zweiter Detektor angebracht sind. Weiterhin weist diese Vorrichtung die folgenden Einrichtungen auf: einen Strömungsumschalter, mit dem die Strömungsrichtung im Ansaugrohr umgekehrt werden kann, eine Zeitmesseinrichtung und eine Einheit zum Identifizieren von Ansaugstellen, welche eine detektierte Brandkenngröße aufgenommen haben.A further advantageous embodiment of the device according to the invention comprises an intake manifold consisting of a single intake manifold with a plurality of suction points, at the first Ansaugrohrende a first detector and at the second Ansaugrohrende a second detector are mounted. Furthermore, this device comprises the following devices: a flow switch, with which the flow direction in the intake pipe can be reversed, a time measuring device and a unit for identifying suction points, which have recorded a detected fire characteristic.

In einer Variante dieser Ausführungsform ist das erste Ansaugrohrende mit einem ersten Ansaugbrandmelder und das zweite Ansaugrohrende mit einem zweiten Ansaugbrandmelder verbunden. Die Verbindung zwischen Ansaugrohrende und Ansaugbrandmelder kann dabei über je ein Mehrwegeventil erfolgen. In diesem Fall dienen die Mehrwegeventile auch als Strömungsumschalter.In a variant of this embodiment, the first Ansaugrohrende with a first Ansaugbrandmelder and the second Ansaugrohrende connected to a second Ansaugbrandmelder. The connection between Ansaugrohrende and Ansaugbrandmelder can be done via a multi-way valve. In this case, the multi-way valves also serve as a flow switch.

Eine weitere vorteilhafte Ausführung der erfindungsgemäßen Vorrichtung weist ein Ansaugrohrsystem bestehend aus einem einzelnen, ringartig verlegten Ansaugrohr mit mehreren Ansaugstellen. Darin sind beide Ansaugrohrenden des Ansaugrohrsystems entweder direkt mit einem Ansaugbrandmelder verbunden, der mindestens einen Strömungsumschalter enthält, oder sie sind mit einem separaten Strömungsumschalter verbunden, der wiederum mit dem Ansaugbrandmelder verbunden ist.A further advantageous embodiment of the device according to the invention comprises an intake manifold consisting of a single, annularly installed intake manifold with multiple suction points. Therein, both Ansaugrohrenden the intake manifold are either connected directly to a Ansaugbrandmelder containing at least one flow switch, or they are connected to a separate flow switch, which in turn is connected to the Ansaugbrandmelder.

Eine weitere vorteilhafte Ausführung der erfindungsgemäßen Vorrichtung besteht aus mindestens zwei Ansaugbrandmeldern, mindestens einem Ansaugrohrsystem bestehend aus mindestens zwei Ansaugrohren mit Ansaugstellen, die repräsentative Raumluftproben aus einem Überwachungsbereich entnehmen, einer Zeitmesseinrichtung und einer Einheit zum Identifizieren von Ansaugstellen, welche eine detektierte Brandkenngröße aufgenommen haben. Darin ist ein erster Ansaugbrandmelder über ein erstes Mehrwegeventil mit dem ersten Ende eines ersten Ansaugrohrs verbunden. Das erste Ansaugrohr ist weiter an seinem zweiten Ende über ein zweites Mehrwegeventil mit einem zweiten Ansaugbrandmelder verbunden und der zweite Ansaugbrandmelder über das zweite Mehrwegeventil mit dem ersten Ende eines zweiten Ansaugrohrs. Das zweite Ansaugrohr ist wiederum mit seinem zweiten Ende über das erste Mehrwegeventil mit dem ersten Ansaugbrandmelder verbunden. Die Mehrwegeventile dienen auch als Strömungsumschalter. Damit ergibt sich ein Ring aus zwei Ansaugbrandmeldern mit zwei Ansaugrohren, die je einen eigenen Überwachungsbereich aufweisen.A further advantageous embodiment of the device according to the invention consists of at least two Ansaugbrandmeldern, at least one Ansaugrohrsystem consisting of at least two intake manifolds with intake points that remove representative air samples from a surveillance area, a time measuring device and a unit for identifying suction, which have received a detected fire characteristic. Therein, a first Ansaugbrandmelder is connected via a first multi-way valve to the first end of a first intake pipe. The first intake pipe is further connected at its second end via a second multi-way valve with a second Ansaugbrandmelder and the second Ansaugbrandmelder via the second multi-way valve to the first end of a second intake pipe. The second intake pipe is in turn connected at its second end via the first multi-way valve to the first intake fire detector. The multiway valves also serve as flow switches. This results in a ring of two Ansaugbrandmeldern with two intake pipes, each having its own monitoring area.

In einer Weiterentwicklung dieser Vorrichtung wird diese auf n Ansaugbrandmelder, n Ansaugrohre und n Mehrwegventile erweitert. Darin sind dann ein (n-1)-tes Ansaugrohr mit seinem ersten Ende über ein (n-1)-tes Mehrwegeventil an mit einem (n-1)-ten Ansaugbrandmelder und an seinem zweiten Ende über ein n-tes Mehrwegeventil mit einem n ten Ansaugbrandmelder verbunden. Der n-te Ansaugbrandmelder kann wiederum mit einem n-ten Ansaugrohr und dieses schließlich mit dem ersten Ansaugbrandmelder verbunden sein.In a further development of this device, this is extended to n intake fire detectors, n intake pipes and n multi-way valves. Therein are then a (n-1) -th intake manifold with its first end via a (n-1) -th multi-way valve to with a (n-1) -th Ansaugbrandmelder and at its second end via an n-th multi-way valve with a n Ansaugbrandmelder connected. The n-th Ansaugbrandmelder can in turn be connected to an n-th intake pipe and this finally with the first Ansaugbrandmelder.

Die Erfindung wird nachstehend anhand von Ausführungsbeispielen in der Zeichnung näher erläutert. Es zeigen dabei, teilweise in schematisierter Darstellung, die

Fig.1
ein Ansaugbranderkennungssystem mit einem Ansaugrohrpaar mit gegenläufiger Strömungsrichtung;
Fig.2a
zeigt ein Ansaugbranderkennungssystem mit einem Ansaugrohrpaar mit einer Umschalteinrichtung zwischen zwei Ansaugrohren in einem Ansaugmelder;
Fig.2b
ein Ansaugbranderkennungssystem mit einem Ansaugrohrpaar mit einer separaten Umschalteinrichtung zwischen zwei Ansaugrohren;
Fig.2c
ein Ansaugbranderkennungssystem mit Ansaugrohrpaaren mit einer separaten Umschalteinrichtung zwischen den einzelnen Ansaugrohren in einem H-System;
Fig.3
ein Ansaugbranderkennungssystem mit je einem Detektor an beiden Enden eines Ansaugrohres;
Fig.4
eine Vorrichtung zum umschalten der Strömungsrichtung in einem Ansaugrohrsystem;
Fig. 5
ein Beispiel eines Ansaugbranderkcnnungssystems mit je einem Ansaugbrandmelder an beiden Enden eines Ansaugrohres;
Fig.6a
ein Ansaugbranderkennungssystem mit einem ringartig verlegten Rohrsystem mit je einem Detektor an beiden Enden eines Ansaugrohres;
Fig.6b
ein Ansaugbranderkennungssystem mit einem ringartig verlegten Rohrsystem mit nur einem Detektor;
Fig.7a
zwei zusammen geschlossene Ansaugbranderkennungssysteme; und die
Fig.7b
n zusammen geschlossene Ansaugbranderkennungssysteme.
The invention is explained below with reference to embodiments in the drawing. It show here, partly in a schematic representation, the
Fig.1
a Ansaugbranderkennungsungssystem with a pair of intake pipe in the opposite direction of flow;
2a
shows a Ansaugbranderkennungssystem with a pair of intake manifold with a switching device between two intake pipes in a Ansaugmelder;
2b
a Ansaugbranderkennungsungssystem with a pair of intake manifold with a separate switching device between two intake pipes;
Figure 2c
a Ansaugbranderkennungsungssystem with intake manifold pairs with a separate switching device between the individual intake pipes in an H system;
Figure 3
an intake fire detection system each having a detector at both ends of an intake pipe;
Figure 4
a device for switching the flow direction in an intake pipe system;
Fig. 5
an example of a Ansaugbranderkcnnungssystems with a Ansaugbrandmelder at both ends of an intake manifold;
6a
a Ansaugbranderkennungsungssystem with a ring-laid pipe system, each with a detector at both ends of an intake manifold;
Figure 6b
a Ansaugbranderkennungsungssystem with a ring-laid pipe system with only one detector;
7a
two combined intake fire detection systems; and the
Figure 7b
n together closed intake fire detection systems.

In der Fig.1 ist ein Ansaugbranderkennungssystem (1) zu erkennen, mit einem ersten und zweiten Ansaugbrandmelder (2, 17), bestehend aus je einem Detektor (4, 14) für Brandkenngrößen, je einem Lüfter (3) und je einer nicht dargestellten Steuer- und Auswerteeinheit in je einem Gehäuse und mit einem Ansaugrohrsystem (23) bestehend aus einem ersten und zweiten Ansaugrohr (24, 25).In the Fig.1 is a Ansaugbranderkennungssystem (1) to recognize, with a first and second Ansaugbrandmelder (2, 17), each consisting of a detector (4, 14) for fire characteristics, one fan (3) and one each not shown control and evaluation in each a housing and with an intake pipe system (23) consisting of a first and second intake pipe (24, 25).

Am ersten Ansaugbrandmelder (2) ist das erste Ansaugrohr (24) mit einem ersten Ansaugrohrende (21) des Ansaugrohrsystems (23) angeschlossen und am zweiten Ansaugmelder (17) ist das zweite Ansaugrohr (25) mit einem zweiten Ansaugrohrende (22) des Ansaugrohrsystems (23) angeschlossen. Beide Ansaugrohre (24, 25) sind weitgehend parallel zueinender und nah beieinender verlegt. Entlang beider Ansaugrohre (24, 25) sind jeweils auf gleicher Höhe Ansaugstellen (6) angebracht, wobei je eine Ansaugstelle (6) der ersten Ansaugrohres (24) mit einer Ansaugstelle des zweiten Ansaugrohres (25) ein Ansaugstellenpaar (7) bilden. Die einzelnen Ansaugstellen (6) eines Ansaugstellenpaares (7) werden dafür so dimensioniert und positioniert, dass beide Ansaugstellen (6) gleichartige Raumluftmengen aufnehmen. Die Ansaugbrandmelder (2, 17) und die Ansaugrohre (24, 25) sind so angebracht, dass die Strömungsrichtungen (8, 9) im Bereich der Ansaugstellen (6) in beiden Ansaugrohren (24 25) in einander entgegen gesetzten Richtungen verlaufen.At the first intake fire detector (2), the first intake pipe (24) is provided with a first intake pipe end (21) of the intake pipe system (23) and connected to the second Ansaugmelder (17), the second intake pipe (25) with a second intake pipe end (22) of the intake pipe system (23) is connected. Both intake pipes (24, 25) are laid largely parallel to one another and close to the bottom. Along each of the intake pipes (24, 25) suction points (6) are mounted at the same height, one suction point (6) of the first intake pipe (24) with a suction point of the second intake pipe (25) forming one intake point pair (7). The individual suction points (6) of a suction point pair (7) are dimensioned and positioned so that both suction points (6) absorb the same amount of indoor air. The Ansaugbrandmelder (2, 17) and the intake pipes (24, 25) are mounted so that the flow directions (8, 9) in the region of the suction points (6) in both intake pipes (24 25) extend in opposite directions.

Tritt nun z. B. im der Mitte der beiden Ansaugrohre (24, 25) Rauch auf, dann wird dieser nahezu gleichzeitig in beiden Detektoren (4, 14) erkannt. Tritt dagegen der Rauch am Ansaugstellenpaar (7) auf, das sich näher am ersten Ansaugbrandmelder (2) befindet, so wird der erste der beiden Detektoren (4, 14) den Rauch zuerst erkennen und erst nach einer Zeitdauer, die vom Ort des Ansaugstellenpaares (7) abhängig ist, erkennt der zweite Detektor (14) den Rauch.Now, for example, B. in the middle of the two intake pipes (24, 25) smoke, then this is detected almost simultaneously in both detectors (4, 14). If, on the other hand, the smoke at the intake point pair (7), which is closer to the first intake fire detector (2), the first of the two detectors (4, 14) will first detect the smoke and only after a period of time from the location of the Ansaugstellenpaares ( 7), the second detector (14) detects the smoke.

Der Ort des Ansaugstellenpaares (7) ist somit auch als Funktion der Zeitdifferenz zwischen dem ersten Erkennen einer Brandkenngröße in dem ersten Detektor (4) und einem zweiten Erkennen in einem zweiten Detektor (14) darstellbar. Dabei ist es auch einleuchtend, dass das erste Erkennen auch im zweiten Detektor (14) stattfinden kann, wenn ein Brand näher an diesem auftritt. Der Ort des Ansaugstellenpaares (7), welches die erkannte Brandkenngröße aufgenommen hat, wird nach dem zweiten Erkennen von dem Rauch aus der gemessenen Zeitdifferenz und einer zum Ansaugrohrsystem (23) zugehörigen Orts-Zeit-Funktion bestimmt. Die Zeitmessung und die Bestimmung des Ortes werden in einem der Ansaugbrandmelder (2, 17), in einer separaten, nicht dargestellten Ortsbestimmungseinheit oder in einer ebenfalls nicht dargestellten Brandmeldezentrale durchgeführt.The location of the suction point pair (7) can thus also be represented as a function of the time difference between the first recognition of a fire parameter in the first detector (4) and a second detection in a second detector (14). It is also obvious that the first detection can also take place in the second detector (14) when a fire occurs closer to it. The location of the Ansaugstellenpaares (7), which has received the detected fire characteristic, is after the second detection of the smoke from the measured time difference and a location-time function associated with the intake manifold (23). The time measurement and the determination of the location are performed in one of the Ansaugbrandmelder (2, 17), in a separate, not shown location determination unit or in a fire alarm unit, also not shown.

Da in diesem Ansaugbranderkennungssystem (1) zwei separate Ansaugmelder (2, 17) ständig über ein gemeinsames Paar von Ansaugrohren (24, 25) mit gegenläufiger Strömungsrichtung (8, 9) Raumluft ansaugen, können bei moderatem zusätzlichen Installationsaufwand die im Stand der Technik notwendigen und zeitaufwendigen Verfahrenschritte des Ausblasens und anschließenden erneuten Ansaugens entfallen.Since in this Ansaugbranderkennungssystem (1) two separate Ansaugmelder (2, 17) constantly via a common pair of intake pipes (24, 25) with opposite flow direction (8, 9) suck in room air, with a moderate additional installation costs necessary and in the prior art time-consuming process steps of the blow-out and subsequent re-aspiration omitted.

Das oben beschriebene Ansaugbranderkennungssystem (1) hat zudem neben der schnellen Identifizierung der Ansaugstellen (6, 7) den Vorteil, dass sich die maximalen Transportzeiten zwischen einem Ansaugstellenpaar (7) und einem der beiden Detektoren (26, 27) gegenüber einem System mit einem einzelnen Ansaugrohr nahezu halbieren. Es ist daher auch möglich die aufgrund der maximal erlaubten Transportzeiten begrenzten Längen der Ansaugrohre (24, 25) bis zur doppelte Länge der bisher möglichen auszudehnen.In addition to the rapid identification of the suction points (6, 7), the above-described intake fire detection system (1) has the advantage that the maximum transport times between a suction point pair (7) and one of the two detectors (26, 27) compared with a single system Almost halve intake manifold. It is therefore also possible due to the maximum allowable transport times limited lengths of the intake pipes (24, 25) extend to twice the length of the previously possible.

Die in den Fig. 2a, 2b und 2c gezeigten Ansaugbranderkennungssysteme (20) unterscheiden sich vom zuvor gezeigten System zum einen dadurch, dass anstelle eines zweiten Ansaugbrandmelders (17) eine Rohrumschalteinrichtung (10) vorgesehen ist und zum anderen dadurch, dass die Strömungen (8, 9) in beiden Ansaugrohren (5) in gleicher Richtung verlaufen. Daher sind hier auch das erste Ansaugrohrende (21) sowie das zweite Ansaugrohrende (22) des Ansaugrohrsystems (23) an der Rohrumschalteinrichtung (10) angeschlossen.The in the Fig. 2a . 2 B and 2c The intake-fire detection systems (20) shown differ from the previously shown system in that instead of a second Ansaugbrandmelders (17) a pipe switching device (10) is provided and the other in that the flows (8, 9) in both intake pipes (5) in same direction. Therefore, here are the first Ansaugrohrende (21) and the second Ansaugrohrende (22) of the intake manifold (23) connected to the pipe switching device (10).

In den Ansaugbranderkennungssystemen (20) der Fig.2a, 2b und 2c wird die Raumluft zunächst nur über ein erstes Ansaugrohr (24) angesaugt. Tritt nun Rauch an dem Ansaugstellenpaar (7) auf wird dieser im ersten Ansaugrohr (24) über das erste Ansaugrohrende (21) bis zum einzigen Detektor (4) transportiert und dort ein erstes Mal erkannt. Unmittelbar darauf folgend wechselt die Rohrumschalteinrichtung (10) von der durchgezogen dargestellten Stellung (11) in die gestrichelt dargestellte Stellung (12). Dadurch wird nun Raumluft an dem Ansaugstellenpaar (7) über das zweite Ansaugrohr (25) und das zweite Ansaugrohrende (22) des Ansaugrohrsystems angesaugt und die Zeit für den Transport des Rauches beginnt erneut. Da mit dem ersten Erkennen des Rauches und dem Umschalten der Ansaugrohre (24, 25) der Startzeitpunkt für die Transportzeit zwischen der Ansaugstelle (6, 7) und dem Detektor (4) bekannt ist, wird diese nun gemessen. Da das Umschalten der Ansaugrohre (24, 25) zeitunkritisch erfolgt, wird die Zeit zwischen dem ersten und zweiten Erkennen des Rauches gemessen und mit der Transportzeit gleichgesetzt. Die Bestimmung des Ortes desjenigen Ansaugstellenpaares (7), an dem der Rauch aufgenommen wurde, erfolgt nun wiederum anhand einer Orts-Zeit-Funktion für die Transportzeiten des Ansaugrohrssystems (23).In the intake fire detection systems (20) of 2a . 2 B and 2c the room air is initially sucked only via a first intake pipe (24). If smoke now occurs at the intake point pair (7), it is transported in the first intake pipe (24) via the first intake pipe end (21) to the single detector (4) and detected there for a first time. Immediately thereafter, the pipe switching device (10) changes from the position (11) shown in solid lines to the position (12) shown in dashed lines. As a result, room air is now sucked in at the intake point pair (7) via the second intake pipe (25) and the second intake pipe end (22) of the intake pipe system and the time for the transport of the smoke begins again. Since the start time for the transport time between the suction point (6, 7) and the detector (4) is known with the first recognition of the smoke and the switching of the intake pipes (24, 25), this is now measured. Since the switching of the intake pipes (24, 25) is non-time critical, the time between the first and second recognition of the smoke is measured and equated with the transport time. The determination of the location of that Ansaugstellenpaares (7) on which the smoke was recorded, now takes place again on the basis of a location-time function for the transport times of the intake manifold (23).

Ebenso wie der in Fig.2a gezeigte Ansaugbrandmelder (2) kann auch ein Ansaugbrandmelder (2) mit zwei unabhängigen Detektoren, wie er in Fig. 6a gezeigt ist, eingesetzt werden um z.B. eine Zweidetektorabhängigkeit zu erzielen.Just like the one in 2a shown Ansaugbrandmelder (2) can also be a Ansaugbrandmelder (2) with two independent detectors, as in Fig. 6a is shown to be used, for example, to achieve a Zweidetektorabhängigkeit.

Im Unterschied zu Fig.2a weisen die in den Fig.2b und 2c gezeigten Systeme statt einer internen Rohrumschalteinrichtung (10) eine Rohrumschalteinrichtung (10) die außerhalb des Ansaugbrandmelders (2) liegt auf.In contrast to 2a have the in the 2b and 2c shown systems instead of an internal tube switching device (10) a pipe switching device (10) outside the Ansaugbrandmelders (2) is located on.

In Fig. 2c ist zudem eine Verwendung in einem so genannten H-System gezeigt. Hier sind zusätzliche Zweigdetektoren (13) vorgesehen, welche denjenigen Zweig eines H-Systems detektieren, an dem die erkannte Brandkenngröße aufgenommen wurde.In Fig. 2c In addition, a use in a so-called H system is shown. Here, additional branch detectors (13) are provided, which detect the branch of an H-system to which the detected fire parameter was recorded.

In Fig. 3 ist ein Ansaugbranderkennungssystem (30) gezeigt, welches einen Ansaugbrandmelder (2) mit einem Lüfter (3) und einem ersten Detektor (4) aufweist. An dem Ansaugbrandmelder (2) ist das erste Ansaugrohrende (21) eines Ansaugrohrsystems (23) angebracht. Am zweiten Ansaugrohrende (22) des Ansaugrohrsystems (23) befindet sich ein zweiter Detektor (14). Im normalen Betrieb wird Raumluft von dem Ansaugbrandmelder (2) über das Ansaugrohr (5) angesaugt und strömt aus dem ersten Ansaugrohrende (21) heraus den ersten Detektor (4) an. Wenn nun an einem der Ansaugstellen (6) ein Brand auftritt, wird z. B. Brandrauch aufgenommen und zum ersten Detektor(4) transportiert. Sobald der Brandrauch im ersten Detektor ein erstes Mal erkannt worden ist, wird die Strömungsrichtung (8) umgekehrt.In Fig. 3 a suction fire detection system (30) is shown, which has a Ansaugbrandmelder (2) with a fan (3) and a first detector (4). At the Ansaugbrandmelder (2), the first Ansaugrohrende (21) of a Ansaugrohrsystems (23) is mounted. At the second intake pipe end (22) of the intake pipe system (23) there is a second detector (14). In normal operation, room air is sucked in by the intake fire detector (2) via the intake pipe (5) and flows out of the first intake pipe end (21) out to the first detector (4). Now, if a fire occurs at one of the intake points (6), z. B. smoke absorbed and transported to the first detector (4). As soon as the fire smoke has been detected a first time in the first detector, the flow direction (8) is reversed.

Dies kann beispielsweise mit einer in Fig.4 gezeigten Vorrichtung erfolgen. Darin ist ein Lüfter, der nur in eine Richtung Luft fördern kann, über ein Vierwegeventil (15) mit einem Ansaugrohr verbunden. Wenn sich das Ventil in der durchgezogen dargestellten Stellung befindet, wird Luft über das Ansaugrohr angesaugt, während sich in der punktiert dargestellten Stellung die gegenläufige Strömungsrichtung im Ansaugrohr (5) einstellt. Da das Ansaugrohr in Fig.3 auf der Strecke zwischen der Ansaugstelle (6) und dem ersten Detektor bereits mit Brandrauch gefüllt ist, bewegt sich dieser nun in Richtung (9) zum zweiten Detektor (14), der nun aus dem zweiten Ansaugrohrende (22) angeströmt wird. Die Zeit, die benötigt wird, bis der zweite Detektor den Brandrauch nun ebenfalls erkennen kann, ist von der Strecke zwischen der Ansaugstelle (6), welche den Brandrauch aufgenommen hat, und dem zweiten Detektor abhängig und entspricht der Zeit zwischen dem ersten Erkennen des Brandrauches im ersten Detektor (4) und dem zweiten Erkennen im zweiten Detektor (14), welche gemessen wird. Aus der gemessenen Zeitdifferenz zwischen dem ersten und zweiten Erkennen wird nun wiederum anhand einer passenden Orts-Zeit-Funktion die Ansaugstelle (16) identifiziert, welche den Brandrauch aufgenommen hat. Um zu verhindern, dass nach der Umkehr der Strömungsrichtung Brandrauch aus dem Ansaugrohr austritt, bevor er den-zweiten Detektor (14) erreicht hat, können auf der Innenseite der Ansaugstellen Folien vorgesehen werden, welche die Ansaugstellen (6) verschließen, sobald die Strömungsrichtung umgekehrt wird.This can be done, for example, with an in Figure 4 shown device. This is a fan that can only promote air in one direction, connected via a four-way valve (15) with an intake manifold. When the valve is in the position shown in solid, air is sucked in via the intake pipe, while in the dotted position, the opposite flow direction in the intake pipe (5) sets. Since the intake pipe in Figure 3 On the route between the suction point (6) and the first detector already filled with smoke, this now moves in the direction (9) to the second detector (14), which now from the second Inlet pipe end (22) is flown. The time required until the second detector can now also detect the smoke is dependent on the distance between the intake point (6), which has received the smoke and the second detector, and corresponds to the time between the first detection of the smoke in the first detector (4) and the second detection in the second detector (14), which is measured. From the measured time difference between the first and second recognition, the suction point (16), which has taken up the smoke, is again identified on the basis of a suitable location-time function. In order to prevent fire smoke from exiting the intake pipe after reversal of the flow direction before it has reached the second detector (14), foils can be provided on the inside of the suction points which close the suction points (6) as soon as the direction of flow reverses becomes.

Alternativ dazu kann eine in Fig. 5 gezeigte Vorrichtung verwendet werden, bei der sich an beiden Enden des Ansaugrohrsystems (23) je ein Ansaugbrandmelder (2, 17) befindet. Der erste Ansaugbrandmelder (2) ist über ein erstes Mehrwegeventil (15) an ein erstes Ansaugrohrende (21) des Ansaugrohrsystems (23) angeschlossen. Am zweiten Ansaugrohrende (22) des Ansaugrohrsystems (23) ist über ein zweites Mehrwegeventil (16) der zweite Ansaugbrandmelder (17) angeschlossen. Im normalen Betrieb wird vom ersten Ansaugbrandmelder (2) Raumluft über das Ansaugrohr (5) angesaugt, wobei der erste Detektor aus dem ersten Ansaugrohrende (21) angeströmt wird, während der zweite Ansaugbrandmelder (17) über das zweite Mehrwegeventil (16) anderweitig Raumluft ansaugen kann. Die Strömungsrichtungen folgen dabei den durchgezogenen Pfeilen (8).Alternatively, an in Fig. 5 be used device shown in which at both ends of the intake manifold (23) each a Ansaugbrandmelder (2, 17). The first intake fire detector (2) is connected via a first multi-way valve (15) to a first intake pipe end (21) of the intake pipe system (23). At the second intake pipe end (22) of the intake pipe system (23), the second intake fire detector (17) is connected via a second multiway valve (16). In normal operation, room air is sucked in by the first intake fire detector (2) via the intake pipe (5), the first detector being flowed in from the first intake pipe end (21), while the second intake fire detector (17) otherwise drawing in room air via the second multiway valve (16) can. The flow directions follow the solid arrows (8).

Tritt nun an einer Ansaugstelle (6) eine Brandkenngröße auf, dann wird diese dort aufgenommen und zum ersten Detektor (4) im ersten Ansaugbrandmelder (2) transportiert, wo sie ein erstes Mal erkannt wird. Daraufhin wechseln die Ventilstellungen im ersten und zweiten Mehrwegeventil (15, 16), welche hier beispielsweise als Dreiwegeventile dargestellt sind, von der durchgezogenen Stellung (11) in die gestrichelt dargestellte Stellung (12). Dadurch erfolgt nun die Ansaugung der Raumluft über das Ansaugrohr (5) durch den zweiten Ansaugbrandmelder (17), wobei der zweite Detektor (14) aus dem zweiten Ansaugrohrende (22) angeströmt wird, während der erste Ansaugbrandmelder (2) anderweitige Raumluft ansaugen kann. Die Strömungsrichtungen folgen nun den gestrichelt dargestellten Pfeilen (9). Mit dem zeitunkritischen Umschalten, dessen Zeitpunkt mit dem des ersten Erkennens der Brandkenngröße zusammenfällt, ist der Beginn der Transportzeit zwischen der Ansaugstelle (6) und dem zweiten Detektor (14) im zweiten Ansaugbrandmelder (17) bekannt. Daher wird auch in dieser Anordnung mit dem ersten Erkennen der Brandkenngröße eine Zeitmessung gestartet, welche mit einem zweiten Erkennen der Brandkenngröße, welche im zweiten Detektor (14) stattfindet, beendet wird. Mit der so gemessenen Zeitdifferenz und einer auf das Ansaugsystem passenden Orts-Zeit-Funktion wird anschließend der Ort der Ansaugstelle (6), welche die Brandkenngröße aufgenommen hat, bestimmt.If a fire parameter now occurs at a suction point (6), it is recorded there and sent to the first detector (4). transported in the first Ansaugbrandmelder (2), where it is detected a first time. Thereupon, the valve positions in the first and second multi-way valve (15, 16), which are shown here as, for example, three-way valves, change from the solid position (11) to the position (12) shown in dashed lines. As a result, the intake of the room air via the intake pipe (5) by the second Ansaugbrandmelder (17), wherein the second detector (14) from the second Ansaugrohrende (22) is supplied, while the first Ansaugbrandmelder (2) can suck in other room air. The flow directions now follow the dashed arrows (9). With the non-time critical switching, whose time coincides with that of the first recognition of the fire characteristic, the beginning of the transport time between the suction point (6) and the second detector (14) in the second Ansaugbrandmelder (17) is known. Therefore, in this arrangement, with the first recognition of the fire parameter, a time measurement is started, which is ended with a second recognition of the fire parameter, which takes place in the second detector (14). With the time difference measured in this way and a location-time function matching the intake system, the location of the intake point (6), which has recorded the fire parameter, is then determined.

Bei einer Variante der in Fig.5 gezeigten Vorrichtung können die Strömungsumschalter (15, 16) weggelassen werden und die beiden Ansaugrohrenden (21, 22) direkt an die beiden Ansaugrauchmelder (2, 17) angeschlossen werden. Dafür muss aber immer einer der Lüfter (3) abgeschaltet sein. Der Ansaugbrandmelder (2, 17) mit dem abgeschalteten Lüfter (3) stellt für das Rohrsystem (23) einen gewissen Widerstand dar. Nach dem ersten Erkennen der Brandkenngröße wird der zunächst passive Lüfter (3) eingeschaltet und der andere Lüfter (3) ausgeschaltet, wodurch sich die Strömungsrichtung im Ansaugrohr (5) umkehrt.In a variant of in Figure 5 As shown, the flow switch (15, 16) can be omitted and the two Ansaugrohrenden (21, 22) directly to the two Ansaugrauchmelder (2, 17) are connected. But always one of the fans (3) must be switched off. The Ansaugbrandmelder (2, 17) with the fan off (3) for the pipe system (23) represents a certain resistance. After the first recognition of the fire characteristic of the first passive fan (3) is turned on and the other fan (3) off, whereby the flow direction in the intake pipe (5) reverses.

Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung ist in der Fig.6a gezeigt. Im Gegensatz zum System, das in Fig.5 dargestellt ist, sind hier die in Fig.5 gezeigten ersten und zweiten Ansaugbrandmelder (2, 17) zu einem einzigen Ansaugbrandmelder (2) mit einem ersten und einem zweiten Detektor (4, 14) zusammengeführt. Die beiden Ansaugrohrenden des Ansaugrohrsystems (23) sind daher an dem einzigen Ansaugbrandmelder (2) angeschlossen. Die Umkehrung der Strömungsrichtung (8, 9) erfolgt durch wechselseitiges Öffnen bzw. Verschließen der beiden Ansaugrohrenden (21, 22). Im gezeigten System ist das erste Ansaugrohrende (21) an einen ersten und das zweite Ansaugrohrende (22) an einen zweiten Anschluss des Ansaugbrandmelders (2) angeschlossen. An den beiden Anschlüssen befinden sich erste und zweite Strömungsumschalter (15, 16), die sich zunächst in der durchgezogen dargestellten Stellung (11) befinden. Dadurch strömt Raumluft, welche über das Ansaugrohr (5) angesaugt wird, aus dem ersten Ansaugrohrende (21) den ersten Detektor (4) an.A further preferred embodiment of the device according to the invention is in the 6a shown. Unlike the system that is in Figure 5 is shown here are the in Figure 5 shown first and second Ansaugbrandmelder (2, 17) to a single Ansaugbrandmelder (2) with a first and a second detector (4, 14) merged. The two Ansaugrohrenden the intake manifold (23) are therefore connected to the single Ansaugbrandmelder (2). The reversal of the flow direction (8, 9) takes place by mutual opening or closing of the two Ansaugrohrenden (21, 22). In the system shown, the first Ansaugrohrende (21) to a first and the second Ansaugrohrende (22) to a second port of the Ansaugbrandmelders (2) is connected. At the two terminals are first and second flow switch (15, 16), which are initially in the position shown in solid (11). As a result, room air, which is sucked in via the intake pipe (5), flows from the first intake pipe end (21) to the first detector (4).

Sobald der erste Detektor nun eine Brandkenngröße in dem auf ihn gerichteten Luftstrom ein erstes Mal erkannt hat, wird eine Zeitmessung gestartet, und die ersten und zweiten Strömungsumschalter (15, 16) wechseln von der durchgezogen dargestellten Stellung (11) in die gestrichelt dargestellte Stellung (12). Dadurch wird die Strömungsrichtung im Ansaugrohr (5) von der mit Pfeil (8) dargestellten Richtung in die durch Pfeil (9) dargestellte Richtung umgekehrt und die Raumluft vom anderen Ende des Ansaugrohres (5) angesaugt, wobei der zweite Detektor (14) aus dem zweiten Ansaugrohrende (22) heraus angeströmt wird.As soon as the first detector has first detected a fire parameter in the air flow directed to it, a time measurement is started, and the first and second flow switches (15, 16) change from the position (11) shown in solid line to the position shown in dashed lines (FIG. 12). Thereby, the flow direction in the intake pipe (5) is reversed from the direction shown by arrow (8) in the direction shown by arrow (9) and the room air sucked from the other end of the intake pipe (5), the second detector (14) from the second Ansaugrohrende (22) is flowed out.

Da sich zwischen der dem zweiten Detektor nächsten Ansaugstelle (6), welche die Brandkenngröße aufgenommen hat, und dem zweiten Detektor keine Brandkenngröße befindet, ist der Startzeitpunkt der Transportzeit zwischen Ansaugstelle (6) und zweitem Detektor (14) bekannt und eine Zeitmessung wird gestartet. Sobald nun der zweite Detektor die Brandkenngröße erkannt hat, wird die Zeitmessung beendet und mit der gemessenen Zeit und einer zum Ansaugsystem passenden Orts-Zeit-Funktion der Ort einer Ansaugstelle (6), welche die Brandkenngröße aufgenommen hat, bestimmt.Since there is no fire parameter between the second detector next to the suction point (6), which has taken the fire characteristic, and the second detector, the starting time of the transport time between the suction point (6) and the second detector (14) is known and a time measurement is started. As soon as the second detector has detected the fire parameter, the time measurement is terminated and the location of a suction point (6), which has recorded the fire parameter, is determined using the measured time and a location-time function suitable for the intake system.

Selbstverständlich ist es auch möglich, bei einer derartigen Vorrichtung auf den zweiten Detektor zu verzichten und die zweite Erkennung der Brandkenngröße ebenfalls im ersten Detektor geschehen zulassen, indem man den im Ansaugrohr (5) umgekehrten Luftstrom auch auf den ersten Detektor leitet.Of course, it is also possible to dispense with such a device to the second detector and allow the second recognition of the fire characteristic also happen in the first detector by passing the in the intake pipe (5) reverse air flow to the first detector.

Eine hierfür beispielhaft gezeigte Vorrichtung ist in Fig.6b zu sehen. Darin ist ein Strömungsumschalter (15) als Vierwegeventil ausgebildet. An zwei Wegen des Vierwegeventils sind die beiden Ansaugrohrenden (21, 22) des Ansaugrohrsystems (23) angeschlossen. An einem dritten Weg ist der Ansaugbrandmelder (2) angeschlossen, während der vierte Weg als offenes Rohrende des Ansaugrohres (5) dient. Wenn kein offenes Rohrende gewünscht ist, kann dieses separat verschlossen werden, oder ein Dreiwegeventil gewählt werden, wie es in den Fig.5 und 7b gezeigt ist. Die Identifizierung der Ansaugstelle erfolgt im Wesentlichen wie zuvor beschrieben, mit dem Unterschied, dass die Umschaltung der Strömungsrichtung im Vierwegeventil erfolgt und dass sowohl die erste als auch die zweite Erkennung der Brandkenngröße in einem einzigen Detektor (4) erfolgen.An example of this device shown in FIG Figure 6b to see. Therein, a flow switch (15) is designed as a four-way valve. At two ways of the four-way valve, the two Ansaugrohrenden (21, 22) of the intake manifold (23) are connected. On a third way the Ansaugbrandmelder (2) is connected, while the fourth way serves as an open pipe end of the intake pipe (5). If no open pipe end is desired, this can be closed separately, or a three-way valve can be selected, as in the Figure 5 and 7b is shown. The identification of the suction point is essentially as described above, with the difference that the switching of the flow direction takes place in the four-way valve and that both the first and the second detection of the fire characteristic in a single detector (4).

In Fig.7a ist eine weitere Variante der erfindungsgemäßen Vorrichtung gezeigt. Im Wesentlichen entspricht die in Fig.7a gezeigte Vorrichtung der in der Fig.5 dargestellten Vorrichtung. Sie unterscheidet sich von dieser jedoch darin, dass zwischen die beiden Strömungsumschalter (15, 16) ein zweites Ansaugrohr (18) mit eigener Überwachungsfläche eingefügt ist. Dabei ist das erste Ansaugrohrende (21) des Ansaugrohres (18) an den zweiten Strömungsschalter (16) und das zweite Ansaugrohrende (22) an den ersten Strömungsumschalter (15) angeschlossen. Im Grundzustand saugt somit der erste Ansaugbrandmelder (2) Raumluft über das erste Ansaugrohr (5) und der zweite Ansaugbrandmelder (14) über das zweite Ansaugrohr (18), welchem eine eigene Überwachungsfläche zugeordnet ist, wobei der erste Detektor (4) aus dem ersten Ansaugrohrende (21) des ersten Ansaugrohres (5) und der zweite Detektor aus dem ersten Ansaugrohrende (21) des zweiten Ansaugrohres (18) angeströmt werden. Sobald einer der Detektoren (4, 14) nun eine Brandkenngröße in dem auf ihn gerichteten Luftstrom ein erstes Mal erkannt hat, wird eine Zeitmessung gestartet und die ersten und zweiten Strömungsumschalter (15, 16) wechseln von der durchgezogen dargestellten Stellung (11) in die gestrichelt dargestellte Stellung (12). Dadurch werden die Strömungsrichtung in den Ansaugrohren (5, 18) von der mit durchgezogene Pfeile (8) dargestellten Richtung in die durch gestrichelte Pfeile (9) dargestellte Richtung umgekehrt. Der erste Ansaugbrandmelder (2) saugt nun Raumluft über das zweite Ansaugrohr (18) und der zweite Ansaugbrandmelder (17) über das erste Ansaugrohr (5), wobei nun der erste Detektor (4) aus dem zweiten Ansaugrohrende (22) des zweiten Ansaugrohres (18) und der zweite Detektor aus dem zweiten Ansaugrohrende (22) des ersten Ansaugrohres (5) angeströmt werden. Wenn die erste Erkennung der Brandkenngröße im ersten Detektor (4) stattgefunden hat, so liegt die zu identifizierende Ansaugstelle (6) auf dem ersten Ansaugrohr (5) und die zweite Erkennung wird im zweiten Detektor (14) erfolgen. Hat die erste Erkennung jedoch im zweiten Detektor (14) stattgefunden, dann erfolgt die zweite Erkennung im ersten Detektor und die zu identifizierende Ansaugstelle (6) liegt auf dem zweiten Ansaugrohr (18). Die Identifizierung der Ansaugstelle (6) erfolgt, wie zuvor beschrieben, über die Zeitdifferenz zwischen erstem und zweitem Erkennen.In 7a a further variant of the device according to the invention is shown. Essentially, the in 7a shown device in the Figure 5 illustrated device. However, it differs from this in that between the two flow switch (15, 16), a second intake pipe (18) is inserted with its own monitoring surface. In this case, the first Ansaugrohrende (21) of the intake pipe (18) to the second flow switch (16) and the second Ansaugrohrende (22) to the first flow switch (15) is connected. In the ground state, the first intake fire detector (2) thus draws in room air via the first intake pipe (5) and the second intake fire detector (14) via the second intake pipe (18), which is assigned its own monitoring surface, the first detector (4) from the first Suction pipe end (21) of the first intake pipe (5) and the second detector from the first intake pipe end (21) of the second intake pipe (18) are flown. As soon as one of the detectors (4, 14) has now detected a fire characteristic in the air flow directed to it for the first time, a time measurement is started and the first and second flow switches (15, 16) change from the position (11) shown in solid lines in FIG dashed line position (12). Thereby, the flow direction in the intake pipes (5, 18) are reversed from the direction shown by solid arrows (8) in the direction shown by dashed arrows (9). The first intake fire detector (2) now sucks room air via the second intake pipe (18) and the second Ansaugbrandmelder (17) via the first intake pipe (5), wherein now the first detector (4) from the second intake pipe end (22) of the second intake pipe ( 18) and the second detector from the second intake pipe end (22) of the first intake pipe (5) are flown. When the first detection of the fire parameter has taken place in the first detector (4), the suction point (6) to be identified lies on the first intake pipe (5) and the second detection will be done in the second detector (14). However, if the first detection has taken place in the second detector (14), the second detection takes place in the first detector and the suction point (6) to be identified lies on the second suction tube (18). The identification of the suction point (6) takes place, as described above, over the time difference between first and second recognition.

In Fig.7b ist schließlich noch eine Weiterentwicklung der soeben beschriebenen Vorrichtung auf n Ansaugbrandmelder (2) mit n Ansaugrohren (5) gezeigt. Darin sind n Ansaugbranrlmelder (2) mit n Ansaugrohren (5) über n Mehrwegeventile, die als Strömungsumschalter (15) dienen, verbunden. Wird in einem (n-1)ten Ansaugbrandmelder eine Brandkenngröße erkannt, dann werden alle Strömungsumschalter (15) von der durchgezogenen Stellung (11) in die gestrichelt dargestellte Stellung (12) umgestellt, wodurch der n-te Ansaugbrandmelder, statt aus dem n-ten Ansaugrohr (5), Luft aus dem teilweise mit der Brandkenngröße gefüllten (n-1)-ten Ansaugrohr (5) ansaugt und die Brandkenngröße ein zweites Mal erkennt. Ebenso, wie zuvor beschrieben, wird auch hier aus der Zeit zwischen dem ersten Erkennen der Brandkenngröße im (n-1)-ten Detektor (4) und dem zweiten Erkennen im n-ten Detektor (4) der Ort der Ansaugstelle (6), welche die Brandkenngröße aufgenommen hat, bestimmt .In Figure 7b Finally, a further development of the device just described on n Ansaugbrandmelder (2) with n intake pipes (5) is shown. In it n Ansaugbranrlmelder (2) with n intake pipes (5) via n multi-way valves, which serve as a flow switch (15) connected. If a fire parameter is detected in a (n-1) th intake fire detector, then all flow switches (15) are switched from the solid position (11) to the position (12) shown in dashed lines, whereby the nth intake fire detector, instead of the nth sucking the intake pipe (5), air from the (n-1) -th intake pipe (5) partially filled with the fire characteristic and detects the fire characteristic a second time. Likewise, as described above, the location of the suction point (6) from the time between the first recognition of the fire parameter in the (n-1) th detector (4) and the second detection in the nth detector (4), which has recorded the fire characteristic determined.

In allen zuvor beschriebenen Vorrichtungen kann es vorkommen, dass eine Brandkenngröße von mehr als einer Ansaugstelle (6) aufgenommen wird. Mit dem bis hierher beschriebenen Verfahren ist es jedoch nur möglich diejenige Ansaugstelle zu identifizieren, welche dem Detektor, der die Brandkenngröße bei der zweiten Erkennung erkennt, am nächsten ist.In all the devices described above, it may happen that a fire characteristic of more than one suction point (6) is received. With the method described so far, however, it is only possible to identify that suction point which is closest to the detector which detects the fire parameter in the second detection.

Daher wird in einer Weiterentwicklung des erfindungsgemäßen Verfahrens nach dem Umkehren der Strömungsrichtung, dem zweiten Erkennen der Brandkenngröße und einer Wartezeit, die vom Ort der zuerst identifizierten Ansaugstelle abhängig ist, die Strömungsrichtung (9) in dem Ansaugrohr (5) bzw. den n Ansaugrohren (5, 17) erneut geändert, und die Zeit zwischen dem zweiten Umschalten der Strömungsrichtung (9) und einem dritten Erkennen der Brandkenngröße gemessen. Aus der Zeit zwischen zweitem Umschalten der Strömungsrichtung und dem drittem Erkennen wird dann in analoger Weise zur Identifizierung der ersten Ansaugstelle (6) eine zweite Ansaugstelle (6) identifiziert. Die Wartezeit muss dabei mindestens solange andauern, bis die Ansaugrohrstrecke zwischen dem ersten Detektor und der identifizierten Ansaugstelle (6) wieder frei von der Brandkenngröße ist. Diese Variante des erfindungsgemäßen Verfahrens kann vorteilhaft in den Vorrichtungen nach den Fig.5 bis 7b durchgeführt werden.Therefore, in a further development of the method according to the invention, after reversing the flow direction, the second recognition of the fire characteristic and a waiting time which depends on the location of the first identified suction point, the flow direction (9) in the suction pipe (s) (s) ( 5, 17) again, and the time between the second switching of the flow direction (9) and a third recognition of the fire characteristic measured. From the time between the second switching of the flow direction and the third recognition, a second suction point (6) is then identified analogously to identify the first suction point (6). The waiting time must last at least until the intake pipe between the first detector and the identified intake point (6) is again free of the fire characteristic. This variant of the method according to the invention can be used advantageously in the devices according to FIGS Fig.5 to 7b be performed.

Die Vorrichtungen der Fig.5 bis 7b weisen zudem den zusätzlichen Vorteil auf, dass bei einer Unterbrechung in einem der Ansaugrohre (5), welche von einer in Ansaugbrandmeldern üblichen Luftstromüberwachung erkannt wird, ein Ansaugen von Raumluft von beiden Seiten des unterbrochenen Ansaugrohres her möglich ist, und somit die Überwachung des gesamten Überwachungsbereiches aufrechterhalten bleibt. Wie leicht zu erkennen ist, dürfen hierzu jedoch nicht alle vorhandenen Strömungsumschalter (15, 16) betätigt werden, sondern es sind nur die an das betroffene Ansaugrohr angrenzenden Strömungsumschalter (15, 16) in einer Weise zu betätigen, die es ermöglicht aus dem sonst abgetrennten Ansaugrohrteil und ggf. aus einem weiteren angeschlossenen Ansaugrohr Raumluft anzusaugen. The devices of Fig.5 to 7b also have the additional advantage that in case of an interruption in one of the intake pipes (5), which is detected by a customary in Ansaugbrandmeldern air flow monitoring, a suction of room air from both sides of the interrupted intake pipe is possible, and thus the monitoring of the entire surveillance area is maintained. As can easily be seen, however, not all existing flow switch (15, 16) may be actuated, but it is only the adjacent to the affected intake flow switch (15, 16) to operate in a way that allows it from the otherwise separated Aspirating pipe part and, if necessary, suck in room air from another connected intake pipe.

Claims (18)

  1. Method of detecting and locating a fire, which comprises at least the following steps:
    a. taking in ambient air at intake points (6) which are distributed along an intake pipe system (23) and directing the flow onto a first detector (4) from a first intake pipe end (21) of the intake pipe system (23);
    b. a first detection of a fire characteristic in the first detector (4) and starting a time measurement;
    c. directing flow onto the first or a second detector (4, 14) from a second intake pipe end (22) of the intake pipe system (23);
    d. a second detection of the fire characteristic in the first and/or second detector (4, 14) and ending the time measurement;
    e. identifying an intake point (6) which has recorded the fire characteristic detected twice, using the time difference measured between the first and second detection of the fire characteristic and a system-specific place/time function;
    characterised by the additional step of switching over, which is interposed between steps b and c, the switching over causing a reversal of the direction of flow in at least one intake pipe of the intake pipe system (23), which comprises at least this one intake pipe (5).
  2. Method of detecting and locating a fire, which comprises at least the following steps:
    a. taking in ambient air at intake points (6) which are distributed along an intake pipe system (23) and directing the flow onto a first detector (4) from a first intake pipe end (21) of the intake pipe system (23);
    b. a first detection of a fire characteristic in the first detector (4) and starting a time measurement;
    c. directing flow onto the first or a second detector (4, 14) from a second intake pipe end (22) of the intake pipe system (23);
    d. a second detection of the fire characteristic in the first and/or second detector (4, 14) and ending the time measurement;
    e. identifying an intake point (6) which has recorded the fire characteristic detected twice, using the time difference measured between the first and second detection of the fire characteristic and a system-specific place/time function;
    characterised by the additional step of switching over, which is interposed between steps b and c, wherein before the switching over the ambient air is taken in from a first intake pipe (24) of the intake pipe system (23) and after the switching over the ambient air is taken in from a second intake pipe (25) of the intake pipe system (23).
  3. Method of detecting and locating a fire according to claim 2, characterised in that the ambient air is taken in from an intake pipe system (23) consisting of a first and a second intake pipe (24, 25) laid close together and side by side.
  4. Method of detecting and locating a fire according to claim 3, characterised in that the ambient air is taken in from pairs (7) of intake points, each pair (7) of intake points being formed by an intake point (6) on the first intake pipe (24) and an intake point (6) on the second intake pipe (25), so that within a common monitoring zone a similar air sample is taken from this monitoring zone by each of the two intake points (6).
  5. Method of detecting and locating a fire according to claim 1, characterised in that after identification of a first intake point (6) that has recorded the detected fire characteristic, the direction of flow (8, 9) is reversed for a second time, and from the time difference between the new change in the direction of flow (8, 9) and a third detection of the fire characteristic a second intake point (6) is determined which has also recorded the fire characteristic detected.
  6. Method of detecting and locating a fire according to one or more of the preceding claims, characterised in that the time differences measured and the transporting times between the intake points (6) and the first and/or second detector (4, 14) are used to identify the intake points (6).
  7. Method of detecting and locating a fire according to claim 6, characterised in that the transporting times are measured during the commissioning of the system and stored.
  8. Method of detecting and locating a fire according to claim 6, characterised in that the transporting times are calculated from flow parameters that are measured or determined by computer using pipe parameters.
  9. Method of detecting and locating a fire according to one of claims 6 to 8, characterised in that known transporting times are corrected using current measurements of an air flow monitor present in the system.
  10. Apparatus for detecting a fire which is suitable for carrying out the method according to claims 2 to 4 and 6 to 9, having at least one intake fire alarm (2), at least one intake pipe system (23) with intake points (6) that take representative samples of ambient air from a monitoring zone, a time measuring device and a unit for identifying intake points (6, 7) which have recorded a detected fire characteristic, characterised by a pair of intake pipes (24, 25) which comprises a first intake pipe (24) and a second intake pipe (25) that are mounted close together side by side, so that along the pair of intake pipes (24, 25) pairs (7) of intake points are formed, each consisting of an intake point (6) in the first intake pipe (24) and an intake point (6) in the second intake pipe (25), both intake points (6) being able to take similar air samples from a common monitoring zone, and by a device for switching between the first and second intake pipe (24, 25).
  11. Apparatus for detecting a fire which is suitable for carrying out the method according to claims 1 and 5 to 9, having at least one intake fire alarm (2), at least one intake pipe (5) with intake points (6) that take representative ambient air samples from a monitoring zone, characterised in that at least one detector for fire characteristics is mounted at both ends (21, 22) of the at least one intake pipe (5).
  12. Apparatus for detecting a fire which is suitable for carrying out the method according to claims 1 and 5 to 9, having an intake fire alarm (2), at least one intake pipe (5) with intake points (6) that take representative ambient air samples from a monitoring zone, characterised in that the at least one intake pipe (6) is laid in a ring-shaped arrangement.
  13. Apparatus for detecting a fire which is suitable for carrying out the method according to claims 1 and 5 to 9, having at least two intake fire alarms (2, 17), at least one intake pipe system (23) consisting of at least one first intake pipe (5) with intake points (6) that take representative ambient air samples from a monitoring zone, characterised in that a first intake fire alarm (2) is connected to the first end (21) of a first intake pipe (5), the first intake pipe (5) is connected at its second end (22) to a second intake fire alarm (17), and in that the second intake fire alarm (17) is connected to the first end (21) of a second intake pipe (18), and the second intake pipe (18) is connected at its second end (22) to the first intake fire alarm (22).
  14. Apparatus for detecting and locating a fire according to claim 13, characterised in that an (n-1)th intake pipe (5) is connected at its first end (21) to an (n-1)th intake fire alarm (2) and is connected at its second end (22) to an nth intake fire alarm (2), and in that optionally an nth intake pipe (5) is connected to the nth and first intake fire alarm (2).
  15. Apparatus for detecting and locating a fire according to one of claims 11 to 14, characterised by an apparatus for reversing the direction of flow (15, 16) in the intake pipe system.
  16. Apparatus for detecting and locating a fire according to one of claims 11 to 14, characterised by at least one multi-way valve (15) for connecting an intake fire alarm (2) to one or more of the intake pipes (5).
  17. Apparatus for detecting and locating a fire according to one of claims 11 to 16, characterised by a time measuring device and a unit for identifying intake points (6) which have recorded a detected fire characteristic.
  18. Apparatus for detecting and locating a fire according to one of claims 10 to 17, characterised in that an intake fire alarm (2, 17) is connected to each end of an intake pipe (5, 24, 25).
EP06000260A 2006-01-07 2006-01-07 Fire detection method and device Active EP1811478B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502006000573T DE502006000573D1 (en) 2006-01-07 2006-01-07 Method and device for detecting a fire
EP06000260A EP1811478B1 (en) 2006-01-07 2006-01-07 Fire detection method and device
AT06000260T ATE391325T1 (en) 2006-01-07 2006-01-07 METHOD AND DEVICE FOR DETECTING A FIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06000260A EP1811478B1 (en) 2006-01-07 2006-01-07 Fire detection method and device

Publications (2)

Publication Number Publication Date
EP1811478A1 EP1811478A1 (en) 2007-07-25
EP1811478B1 true EP1811478B1 (en) 2008-04-02

Family

ID=36754591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06000260A Active EP1811478B1 (en) 2006-01-07 2006-01-07 Fire detection method and device

Country Status (3)

Country Link
EP (1) EP1811478B1 (en)
AT (1) ATE391325T1 (en)
DE (1) DE502006000573D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059479A1 (en) * 2012-10-16 2014-04-24 Xtralis Technologies Ltd Addressability in particle detection

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993082B1 (en) * 2007-05-16 2011-07-20 Siemens Aktiengesellschaft Detection and location identification of a fire
DE102008028134A1 (en) 2008-06-13 2009-12-17 Fogtec Brandschutz Gmbh & Co. Kg Fire detection in rail vehicles
DE102010042700B4 (en) * 2010-10-20 2013-12-24 Siemens Aktiengesellschaft Detection and localization of a fire with a double pipe aspirating smoke detector with common detector unit
DE102011005602B4 (en) * 2011-03-16 2016-07-14 Minimax Gmbh & Co. Kg Self-priming fire alarm device
CA2836811A1 (en) * 2011-06-22 2012-12-27 Xtralis Technologies Ltd Particle detector with dust rejection
CN102938183A (en) * 2012-10-23 2013-02-20 向武 Distributed goaf beam tube fire monitoring system
JP6574762B2 (en) * 2013-10-16 2019-09-11 エックストラリス・テクノロジーズ・リミテッド Addressability in particle detection
US9208671B2 (en) * 2013-12-05 2015-12-08 Honeywell International Inc. Redundant input pipe networks in aspirated smoke detectors
CN104200605B (en) * 2014-08-18 2017-06-23 鼎盛特安全预警技术(北京)有限公司 A kind of aspirating smoke detection device
DE102021204398A1 (en) 2021-05-03 2022-04-07 Siemens Schweiz Ag Detection and localization of a fire in a rack storage system with aspirating smoke detectors or with linear heat detectors in a matrix arrangement
DE102021134312A1 (en) 2021-12-22 2023-06-22 Wagner Group Gmbh Fluid for reversing the direction of flow

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL187595C (en) 1981-10-08 1991-11-18 Westinghouse Electrotechniek E DEVICE FOR DETECTING GAS OR SMOKE PARTICLES.
DE3348107C2 (en) 1983-08-30 1988-01-21 Securiton Ag, Zollikofen, Bern, Ch Smoke suction system of a line smoke alarm
DE4424909A1 (en) * 1994-07-14 1996-01-18 Siemens Ag Method and device for locating pollutant accumulations
GB9910540D0 (en) 1999-05-08 1999-07-07 Airsense Technology Ltd Method and apparatus
DE19924400C1 (en) 1999-05-27 2001-01-25 Securiton Ag Fire detectors and fire detection methods
DE10125687B4 (en) 2001-05-25 2005-06-16 Wagner Alarm- Und Sicherungssysteme Gmbh Device for detecting sources of fire or gas contamination
DE10348565B4 (en) 2003-10-20 2007-01-04 Wagner Alarm- Und Sicherungssysteme Gmbh Method and device for detecting and locating a fire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059479A1 (en) * 2012-10-16 2014-04-24 Xtralis Technologies Ltd Addressability in particle detection
EP2909588A4 (en) * 2012-10-16 2016-07-20 Xtralis Technologies Ltd Addressability in particle detection
TWI609175B (en) * 2012-10-16 2017-12-21 愛克斯崔里斯科技有限公司 Method and apparatus for determining at least one point of entry of smoke into a smoke detection system, and smoke detector

Also Published As

Publication number Publication date
EP1811478A1 (en) 2007-07-25
DE502006000573D1 (en) 2008-05-15
ATE391325T1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
EP1811478B1 (en) Fire detection method and device
EP1397789B1 (en) Device and method for detecting fire sources or gas impurities
EP1634261A1 (en) Method and device for identifying and localising a fire
EP1993082A1 (en) Detection and location identification of a fire
CH659711A5 (en) SELECTIVE GAS / SMOKE DETECTION DEVICE.
EP1856971A2 (en) Egg count sensor
CH674738A5 (en)
EP2901068A2 (en) Lubricant distributor for dispensing lubricant to at least one lubrication point, and method for operating said lubricant distributor
EP2286394B1 (en) Fire detection in rail vehicles
EP1688031A1 (en) Metal detecting device
DE112018006083T5 (en) Sensor device
EP0692706A2 (en) Procedure and device for determining the location of an accumulation of noxious matter
DE19605637C1 (en) Air current monitoring in fire alarm using two flow sensors
EP0880765B1 (en) Method and device for detecting incipient fires
WO2009030565A1 (en) Collecting line for leakage monitoring and leakage locating
EP2254104B1 (en) Method for automatic recognition of a change in a situation
EP1339476B1 (en) Method for monitoring filtering installations
DE10241545A1 (en) Device for converting a continuous flow of liquid into a flow of liquid droplets
EP2602034B1 (en) Blind rivet broken-off mandrel removal device
EP1542188B1 (en) Apparatus and process for detecting the formation of a fire
DE2704570C3 (en) Fire alarm system, especially for a car tunnel
DE19746272A1 (en) Measuring device for components under load, e.g. tightened nuts
DE69510135T2 (en) Alarm detection device with current loops and beacon for locating water zones for such a device
EP2309468A1 (en) Method, device and computer program product for projecting an aspiration type fire detection system
DE102018131562A1 (en) Device and method for monitoring the function and condition of a ventilation system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006000573

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080802

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

26N No opposition filed

Effective date: 20090106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140124

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20140124

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160121

Year of fee payment: 11

Ref country code: AT

Payment date: 20160120

Year of fee payment: 11

Ref country code: BE

Payment date: 20160121

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 391325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 19

Ref country code: CH

Payment date: 20240202

Year of fee payment: 19

Ref country code: GB

Payment date: 20240117

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN