EP1987308A1 - Heat sink comprising a tube through which cooling medium flows - Google Patents

Heat sink comprising a tube through which cooling medium flows

Info

Publication number
EP1987308A1
EP1987308A1 EP06830307A EP06830307A EP1987308A1 EP 1987308 A1 EP1987308 A1 EP 1987308A1 EP 06830307 A EP06830307 A EP 06830307A EP 06830307 A EP06830307 A EP 06830307A EP 1987308 A1 EP1987308 A1 EP 1987308A1
Authority
EP
European Patent Office
Prior art keywords
tube
heat sink
heat
coolant
heatsink according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06830307A
Other languages
German (de)
French (fr)
Inventor
Ingolf Hoffmann
Hans Knauer
Wilhelm Reischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG Oesterreich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG Oesterreich filed Critical Siemens AG Oesterreich
Publication of EP1987308A1 publication Critical patent/EP1987308A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the invention relates to a heat sink, with at least one tube through which coolant flows, which tube is surrounded by a heat-conducting material.
  • Such heat sinks are used, for example, for cooling of heat-generating components, for the function of which heating of the ambient air is undesirable. These are, for example, circuit resistors, power semiconductors or electrolytic capacitors in power electronics.
  • the heat sink usually serves as a mounting pad for the electronic components.
  • the application of the components to the heat sink is flat with good thermal contact, so that sets a heat transfer from the components to the heat sink. This results in the requirement that the heat is emitted as directly as possible to the coolant. If this is the case, the components have a very good thermal resistance and there is only a slight warming of the respective component environment in the heat sink.
  • heat is transferred to the coolant flowing in tubes.
  • a closed circuit is provided in which the coolant is circulated by means of a pump and cooled by a heat exchanger. It is endeavored to keep the amount of coolant low to ensure a maximum ratio of cooling capacity to the device volume.
  • welded stainless steel tubes are cast in aluminum, for example by the manufacturer Development and Manufacturing Volker Eßbach, D-09600 Berthelsdorf (www efe- essbach.de).
  • turbulators are disposed within the tubes to ensure turbulent flow. A laminar flow is unfavorable due to the lower heat transfer coefficient.
  • Such swirling elements often entail formation of zones within the tubes within which small quantities of coolant circulate or within which small flow velocities occur. Over time, this leads to the deposition of slags and residues which precipitate out of the coolant and settle on the pipe inner wall and on the swirling elements. The consequence of this is a deterioration of the heat transfer and an increase in the flow resistance up to complete blockage of the tube.
  • the present invention has for its object to provide an improvement over the prior art for a heat sink of the type mentioned.
  • Heatsink with at least one flowed through by coolant tube which is surrounded with a heat-conducting material, wherein the tube wall of the at least one tube is corrugated in the flow direction.
  • the corrugated design has the advantage that the transition from laminar to turbulent flow over a straight-walled pipe at a lower flow rate. It is then no turbulence elements necessary.
  • the heat transfer surface is the same pipe length compared to a straight-walled pipe larger, causing more heat is delivered to the coolant.
  • an advantageous embodiment of the invention provides that the at least one tube is formed as corrugated pipe with parallel corrugation.
  • Such corrugated pipes are available inexpensively in various materials.
  • the parallel corrugation also has the advantage that a tube can be easily bent.
  • the at least one tube is designed as a spiral tube with spiral corrugation.
  • a tube combines the advantages of a corrugated tube with a simple connection to fittings, which have suitable internal threads and are screwed without further preparation on the ends of the spiral tube.
  • a better flushing for removal of possible coolant slags is given in a spiral tube.
  • the at least one tube is made of corrosion-resistant stainless steel or copper.
  • stainless steel With stainless steel, a long life of the heat sink is ensured, even if the coolant has corrosion-resistant ingredients.
  • the use of copper is advantageous because the thermal conductivity is better than stainless steel.
  • the at least one tube of the heat-conducting material is formed as a tubular cavity. In this case, no own pipe is used, but during one
  • the tubular cavity is then manufactured by means of cutting processes in such a way that in each heat sink half a corrugated channel is excluded. In the assembled heat sink these two grooves form the tubular cavity.
  • the heat sink has a substantially plate-shaped geometry.
  • the heat sink is then easy to manufacture and has a flat mounting surface for mounting heat-dissipating components.
  • the tube then forms a plurality of cooling loops within the heat sink, whereby a better heat transfer is given to the coolant.
  • the at least one tube is arranged spirally.
  • the tube is formed in the center of the spiral with a semicircular arc, so that two parallel sections of the tube spirally led outwards and at the edge of
  • Heatsink are provided with fittings. As with the meandering arrangement is thereby within the Heat sink given a sufficient tube length for a good heat transfer to the coolant.
  • Fig. 1 elevation and side elevation of a heat sink
  • Fig. 2 longitudinal cross section of a corrugated pipe
  • Fig. 3 longitudinal cross section of a spiral pipe
  • Figure 1 shows an exemplary embodiment of a heat sink with a meandering tube 2, wherein the tube wall according to the invention is corrugated in the flow direction.
  • the tube has at the ends of connecting pieces 3, 4.
  • cooled coolant is pumped into the heat sink via a first connector 3.
  • the tube 2 forms a plurality of cooling loops by semi-arcs are arranged between straight pipe sections, so that the straight successive pipe sections are parallel to each other.
  • the orientation of the mutually parallel pipe sections is changeable within the heat sink, whereby an adaptation to the position and heat dissipation of the arranged on the heat sink components occurs.
  • Components with increased heat output are arranged directly over one or more pipe sections, whereas components with lower heat dissipation can be placed in areas between two pipe sections.
  • the coolant absorbs heat as it flows through the pipe 2 arranged inside the heat sink and flows out of the heat sink via a second connecting piece 4, as a rule via a pump to a heat exchanger, by means of which a cooling of the coolant takes place.
  • the tube 2 is exemplified as corrugated pipe made of corrosion-resistant stainless steel. It is also possible to equip a heat sink with a plurality of tubes 2 and to provide in this way a plurality of cooling circuits. In this case, each cooling circuit may have its own temperature level and its own flow velocity, whereby an optimal adaptation to the
  • the tube 2 is arranged meandering in a plane and in a heat conductive material (1), such as aluminum, cast. From the heat conductive material (1) thus protrude out only the ends of the tube 2 with the fittings 4.5.
  • a heat conductive material (1) such as aluminum
  • Pipe sections holes 5 are provided, which serve as mounting holes for attaching components. By means of holes 5 but also the heat sink itself can be mounted on a corresponding bracket.
  • a heat-conducting substance is provided in the gap between a component and the heat sink.
  • the heat sink is first uniformly heated in an experimental setup and then cooled by circulation of a coolant.
  • the temperature change is measured as a function of time and location on the heat sink surface.
  • the placement of the individual components on the heat sink is subsequently carried out.
  • the pressure loss per tube length unit as a function of the volume flow follows a parabolic course in flow-through corrugated or spiral tubes, i. the pressure loss per pipe length unit increases continuously with increasing volume flow. The extent of this increase increases with decreasing diameter of the tube.
  • the optimum matching of the individual variables is carried out either empirically in experiments, by simulation or by fluidic calculations. The optimum is given when with minimal energy input (for a circulation pump and other aggregates) a maximum heat removal of the heat sink takes place.
  • corrugated and spiral pipes are also generally published by the manufacturers of these pipes (for example Water Way Engineering GmbH, D-47441 Moers).
  • FIG. 2 shows a tube 2 designed as a corrugated tube in longitudinal section.
  • the individual waves are axisymmetric.
  • a tube 2 designed as a spiral tube is shown in a longitudinal section. In this case, the waves run in a helix about the central axis of the tube. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat sink comprising at least one tube (2) through which cooling medium flows and which is surrounded by a heat-conducting material (1), wherein the tube wall of the at least one tube (2) is corrugated in the direction of flow. The corrugated embodiment has the advantage that the transition from laminar to turbulent flow relative to a straight-walled tube is effected at a lower flow velocity and the heat transfer area is greater at the same tube length.

Description

Kühlkörper mit von Kühlmittel durchströmtem Rohr Heat sink with coolant flowing through the pipe
Beschreibungdescription
Die Erfindung betrifft einen Kühlkörper, mit wenigstens einem von Kühlmittel durchströmten Rohr, welches mit einem Wärme leitenden Material umgeben ist.The invention relates to a heat sink, with at least one tube through which coolant flows, which tube is surrounded by a heat-conducting material.
Derartige Kühlkörper werden beispielsweise zur Kühlung von Wärme erzeugenden Bauteilen verwendet, für deren Funktion eine Erwärmung der Umgebungsluft unerwünscht ist. Das sind beispielsweise Beschaltungswiderstände, Leistungshalbleiter oder Elektrolytkondensatoren in der Leistungselektronik. Dabei dient der Kühlkörper üblicherweise als Montageauflage für die Elektronikbauteile. Die Aufbringung der Bauteile auf den Kühlkörper erfolgt flächig mit gutem Wärmekontakt, sodass sich eine Wärmeübertragung von den Bauteilen auf den Kühlkörper einstellt. Dabei ergibt sich die Anforderung, dass die Wärme möglichst direkt an das Kühlmittel abgegeben wird. Ist das der Fall, weisen die Bauteile einen sehr guten Wärmewiderstand auf und es findet nur eine geringe Erwärmung der jeweiligen Bauteilumgebung im Kühlkörper statt.Such heat sinks are used, for example, for cooling of heat-generating components, for the function of which heating of the ambient air is undesirable. These are, for example, circuit resistors, power semiconductors or electrolytic capacitors in power electronics. The heat sink usually serves as a mounting pad for the electronic components. The application of the components to the heat sink is flat with good thermal contact, so that sets a heat transfer from the components to the heat sink. This results in the requirement that the heat is emitted as directly as possible to the coolant. If this is the case, the components have a very good thermal resistance and there is only a slight warming of the respective component environment in the heat sink.
Im Kühlkörper erfolgt eine Wärmeabgabe an das in Röhren strömende Kühlmittel. In der Regel ist dabei ein geschlossener Kreislauf vorgesehen, bei dem das Kühlmittel mittels Pumpe umgewälzt und über einen Wärmetauscher abgekühlt wird. Dabei ist man bestrebt, die Kühlmittelmenge gering zu halten um ein maximales Verhältnis von Kühlleistung zum Gerätevolumen sicherzustellen.In the heat sink, heat is transferred to the coolant flowing in tubes. As a rule, a closed circuit is provided in which the coolant is circulated by means of a pump and cooled by a heat exchanger. It is endeavored to keep the amount of coolant low to ensure a maximum ratio of cooling capacity to the device volume.
Nach dem Stand der Technik sind Ausführungsformen bekannt, bei denen geschweißte Edelstahlrohre in Aluminium eingegossen werden, beispielsweise vom Hersteller Entwicklung und Fertigung Volker Eßbach, D-09600 Berthelsdorf (www. efe- essbach . de) . Um die Kühlleistung zu optimieren wird ein guter Wärmeübergang zwischen Kühlkörper und Kühlmittel angestrebt. Nach dem Stand der Technik werden deshalb innerhalb der Rohre Verwirbelungselemente angeordnet, um eine turbulente Strömung sicherzustellen. Eine laminare Strömung ist aufgrund des geringeren Wärmeübergangskoeffizienten unvorteilhaft.According to the state of the art, embodiments are known in which welded stainless steel tubes are cast in aluminum, for example by the manufacturer Development and Manufacturing Volker Eßbach, D-09600 Berthelsdorf (www efe- essbach.de). In order to optimize the cooling performance, a good heat transfer between the heat sink and the coolant is desired. In the prior art, therefore, turbulators are disposed within the tubes to ensure turbulent flow. A laminar flow is unfavorable due to the lower heat transfer coefficient.
Derartige Verwirbelungselemente bringen es oft mit sich, dass sich innerhalb der Rohre Zonen ausbilden, innerhalb derer kleine Mengen von Kühlmittel zirkulieren oder innerhalb derer sich geringe Strömungsgeschwindigkeiten einstellen. Das führt mit der Zeit zur Ablagerung von Schlacken und Rückständen, die aus dem Kühlmittel ausfallen und sich an der Rohrinnenwand und an den Verwirbelungselementen festsetzen. Die Folge davon sind eine Verschlechterung des Wärmeübergangs sowie ein Anstieg des Strömungswiderstandes bis hin zur völligen Verstopfung des Rohres.Such swirling elements often entail formation of zones within the tubes within which small quantities of coolant circulate or within which small flow velocities occur. Over time, this leads to the deposition of slags and residues which precipitate out of the coolant and settle on the pipe inner wall and on the swirling elements. The consequence of this is a deterioration of the heat transfer and an increase in the flow resistance up to complete blockage of the tube.
Ohne Verwirbelungselemente muss die Durchflussgeschwindigkeit so hoch gewählt werden, dass ein Übergang von laminarer zu turbulenter Strömung erfolgt . Damit sinkt aber aufgrund des erforderlichen Anstiegs der Pumpleistung derWithout turbulators, the flow rate must be high enough to transition from laminar to turbulent flow. But due to the required increase in pumping power, this decreases
Gesamtwirkungsgrad der Kühlanlage und es kommt zu einer unerwünschten Erhöhung der Geräuschemission.Overall efficiency of the cooling system and there is an undesirable increase in noise emission.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, für einen Kühlkörper der eingangs genannten Art eine Verbesserung gegenüber dem Stand der Technik anzugeben.The present invention has for its object to provide an improvement over the prior art for a heat sink of the type mentioned.
Diese Aufgabe wird erfindungsgemäß gelöst mit einemThis object is achieved with a
Kühlkörper mit wenigstens einem von Kühlmittel durchströmten Rohr, welches mit einem Wärme leitenden Material umgeben ist, wobei die Rohrwand des wenigstens einen Rohrs in Strömungsrichtung gewellt ist. Die gewellte Ausführung hat den Vorteil, dass der Übergang von laminarer zu turbulenter Strömung gegenüber einem geradwandigen Rohr bei einer geringeren Strömungsgeschwindigkeit erfolgt. Es sind dann keine Verwirbelungselemente mehr notwendig. Zudem ist die Wärmeübergangsfläche bei gleicher Rohrlänge gegenüber einem geradwandigen Rohr größer, wodurch mehr Wärme an das Kühlmittel abgegeben wird.Heatsink with at least one flowed through by coolant tube, which is surrounded with a heat-conducting material, wherein the tube wall of the at least one tube is corrugated in the flow direction. The corrugated design has the advantage that the transition from laminar to turbulent flow over a straight-walled pipe at a lower flow rate. It is then no turbulence elements necessary. In addition, the heat transfer surface is the same pipe length compared to a straight-walled pipe larger, causing more heat is delivered to the coolant.
Eine vorteilhafte Ausführung der Erfindung sieht vor, dass das wenigstens eine Rohr als Wellrohr mit Parallel-Wellung ausgebildet ist. Derartige Wellrohre sind in verschiedenen Materialen kostengünstig verfügbar. Die Parallel-Wellung hat zudem den Vorteil, dass ein Rohr auf einfache Weise gebogen werden kann.An advantageous embodiment of the invention provides that the at least one tube is formed as corrugated pipe with parallel corrugation. Such corrugated pipes are available inexpensively in various materials. The parallel corrugation also has the advantage that a tube can be easily bent.
Eine weitere vorteilhafte Ausführung ist gegeben, wenn das wenigstens eine Rohr als Spiralrohr mit Spiral-Wellung ausgebildet ist. Ein derartiges Rohr verbindet die Vorteile eines Wellrohrs mit einer einfachen Verbindungsmöglichkeit zu Anschlussstücken, welche geeignete Innengewinde aufweisen und ohne weitere Vorarbeiten auf die Enden des Spiralrohrs geschraubt werden. Zudem ist in einem Spiralrohr eine bessere Durchspülung zum Abtransport möglicher Kühlmittelschlacken gegeben .A further advantageous embodiment is given if the at least one tube is designed as a spiral tube with spiral corrugation. Such a tube combines the advantages of a corrugated tube with a simple connection to fittings, which have suitable internal threads and are screwed without further preparation on the ends of the spiral tube. In addition, a better flushing for removal of possible coolant slags is given in a spiral tube.
Vorteilhaft ist es zudem, wenn das wenigstens eine Rohr aus korrosionsbeständigem Edelstahl oder aus Kupfer gefertigt ist. Mit Edelstahl ist eine hohe Lebensdauer des Kühlkörpers sichergestellt, auch wenn das Kühlmittel korrosionsfordernde Inhaltsstoffe aufweist. Bei der Verwendung eines Kühlmittels, dessen Korrosionswirkung bekanntermaßen gering ist, ist auch der Einsatz von Kupfer vorteilhaft, da die Wärmeleitfähigkeit gegenüber Edelstahl besser ist.It is also advantageous if the at least one tube is made of corrosion-resistant stainless steel or copper. With stainless steel, a long life of the heat sink is ensured, even if the coolant has corrosion-resistant ingredients. When using a coolant whose corrosion effect is known to be low, the use of copper is advantageous because the thermal conductivity is better than stainless steel.
Dabei ist es günstig, als umgebendes Material Aluminium oder Kupfer oder Messing oder Zink vorzusehen. Diese Materialen eignen sich gut zum Gießen und verfügen über eine hohe Wärmeleitfähigkeit, sodass die Abwärme der am Kühlkörper angebrachten Bauteile direkt an das Kühlmittel abgegeben wird. Eine andere günstige Ausführungsform der Erfindung sieht vor, dass das wenigstens eine Rohr aus dem Wärme leitenden Material als rohrförmiger Hohlraum gebildet ist. Dabei wird kein eigenes Rohr eingesetzt, sondern während einesIt is advantageous to provide aluminum or copper or brass or zinc as the surrounding material. These materials are well-suited for casting and have a high thermal conductivity, so that the waste heat from the components attached to the heat sink is delivered directly to the coolant. Another favorable embodiment of the invention provides that the at least one tube of the heat-conducting material is formed as a tubular cavity. In this case, no own pipe is used, but during one
Gießverfahrens ein Gusskern mit der Form der gewellten Rohrinnenwand in eine Gussform eingelegt. Im Gusskörper aus Wärme leitendem Material ist dann ein Hohlraum mit der Form des Gusskerns ausgebildet. Eine weitere Möglichkeit besteht darin, den Kühlkörper zweiteilig mit einer, durch dieCasting a cast core with the shape of the corrugated pipe inner wall inserted into a mold. In the cast body of heat conductive material, a cavity is then formed with the shape of the casting core. Another possibility is the heat sink in two parts with a, through the
Rohrmittelachse festgelegte, Trennfuge auszubilden. Der rohrförmige Hohlraum ist dann mittels spanabhebender Verfahren in der Weise gefertigt, dass in jeder Kühlkörperhälfte eine gewellte Rinne ausgenommen ist. Im zusammengesetzten Kühlkörper bilden diese beiden Rinnen den rohrförmigen Hohlraum.Pipe central axis specified, forming parting line. The tubular cavity is then manufactured by means of cutting processes in such a way that in each heat sink half a corrugated channel is excluded. In the assembled heat sink these two grooves form the tubular cavity.
Von Vorteil ist es des Weiteren, wenn der Kühlkörper eine im Wesentlichen plattenförmige Geometrie aufweist . Der Kühlkörper ist dann einfach herzustellen und weist eine ebene Montagefläche zur Anbringung von Wärme abgebenden Bauteilen auf .It is furthermore advantageous if the heat sink has a substantially plate-shaped geometry. The heat sink is then easy to manufacture and has a flat mounting surface for mounting heat-dissipating components.
Für die Anordnung des wenigstens einen Rohres ist es günstig, wenn dieses mäanderförmig angeordnet ist. Das Rohr bildet dann mehrere Kühlschlingen innerhalb des Kühlkörpers, wodurch eine bessere Wärmeabgabe an das Kühlmittel gegeben ist. Zudem bleibt zwischen den Kühlschlingen genügend Platz für Montagelöcher .For the arrangement of the at least one tube, it is advantageous if this is arranged meandering. The tube then forms a plurality of cooling loops within the heat sink, whereby a better heat transfer is given to the coolant. In addition, there is enough space between the cooling coils for mounting holes.
Eine andere günstige Anordnung ist gegeben, wenn das wenigstens eine Rohr spiralförmig angeordnet ist. Dabei ist z.B. das Rohr im Zentrum der Spirale mit einem Halbkreisbogen ausgebildet, sodass zwei parallel verlaufende Abschnitte des Rohrs spiralförmig nach außengeführt und am Rand desAnother favorable arrangement is given when the at least one tube is arranged spirally. In this case, e.g. the tube is formed in the center of the spiral with a semicircular arc, so that two parallel sections of the tube spirally led outwards and at the edge of
Kühlkörpers mit Anschlussstücken versehen sind. Wie bei der mäanderförmigen Anordnung ist dadurch innerhalb des Kühlkörpers eine ausreichende Rohrlänge für eine gute Wärmeabgabe an das Kühlmittel gegeben.Heatsink are provided with fittings. As with the meandering arrangement is thereby within the Heat sink given a sufficient tube length for a good heat transfer to the coolant.
Günstig ist es zudem, wenn als Kühlmittel eine Wasser- Frostschutz-Mischung vorgesehen ist. Ein derartiges Gemisch ist einerseits einfach verfügbar und eignet sich für einen frostsicheren Einsatz des Kühlkörpers.It is also beneficial if a water-antifreeze mixture is provided as the coolant. On the one hand, such a mixture is readily available and is suitable for a frost-proof use of the heat sink.
Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:The invention will now be described by way of example with reference to the accompanying drawings. In a schematic representation:
Fig. 1: Aufriss und Seitenriss eines Kühlkörpers Fig. 2: Längsquerschnitt eines Wellrohres Fig. 3: Längsquerschnitt eines SpiralrohresFig. 1: elevation and side elevation of a heat sink Fig. 2: longitudinal cross section of a corrugated pipe Fig. 3: longitudinal cross section of a spiral pipe
Figur 1 zeigt eine beispielhafte Ausführung eines Kühlkörpers mit mäanderförmig angeordnetem Rohr 2, wobei die Rohrwand erfindungsgemäß in Strömungsrichtung gewellt ist. Das Rohr weist dabei an den Enden Anschlussstücke 3, 4 auf. Dabei wird über ein erstes Anschlussstück 3 abgekühltes Kühlmittel in den Kühlkörper gepumpt. Innerhalb des Kühlkörpers bildet das Rohr 2 mehrere Kühlschlingen indem zwischen geraden Rohrabschnitten Halbbögen angeordnet sind, sodass die geraden aufeinander folgenden Rohrabschnitte parallel zu einander verlaufen. Die Ausrichtung der parallel zueinander verlaufenden Rohrabschnitte ist dabei innerhalb des Kühlkörpers änderbar, wodurch eine Anpassung an die Lage und Wärmeabgabe der auf dem Kühlkörper angeordneten Bauteile erfolgt. Bauteile mit einer erhöhten Wärmeabgabe sind dabei direkt über einem oder mehreren Rohrabschnitten angeordnet, wohingegen Bauteile mit geringerer Wärmeabgabe auch in Bereichen zwischen zwei Rohrabschnitte platzierbar sind.Figure 1 shows an exemplary embodiment of a heat sink with a meandering tube 2, wherein the tube wall according to the invention is corrugated in the flow direction. The tube has at the ends of connecting pieces 3, 4. In this case, cooled coolant is pumped into the heat sink via a first connector 3. Within the heat sink, the tube 2 forms a plurality of cooling loops by semi-arcs are arranged between straight pipe sections, so that the straight successive pipe sections are parallel to each other. The orientation of the mutually parallel pipe sections is changeable within the heat sink, whereby an adaptation to the position and heat dissipation of the arranged on the heat sink components occurs. Components with increased heat output are arranged directly over one or more pipe sections, whereas components with lower heat dissipation can be placed in areas between two pipe sections.
Das Kühlmittel nimmt beim Durchströmen des innerhalb des Kühlkörpers angeordneten Rohres 2 Wärme auf und strömt über ein zweites Anschlussstück 4 aus dem Kühlkörper, in der Regel über eine Pumpe zu einem Wärmetauscher, mittels welchem eine Abkühlung des Kühlmittels erfolgt.The coolant absorbs heat as it flows through the pipe 2 arranged inside the heat sink and flows out of the heat sink via a second connecting piece 4, as a rule via a pump to a heat exchanger, by means of which a cooling of the coolant takes place.
Das Rohr 2 ist beispielhaft als Wellrohr aus korrosionsbeständigem Edelstahl ausgebildet. Es besteht auch die Möglichkeit, einen Kühlkörper mit mehreren Rohren 2 auszustatten und auf diese Weise mehrere Kühlkreisläufe vorzusehen. Dabei kann jeder Kühlkreislauf ein eigenes Temperaturniveau und eine eigene Strömungsgeschwindigkeit aufweisen, wodurch eine optimale Anpassung an dieThe tube 2 is exemplified as corrugated pipe made of corrosion-resistant stainless steel. It is also possible to equip a heat sink with a plurality of tubes 2 and to provide in this way a plurality of cooling circuits. In this case, each cooling circuit may have its own temperature level and its own flow velocity, whereby an optimal adaptation to the
Kühlungsanforderungen der auf dem Kühlkörper angebrachten Bauteile gegeben ist.Cooling requirements of the mounted on the heat sink components is given.
Das Rohr 2 ist mäanderförmig in einer Ebene angeordnet und in einen Wärme leitendes Material (1), beispielsweise Aluminium, eingegossen. Aus dem Wärme leitendes Material (1) ragen somit nur die Enden des Rohres 2 mit den Anschlussstücken 4,5 heraus .The tube 2 is arranged meandering in a plane and in a heat conductive material (1), such as aluminum, cast. From the heat conductive material (1) thus protrude out only the ends of the tube 2 with the fittings 4.5.
In den Zonen zwischen den parallel verlaufendenIn the zones between the parallel
Rohrabschnitten sind Bohrungen 5 vorgesehen, die als Montagebohrungen zum Anbringen von Bauteilen dienen. Mittels Bohrungen 5 ist aber auch der Kühlkörper selbst auf eine entsprechende Halterung montierbar.Pipe sections holes 5 are provided, which serve as mounting holes for attaching components. By means of holes 5 but also the heat sink itself can be mounted on a corresponding bracket.
Beim Anbringen der Bauteile auf den Kühlkörper ist darauf zu achten, dass eine gute Wärmeübertragung von den Bauteilen auf den Kühlkörper gegeben ist. Gegebenfalls ist eine Wärme leitende Substanz im Spalt zwischen einem Bauteil und dem Kühlkörper vorzusehen.When attaching the components to the heat sink, make sure that there is good heat transfer from the components to the heat sink. Optionally, a heat-conducting substance is provided in the gap between a component and the heat sink.
Zur Bestimmung der optimalen Kühlbedingungen ist es sinnvoll, empirische Versuche mit unterschiedlichen Rohranordnungen vorzunehmen. Dabei wird in einem Versuchsaufbau der Kühlkörper zunächst gleichmäßig erwärmt und anschließend durch Zirkulation eines Kühlmittels abgekühlt. Während des Abkühlvorganges wird die Temperaturveränderung als Funktion der Zeit und des Ortes auf der Kühlkörperoberfläche gemessen. Auf Grundlage dieser Messergebnissen erfolgt in weiterer Folge die Platzierung der einzelnen Bauteile auf dem Kühlkörper.To determine the optimum cooling conditions, it makes sense to carry out empirical experiments with different pipe arrangements. In this case, the heat sink is first uniformly heated in an experimental setup and then cooled by circulation of a coolant. During the Abkühlvorganges the temperature change is measured as a function of time and location on the heat sink surface. On the basis of these measurement results, the placement of the individual components on the heat sink is subsequently carried out.
Der Druckverlust pro Rohrlängeneinheit als Funktion des Volumenstromes folgt in durchströmten Well- oder Spiralrohren einem parabolischen Verlauf, d.h. der Druckverlust pro Rohrlängeneinheit steigt mit steigendem Volumenstrom kontinuierlich immer stärker an. Das Ausmaß dieses Anstiegs nimmt dabei mit kleiner werdenden Durchmesser des Rohres zu. Die optimale Abstimmung der einzelnen Größen (Volumenstrom, Rohrdurchmesser, Rohrlänge, Druckabfall etc.) erfolgt entweder in Versuchen empirisch, durch Simulation oder durch strömungstechnische Berechnungen. Das Optimum ist dann gegeben, wenn bei minimaler Energiezufuhr (für eine Zirkulationspumpe und sonstige Aggregate) ein größtmöglicher Wärmeentzug des Kühlkörpers erfolgt.The pressure loss per tube length unit as a function of the volume flow follows a parabolic course in flow-through corrugated or spiral tubes, i. the pressure loss per pipe length unit increases continuously with increasing volume flow. The extent of this increase increases with decreasing diameter of the tube. The optimum matching of the individual variables (volume flow, pipe diameter, pipe length, pressure drop, etc.) is carried out either empirically in experiments, by simulation or by fluidic calculations. The optimum is given when with minimal energy input (for a circulation pump and other aggregates) a maximum heat removal of the heat sink takes place.
Die strömungstechnischen Eigenschaften von Well- und Spiralrohren werden zudem in der Regel von den Herstellern dieser Rohre veröffentlicht (z.B. Water Way Engeneering GmbH, D-47441 Moers) .The flow characteristics of corrugated and spiral pipes are also generally published by the manufacturers of these pipes (for example Water Way Engineering GmbH, D-47441 Moers).
Figur 2 zeigt ein als Wellrohr ausgebildetes Rohr 2 im Längsschnitt. Die einzelnen Wellen verlaufen dabei achssymmetrisch. In Figur 3 hingegen ist ein als Spiralrohr ausgebildetes Rohr 2 in einem Längsschnitt dargestellt. Hierbei verlaufen die Wellen in einer Schraubenlinie um die Mittelachse des Rohres 2. FIG. 2 shows a tube 2 designed as a corrugated tube in longitudinal section. The individual waves are axisymmetric. In contrast, in FIG. 3, a tube 2 designed as a spiral tube is shown in a longitudinal section. In this case, the waves run in a helix about the central axis of the tube. 2

Claims

Patentansprüche claims
1. Kühlkörper, mit wenigstens einem von Kühlmittel durchströmten Rohr (2), welches mit einem Wärme leitenden Material (1) umgeben ist, dadurch gekennzeichnet, dass die Rohrwand des wenigstens einen Rohrs (2) in Strömungsrichtung gewellt ist.1. heat sink, with at least one of coolant flowed through pipe (2) which is surrounded by a heat-conducting material (1), characterized in that the tube wall of the at least one tube (2) is corrugated in the flow direction.
2. Kühlkörper nach Anspruch 1, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) als Wellrohr mit Parallel- Wellung ausgebildet ist.2. Heatsink according to claim 1, characterized in that the at least one tube (2) is designed as a corrugated pipe with parallel corrugation.
3. Kühlkörper nach Anspruch 1, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) als Spiralrohr mit Spiral- Wellung ausgebildet ist.3. Heatsink according to claim 1, characterized in that the at least one tube (2) is designed as a spiral tube with spiral corrugation.
4. Kühlkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) aus korrosionsbeständigem Edelstahl oder Kupfer gefertigt ist.4. Heatsink according to one of claims 1 to 3, characterized in that the at least one tube (2) is made of corrosion-resistant stainless steel or copper.
5. Kühlkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als umgebendes Material (1) Aluminium oder Kupfer oder Messing oder Zink vorgesehen ist.5. Heatsink according to one of claims 1 to 4, characterized in that as the surrounding material (1) aluminum or copper or brass or zinc is provided.
6. Kühlkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) aus dem Wärme leitenden Material (1) als rohrförmiger Hohlraum gebildet ist.6. Heatsink according to one of claims 1 to 5, characterized in that the at least one tube (2) made of the heat-conducting material (1) is formed as a tubular cavity.
7. Kühlkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kühlkörper eine im Wesentlichen plattenförmige Geometrie aufweist.7. Heatsink according to one of claims 1 to 5, characterized in that the cooling body has a substantially plate-shaped geometry.
8. Kühlkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) mäanderförmig angeordnet ist . 8. Heatsink according to one of claims 1 to 6, characterized in that the at least one tube (2) is arranged meandering.
9. Kühlkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das wenigstens eine Rohr (2) spiralförmig angeordnet ist.9. Heatsink according to one of claims 1 to 6, characterized in that the at least one tube (2) is arranged spirally.
10. Kühlkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das als Kühlmittel eine Wasser- Frostschutz-Mischung vorgesehen ist. 10. Heatsink according to one of claims 1 to 8, characterized in that the coolant is provided as a water antifreeze mixture.
EP06830307A 2006-02-21 2006-12-04 Heat sink comprising a tube through which cooling medium flows Withdrawn EP1987308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008033A DE102006008033A1 (en) 2006-02-21 2006-02-21 Heat sink with coolant flowing through the pipe
PCT/EP2006/069241 WO2007096013A1 (en) 2006-02-21 2006-12-04 Heat sink comprising a tube through which cooling medium flows

Publications (1)

Publication Number Publication Date
EP1987308A1 true EP1987308A1 (en) 2008-11-05

Family

ID=37837015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830307A Withdrawn EP1987308A1 (en) 2006-02-21 2006-12-04 Heat sink comprising a tube through which cooling medium flows

Country Status (6)

Country Link
US (1) US20100155040A1 (en)
EP (1) EP1987308A1 (en)
CN (1) CN101379359B (en)
CA (1) CA2640960C (en)
DE (1) DE102006008033A1 (en)
WO (1) WO2007096013A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015859B4 (en) * 2007-04-02 2009-02-19 Reiner Dziadek Heat exchanger, a cooling arrangement with the heat exchanger, as well as its use and cooling method
DE102007053561A1 (en) * 2007-11-09 2008-08-28 Siemens Ag Cooling plate for converter i.e. voltage intermediate converter, has cooling agent channel including set of cooling agent pipes with mantle surface that is provided with circulating beaded rim, where rim axially runs along pipes as thread
DE102009012042B4 (en) 2009-03-07 2011-01-05 Esw Gmbh Device for cooling electrical or electronic components
TW201217738A (en) * 2010-10-22 2012-05-01 Metal Ind Res & Dev Ct wherein a conductive body is formed to closely integrate with the pipe piece and the object surface in order to achieve the practical purpose of dramatically enhancing the cooling/heating efficiency
CN102280419A (en) * 2011-07-04 2011-12-14 遵义航天新力精密铸锻有限公司 Radiating plate for large-scale electronic equipment and manufacturing method of radiating plate
US9366046B1 (en) 2014-12-19 2016-06-14 Robert M. Rodrick Apparatus and method for cooling swimming pool water
US9551535B2 (en) 2014-12-19 2017-01-24 Robert M. Rodrick Apparatus and method for cooling selected portions of swimming pool water
CN108370129B (en) 2015-11-19 2020-09-18 恩耐公司 Laser fault tolerance and self calibration system
WO2018044813A1 (en) * 2016-08-31 2018-03-08 Nlight, Inc. Laser cooling system
JP7087254B2 (en) * 2016-10-24 2022-06-21 富士通株式会社 Electronics
WO2018112220A1 (en) 2016-12-15 2018-06-21 Nlight, Inc. Fiber laser packaging
WO2019178003A1 (en) 2018-03-12 2019-09-19 Nlight, Inc. Fiber laser having variably wound optical fiber
US11573053B2 (en) * 2019-08-13 2023-02-07 General Electric Company Cyclone cooler device
CN114747002A (en) * 2019-12-06 2022-07-12 三菱电机株式会社 Heat sink and method for manufacturing heat sink
CN112944973A (en) * 2021-03-30 2021-06-11 中国农业大学 Fin type water body heat exchanger and culture pond system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1913573A (en) * 1932-01-11 1933-06-13 John B Turner Radiator
US3853309A (en) * 1972-03-20 1974-12-10 C Widmer Components using cast-in cooling tubes
CN2113441U (en) * 1991-12-31 1992-08-19 云南航天工业总公司电冰箱厂 Flat back convective type condenser
US5287919A (en) * 1992-09-29 1994-02-22 Gas Research Institute Heat exchanger
US5297586A (en) * 1993-03-16 1994-03-29 Mcintosh Robert Flexible metal hose assembly incorporating modified braid ring with annular member having tools flats
JPH08110186A (en) * 1994-10-12 1996-04-30 Yasuoka:Kk Spiral pipe for cooling, its manufacture, and cooling device employing it
JP3960486B2 (en) * 1995-09-21 2007-08-15 臼井国際産業株式会社 EGR gas cooling device
US6330980B1 (en) * 1997-11-03 2001-12-18 Joachim Fiedrich Dry installation of a radiant floor or wall hydronic heating system, metal radiating plates that attach to the edges of side-by-side boards and provide metal slots for holding hot water tubing
CN2314335Y (en) * 1997-11-18 1999-04-14 高府斌 Corrugated metal pipes for heat exchanger
DE19845336A1 (en) * 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US6679315B2 (en) * 2002-01-14 2004-01-20 Marconi Communications, Inc. Small scale chip cooler assembly
EP1382915A1 (en) * 2002-07-15 2004-01-21 SULZER, Hans Dietrich Heat exchanging element and method for fabricating and method for mounting such elements
DE10393588T5 (en) * 2002-11-01 2006-02-23 Cooligy, Inc., Mountain View Optimal propagation system, apparatus and method for liquid cooled, microscale heat exchange
CN2602332Y (en) * 2003-03-06 2004-02-04 宁波广厦热力成套设备有限公司 Corrugated spiral heat exchanging tube
US7011150B2 (en) * 2004-04-20 2006-03-14 Tokyo Radiator Mfg. Co., Ltd. Tube structure of multitubular heat exchanger
GB2421457A (en) * 2004-12-22 2006-06-28 T I Group Automotive Systems L A heat exchanger
US20090294105A1 (en) * 2005-03-22 2009-12-03 Bharat Heavy Electricals Limited Selectively Grooved Cold Plate for Electronics Cooling
US7673389B2 (en) * 2005-07-19 2010-03-09 International Business Machines Corporation Cold plate apparatus and method of fabrication thereof with a controlled heat transfer characteristic between a metallurgically bonded tube and heat sink for facilitating cooling of an electronics component
US20070090324A1 (en) * 2005-10-21 2007-04-26 Virgil Flanigan Antifreeze/liquid coolant composition and method of use
JP4619932B2 (en) * 2005-11-30 2011-01-26 本田技研工業株式会社 Body frame, die cast casting, die casting die, die casting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007096013A1 *

Also Published As

Publication number Publication date
CN101379359B (en) 2011-06-08
WO2007096013A1 (en) 2007-08-30
CA2640960A1 (en) 2007-08-30
DE102006008033A1 (en) 2007-09-06
CA2640960C (en) 2014-02-25
CN101379359A (en) 2009-03-04
US20100155040A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
EP1987308A1 (en) Heat sink comprising a tube through which cooling medium flows
EP1911335B1 (en) Cooling system for electronics housings
DE4433814B4 (en) motor vehicle
DE60208953T2 (en) Cooling plate with flat hose for liquid cooling of electrical components
WO2003060950A2 (en) Amalgam-doped mercury low-pressure irradiator
EP4229346B1 (en) Heat pipe cooler for pulsating operation and method for producing such a heat pipe cooler
DE2022388B2 (en) LIQUID-COOLED FURNACE WINDFORM
EP2098802B1 (en) Water heater with an electronic coolant pipe
EP2562485B1 (en) Media heater
EP3134699B1 (en) Heat-transfer device and solar collector
DE10305031A1 (en) Heat exchanger for use in e.g. air conditioning, has one-piece heat transfer block made of extruded aluminum alloy with interconnected walls forming heat flow columns corresponding to heat flow channels formed on two end sections
DE202007008119U1 (en) Fotovoltaikanlage
EP2213972A1 (en) Cooling device with a ridge cooler
DE102008059541A1 (en) Heat exchanger for exchanging heat between two heat transferring mediums, comprises heat transferring medium through flow channel, where heat exchanger tube is provided for passing another heat transferring medium
EP2158434A1 (en) Rear wall condenser for domestic refrigerators and freezers
EP1964496A1 (en) Percolator
DE19856087A1 (en) Electric instantaneous water heater and process for its manufacture
DE102013210446A1 (en) heat pipe
DE102014216920A1 (en) Heat transfer tubes for a single-phase flow
DE2644937C2 (en) System for heating liquid and gaseous flowing media
DE102017100998A1 (en) Displacer for a heat exchanger tube, heat exchanger tube and heat exchanger
DE102018127928A1 (en) Heat transport unit
DE102007023696B4 (en) Condenser for household refrigerators
DE10019302A1 (en) Heat pump for heating of heating water and service water has two liquefiers connected in parallel in coolant circuit and by means of valve device, first or second liquefier switched on
DE3249924C2 (en) Heating element with cylindrical wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110111