EP1987402A1 - Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment - Google Patents

Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment

Info

Publication number
EP1987402A1
EP1987402A1 EP07712263A EP07712263A EP1987402A1 EP 1987402 A1 EP1987402 A1 EP 1987402A1 EP 07712263 A EP07712263 A EP 07712263A EP 07712263 A EP07712263 A EP 07712263A EP 1987402 A1 EP1987402 A1 EP 1987402A1
Authority
EP
European Patent Office
Prior art keywords
control
energy
optimization
energy system
criterion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07712263A
Other languages
German (de)
English (en)
Inventor
Markus Gwerder
Conrad GÄHLER
Nina Laubacher
Jürg Tödtli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1987402A1 publication Critical patent/EP1987402A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to a method for controlling and regulating a power plant having at least one heat and power unit for a building, and to arrangements for carrying out the method, according to the preambles of claims 1, 14, 15 and 19.
  • a predictive device for regulating or controlling supply quantities of a building is known, for example, from EP-A-1074900.
  • the invention has for its object to provide a method by which at least one power-heat coupling device having energy system of a building can be controlled and / or regulated according to selectable optimization criteria.
  • An arrangement should be specified with which the method can be carried out.
  • an arrangement should be specified which can generally be used as a tool for dimensioning energy systems.
  • the claimed method can also be used advantageously in an arrangement for determining the so-called performance bond of an energy system, which allows a comparison with control and / or control devices operating according to other methods.
  • FIG. 1 is a block diagram of a first embodiment of the power plant
  • Fig. 6 is an action plan of a hot water tank in connection with the third embodiment.
  • Fig. 7 is an action plan of a floor heating in connection with the third embodiment.
  • FIG. 1 denotes a force-heat coupling device which can be controlled and / or regulated by means of a control and regulating device 2.
  • the combined heat and power unit 1 is part of an energy system for a building.
  • the energy system has an additional boiler system 3, a service water system 4, a buffer memory 5 and a space heating system 6.
  • a flow line 10 and a return line 11 form a connection for a heat transfer between the cogeneration unit 1, the auxiliary boiler system 3, the Service water system 4, the buffer memory 5 and the space heating system 6.
  • the heat transfer medium is typically heating water.
  • the power-heat coupling device 1 here has a Stirling engine.
  • the combined heat and power unit 1 is basically a device or an arrangement of devices by which - or by the - a return of electrical energy W from the power plant is made possible in an electrical energy network 12 and its - or their - waste heat in the energy system is usable.
  • the electric power network 12 is, for example, a home network or a public network.
  • the power-heat coupling device 1 can basically be constructed on a different basis than on the Stirling engine; for example, based on a fuel cell or an explosion engine.
  • the system components 3, 4 and 6 are operated via other control and control devices: the auxiliary boiler system 3 is a control and control unit 13, the service water system 4 a control and control unit 14 and the space heating system 6 a control and 16 assigned.
  • control signals for the control and regulating devices 2, 13, 14 and 16 of the power plant can be generated.
  • control signals generated by the control and regulating device 20 are the combined heat and power unit 1 and the auxiliary boiler system 3, the
  • control and regulating devices 2, 13, 14 and 16 optimally controlled and / or regulated.
  • the control and regulating device 20 has at least one correspondingly programmed Processor 22, through which an optimization of the operation of the power plant according to certain criteria and taking into account the model 21 is feasible.
  • a first external signal a is an example of information about the current rate of electrical energy and a second external signal b includes a current weather forecast.
  • the additional boiler installation 3 arranged in the exemplary energy installation, as well as the service water installation 4 and the space heating installation 6, could in principle be designed for operation with any energy source, for example for operation with oil, gas, wood, coal, electricity or a bio-energy source.
  • 25 denotes a cogeneration unit, 26 an auxiliary heat generator, 27 a storage of electrical energy Q e (t) and 28 a heat storage with the energy Qth (t).
  • Additional heat generator 26 supplied energy u th ⁇ t) and the consumption of electrical energy q e ⁇ (t) and thermal energy q th (t) shown.
  • 30 means a first integrator and 31 a second integrator.
  • the first integrator 30 models the Heat storage 28;
  • the second integrator 31 models the memory 27 of electrical energy.
  • Symbols used in connection with the second embodiment mean: The cost of a unit of the fuel supplied to the cogeneration unit 25; Cost of a unit of the additional heat generator 26 supplied
  • An exemplary building energy system includes heat generator, heat consumers, electrical loads 43 and a higher-level controller 40 of the building energy system.
  • the heat generator are a Stirling engine 41 and an auxiliary burner 42.
  • the heat consumers here are a water heater 44 and a building with heat emitting devices 45th
  • the heat output of the heat generator becomes a first
  • the Banker 46 and 47 are coupled via a flow line 48 and a return line 49 with the hot water boiler 44 and the heat emitting devices 45.
  • the higher-level control system 40 of the building energy system also ensures that the electrical power requirements of the electrical loads in the building can be covered, namely by means of the produced by the Stirling engine 41 and / or the public network related electrical power. If the Stirling engine 41 generates more electrical power than the demand in the building, the electric power is exported to the public electric grid.
  • the higher-level controller 40 advantageously the flow temperature Tv, the outside temperature T A , the room temperature T R , the storage tank temperature T S p of the service water and tariff information to be supplied.
  • FIG. 5 shows an action plan of the modeled building energy system with the subsystems heat generator WE and heat consumer WV and associated input and output signals.
  • the modeled building energy system includes the heat generator WE and the heat consumer WV.
  • the modeled heat generators are the Stirling engine SM and the auxiliary burner ZB.
  • the modeled Heat consumers WV include a hot water storage WWSp and a heating circuit with a floor heating BH and the building Geb.
  • Disturbances are the hot water demand Q ww Bed , the ambient temperature TU 1 MG ', which prevails around the hot water tank, the outside temperature T A , the power demand P el Bed and the internal and external external heat ß FL with the airing can be detected.
  • Heat generator • Stirling machine with control signal u SM
  • Temperature tolerance band lie and the flow temperature T v may not exceed a certain temperature value.
  • the control signal u HK is an auxiliary signal, which divides the generated thermal power Q th on the two heat consumers, namely on the
  • the heat flow Q th wws p must always be positive. This also prevents energy from being drawn from the hot water storage and supplied to the heating circuit.
  • the disturbance Q ⁇ Bed refers to the thermal power, which is obtained from the hot water tank for the everyday use of Hot water in the household. This power must always be available and the memory must therefore have enough energy stored.
  • the hot water tank is modeled as a linear system of differential equations.
  • the input, output and disturbance variables are shown in FIG. 6.
  • Floor heating block BH is modeled as this heat passes through the water pipes and through the soil layers in the room and this supplies the necessary heat output QBH G eh .
  • the modeled building consists of exterior walls and a number of partitions.
  • the heat loss of the building is composed of the loss through the exterior walls and the windows as well as the natural air exchange and ventilation losses. optimization problem
  • an auxiliary variable z is introduced. The following conditions for the auxiliary variable z must be observed:
  • Quality criterion The optimum operating mode of the building energy system specified here is the cost-optimal operation.
  • the quality criterion J should be minimized over the optimization horizon (N steps with time increment At):
  • the quality criterion sums up the energy costs of the Stirling engine, the auxiliary burner and the costs of drawing electrical energy beyond the optimization horizon. These costs for the purchase of electrical energy can also be negative, namely, when electrical energy is exported. In this case, electrical energy is sold.
  • the conditions for the auxiliary variable z allow different costs k imp for purchases or gains g exp for
  • a criterion for the optimization according to current needs of the operator of the energy system can be selected.
  • the criterion of optimization can be an example of a measure of the operating costs of the energy system or a measure of the energy costs of the energy system.
  • the criterion of optimization can also be an indicator for the primary energy consumption of the energy system or a measure of the carbon dioxide emissions produced by the energy system.
  • the criterion of optimization may be a measure of the particulate matter output produced by the energy system. If necessary, but also after
  • the criterion of optimization in another exemplary case is a combination of at least two masses or indicators for operating costs, energy costs, primary energy consumption, carbon dioxide or particulate matter emissions.
  • the criterion of optimization can also be time-dependent.
  • a control and regulating device 20 which operates according to a method according to one of claims 1 to 13 allows the construction of an arrangement for dimensioning a power-heat coupling device 1 having energy system for a building.
  • Cogeneration device 1 are dimensioned.
  • said arrangement for dimensioning the energy system also allows optimal
  • a variant of the arrangement for dimensioning a power-heat coupling device 1 having energy system for a building has a model used for the optimization of the power plant a control and
  • Control device which operates according to a method according to one of claims 1 to 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé de commande et/ou de régulation prédictive d'une installation de distribution d'énergie d'un bâtiment présentant au moins un appareil (1) de production combinée de chaleur et d'électricité, selon lequel des signaux de commande pour un appareil de commande/régulation (2) associé à l'appareil (1) de production combinée de chaleur et d'électricité sont générés par un dispositif (20) de commande et de régulation supervisant l'appareil de commande/régulation, un modèle (21) du comportement thermique et énergétique du bâtiment et de l'installation de distribution d'énergie ainsi que de ces utilisateurs étant utilisé pour générer les signaux de commande et une optimisation étant effectuée sur un horizon temporel glissant. Un critère d'optimisation peut être sélectionné en fonction des besoins actuels de l'exploitant de l'installation de distribution d'énergie. Le critère d'optimisation est, par exemple, un indicateur de la consommation d'énergie primaire de l'installation de distribution d'énergie ou encore une masse des émissions de dioxyde de carbone produites par l'installation de distribution d'énergie.
EP07712263A 2006-02-24 2007-02-21 Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment Ceased EP1987402A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008722 2006-02-24
PCT/EP2007/051654 WO2007096377A1 (fr) 2006-02-24 2007-02-21 Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment

Publications (1)

Publication Number Publication Date
EP1987402A1 true EP1987402A1 (fr) 2008-11-05

Family

ID=37998686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712263A Ceased EP1987402A1 (fr) 2006-02-24 2007-02-21 Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment

Country Status (2)

Country Link
EP (1) EP1987402A1 (fr)
WO (1) WO2007096377A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212977A1 (fr) 2022-01-18 2023-07-19 Turck Holding GmbH Procédé de régulation et de commande et installation pour réduire l'émission de co2

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372483B1 (fr) 2010-03-16 2012-10-31 Siemens Aktiengesellschaft Procédé de régulation d'une grandeur liée au confort dans une pièce
CN101900992B (zh) * 2010-07-16 2013-05-29 浙江大学 化工过程预测控制系统经济目标优化自适应退避选择方法
DE102010043676A1 (de) * 2010-11-10 2012-05-10 Robert Bosch Gmbh Verfahren zum Steuern der Energiekreisläufe eines Objekts
EP2498152A1 (fr) 2011-03-07 2012-09-12 Siemens Aktiengesellschaft Procédé destiné à la commande d'un système d'automatisation d'un local
CZ306842B6 (cs) * 2012-01-24 2017-08-09 Haidy A.S. Způsob sledování a/nebo řízení spotřeby alespoň jedné energie nebo média v budově
CN103543639B (zh) * 2013-10-30 2016-05-11 武汉大学 河湖水体量质耦合自优化模拟调控方法
US9851727B2 (en) 2015-05-28 2017-12-26 Carrier Corporation Coordinated control of HVAC system using aggregated system demand

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074900B1 (fr) * 1999-08-02 2006-10-11 Siemens Schweiz AG Dispositif prédictif pour la commande ou la régulation des variables d alimentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007096377A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212977A1 (fr) 2022-01-18 2023-07-19 Turck Holding GmbH Procédé de régulation et de commande et installation pour réduire l'émission de co2
DE102022101012A1 (de) 2022-01-18 2023-07-20 Turck Holding Gmbh Regel- und Steuerungsverfahren sowie Anlage zur verringerten CO2-Emission

Also Published As

Publication number Publication date
WO2007096377A1 (fr) 2007-08-30

Similar Documents

Publication Publication Date Title
EP1987402A1 (fr) Régulation prédictive à base de modèle d'une installation de distribution d'énergie d'un bâtiment
DE69316260T2 (de) Energieversorgungssystem
DE102011051673A1 (de) Energieverwaltungssystem
DE102005029818A1 (de) Verfahren und Vorrichtung zur Bereitstellung einer ökonomischen Analyse von Stromerzeugung und -verteilung
DE102005050140A1 (de) Verfahren und Gerätschaft zur Bereitstellung einer optimierten Lastverteilung und Schadstoffsteuerung
DE102012023486A1 (de) Kraftwärmekopplungssystem
EP2843788A2 (fr) Procédé destiné au fonctionnement d'un système de centrale
WO2016037788A1 (fr) Système de gestion d'énergie permettant de commander un dispositif, produit-programme d'ordinateur et procédé de commande d'un dispositif
EP4193315A1 (fr) Procédé de commande d'échanges d'énergie et d'échanges thermiques entre une pluralité de systèmes d'énergie au moyen d'une plateforme de commande centrale
DE102016225787A1 (de) Verfahren zum Betrieb eines Energie-Management-Systems eines Gebäudes und Energie-Management-System
EP3767770A1 (fr) Procédé de commande d'un échange des énergies dans un système d'énergie ainsi que système d'énergie
WO2020043522A1 (fr) Procédé de commande d'un échange d'énergie entre des sous-systèmes énergétiques dans des conditions harmonisées ; centrale de commande ; système énergétique ; programme informatique et support d'enregistrement
WO2021209179A1 (fr) Commande de réseau de chaleur
EP3912311A1 (fr) Produit de programme informatique pour la lecture de données d'état d'unités de puissance électriques, procédé de fourniture de puissance régulée et/ou d'optimisation de la consommation propre et accumulateur d'énergie électrique
WO2023274666A1 (fr) Procédé et unité de commande permettant de commander une grille thermique
EP3859929B1 (fr) Système énergétique ainsi que ses procédés et dispositifs de commande
EP4080428A1 (fr) Système de réduction des émissions de co2 lors de l'approvisionnement énergétique des bâtiments
DE10244469B4 (de) Verfahren zur Bildung physikalischer und struktureller Modelle verteilter Kraft-Wärmekopplungsanlagen
DE102020212611A1 (de) Verfahren zum Betrieb eines Energiesystems mittels eines Energiemanagementsystems
WO2022073668A1 (fr) Procédé de commande d'échange de chaleur/froid entre une pluralité de systèmes énergétiques, et plateforme de commande
DE102020209046A1 (de) Verfahren zum Steuern von Wärmeaustauschen zwischen mehreren Energiesystemen sowie Steuerungsplattform
WO2021204439A1 (fr) Procédé de commande d'un réseau de chauffage, unité de commande et système d'échange de chaleur
EP4092504A1 (fr) Unité de commande, ainsi que procédé de commande du fonctionnement d'une installation de génération de chaleur d'un système énergétique
EP3996227A1 (fr) Procédé de commande de charges décentralisées dans un système d'interconnexion énergétique
DE102021209897A1 (de) Ladesystem-Infrastruktur für ein lokales Energiesystem mit einer oder mehrerer Ladeeinrichtungen zum Aufladen eines oder mehrerer Elektrofahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100308