EP1987301A1 - Cooling system - Google Patents

Cooling system

Info

Publication number
EP1987301A1
EP1987301A1 EP07702485A EP07702485A EP1987301A1 EP 1987301 A1 EP1987301 A1 EP 1987301A1 EP 07702485 A EP07702485 A EP 07702485A EP 07702485 A EP07702485 A EP 07702485A EP 1987301 A1 EP1987301 A1 EP 1987301A1
Authority
EP
European Patent Office
Prior art keywords
cooling system
valve
evaporator
refrigerant
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07702485A
Other languages
German (de)
French (fr)
Other versions
EP1987301B1 (en
Inventor
Torben Funder-Kristensen
Holger Nicolaisen
Jørgen HOLST
Mogens H. Rasmussen
Jan Holm Nissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP1987301A1 publication Critical patent/EP1987301A1/en
Application granted granted Critical
Publication of EP1987301B1 publication Critical patent/EP1987301B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer
    • Y10T137/86405Repeating cycle
    • Y10T137/86421Variable

Definitions

  • the invention relates to a cooling system with a refrigerant circuit, which has a plurality of evaporator sections and a distributing a distribution of refrigerant to the evaporator sections distributor.
  • Such a refrigeration system is known from US 5 832 744.
  • the distributor has between a refrigerant inlet and a plurality of refrigerant outlets a valve, which is followed by a rotating turbine disk.
  • the turbine disk should ensure that the refrigerant is evenly distributed to all outlets of the distributor and thus evenly to all evaporators.
  • the known distributors theoretically ensure a uniform distribution of the refrigerant to the individual evaporator.
  • the individual evaporators basically have the same thermal load and also the same flow resistance. If this is not the case, the case may occur that an evaporator receives too much refrigerant, so that the refrigerant is not fully recovered. is constantly evaporated before it has passed through the evaporator.
  • Another evaporator which is connected to the same manifold, can get too little refrigerant, so that the evaporator can not provide the desired cooling capacity.
  • the over-supply or the undersupply of the evaporator can lead to difficulties especially if temperature sensors, which are arranged at the evaporators or other locations of the cooling system, control an expansion valve.
  • the expansion valve can be vibrated under unfavorable conditions, which further deteriorates the capacity and the effectiveness of the cooling system.
  • the invention has for its object to improve the operation of the cooling system with simple means.
  • cooling system any cooling system that includes cooling systems, freezer systems, air conditioners and heat pumps.
  • the term "refrigeration plant” has been used for convenience only.
  • the evaporator sections can be arranged in different evaporators. The invention will be explained for the sake of simplicity in connection with several evaporators. However, the invention is also applicable if an evaporator has a plurality of individually or in groups controllable evaporator sections.
  • the distributor has a controllable valve for each evaporator, then it can control the supply of the evaporators individually, ie it is then possible to supply the amount of refrigerant to each evaporator. feed that he needs. There is no need to worry about the fact that the evaporators all have the same flow resistance. It is also of minor importance if the evaporators have to deliver different cooling capacities. An evaporator in which a larger cooling capacity is required, gets correspondingly more refrigerant than an evaporator, which must provide less cooling capacity.
  • the valves can be controlled by a control device which controls individual valves differently.
  • the control device thus ensures the distribution of the refrigerant to the individual evaporator.
  • the control device can also control the valves so that all valves pass through a certain basic flow rate of refrigerant and then, if necessary, a single valve so control that in each case additionally passes the required amount of refrigerant.
  • This is particularly advantageous if the control device controls the valves offset in time from one another.
  • an evaporator gets only from time to time refrigerant, but in total the required amount of refrigerant.
  • the control device thus controls the duty cycle of the individual valve, ie the ratio of the opening time of the individual valve to a predetermined period length.
  • valves may have been turned on once.
  • the period length is chosen so that keep the pressure fluctuations in the evaporators within reasonable limits or even virtually unnoticeable.
  • the valves can all be adjusted with a basic opening, so that all evaporators are permanently supplied with refrigerant.
  • the controller then clocks the individual valves in addition, so that each evaporator receives an additional amount of refrigerant depending on demand to cover the refrigerant demand.
  • the control means controls only a single valve so that it has a passage opening which is larger than a fürlouöff- tion of the other valves. Normally, when all the valves are closed, the controller will always open only one valve at a time. This facilitates the control and sizing of the refrigerant supplied to a single evaporator. If the individual valves 5 already allow a basic flow rate of refrigerant, only one single valve is ever opened further in order to supply the evaporator connected to this valve individually with the required total amount of refrigerant.
  • control device has a rotor, which the
  • Opening of valves causes. As a result of the rotation of the rotor, the individual valves are opened. This is a very easy way to control the individual valves one after the other.
  • the rotor is driven by a variable speed motor.
  • the speed can then adjust how long the individual valves are open.
  • the engine is reversible. Due to the reversibility of the motor, it is possible to keep a single valve completely closed for a longer period of time. Before the rotor brings this valve into the open position, the motor is reversed in its direction of rotation, so that this valve remains closed. It is also possible to leave several valves closed when these valves are arranged side by side in the direction of rotation of the rotor.
  • the rotor is connected to a cam and the
  • Valves have valve tappets actuatable by the cam plate are. This is a mechanically particularly simple solution to open or close the valves.
  • the plungers are expediently acted upon in the closing direction of the valves by a closing spring. Then, when the cam comes into contact with the plunger, then the valve is opened against the force of the closing spring. The valve closes again as soon as the cam has been rotated further enough.
  • the cam disc has a single cam. This ensures that only one valve can be opened at the same time or opened more than the other valves. Accordingly, it is also possible to individually adjust the opening time of each valve (or the time of the boosted opening), so that this opening time can be largely unaffected by the opening times of the other valves.
  • valve tappets have in the direction of rotation a distance from each other which is at least as large as the extent of the cam in the direction of rotation. This makes it possible to let the cam come to rest in a position in which no valve tappet is acted upon. In this case, all valves can remain closed.
  • valve tappets are arranged parallel to the rotor axis.
  • parallel is not to be understood here as mathematically exact. It is only important that the valve tappets have a component which is directed parallel to the rotor axis.
  • the cam which is arranged on the cam disk, acts parallel to the rotor axis.
  • the cam disc has a displacement drive which acts in a direction parallel to the rotor axis. If the valve tappets are arranged parallel to the rotor axis, it is possible by the displacement of the cam disc in a simple manner, all valves simultaneously open to allow a certain basic flow rate of refrigerant. The cam then each opens a single valve more than the other valves to ensure individual supply of a single evaporator with refrigerant.
  • the rotor has an axially extending inlet channel communicating with an inlet of the distributor and a radially extending outlet channel, the mouth of which, in rotation with outlet openings communicating with the evaporators, can be brought in overlap. So you use the rotor at the same time as an element of the valve. If the mouth of the outlet channel is in register with an outlet opening, then a flow path from the inlet of the distributor to an outlet associated with a particular evaporator is released. As long as the overlap exists, refrigerant may flow from the manifold inlet to the respective evaporator.
  • the refrigerant supply to the evaporator just described is interrupted and the next output in the direction of rotation is supplied with refrigerant.
  • a greater or lesser amount of refrigerant may flow into the vaporizer. This overlap time can be changed by adjusting the speed at which the rotor turns.
  • the outlet openings in the rotational direction at a distance from each other, which is at least as large as the extension of the mouth of the outlet channel in the rotational direction.
  • a sensor is arranged, which is connected to the control device.
  • This sensor may be, for example, a temperature sensor.
  • Each evaporator can then be supplied with refrigerant depending on the temperature at its outlet.
  • the evaporator sections are arranged with a capacitor in series and a sensor is arranged in front of the condenser or the compressor.
  • a sensor is arranged in front of the condenser or the compressor.
  • a single sensor is sufficient if one knows otherwise the operating behavior of the cooling system. With the knowledge of the operating behavior can then decide which evaporator or evaporator section how much coolant to be supplied.
  • FIG. 1 is a schematic representation of a cooling system with multiple evaporators
  • FIG. 2 is a plan view of a first embodiment of a distributor
  • FIG. 3 shows a section III-III of FIG. 2
  • Fig. 4 is a sectional view IV-IV of FIG. 5 by a second embodiment of a distributor and
  • FIG. 5 is a sectional view V-V of FIG .. 4
  • Fig. 1 shows a schematic representation of a cooling system 1, in which a compressor 2, a condenser 3, a collector 4, a manifold 5 and an evaporator assembly 6 with a plurality of evaporators arranged in parallel 7a-7d are connected together in a circuit.
  • the evaporator arrangement 6 can also have a single evaporator, which has a plurality of evaporator sections, which are to be controlled individually or in groups.
  • liquid refrigerant evaporates in the evaporators 7a-7d, is compressed by the compressor 2, liquefied in the condenser 3 and collected in the collector 4.
  • the distributor 5 is intended to distribute the liquid refrigerant to the individual evaporators 7a-7d.
  • each evaporator 7a-7d At the outlet of each evaporator 7a-7d is a temperature sensor 8a
  • the temperature sensor 8a-8d detects the temperature of the refrigerant leaving the evaporator 7a-7d. This temperature information is forwarded to a control unit 9, which controls the distributor 5 as a function of the temperature signals of the temperature sensors 8a-8d.
  • FIG. 2 and 3 show a first embodiment of a distributor 5.
  • the distributor 5 according to FIG. 2 here has six outputs 10a-10f (for six evaporators) and an input 11. Each output 10a-1 Of is separated from the input 11 by a valve 12. Since the valves are all the same are constructed, the following description is based on valves 12, which are associated with the outputs 10b, 10e.
  • Each valve 12 has a valve seat 13 which is arranged in a housing block 14. Furthermore, each valve 12 has a valve element 15 which is connected to a valve tappet 16, which protrudes from the housing block 14 on the side opposite the valve seat 13. Both the housing block 14 and the valve element 15 are supported by springs 17, 18 on a cover 19, through which the input 11 is guided and which closes a valve housing 20.
  • the spring 18 is designed as a closing spring which acts on the valve element 15 against the valve seat 13.
  • a cam plate 21 is rotatably mounted in the valve housing 20, a cam plate 21 is rotatably mounted.
  • the cam disc 21 has a single cam 22, which acts on a rotation of the cam disc 21 about a rotation axis 23 each have a valve stem 16, as can be seen by the left valve (in Fig. 3).
  • the cam 22 acts on the valve stem 16, the valve element 15 lifts off the valve seat 13 and a passage from the inlet 11 to the outlet 10e is released.
  • Valve stem 16 leaves, the valve element 15 is brought under the action of the spring 18 again to rest against the valve seat 13 and the corresponding valve 12 closes, as can be seen from the output 10 b associated valve 12.
  • the cam plate 21 is rotated by a motor 24, which is shown here only schematically.
  • the motor 24 is driven by the control unit 9.
  • the motor 24 is operable at a controlled speed.
  • the maximum speed is for example in a size order of 100 U / min.
  • the speed of the motor 24 can be changed.
  • the engine 24 can also be stopped for a short time. Also, the direction of rotation of the motor is changeable.
  • the individual valves 12 are now each opened so long during one revolution of the cam disc 21 that a sufficient amount of refrigerant can flow through the respective exits 10a-10f, so that the evaporators 7a -7d get enough refrigerant, but not too much refrigerant. If an evaporator requires less refrigerant, then when the cam 22 engages the corresponding plunger 16 of the valve 12, the cam plate 21 will be rotated faster, leaving the valve 12 open only for a shorter time. On the other hand, if an evaporator required a larger amount of refrigerant, the cam disc 21 would rotate more slowly when the cam 22 is in the region of the valve associated with the corresponding outlet.
  • the cam plate 21 is mounted on a rotor 25 of the motor 24.
  • the rotor 25 can now be displaced by an axial drive 26 in a direction parallel to the axis of rotation 23. For example, if it is displaced downwardly (based on the illustration of FIG. 3), then all the valves 12 are slightly opened, so that refrigerant can flow permanently through all the outlets 10a-1 Of. This ensures a certain basic supply of all evaporators.
  • the exact setting The amount of refrigerant which is then supplied to the individual evaporator, as before, by the cam 22 of the cam disc 21st
  • the individual valves 12 have in the circumferential or rotational direction of the cam disc 21 a distance which is at least as large as the extent of the cam 22 in the circumferential direction. Accordingly, it is possible to stop the cam plate 21 in a position in which no valve has been opened. Such a position is taken, for example, when the refrigerant supply to any evaporator is not required.
  • FIGS. 4 and 5 show a modified embodiment of a distributor
  • the distributor 5 of FIGS. 4 and 5 also has a rotor 25.
  • the rotor 25 has an inlet channel 27 constantly in register with the inlet 11 in the valve housing 20, i. regardless of the rotational position of the rotor 25th
  • the rotor 25 also has an output channel 28 which is directed substantially radially.
  • the outlet channel 28 has an orifice 29, which, upon rotation of the rotor 25, is provided with outlet openings 30a-30f in overflow. come cover.
  • the outlet ports 30a-30f are connected to the ports 10a-10f through which communication with evaporators of the evaporator assembly 6 can be made.
  • the distance between the outlet openings 30a-30f is at least as large as the extent of the mouth 29 of the outlet channel 28 in the circumferential direction. In the position of the rotor 25 shown in Fig. 4, therefore, the output port 28 is closed, so that no refrigerant can be distributed.
  • the operation of the distributor 5 is similar to the embodiment of the distributor 5 shown in FIGS. 2 and 3.
  • the rotor 25 is controlled under the control of the control unit 9, under circumstances changing rotational speeds, so that there is always a connection between the input 11 and one of the output ports 30 for a certain time. During this time, refrigerant can flow from the inlet 11 into the corresponding outlet opening 30a-30f and from there to the connected evaporator, which accordingly receives a predetermined amount of refrigerant.
  • the connection is opened for a relatively long time. If, however, the rotor 25 rotates faster in this situation, then a correspondingly shorter opening time is available. With a longer opening time, more refrigerant can flow into the corresponding evaporator than with a shorter opening time.
  • a predetermined output opening 30a-30f can also be excluded from the connection with the input 11, so that a signal to this output opening 30a is provided.
  • 3Of connected evaporator receives no refrigerant at all for a certain time. During this time, this evaporator can defrost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The invention concerns a refrigeration system comprising a refrigerant circuit which comprises several evaporator paths and a distributor (5) which distributes the refrigerant on the evaporator paths. The aim of the invention is to improve the operation of said refrigeration system in a simple manner. According to the invention, the distributor (5) comprises a controllable valve (12) for each evaporation path.

Description

Kühlanlage refrigeration Equipment
Die Erfindung betrifft eine Kühlanlage mit einem Kältemittelkreislauf, der mehrere Verdampferstrecken und einen eine Verteilung von Kältemittel auf die Verdampferstrecken bewirkenden Verteiler aufweist.The invention relates to a cooling system with a refrigerant circuit, which has a plurality of evaporator sections and a distributing a distribution of refrigerant to the evaporator sections distributor.
Eine derartige Kühlanlage ist aus US 5 832 744 bekannt. Der Verteiler weist zwischen einem Kältemitteleinlaß und mehreren Kältemittelauslässen ein Ventil auf, dem eine rotierende Turbinenscheibe nachgeschaltet ist. Die Turbinenscheibe soll dafür sorgen, daß das Kältemittel gleichmäßig auf alle Ausgänge des Verteilers und damit auch gleichmäßig auf alle Verdampfer verteilt wird.Such a refrigeration system is known from US 5 832 744. The distributor has between a refrigerant inlet and a plurality of refrigerant outlets a valve, which is followed by a rotating turbine disk. The turbine disk should ensure that the refrigerant is evenly distributed to all outlets of the distributor and thus evenly to all evaporators.
Ein weiterer Verteiler, der in einer derartigen Kühlanlage verwendet werden kann, ist aus US 6 898 945 B1 bekannt. Hier befindet sich zwischen einem Einlaß und mehreren Auslässen ein Ventil, mit dessen Hilfe ein Druckabfall über dem Verteiler eingestellt werden kann. Das Ventil weist einen konischen Stift auf, der das zuströmende Kältemittel verteilen soll, so daß es auf die verschiedenen Kreisläufe durch die Verdampfer verteilt werden kann.Another distributor that can be used in such a refrigeration system is known from US 6 898 945 B1. Here is located between an inlet and several outlets a valve, with the aid of a pressure drop across the manifold can be adjusted. The valve has a conical pin which is intended to distribute the incoming refrigerant so that it can be distributed among the various circuits through the evaporators.
Die bekannten Verteiler sichern zwar theoretisch eine gleichmäßige Verteilung des Kältemittels auf die einzelnen Verdampfer. Allerdings bewirken bereits kleine Unterschiede in Abmessungen, die sich beispielsweise bei der Herstellung ergeben können, daß das Kältemittel ungleichförmig auf die einzelnen Verdampfer verteilt wird. Darüber hinaus ist es bei derarti- gen Verteilern erforderlich, daß die einzelnen Verdampfer im Grunde die gleiche thermische Belastung und auch den gleichen Strömungswiderstand haben. Wenn dies nicht der Fall ist, kann der Fall auftreten, daß ein Verdampfer zu viel Kältemittel erhält, so daß das Kältemittel nicht voll- ständig verdampft wird, bevor es durch den Verdampfer hindurchgelaufen ist. Ein anderer Verdampfer, der an den gleichen Verteiler angeschlossen ist, kann zu wenig Kältemittel erhalten, so daß der Verdampfer die gewünschte Kälteleistung nicht erbringen kann. Die Überversorgung bzw. die 5 Unterversorgung der Verdampfer kann vor allem dann zu Schwierigkeiten führen, wenn Temperatursensoren, die an den Verdampfern oder anderen Stellen der Kühlanlage angeordnet sind, ein Expansionsventil steuern. Das Expansionsventil kann unter ungünstigen Umständen in Eigenschwingungen versetzt werden, was die Kapazität und die Effektivität der o Kühlanlage weiter verschlechtert.Although the known distributors theoretically ensure a uniform distribution of the refrigerant to the individual evaporator. However, already cause small differences in dimensions, which may result, for example, in the production that the refrigerant is distributed unevenly to the individual evaporator. Moreover, with such distributors it is necessary that the individual evaporators basically have the same thermal load and also the same flow resistance. If this is not the case, the case may occur that an evaporator receives too much refrigerant, so that the refrigerant is not fully recovered. is constantly evaporated before it has passed through the evaporator. Another evaporator, which is connected to the same manifold, can get too little refrigerant, so that the evaporator can not provide the desired cooling capacity. The over-supply or the undersupply of the evaporator can lead to difficulties especially if temperature sensors, which are arranged at the evaporators or other locations of the cooling system, control an expansion valve. The expansion valve can be vibrated under unfavorable conditions, which further deteriorates the capacity and the effectiveness of the cooling system.
Der Erfindung liegt die Aufgabe zugrunde, mit einfachen Mitteln den Betrieb der Kühlanlage zu verbessern.The invention has for its object to improve the operation of the cooling system with simple means.
5 Diese Aufgabe wird bei einer Kühlanlage der eingangs genannten Art dadurch gelöst, daß der Verteiler für jede Verdampferstrecke ein ansteuerbares Ventil aufweist.5 This object is achieved in a cooling system of the type mentioned in that the distributor has a controllable valve for each evaporator section.
Wenn im folgenden von einer "Kühlanlage" die Rede ist, dann ist dieser 0 Begriff weit zu verstehen. Er umfaßt insbesondere Kühlsysteme, Gefriersysteme, Klimaanlagen und Wärmepumpen. Der Begriff "Kühlanlage" wurde lediglich zur Vereinfachung verwendet. Die Verdampferstrecken können in unterschiedlichen Verdampfern angeordnet sein. Die Erfindung wird aus Gründen der Einfachheit im Zusammenhang mit mehreren Ver- 5 dampfern erläutert. Die Erfindung ist aber auch anwendbar, wenn ein Verdampfer mehrere einzeln oder gruppenweise ansteuerbare Verdampferstrecken aufweist.If in the following of a "cooling system" is mentioned, then this 0 term is to be understood. It particularly includes cooling systems, freezer systems, air conditioners and heat pumps. The term "refrigeration plant" has been used for convenience only. The evaporator sections can be arranged in different evaporators. The invention will be explained for the sake of simplicity in connection with several evaporators. However, the invention is also applicable if an evaporator has a plurality of individually or in groups controllable evaporator sections.
Wenn der Verteiler für jeden Verdampfer ein ansteuerbares Ventil auf- o weist, dann kann er die Versorgung der Verdampfer individuell steuern, d.h. es ist dann möglich, jedem Verdampfer die Menge an Kältemittel zu- zuführen, die er benötigt. Man muß keine Rücksicht mehr darauf nehmen, daß die Verdampfer alle den gleichen Strömungswiderstand haben. Auch ist es von untergeordneter Bedeutung, wenn die Verdampfer unterschiedliche Kälteleistungen abgeben müssen. Ein Verdampfer, bei dem eine größere Kälteleistung erforderlich ist, bekommt entsprechend mehr Kältemittel als ein Verdampfer, der weniger Kälteleistung erbringen muß.If the distributor has a controllable valve for each evaporator, then it can control the supply of the evaporators individually, ie it is then possible to supply the amount of refrigerant to each evaporator. feed that he needs. There is no need to worry about the fact that the evaporators all have the same flow resistance. It is also of minor importance if the evaporators have to deliver different cooling capacities. An evaporator in which a larger cooling capacity is required, gets correspondingly more refrigerant than an evaporator, which must provide less cooling capacity.
Vorzugsweise sind die Ventile durch eine Steuereinrichtung ansteuerbar, die einzelne Ventile unterschiedlich ansteuert. Die Steuereinrichtung sorgt also für die Verteilung des Kältemittels auf die einzelnen Verdampfer. Die Steuereinrichtung kann aber auch die Ventile so ansteuern, daß alle Ventile einen gewissen Grunddurchsatz von Kältemittel durchlassen und dann bedarfsweise ein einzelnes Ventil so ansteuern, daß es jeweils zusätzlich die benötigte Kältemittelmenge durchläßt. Dies ist insbesondere dann von Vorteil, wenn die Steuereinrichtung die Ventile zeitlich versetzt zueinander ansteuert. Damit bekommt ein Verdampfer zwar nur von Zeit zu Zeit Kältemittel, insgesamt aber die benötigte Kältemittelmenge. Die Steuereinrichtung steuert also das Tastverhältnis des einzelnen Ventils, also das Verhältnis der Öffnungszeit des einzelnen Ventils zu einer vorgegebenen Periodenlänge. Innerhalb einer Periodenlänge können dann alle Ventile einmal aufgesteuert worden sein. Die Periodenlänge wird dabei so gewählt, daß sich die Druckschwankungen in den Verdampfern in vertretbaren Grenzen halten oder sogar praktisch nicht merkbar sind. Die Ventile können auch alle mit einer Grundöffnung eingestellt werden, so daß alle Verdampfer permanent mit Kältemittel versorgt werden. Die Steuereinrichtung taktet dann die einzelnen Ventile zusätzlich, so daß jeder Verdampfer bedarfsabhängig eine zusätzliche Kältemittelmenge erhält, um den Kältemittelbedarf zu decken.Preferably, the valves can be controlled by a control device which controls individual valves differently. The control device thus ensures the distribution of the refrigerant to the individual evaporator. However, the control device can also control the valves so that all valves pass through a certain basic flow rate of refrigerant and then, if necessary, a single valve so control that in each case additionally passes the required amount of refrigerant. This is particularly advantageous if the control device controls the valves offset in time from one another. Thus, an evaporator gets only from time to time refrigerant, but in total the required amount of refrigerant. The control device thus controls the duty cycle of the individual valve, ie the ratio of the opening time of the individual valve to a predetermined period length. Within a period length then all valves may have been turned on once. The period length is chosen so that keep the pressure fluctuations in the evaporators within reasonable limits or even virtually unnoticeable. The valves can all be adjusted with a basic opening, so that all evaporators are permanently supplied with refrigerant. The controller then clocks the individual valves in addition, so that each evaporator receives an additional amount of refrigerant depending on demand to cover the refrigerant demand.
Vorzugsweise steuert die Steuereinrichtung nur ein einziges Ventil so an, daß es eine Durchlaßöffnung aufweist, die größer ist als eine Durchlaßöff- nung der anderen Ventile. Wenn normalerweise alle Ventile geschlossen sind, dann öffnet die Steuereinrichtung immer nur ein Ventil gleichzeitig. Dies erleichtert die Steuerung und die Bemessung des Kältemittels, das einem einzelnen Verdampfer zugeführt wird. Wenn die einzelnen Ventile 5 bereits einen Grunddurchsatz von Kältemittel erlauben, dann wird jeweils immer nur ein einziges Ventil weiter geöffnet, um den mit diesem Ventil verbundenen Verdampfer individuell mit der benötigten Gesamtkältemittelmenge zu versorgen.Preferably, the control means controls only a single valve so that it has a passage opening which is larger than a Durchlaßöff- tion of the other valves. Normally, when all the valves are closed, the controller will always open only one valve at a time. This facilitates the control and sizing of the refrigerant supplied to a single evaporator. If the individual valves 5 already allow a basic flow rate of refrigerant, only one single valve is ever opened further in order to supply the evaporator connected to this valve individually with the required total amount of refrigerant.
o Bevorzugterweise weist die Steuereinrichtung einen Rotor auf, der dieo Preferably, the control device has a rotor, which the
Öffnung von Ventilen bewirkt. Durch die Drehung des Rotors werden also die einzelnen Ventile geöffnet. Dies ist eine sehr einfache Möglichkeit, um die einzelnen Ventile einzeln nacheinander anzusteuern.Opening of valves causes. As a result of the rotation of the rotor, the individual valves are opened. This is a very easy way to control the individual valves one after the other.
5 Vorzugsweise ist der Rotor durch einen Motor mit veränderbarer Geschwindigkeit angetrieben. Durch eine Änderung der Geschwindigkeit läßt sich dann einstellen, wie lange die einzelnen Ventile geöffnet sind. Dadurch, daß die Geschwindigkeit veränderbar ist, kann man ein Ventil länger geöffnet halten als ein anderes Ventil. Dies erlaubt eine individuelle 0 Steuerung.Preferably, the rotor is driven by a variable speed motor. By changing the speed can then adjust how long the individual valves are open. The fact that the speed is variable, you can keep one valve open longer than another valve. This allows an individual 0 control.
Vorzugsweise ist der Motor reversierbar. Durch die Reversierbarkeit des Motors ist es möglich, ein einzelnes Ventil auch für einen längeren Zeitraum vollständig geschlossen zu halten. Bevor der Rotor dieses Ventil in 5 Öffnungsstellung bringt, wird der Motor in seine Drehrichtung umgedreht, so daß dieses Ventil geschlossen bleibt. Es ist auch möglich, mehrere Ventile geschlossen zu lassen, wenn diese Ventile in Drehrichtung des Rotors nebeneinander angeordnet sind.Preferably, the engine is reversible. Due to the reversibility of the motor, it is possible to keep a single valve completely closed for a longer period of time. Before the rotor brings this valve into the open position, the motor is reversed in its direction of rotation, so that this valve remains closed. It is also possible to leave several valves closed when these valves are arranged side by side in the direction of rotation of the rotor.
o Vorzugsweise ist der Rotor mit einer Nockenscheibe verbunden und dieo Preferably, the rotor is connected to a cam and the
Ventile weisen Ventilstößel auf, die durch die Nockenscheibe betätigbar sind. Dies ist eine mechanisch besonders einfache Lösung, um die Ventile zu öffnen oder zu schließen. Die Stößel werden zweckmäßigerweise in Schließrichtung der Ventile durch eine Schließfeder beaufschlagt. Wenn dann der Nocken in Kontakt mit dem Stößel kommt, dann wird das Ventil gegen die Kraft der Schließfeder geöffnet. Das Ventil schließt sich wieder, sobald der Nocken weit genug weitergedreht worden ist.Valves have valve tappets actuatable by the cam plate are. This is a mechanically particularly simple solution to open or close the valves. The plungers are expediently acted upon in the closing direction of the valves by a closing spring. Then, when the cam comes into contact with the plunger, then the valve is opened against the force of the closing spring. The valve closes again as soon as the cam has been rotated further enough.
Vorzugsweise weist die Nockenscheibe einen einzelnen Nocken auf. Damit wird sichergestellt, daß immer nur ein Ventil gleichzeitig geöffnet oder stärker geöffnet werden kann als die anderen Ventile. Dementsprechend ist es auch möglich, die Öffnungszeit jedes Ventils (bzw. die Zeit der verstärkten Öffnung) einzeln einzustellen, so daß diese Öffnungszeit weitgehend unbeeinflußt von den Öffnungszeiten der anderen Ventile sein kann.Preferably, the cam disc has a single cam. This ensures that only one valve can be opened at the same time or opened more than the other valves. Accordingly, it is also possible to individually adjust the opening time of each valve (or the time of the boosted opening), so that this opening time can be largely unaffected by the opening times of the other valves.
Hierbei ist bevorzugt, daß die Ventilstößel in Rotationsrichtung einen Abstand zueinander aufweisen, der mindestens so groß wie die Erstreckung des Nockens in Rotationsrichtung ist. Damit ist es möglich, den Nocken in einer Position zur Ruhe kommen zu lassen, in der kein Ventilstößel beaufschlagt ist. In diesem Fall können alle Ventile geschlossen bleiben.It is preferred that the valve tappets have in the direction of rotation a distance from each other which is at least as large as the extent of the cam in the direction of rotation. This makes it possible to let the cam come to rest in a position in which no valve tappet is acted upon. In this case, all valves can remain closed.
Vorzugsweise sind die Ventilstößel parallel zur Rotorachse angeordnet. Der Begriff "parallel" ist hier nicht als mathematisch exakt zu verstehen. Es kommt lediglich darauf an, daß die Ventilstößel eine Komponente aufweisen, die parallel zur Rotorachse gerichtet ist. In diesem Fall wirkt der Nocken, der an der Nockenscheibe angeordnet ist, parallel zur Rotorachse.Preferably, the valve tappets are arranged parallel to the rotor axis. The term "parallel" is not to be understood here as mathematically exact. It is only important that the valve tappets have a component which is directed parallel to the rotor axis. In this case, the cam, which is arranged on the cam disk, acts parallel to the rotor axis.
Vorzugsweise weist die Nockenscheibe einen Verlagerungsantrieb auf, der in eine Richtung parallel zur Rotorachse wirkt. Wenn die Ventilstößel parallel zur Rotorachse angeordnet sind, ist es durch die Verlagerung der Nockenscheibe auf einfache Weise möglich, alle Ventile gleichzeitig zu öffnen, um einen gewissen Grunddurchsatz von Kältemittel zu ermöglichen. Der Nocken öffnet dann jeweils ein einzelnes Ventil stärker als die anderen Ventile, um eine individuelle Versorgung eines einzelnen Verdampfers mit Kältemittel sicherzustellen.Preferably, the cam disc has a displacement drive which acts in a direction parallel to the rotor axis. If the valve tappets are arranged parallel to the rotor axis, it is possible by the displacement of the cam disc in a simple manner, all valves simultaneously open to allow a certain basic flow rate of refrigerant. The cam then each opens a single valve more than the other valves to ensure individual supply of a single evaporator with refrigerant.
55
In einer alternativen Ausgestaltung kann vorgesehen sein, daß der Rotor einen axial verlaufenden Eingangskanal, der mit einem Eingang des Verteilers in Verbindung steht, und einen radial verlaufenden Ausgangskanal aufweist, dessen Mündung bei einer Rotation mit Ausgangsöffnungen, die 0 mit den Verdampfern in Verbindung stehen, in Überdeckung bringbar ist. Man verwendet also den Rotor gleichzeitig als Element des Ventils. Wenn die Mündung des Ausgangskanals mit einer Ausgangsöffnung in Überdeckung steht, dann ist ein Strömungsweg vom Eingang des Verteilers zu einem einem bestimmten Verdampfer zugeordneten Ausgang freigege- 5 ben. Solange die Überdeckung besteht, kann Kältemittel vom Eingang des Verteilers zu dem betreffenden Verdampfer strömen. Wenn der Rotor weitergedreht wird, dann wird die Kältemittelzufuhr zu dem soeben beschriebenen Verdampfer unterbrochen und der in Rotationsrichtung nächste Ausgang mit Kältemittel versorgt. Je nachdem, wie lange die Überdeckung o zwischen der Mündung des Ausgangskanals und der Ausgangsöffnung anhält, kann eine größere oder kleinere Menge an Kältemittel in den Verdampfer strömen. Diese Überdeckungszeit kann durch die Einstellung der Geschwindigkeit, mit der sich der Rotor dreht, verändert werden.In an alternative embodiment, it may be provided that the rotor has an axially extending inlet channel communicating with an inlet of the distributor and a radially extending outlet channel, the mouth of which, in rotation with outlet openings communicating with the evaporators, can be brought in overlap. So you use the rotor at the same time as an element of the valve. If the mouth of the outlet channel is in register with an outlet opening, then a flow path from the inlet of the distributor to an outlet associated with a particular evaporator is released. As long as the overlap exists, refrigerant may flow from the manifold inlet to the respective evaporator. When the rotor is further rotated, the refrigerant supply to the evaporator just described is interrupted and the next output in the direction of rotation is supplied with refrigerant. Depending on how long the overlap o stops between the mouth of the exit port and the exit port, a greater or lesser amount of refrigerant may flow into the vaporizer. This overlap time can be changed by adjusting the speed at which the rotor turns.
5 Bevorzugterweise weisen die Ausgangsöffnungen in Rotationsrichtung einen Abstand zueinander auf, der mindestens so groß ist wie die Erstreckung der Mündung des Ausgangskanals in Rotationsrichtung. In diesem Fall ist es möglich, den Rotor in einer Position anzuhalten, in der die Mündung des Ausgangskanals nicht in Überdeckung mit einer Ausgangs- o Öffnung steht, so daß die Kältemittelversorgung zu allen Verdampfern un- terbrochen ist. Man kann eine derartige Stellung dann verwenden, um die Verdampfer beispielsweise abzutauen.5 Preferably, the outlet openings in the rotational direction at a distance from each other, which is at least as large as the extension of the mouth of the outlet channel in the rotational direction. In this case, it is possible to stop the rotor in a position in which the mouth of the outlet channel is not in register with an outlet o, so that the refrigerant supply to all the evaporators is broken. You can then use such a position to defrost the evaporator, for example.
Auch ist von Vorteil, wenn am Ausgang einer jeden Verdampferstrecke ein Sensor angeordnet ist, der mit der Steuereinrichtung verbunden ist. Bei diesem Sensor kann es sich beispielsweise um einen Temperatursensor handeln. Jeder Verdampfer kann dann in Abhängigkeit von der Temperatur an seinem Ausgang mit Kältemittel versorgt werden.It is also advantageous if at the output of each evaporator section, a sensor is arranged, which is connected to the control device. This sensor may be, for example, a temperature sensor. Each evaporator can then be supplied with refrigerant depending on the temperature at its outlet.
In einer alternativen Ausgestaltung kann vorgesehen sein, daß die Verdampferstrecken mit einem Kondensator in Reihe angeordnet sind und ein Sensor vor dem Kondensator oder dem Verdichter angeordnet ist. In diesem Fall benötigt man nicht mehrere Sensoren, die beispielsweise die Temperatur ermitteln, sondern nur einen einzigen Sensor. Ein einziger Sensor reicht dann aus, wenn man im übrigen das Betriebsverhalten der Kühlanlage kennt. Mit der Kenntnis des Betriebsverhaltens kann man dann entscheiden, welchem Verdampfer oder welcher Verdampferstrecke wie viel Kühlmittel zugeführt werden soll.In an alternative embodiment it can be provided that the evaporator sections are arranged with a capacitor in series and a sensor is arranged in front of the condenser or the compressor. In this case one does not need several sensors, which determine for example the temperature, but only a single sensor. A single sensor is sufficient if one knows otherwise the operating behavior of the cooling system. With the knowledge of the operating behavior can then decide which evaporator or evaporator section how much coolant to be supplied.
Die Erfindung wird im folgenden anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Hierin zeigen:The invention will be described below with reference to preferred embodiments in conjunction with the drawings. Herein show:
Fig. 1 eine schematische Darstellung einer Kühlanlage mit mehreren Verdampfern,1 is a schematic representation of a cooling system with multiple evaporators,
Fig. 2 eine Draufsicht auf ein erstes Ausführungsbeispiel eines Verteilers,2 is a plan view of a first embodiment of a distributor,
Fig. 3 einen Schnitt Ill-Ill nach Fig. 2, Fig. 4 eine Schnittansicht IV-IV nach Fig. 5 durch ein zweites Ausführungsbeispiel eines Verteilers und3 shows a section III-III of FIG. 2, Fig. 4 is a sectional view IV-IV of FIG. 5 by a second embodiment of a distributor and
Fig. 5 eine Schnittansicht V-V nach Fig. 4.5 is a sectional view V-V of FIG .. 4
Fig. 1 zeigt in schematischer Darstellung eine Kühlanlage 1 , bei der ein Verdichter 2, ein Kondensator 3, ein Sammler 4, ein Verteiler 5 und eine Verdampferanordnung 6 mit mehreren parallel angeordneten Verdampfern 7a-7d in einen Kreislauf zusammengeschaltet sind. Die Verdampferanord- nung 6 kann auch einen einzelnen Verdampfer aufweisen, der mehrere Verdampferstrecken aufweist, die einzeln oder gruppenweise angesteuert werden sollen.Fig. 1 shows a schematic representation of a cooling system 1, in which a compressor 2, a condenser 3, a collector 4, a manifold 5 and an evaporator assembly 6 with a plurality of evaporators arranged in parallel 7a-7d are connected together in a circuit. The evaporator arrangement 6 can also have a single evaporator, which has a plurality of evaporator sections, which are to be controlled individually or in groups.
In an sich bekannter Weise verdampft flüssiges Kältemittel in den Ver- dampfern 7a-7d, wird durch den Verdichter 2 komprimiert, im Kondensator 3 verflüssigt und im Sammler 4 gesammelt. Der Verteiler 5 ist dafür vorgesehen, das flüssige Kältemittel auf die einzelnen Verdampfer 7a-7d zu verteilen.In a manner known per se, liquid refrigerant evaporates in the evaporators 7a-7d, is compressed by the compressor 2, liquefied in the condenser 3 and collected in the collector 4. The distributor 5 is intended to distribute the liquid refrigerant to the individual evaporators 7a-7d.
Am Ausgang eines jeden Verdampfers 7a-7d ist ein Temperatursensor 8a-At the outlet of each evaporator 7a-7d is a temperature sensor 8a
8d angeordnet. Der Temperatursensor 8a-8d ermittelt die Temperatur des den Verdampfer 7a-7d verlassenden Kältemittels. Diese Temperatur- Information wird an eine Steuereinheit 9 weitergeleitet, die in Abhängigkeit von den Temperatursignalen der Temperatursensoren 8a-8d den Verteiler 5 steuert.8d arranged. The temperature sensor 8a-8d detects the temperature of the refrigerant leaving the evaporator 7a-7d. This temperature information is forwarded to a control unit 9, which controls the distributor 5 as a function of the temperature signals of the temperature sensors 8a-8d.
Die Fig. 2 und 3 zeigen ein erstes Ausführungsbeispiel eines Verteilers 5. Der Verteiler 5 nach Fig. 2 weist hier sechs Ausgänge 10a-IOf (für sechs Verdampfer) und einen Eingang 11 auf. Jeder Ausgang 10a-1 Of ist vom Eingang 11 durch ein Ventil 12 getrennt. Da die Ventile alle gleich aufge- baut sind, erfolgt die nachfolgende Beschreibung anhand von Ventilen 12, die den Ausgängen 10b, 10e zugeordnet sind.2 and 3 show a first embodiment of a distributor 5. The distributor 5 according to FIG. 2 here has six outputs 10a-10f (for six evaporators) and an input 11. Each output 10a-1 Of is separated from the input 11 by a valve 12. Since the valves are all the same are constructed, the following description is based on valves 12, which are associated with the outputs 10b, 10e.
Jedes Ventil 12 weist einen Ventilsitz 13 auf, der in einem Gehäuseblock 14 angeordnet ist. Ferner weist jedes Ventil 12 ein Ventilelement 15 auf, das mit einem Ventilstößel 16 verbunden ist, der auf der dem Ventilsitz 13 gegenüberliegenden Seite aus dem Gehäuseblock 14 herausragt. Sowohl der Gehäuseblock 14 als auch das Ventilelement 15 stützen sich über Federn 17, 18 an einem Deckel 19 ab, durch den der Eingang 11 geführt ist und der ein Ventilgehäuse 20 verschließt. Die Feder 18 ist als Schließfeder ausgebildet, die das Ventilelement 15 gegen den Ventilsitz 13 beaufschlagt.Each valve 12 has a valve seat 13 which is arranged in a housing block 14. Furthermore, each valve 12 has a valve element 15 which is connected to a valve tappet 16, which protrudes from the housing block 14 on the side opposite the valve seat 13. Both the housing block 14 and the valve element 15 are supported by springs 17, 18 on a cover 19, through which the input 11 is guided and which closes a valve housing 20. The spring 18 is designed as a closing spring which acts on the valve element 15 against the valve seat 13.
Im Ventilgehäuse 20 ist eine Nockenscheibe 21 drehbar gelagert. Die Nockenscheibe 21 weist einen einzelnen Nocken 22 auf, der bei einer Rotation der Nockenscheibe 21 um eine Rotationsachse 23 jeweils einen Ventilstößel 16 beaufschlagt, wie durch das linke Ventil (in Fig. 3) zu erkennen ist. Wenn der Nocken 22 auf den Ventilstößel 16 wirkt, dann hebt das Ventilelement 15 vom Ventilsitz 13 ab und es wird ein Durchlaß vom Eingang 11 zum Ausgang 10e freigegeben. Sobald der Nocken 22 denIn the valve housing 20, a cam plate 21 is rotatably mounted. The cam disc 21 has a single cam 22, which acts on a rotation of the cam disc 21 about a rotation axis 23 each have a valve stem 16, as can be seen by the left valve (in Fig. 3). When the cam 22 acts on the valve stem 16, the valve element 15 lifts off the valve seat 13 and a passage from the inlet 11 to the outlet 10e is released. Once the cam 22 the
Ventilstößel 16 verläßt, wird das Ventilelement 15 unter der Wirkung der Feder 18 wieder zur Anlage an den Ventilsitz 13 gebracht und das entsprechende Ventil 12 schließt, wie dies anhand des dem Ausgang 10b zugeordneten Ventils 12 zu erkennen ist.Valve stem 16 leaves, the valve element 15 is brought under the action of the spring 18 again to rest against the valve seat 13 and the corresponding valve 12 closes, as can be seen from the output 10 b associated valve 12.
Die Nockenscheibe 21 wird gedreht durch einen Motor 24, der hier nur schematisch dargestellt ist. Der Motor 24 wird durch die Steuereinheit 9 angesteuert. Der Motor 24 ist dabei mit einer gesteuerten Drehzahl betreibbar. Die maximale Drehzahl liegt beispielsweise in einer Größen- Ordnung von 100 U/min. Während einer Umdrehung kann, wie erwähnt, die Drehzahl des Motors 24 verändert werden. Der Motor 24 kann auch kurzzeitig angehalten werden. Auch ist die Drehrichtung des Motors veränderbar.The cam plate 21 is rotated by a motor 24, which is shown here only schematically. The motor 24 is driven by the control unit 9. The motor 24 is operable at a controlled speed. The maximum speed is for example in a size order of 100 U / min. During one revolution, as mentioned, the speed of the motor 24 can be changed. The engine 24 can also be stopped for a short time. Also, the direction of rotation of the motor is changeable.
Damit läßt sich folgender Betrieb realisieren:Thus, the following operation can be realized:
In Abhängigkeit von den Signalen der Temperatursensoren 8a-8d werden die einzelnen Ventile 12 bei einem Umlauf der Nockenscheibe 21 nun jeweils so lange geöffnet, daß eine ausreichende Menge an Kältemittel durch die jeweiligen Ausgänge 10a-IOf strömen kann, so daß die Ver- dampfer 7a-7d genügend Kältemittel erhalten, nicht jedoch zu viel Kältemittel. Wenn ein Verdampfer weniger Kältemittel benötigt, dann wird die Nockenscheibe 21 dann, wenn der Nocken 22 den entsprechenden Stößel 16 des Ventils 12 beaufschlagt, schneller gedreht, so daß das Ventil 12 nur für eine kürzere Zeit geöffnet bleibt. Würde ein Verdampfer hingegen eine größere Kältemittelmenge benötigen, würde sich die Nockenscheibe 21 dann, wenn sich der Nocken 22 in dem Bereich des dem entsprechenden Ausgang zugeordneten Ventils befindet, langsamer drehen.Depending on the signals of the temperature sensors 8a-8d, the individual valves 12 are now each opened so long during one revolution of the cam disc 21 that a sufficient amount of refrigerant can flow through the respective exits 10a-10f, so that the evaporators 7a -7d get enough refrigerant, but not too much refrigerant. If an evaporator requires less refrigerant, then when the cam 22 engages the corresponding plunger 16 of the valve 12, the cam plate 21 will be rotated faster, leaving the valve 12 open only for a shorter time. On the other hand, if an evaporator required a larger amount of refrigerant, the cam disc 21 would rotate more slowly when the cam 22 is in the region of the valve associated with the corresponding outlet.
Da jedem Verdampfer in einer Periode von etwa einer Sekunde minde- stens einmal Kältemittel zugeführt wird, läßt sich erreichen, daß der Druck in dem entsprechenden Verdampfer nur unwesentlich schwankt, so daß eine negative Auswirkung auf die Kühlanlage 1 nicht zu befürchten ist.Since at least one second refrigerant is supplied to each evaporator in a period of about one second, it can be achieved that the pressure in the corresponding evaporator varies only insignificantly, so that a negative effect on the cooling system 1 is not to be feared.
Die Nockenscheibe 21 ist an einem Rotor 25 des Motors 24 gelagert. Der Rotor 25 kann nun durch einen Axialantrieb 26 noch in eine Richtung parallel zur Rotationsachse 23 verlagert werden. Wenn er beispielsweise nach unten verlagert wird (bezogen auf die Darstellung der Fig. 3), dann werden alle Ventile 12 etwas geöffnet, so daß permanent Kältemittel durch alle Ausgänge 10a-1 Of strömen kann. Damit läßt sich eine gewisse Grundversorgung aller Verdampfer sicherstellen. Die genaue Einstellung der Kältemittelmenge, die dann dem einzelnen Verdampfer zugeführt wird, erfolgt nach wie vor durch den Nocken 22 der Nockenscheibe 21.The cam plate 21 is mounted on a rotor 25 of the motor 24. The rotor 25 can now be displaced by an axial drive 26 in a direction parallel to the axis of rotation 23. For example, if it is displaced downwardly (based on the illustration of FIG. 3), then all the valves 12 are slightly opened, so that refrigerant can flow permanently through all the outlets 10a-1 Of. This ensures a certain basic supply of all evaporators. The exact setting The amount of refrigerant which is then supplied to the individual evaporator, as before, by the cam 22 of the cam disc 21st
Die einzelnen Ventile 12 haben in Umfangs- oder Rotationsrichtung der Nockenscheibe 21 einen Abstand, der mindestens genauso groß ist, wie die Erstreckung des Nockens 22 in Umfangsrichtung. Dementsprechend ist es möglich, die Nockenscheibe 21 in einer Position anzuhalten, in der kein Ventil geöffnet worden ist. Eine derartige Position wird beispielsweise dann eingenommen, wenn die Kältemittelzufuhr zu keinem Verdampfer erforderlich ist.The individual valves 12 have in the circumferential or rotational direction of the cam disc 21 a distance which is at least as large as the extent of the cam 22 in the circumferential direction. Accordingly, it is possible to stop the cam plate 21 in a position in which no valve has been opened. Such a position is taken, for example, when the refrigerant supply to any evaporator is not required.
Mit dem Verteiler 5 ist es auch möglich, einzelne Verdampfer abzutauen. In diesem Fall würde man die Drehrichtung der Nockenscheibe 21 umdrehen, bevor der Nocken 22 das diesem Verdampfer zugeordnete Ventil 12 erreicht. Dieses Ventil 12 wird also nicht geöffnet. Man kann dieses Ventil 12 solange geschlossen halten, bis der Verdampfer abgetaut ist. Die übrigen Ventile 12 werden durch den Nocken 22 in der oben beschriebenen Weise jeweils einzeln aufgesteuert.With the distributor 5 it is also possible to defrost individual evaporators. In this case, one would reverse the direction of rotation of the cam plate 21 before the cam 22 reaches the valve 12 associated with this evaporator. This valve 12 is therefore not opened. You can keep this valve 12 closed until the evaporator is defrosted. The remaining valves 12 are individually controlled by the cam 22 in the manner described above.
Die Fig. 4 und 5 zeigen eine abgewandelte Ausgestaltung eines VerteilersFIGS. 4 and 5 show a modified embodiment of a distributor
5, bei der gleiche und funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen sind.5, are provided with the same and functionally identical elements with the same reference numerals.
Der Verteiler 5 der Fig. 4 und 5 weist ebenfalls einen Rotor 25 auf. Der Rotor 25 weist einen Eingangskanal 27 auf, der ständig mit dem Eingang 11 im Ventilgehäuse 20 in Überdeckung steht, d.h. unabhängig von der Drehstellung des Rotors 25.The distributor 5 of FIGS. 4 and 5 also has a rotor 25. The rotor 25 has an inlet channel 27 constantly in register with the inlet 11 in the valve housing 20, i. regardless of the rotational position of the rotor 25th
Der Rotor 25 weist auch einen Ausgangskanal 28 auf, der im wesentlichen radial gerichtet ist. Der Ausgangskanal 28 weist eine Mündung 29 auf, die bei einer Drehung des Rotors 25 mit Ausgangsöffnungen 30a-30f in Über- deckung kommen. Die Ausgangsöffnungen 30a-30f wiederum sind mit den Ausgängen 10a-IOf verbunden, über die eine Verbindung mit Verdampfern der Verdampferanordnung 6 hergestellt werden kann.The rotor 25 also has an output channel 28 which is directed substantially radially. The outlet channel 28 has an orifice 29, which, upon rotation of the rotor 25, is provided with outlet openings 30a-30f in overflow. come cover. The outlet ports 30a-30f, in turn, are connected to the ports 10a-10f through which communication with evaporators of the evaporator assembly 6 can be made.
Auch hier ist der Abstand zwischen den Ausgangsöffnungen 30a-30f mindestens genauso groß, wie die Erstreckung der Mündung 29 des Ausgangskanals 28 in Umfangsrichtung. In der in Fig. 4 dargestellten Position des Rotors 25 ist daher der Ausgangskanal 28 geschlossen, so daß kein Kältemittel verteilt werden kann.Again, the distance between the outlet openings 30a-30f is at least as large as the extent of the mouth 29 of the outlet channel 28 in the circumferential direction. In the position of the rotor 25 shown in Fig. 4, therefore, the output port 28 is closed, so that no refrigerant can be distributed.
Im übrigen ist die Arbeitsweise des Verteilers 5 ähnlich wie bei der in den Fig. 2 und 3 dargestellten Ausführungsform des Verteilers 5.Incidentally, the operation of the distributor 5 is similar to the embodiment of the distributor 5 shown in FIGS. 2 and 3.
Der Rotor 25 wird, gesteuert durch die Steuereinheit 9, mit unter Umstän- den wechselnden Rotationsgeschwindigkeiten gesteuert, so daß immer für eine gewisse Zeit eine Verbindung zwischen dem Eingang 11 und jeweils einer der Ausgangsöffnungen 30 vorhanden ist. In dieser Zeit kann Kältemittel vom Eingang 11 in die entsprechende Ausgangsöffnung 30a-30f strömen und von dort zum angeschlossenen Verdampfer, der dement- sprechend mit einer vorbestimmten Menge an Kältemittel beaufschlagt wird. Wenn sich der Rotor 25 langsam dreht, während die Mündung 29 die entsprechende Ausgangsöffnung 30a-30f überstreicht, dann ist die Verbindung für eine relativ lange Zeit geöffnet. Wenn sich der Rotor 25 hingegen in dieser Situation schneller dreht, dann steht eine entsprechend kür- zere Öffnungszeit zur Verfügung. Bei einer längeren Öffnungszeit kann mehr Kältemittel in den entsprechenden Verdampfer strömen als bei einer kürzeren Öffnungszeit.The rotor 25 is controlled under the control of the control unit 9, under circumstances changing rotational speeds, so that there is always a connection between the input 11 and one of the output ports 30 for a certain time. During this time, refrigerant can flow from the inlet 11 into the corresponding outlet opening 30a-30f and from there to the connected evaporator, which accordingly receives a predetermined amount of refrigerant. When the rotor 25 rotates slowly while the mouth 29 passes over the corresponding exit port 30a-30f, the connection is opened for a relatively long time. If, however, the rotor 25 rotates faster in this situation, then a correspondingly shorter opening time is available. With a longer opening time, more refrigerant can flow into the corresponding evaporator than with a shorter opening time.
Auch hier kann man durch eine Drehrichtungsumkehr des Rotors 25 je- weils eine vorbestimmte Ausgangsöffnung 30a-30f von der Verbindung mit dem Eingang 11 ausnehmen, so daß ein an diese Ausgangsöffnung 30a- 3Of angeschlossener Verdampfer für eine gewisse Zeit überhaupt kein Kältemittel erhält. In dieser Zeit kann dieser Verdampfer dann abtauen.By reversing the direction of rotation of the rotor 25, a predetermined output opening 30a-30f can also be excluded from the connection with the input 11, so that a signal to this output opening 30a is provided. 3Of connected evaporator receives no refrigerant at all for a certain time. During this time, this evaporator can defrost.
Dadurch, daß nun der Verteiler 5 nicht mehr nur die Funktion einer Vertei- lung übernimmt, sondern für jeden Verdampfer ein eigenes Ventil 12 beinhaltet, kann man auf ein Expansionsventii verzichten.The fact that now the distributor 5 no longer only takes over the function of a distribution, but for each evaporator includes a separate valve 12, you can do without an expansion valve.
Die Leitungen, die zu den einzelnen Verdampfern führen, müssen nicht mehr die gleiche Länge haben, weil die Beaufschlagung der einzelnen Verdampfer mit Kältemittel durch die Ventile 12 gesteuert wird.The lines leading to the individual evaporators no longer need to be the same length, because the admission of the individual evaporators with refrigerant is controlled by the valves 12.
In nicht näher dargestellter Weise kann man zusätzlich oder anstelle der Sensoren 8a-8d einen einzelnen Sensor vor dem Kondensator 3 oder auch vor dem Verdichter 2 anordnen. Dieser Sensor ist dann zwar nicht mehr in der Lage, die gewünschte Information für jeden Verdampfer oder jede Verdampferstrecke einzeln auszuwerten. Wenn man aber im übrigen das Betriebsverhalten der Kühlanlage kennt, beispielsweise die unterschiedlichen Strömungswiderstände, dann kann man auch bei der Verwendung nur eines einzelnen Sensors die notwendigen Informationen ge- winnen, um entscheiden zu können, welche Verdampferstrecke 7a-7d wie viel Kältemittel erhalten soll. In a manner not shown can be arranged in addition to or instead of the sensors 8a-8d a single sensor in front of the condenser 3 or before the compressor 2. Although this sensor is then no longer able to evaluate the desired information for each evaporator or each evaporator section individually. However, if one otherwise knows the operating behavior of the cooling system, for example the different flow resistances, then one can obtain the necessary information even when using only one individual sensor in order to decide which evaporator section 7a-7d should receive how much refrigerant.

Claims

Patentansprüche claims
5 1. Kühlanlage (1) mit einem Kältemittelkreislauf, der mehrere Verdampferstrecken (7a-7d) und einen eine Verteilung von Kältemittel auf die Verdampferstrecken (7a-7d) bewirkenden Verteiler (5) aufweist, dadurch gekennzeichnet, daß der Verteiler (5) für jede Verdampferstrecke (7a-7d) ein ansteuerbares Ventil (12; 28, 30a-30f) 0 aufweist.5 having a refrigerant circuit (1) having a refrigerant circuit having a plurality of evaporator sections (7a-7d) and a distribution of refrigerant on the evaporator sections (7a-7d) causing distributor (5), characterized in that the distributor (5) for each evaporator section (7a-7d) has a controllable valve (12; 28, 30a-30f) 0.
2. Kühlanlage nach Anspruch 1 , dadurch gekennzeichnet, daß die Ventile (12; 28, 30a-30f) durch eine Steuereinrichtung (9, 24) ansteuerbar sind, die einzelne Ventile (12; 28, 30a-30f) unterschied- 5 lieh ansteuert.2. Cooling system according to claim 1, characterized in that the valves (12; 28, 30a-30f) by a control device (9, 24) are controllable, the individual valves (12; 28, 30a-30f) different- 5 lent drives ,
3. Kühlanlage nach Anspruch 2, dadurch gekennzeichnet, daß die Steuereinrichtung (9, 24) nur ein einziges Ventil (12; 28, 30a-30f) so ansteuert, daß es eine Durchlaßöffnung aufweist, die größer ist als o eine Durchlaßöffnung der anderen Ventile.3. Cooling system according to claim 2, characterized in that the control device (9, 24) only a single valve (12; 28, 30a-30f) controls so that it has a passage opening which is greater than o a passage opening of the other valves ,
4. Kühlanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Steuereinrichtung (9, 24) einen Rotor (25) aufweist, der die Öffnung von Ventilen (12; 28, 30a-30f) bewirkt. 54. Cooling system according to claim 2 or 3, characterized in that the control device (9, 24) has a rotor (25) which causes the opening of valves (12; 28, 30a-30f). 5
5. Kühlanlage nach Anspruch 4, dadurch gekennzeichnet, daß der Rotor (25) durch einen Motor (24) mit veränderbarer Geschwindigkeit angetrieben ist.5. Cooling system according to claim 4, characterized in that the rotor (25) by a motor (24) is driven at a variable speed.
0 6. Kühlanlage nach Anspruch 5, dadurch gekennzeichnet, daß der0 6. Cooling system according to claim 5, characterized in that the
Motor (24) reversierbar ist. Motor (24) is reversible.
7. Kühlanlage nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Rotor (25) mit einer Nockenscheibe (21 ) verbunden ist und die Ventile (12) Ventilstößel (16) aufweisen, die durch7. Cooling system according to one of claims 4 to 6, characterized in that the rotor (25) is connected to a cam disc (21) and the valves (12) valve tappets (16) which through
5 die Nockenscheibe (21 ) betätigbar sind.5, the cam disc (21) are actuated.
8. Kühlanlage nach Anspruch 7, dadurch gekennzeichnet, daß die Nockenscheibe (21 ) einen einzelnen Nocken (22) aufweist.8. Cooling system according to claim 7, characterized in that the cam disc (21) has a single cam (22).
0 9. Kühlanlage nach Anspruch 8, dadurch gekennzeichnet, daß die Ventilstößel (16) in Rotationsrichtung einen Abstand zueinander aufweisen, der mindestens so groß ist wie die Erstreckung des Nockens (22) in Rotationsrichtung.0 9. A cooling system according to claim 8, characterized in that the valve stem (16) in the rotational direction at a distance from each other, which is at least as large as the extension of the cam (22) in the rotational direction.
5 10. Kühlanlage nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Ventilstößel (16) parallel zur Rotorachse (23) angeordnet sind.5 10. Cooling system according to one of claims 7 to 9, characterized in that the valve tappet (16) are arranged parallel to the rotor axis (23).
11. Kühlanlage nach Anspruch 10, dadurch gekennzeichnet, daß die o Nockenscheibe (21 ) einen Verlagerungsantrieb (26) aufweist, der in eine Richtung parallel zur Rotorachse (23) wirkt.11. Cooling system according to claim 10, characterized in that the o cam disc (21) has a displacement drive (26) which acts in a direction parallel to the rotor axis (23).
12. Kühlanlage nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Rotor (25) einen axial verlaufenden Eingangska- 5 nal (27), der mit einem Eingang (1 1 ) des Verteilers (5) in Verbindung steht, und einen radial verlaufenden Ausgangskanal (28) aufweist, dessen Mündung (29) bei einer Rotation mit Ausgangsöffnungen (30a-30f), die mit den Verdampfern in Verbindung stehen, in Überdeckung bringbar ist. 0 12. Cooling system according to one of claims 4 to 6, characterized in that the rotor (25) has an axially extending input channel 5 (27) which communicates with an input (1 1) of the distributor (5), and a radially extending outlet channel (28), the mouth (29) in a rotation with outlet openings (30a-30f), which are in communication with the evaporators, can be brought into overlap. 0
13. Kühlanlage nach Anspruch 12, dadurch gekennzeichnet, daß die Ausgangsöffnungen (30a-30f) in Rotationsrichtung einen Abstand zueinander aufweisen, der mindestens so groß ist wie die Erstreckung der Mündung (29) des Ausgangskanals (28) in Rotations- richtung.13. A cooling system according to claim 12, characterized in that the outlet openings (30a-30f) in the rotational direction at a distance from each other which is at least as large as the extension of the mouth (29) of the outlet channel (28) in the rotational direction.
14. Kühlanlage nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß am Ausgang einer jeden Verdampferstrecke (7a-7d) ein Sensor (8a-8d) angeordnet ist, der mit der Steuereinrichtung (9, 24) verbunden ist.14. Cooling system according to one of claims 2 to 13, characterized in that at the output of each evaporator section (7a-7d), a sensor (8a-8d) is arranged, which is connected to the control device (9, 24).
15. Kühlanlage nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß die Verdampferstrecken (7a-7d) mit einem Kondensator (3) in Reihe angeordnet sind und ein Sensor vor dem Kon- densator (3) oder dem Verdichter (2) angeordnet ist. 15. Cooling system according to one of claims 2 to 13, characterized in that the evaporator sections (7a-7d) with a capacitor (3) are arranged in series and a sensor before the capacitor (3) or the compressor (2) is.
EP20070702485 2006-02-13 2007-02-09 Cooling system Active EP1987301B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610006731 DE102006006731A1 (en) 2006-02-13 2006-02-13 refrigeration Equipment
PCT/DK2007/000067 WO2007093175A1 (en) 2006-02-13 2007-02-09 Cooling system

Publications (2)

Publication Number Publication Date
EP1987301A1 true EP1987301A1 (en) 2008-11-05
EP1987301B1 EP1987301B1 (en) 2010-07-07

Family

ID=37989022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070702485 Active EP1987301B1 (en) 2006-02-13 2007-02-09 Cooling system

Country Status (8)

Country Link
US (2) US8191384B2 (en)
EP (1) EP1987301B1 (en)
JP (1) JP4896993B2 (en)
CN (1) CN101384869B (en)
AT (1) ATE473404T1 (en)
DE (2) DE102006006731A1 (en)
RU (1) RU2395759C2 (en)
WO (1) WO2007093175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746209B2 (en) 2014-03-14 2017-08-29 Hussman Corporation Modular low charge hydrocarbon refrigeration system and method of operation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006731A1 (en) * 2006-02-13 2007-08-16 Danfoss A/S refrigeration Equipment
DE102007028562B4 (en) * 2007-06-19 2009-03-19 Danfoss A/S refrigeration Equipment
DE102007028565A1 (en) * 2007-06-19 2008-12-24 Danfoss A/S refrigeration Equipment
DE102007041281A1 (en) 2007-08-31 2009-07-23 Airbus Deutschland Gmbh An aircraft cooling system evaporator arrangement for two independent coolant circuits
US20090277196A1 (en) * 2008-05-01 2009-11-12 Gambiana Dennis S Apparatus and method for modulating cooling
RU2477825C2 (en) * 2008-09-05 2013-03-20 Данфосс А/С Evaporative valve with force balancing
EP2331891B1 (en) * 2008-09-05 2015-10-21 Danfoss A/S A method for calibrating a superheat sensor
EP2356384A1 (en) * 2008-11-12 2011-08-17 Danfoss A/S An expansion valve comprising biasing means
JP2010271016A (en) * 2009-05-25 2010-12-02 Orion Mach Co Ltd Temperature and relative humidity control device
WO2011099067A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Refrigeration cycle device
US9243819B2 (en) * 2010-04-27 2016-01-26 Danfoss A/S Method for operating a vapour compression system
CN104534750B (en) * 2014-12-29 2016-08-31 天津商业大学 A kind of turbo-expander with uniform separatory function and refrigeration system
CN104457046B (en) * 2014-12-29 2017-02-22 天津商业大学 Rectification nozzle type equal-quantity liquid distributor and refrigerating system
CN104879973A (en) * 2015-04-29 2015-09-02 广东美的制冷设备有限公司 Air conditioning system and method for controlling air conditioner to defrost automatically and continuously without reversing
CN108954897B (en) * 2018-09-19 2024-05-21 珠海格力电器股份有限公司 Multi-unit, terminal distribution system, control method thereof and distributor
DE102021128183A1 (en) 2021-10-28 2023-05-04 Güntner Gmbh & Co. Kg Evaporator for a heat pump cycle and heat pump cycle with an evaporator

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE174075C (en) *
US3563055A (en) 1969-03-17 1971-02-16 Sporlan Valve Co Refrrigerant distribvtor
US3633379A (en) * 1969-12-29 1972-01-11 Evans Mfg Co Jackes Temperature-responsive capacity control device and system
US3977205A (en) * 1975-03-07 1976-08-31 Dravo Corporation Refrigerant mass flow control at low ambient temperatures
JPS5539419A (en) * 1978-09-14 1980-03-19 Oki Electric Ind Co Ltd Supergroup translating system
US4262493A (en) * 1979-08-02 1981-04-21 Westinghouse Electric Corp. Heat pump
US4305417A (en) 1979-09-13 1981-12-15 Carrier Corporation Rotationally indexing valve
DE3212979A1 (en) * 1982-04-07 1983-10-13 Brown, Boveri & Cie Ag, 6800 Mannheim AIR CONDITIONER
DE3601817A1 (en) * 1986-01-22 1987-07-23 Egelhof Fa Otto CONTROL DEVICE FOR THE REFRIGERANT FLOW FOR EVAPORATING REFRIGERATION SYSTEMS OR HEAT PUMPS AND EXPANSION VALVES ARRANGED IN THE REFRIGERANT FLOW
JPH02126052A (en) * 1988-11-02 1990-05-15 Nissin Kogyo Kk Method and device of controlling refrigerant feed amount for hair pin coil type vaporizer
JP2612513B2 (en) * 1991-01-19 1997-05-21 高砂熱学工業株式会社 Heat pump device with defrost function
AU6828294A (en) * 1993-05-06 1994-12-12 Cummins Engine Company Inc. Distributor for a high pressure fuel system
US5333640A (en) 1993-05-24 1994-08-02 Swift Steven M Flow divider to receive, split, and distribute a substance, consisting of multiple small units, being moved via flow gas under pressure into respective passageways
US6047557A (en) 1995-06-07 2000-04-11 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
DE19547744A1 (en) * 1995-12-20 1997-06-26 Bosch Siemens Hausgeraete Refrigerator
US5832744A (en) * 1996-09-16 1998-11-10 Sporlan Valve Company Distributor for refrigeration system
US6370908B1 (en) * 1996-11-05 2002-04-16 Tes Technology, Inc. Dual evaporator refrigeration unit and thermal energy storage unit therefore
CN2397325Y (en) * 1999-09-21 2000-09-20 洪陵成 Fluid changing-over valve
JP2003004340A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Refrigerant distributor
US6688376B2 (en) 2001-10-23 2004-02-10 Robert Peter Koenig Two port coil capacity modulator
KR100447204B1 (en) * 2002-08-22 2004-09-04 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
DE102004028865B4 (en) 2003-06-20 2007-06-06 Danfoss A/S refrigeration plant
US6804976B1 (en) 2003-12-12 2004-10-19 John F. Dain High reliability multi-tube thermal exchange structure
US6898945B1 (en) * 2003-12-18 2005-05-31 Heatcraft Refrigeration Products, Llc Modular adjustable nozzle and distributor assembly for a refrigeration system
KR100546616B1 (en) * 2004-01-19 2006-01-26 엘지전자 주식회사 controling method in the multi airconditioner
JP4268931B2 (en) * 2004-12-30 2009-05-27 中山エンジニヤリング株式会社 Refrigeration / freezing equipment and control method thereof
DE102006006731A1 (en) * 2006-02-13 2007-08-16 Danfoss A/S refrigeration Equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007093175A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746209B2 (en) 2014-03-14 2017-08-29 Hussman Corporation Modular low charge hydrocarbon refrigeration system and method of operation

Also Published As

Publication number Publication date
US8191384B2 (en) 2012-06-05
RU2395759C2 (en) 2010-07-27
JP4896993B2 (en) 2012-03-14
DE102006006731A1 (en) 2007-08-16
US20090217687A1 (en) 2009-09-03
JP2009526192A (en) 2009-07-16
US8656732B2 (en) 2014-02-25
CN101384869A (en) 2009-03-11
CN101384869B (en) 2014-10-01
US20120198876A1 (en) 2012-08-09
EP1987301B1 (en) 2010-07-07
DE502007004320D1 (en) 2010-08-19
WO2007093175A1 (en) 2007-08-23
RU2008136475A (en) 2010-03-20
ATE473404T1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP1987301B1 (en) Cooling system
EP2174080B1 (en) Cooling system
DE2913167C2 (en) Switching device for a refrigeration system
DE3833209C1 (en)
EP2174079B1 (en) Refrigerating installation
EP1421322A1 (en) Combined refrigerating appliance and evaporating system therefor
DE19519850C2 (en) Air distribution device for a refrigerator
DE102010035747B4 (en) valve unit
DE2801083C2 (en) Automatic control valve for the passage of a fluid under inlet pressure intended for consumers in fixed quantities
DE1227035B (en) Cooling system with a compressor in which a kickback or pumping effect can occur.
WO2009080415A1 (en) Method for controlling the power of a sorption refrigeration system and device therefor
WO2014146966A1 (en) Refrigeration device and air-distributor valve for said refrigeration device
DE102019201015A1 (en) Multiway valve, especially for a vehicle heating / cooling system
DE19607474C1 (en) Refrigeration system
DE1907516A1 (en) De-icing control device for compressed air cooling systems
WO2008154920A1 (en) Refrigerating installation
DE10358085C5 (en) Refrigerant valve assembly
DE3207427C2 (en) Method and device for controlling the water flow ratio of the boiler circuit to the heating circuit in hot water heating systems
DE102016000317A1 (en) Multi-way valve for a heating and cooling system of a vehicle
DE958845C (en) Compression refrigeration system
DE10055916A1 (en) Coolant circuit for refrigeration machine has feed line containing capillary and pilot valve, with at least some coolant flowing through pilot valve and capillary in succession
DE102007028564A1 (en) Cooling system, has valve including flat springs that are operated to open valve, and manifold including rotor that operates flat springs fastened radially outside housing, where rotor operates radially inside flat springs
DE3228345A1 (en) CONTROL DEVICE FOR LIQUID OR GASEOUS MEDIUM
DE1604125B2 (en) AIR TREATMENT SYSTEM
DE10323661A1 (en) Automatic liquid, especially water, distributor for use in showers, etc., has a supply with a rotating single hole disk that can connects to one or more outlet holes serially, or partially in parallel, by use of a control actuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007004320

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101107

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

26N No opposition filed

Effective date: 20110408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004320

Country of ref document: DE

Effective date: 20110408

BERE Be: lapsed

Owner name: DANFOSS A/S

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 473404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140206

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170131

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230110

Year of fee payment: 17