EP1985760B1 - Method and system for controlling compacting machines - Google Patents

Method and system for controlling compacting machines Download PDF

Info

Publication number
EP1985760B1
EP1985760B1 EP08002643A EP08002643A EP1985760B1 EP 1985760 B1 EP1985760 B1 EP 1985760B1 EP 08002643 A EP08002643 A EP 08002643A EP 08002643 A EP08002643 A EP 08002643A EP 1985760 B1 EP1985760 B1 EP 1985760B1
Authority
EP
European Patent Office
Prior art keywords
compaction
processing unit
data
machine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08002643A
Other languages
German (de)
French (fr)
Other versions
EP1985760A1 (en
Inventor
Robert Laux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP1985760A1 publication Critical patent/EP1985760A1/en
Application granted granted Critical
Publication of EP1985760B1 publication Critical patent/EP1985760B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the invention relates to a method for controlling a compaction machine for the purpose of automatically adjusting compaction parameters of this compaction machine, and more particularly relates to a corresponding system for controlling such a compaction machine.
  • Compacting machines or devices of the type in question are used to compact soil, underground, traffic routes, dams u. like m. used.
  • Such compaction machines are known in various embodiments from the prior art. This may, for example, but not exclusively, be self-propelled rollers or towed rollers.
  • the invention is distinguished from devices (such as rams or bears) for driving in ground anchors and the like. In the underground.
  • a vibration superimposition or oscillation excitation of the compaction tools is known, which is representative of the DE 33 08 476 A1 is referenced.
  • the compacting machine in question is then provided, for example with a vibrating plate or roller, as in the WO 02/25015 A1 described.
  • the object of the invention is to provide a method for controlling a compacting machine and a corresponding system, with which it can be operated with high efficiency with respect to the compression effect or the degree of compaction and with the same time adjacent structures are not more than permissible loaded by vibrations.
  • the method according to the invention provides that the oscillations originating from the compacting machine and propagating in the subsurface are detected at least one relevant measuring location by means of at least one sensor and the oscillation measured values detected by the sensor are transmitted to at least one data processing unit (9) with a permissible vibration limit value for the respective measuring location. If the permissible limit value for the relevant measuring location is exceeded, it is provided that at least one compaction parameter is automatically set, i. in a control loop, with the aim of setting the vibration measurement values measured at the measurement location to a value less than or equal to the vibration limit value, or influencing the compression parameter in such a way that the maximum detected vibration measurement value is less than or equal to the vibration measurement value. Limit is.
  • compression parameters are understood to be a physically detectable variable which has an influence on the compaction effect or the degree of compaction.
  • the compression parameter is preferably taken from a group which comprises the oscillation amplitude of the compaction tool, the effective direction of this amplitude, the different directional components of this oscillation, the frequency of the oscillation or else the traversing speed or the mass of the compaction machine.
  • a significant advantage of the method according to the invention is the fact that the measurement takes place directly at the relevant or interesting measuring location, that is usually directly on a building. Local and instantaneous soil properties thus have no influence on the vibration measurement values recorded on the structure. An inaccurate determination of the load based on Any back or extrapolations with unspecified soil parameters (such as vibration propagation speed and damping) are thus unnecessary.
  • the system according to the invention comprises at least one sensor for detecting an oscillation caused or emitted by the compaction machine and at least one data processing unit which compares the oscillation measurement values transmitted by the at least one sensor with an admissible oscillation limit value. If the limit value is exceeded, the data processing unit initiates the change of at least one compression parameter of the compacting machine.
  • the at least one sensor is arranged in the area of a building in the underground or on this structure itself, in order to detect directly the vibrations occurring at the measuring location.
  • each compacting machine is detected absolutely or at least relatively with respect to the position of the sensors. Furthermore, each individual compaction machine is assigned a data processing unit which analyzes the oscillation measurement data of all sensors and now calculates, based on the known position of the compaction machine, which sensors or which measurement locations are relevant for the respective compaction machine and which are not. In the event that a vibration measurement value exceeds the permissible limit value at a measuring location relevant to the compaction machine, the data processing unit initiates a corresponding change of at least one compaction parameter with the compaction machine in question.
  • all compaction machines are controlled by only one central data processing unit, each machine itself being equipped with a data processing unit, in particular when the position data received from a navigation system such as GPS is evaluated.
  • the embodiment of Figure 1 comprises a compacting machine 20, which is designed here as a rolling machine.
  • the use is preferred in earthworks and asphalt construction for compaction of the subsurface. Of course, it may also be a plate compactor or another type.
  • the compacting machine 20 is controlled by a data processing unit 9.
  • a data processing unit 9 In the field of construction site several sensors or structural sensors are arranged to detect vibrations or vibrations in buildings.
  • Sensor 10 is arranged at a residential building 1 and sensor 11 at a factory building 2. Both sensors 10 and 11 transmit the detected vibration measurement values to the data processing unit 9, which is simultaneously designed here as a data acquisition unit. The data transmission takes place via cable connection.
  • a sensor 12 at a factory building 3 and a sensor 13 in the region of a railway tunnel 4 is arranged.
  • the railway tunnel is also exemplary for comparable structures such as road tunnels, pipe shafts, sewers, etc.
  • a sensor at a bridge, a tower, a monument o. The like. M. be arranged.
  • the data transmission from the sensors 12 and 13 takes place via a radio link, for which purpose the data acquisition and processing unit 9 is equipped with a radio cell 14.
  • One-directional data transmission from the sensors 10 to 13 to the data acquisition and processing unit 9 is sufficient.
  • the number of sensors shown here is of course only exemplary. According to the invention, it is provided that the number of sensors is unlimited. Also, several sensors, eg. Different types of measurement, possible at a location.
  • the sensors 10 to 13 are arranged in the underground. Of course, a direct arrangement of the objects in question (buildings o. The like.) Possible.
  • the sensors may be acceleration sensors or seismographic sensors.
  • the vibration measured values transmitted by the sensors 10 to 13 to the data processing and detection unit 9 are compared there with the permissible limit values for the relevant object at the respective measuring location.
  • Permissible limit values are included, for example, in the DIN 4150 standard, or are previously determined by a structural engineer, for example. When comparing basically the following states are distinguished:
  • Measured value is equal to the limit value
  • Measured value is greater than the limit value.
  • the data acquisition and processing unit 9 calculates and calculates a new, modified value for at least one compaction parameter for the compaction machine 20 (for example oscillation amplitude, oscillation effective direction, effective direction components of the amplitude, frequency, traversing speed etc.) transmitted to this.
  • the transmission takes place by radio, for which purpose the data acquisition and processing unit 9 is equipped here with a second radio cell 15 and the compacting machine with a corresponding radio cell 16.
  • the use of two independent radio technologies at the data acquisition and processing unit 9 is not necessarily necessary.
  • the adaptation or modification of the at least one compression parameter takes place in a control loop with the aim of not burdening the object in question more than permissible by vibrations and at the same time the compacting machine with high efficiency with respect.
  • the vibration measurement values of the sensors 10 to 13 For documentation and as a measure of quality assurance, but also for warranty reasons, it is intended to record the vibration measurement values of the sensors 10 to 13. As a recording method, electronic as well as conventional writing systems (paper printout) are possible. It is also provided to document the compression parameters of the compacting machine 20 and their change by the controller. Thus, it can also be documented that the compacting machine has reacted to the recorded vibration measured values.
  • the data transmission between the compacting machine 20 and the data acquisition and processing unit 9 is bidirectional. The data can be stored, for example, in the data acquisition and processing unit 9.
  • the data acquisition and processing unit 9, which controls the compacting machine 20, is on-site, i. stationarily arranged or constructed in the area of the construction site.
  • a decentralized arrangement derselbigen possible, for example, at the headquarters of the construction company or the manufacturer of the compaction machine 20 (or a service provider for the controller).
  • the data transmission between the sensors and the unit 9, and between the compacting machine 20 and the unit 9 then takes place via radio.
  • the data acquisition and processing unit 9 directly on the compacting machine 20. This is shown in FIG. 2.
  • the essential advantage here is the elimination of the radio link between the unit 9 and the compacting machine 20.
  • the system or system is also suitable for the construction site since the stationary construction of the unit 9 on site is omitted. With this principle, an exclusive radio transmission between the sensors 10 to 13 and the unit 9 (with its radio cell 14) is advantageous. That It is also crucial to use only those sensors that have a corresponding wireless technology.
  • FIG. 3 proves to be particularly advantageous.
  • the sensors 10 to 13 and the compacting machine or machines 20 which constantly change their position due to their movement
  • the technical ability to determine their current position which is done here by way of example GPS receiver technology.
  • the normally stationary sensors would also be able to determine their position once and input it into the data acquisition and processing unit 9.
  • each of the compaction machines 20 is equipped with a data acquisition and processing unit 9.
  • the units 9 now receive the oscillation measured values of the sensors 10 to 13 and at the same time the position at which these measured values are detected. Now can be determined or calculated by the known own position of the compacting machine 20, which critical oscillation measured values are relevant for the respective compaction machine, to react accordingly with changing at least one compression parameter. Any number of compaction machines can be used on the construction site.
  • only one data acquisition and processing unit 9 which controls all the compaction machines. This can be arranged locally or on site at the construction site. Also, their arrangement on a compaction machine is possible, which then acts as a master machine for the other compaction machines (which can be of the other design, by the way).

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Strategic Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Primary Health Care (AREA)
  • Soil Sciences (AREA)
  • Economics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)
  • Road Repair (AREA)

Abstract

The method involves measuring oscillations dispersed in underground by a compression machine (20) at a relevant measuring point by sensors (10-13). Oscillation measured values detected by the sensors are determined at a data processing unit (9). The measured values are compared with a permissible oscillation limit value for the respective measuring point, and a compression parameter is changed when a limit value is exceeded to automatically adjust the oscillation measured values measured at the measuring point on a value smaller or equal to the oscillation limit value with a target. An independent claim is also included for a system for a System for controlling a compression machine.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Steuerung einer Verdichtungsmaschine zum Zwecke der automatischen Anpassung von Verdichtungsparametern dieser Verdichtungsmaschine und betrifft insbesondere ein entsprechendes System zur Steuerung einer solchen Verdichtungsmaschine.The invention relates to a method for controlling a compaction machine for the purpose of automatically adjusting compaction parameters of this compaction machine, and more particularly relates to a corresponding system for controlling such a compaction machine.

Verdichtungsmaschinen bzw. -geräte der betreffenden Art werden zur Verdichtung von Böden, Untergrund, Verkehrswegen, Dämmen u. dgl. m. eingesetzt. Solche Verdichtungsmaschinen sind in verschiedenen Ausführungsformen aus dem Stand der Technik bekannt. Hierbei kann es sich beispielsweise, aber nicht ausschließlich, um selbstfahrende Walzen oder Anhängewalzen handeln. Die Erfindung ist zu unterscheiden von Vorrichtungen (wie Rammen oder Bären) zum Eintreiben von Erdankern und dgl. in den Untergrund.Compacting machines or devices of the type in question are used to compact soil, underground, traffic routes, dams u. like m. used. Such compaction machines are known in various embodiments from the prior art. This may, for example, but not exclusively, be self-propelled rollers or towed rollers. The invention is distinguished from devices (such as rams or bears) for driving in ground anchors and the like. In the underground.

Zur Verbesserung der Verdichtungswirkung bzw. zur Erhöhung des Verdichtungsgrades ist eine Vibrationsüberlagerung bzw. Schwingungserregung der Verdichtungswerkzeuge bekannt, wozu stellvertretend auf die DE 33 08 476 A1 verwiesen wird. Die betreffende Verdichtungsmaschine ist dann z.B. mit einer Vibrationsplatte oder -walze versehen, wie in der WO 02/25015 A1 beschrieben.To improve the compaction effect or to increase the degree of compaction, a vibration superimposition or oscillation excitation of the compaction tools is known, which is representative of the DE 33 08 476 A1 is referenced. The compacting machine in question is then provided, for example with a vibrating plate or roller, as in the WO 02/25015 A1 described.

Ein wesentliches Problem hierbei ist jedoch, dass die Verdichtungsmaschine selbst als auch umliegende Bauwerke durch die Schwingungen beschädigt werden können. Dies ist insbesondere dann problematisch, wenn die Frequenz der Schwingungsanregung im Bereich der lokalen Eigenfrequenz der Maschine oder des Untergrundes liegt, oder wenn große Schwingamplituden gefahren werden. Es ist daher aus dem Stand der Technik bekannt, die Schwingungen zu erfassen und ggf. über einen Regelkreis zu korrigieren, um bspw. auch ein unerwünschtes "Springen" der Maschine zu verhindern. Eine solche Regelung ist in der EP 1 705 293 A1 , EP 0 688 379 B1 und der bereits o.g. WO 02/25015 A1 beschrieben. Zur Erfassung der Schwingungen sind hier die Verdichtungsmaschine oder das Verdichtungswerkzeug mit Sensoren ausgestattet. Die Schwingungen im Untergrund selbst oder an den umliegenden Bauwerken bleiben dabei jedoch unberücksichtigt.However, a significant problem here is that the compacting machine itself as well as surrounding structures can be damaged by the vibrations. This is particularly problematic if the frequency of the vibration excitation is in the range of the local natural frequency of the machine or the ground, or if large vibration amplitudes are driven. It is therefore known from the prior art to detect the vibrations and if necessary to correct them via a control loop in order to prevent, for example, an undesired "jumping" of the machine. Such a regulation is in the EP 1 705 293 A1 . EP 0 688 379 B1 and already og WO 02/25015 A1 described. To detect the oscillations, here the compacting machine or the compaction tool are equipped with sensors. However, the vibrations in the subsoil itself or on the surrounding structures remain unconsidered.

Aufgabe der Erfindung ist es, ein Verfahren zur Steuerung einer Verdichtungsmaschine und ein entsprechendes System bereitzustellen, mit dem diese mit hoher Effizienz bzgl. der Verdichtungswirkung bzw. des Verdichtungsgrades betrieben werden kann und mit dem gleichzeitig benachbarte Bauwerke nicht mehr als zulässig durch Vibrationen belastet werden.The object of the invention is to provide a method for controlling a compacting machine and a corresponding system, with which it can be operated with high efficiency with respect to the compression effect or the degree of compaction and with the same time adjacent structures are not more than permissible loaded by vibrations.

Diese Aufgabe wird gelöst durch ein Verfahren gemäß dem Anspruch 1 und durch ein System gemäß dem nebengeordneten Anspruch. Vorteilhafte Weiterbildungen sind Gegenstand der jeweils abhängigen Ansprüche.This object is achieved by a method according to claim 1 and by a system according to the independent claim. Advantageous developments are the subject of the respective dependent claims.

Das erfindungsgemäße Verfahren sieht vor, dass die sich von der Verdichtungsmaschine ausgehenden und im Untergrund ausbreitenden Schwingungen an wenigstens einem relevanten Messort mittels wenigstens einem Sensor erfasst werden und die von dem Sensor erfassten Schwingungs-Messwerte an wenigstens eine Datenverarbeitungseinheit (9) übermittelt werden, welche diese mit einem zulässigen Schwingungs-Grenzwert für den jeweiligen Messort vergleicht. Bei Überschreitung des zulässigen Grenzwertes für den betreffenden Messort ist vorgesehen, wenigstens einen Verdichtungsparameter automatisch, d.h. in einem Regelkreis, zu verändern, mit dem Ziel die am Messort gemessenen Schwingungs-Messwerte auf einen Wert kleiner oder gleich dem Schwingungs-Grenzwert einzustellen, bzw. den Verdichtungsparameter derart zu beeinflussen, dass der maximale erfasste Schwingungs-Messwert kleiner oder gleich dem Schwingungs-Grenzwert ist.The method according to the invention provides that the oscillations originating from the compacting machine and propagating in the subsurface are detected at least one relevant measuring location by means of at least one sensor and the oscillation measured values detected by the sensor are transmitted to at least one data processing unit (9) with a permissible vibration limit value for the respective measuring location. If the permissible limit value for the relevant measuring location is exceeded, it is provided that at least one compaction parameter is automatically set, i. in a control loop, with the aim of setting the vibration measurement values measured at the measurement location to a value less than or equal to the vibration limit value, or influencing the compression parameter in such a way that the maximum detected vibration measurement value is less than or equal to the vibration measurement value. Limit is.

Unter Verdichtungsparameter wird im Sinne der Patentanmeldung eine physikalisch erfassbare Größe verstanden, die Einfluss auf die Verdichtungswirkung bzw. den Verdichtungsgrad hat. Der Verdichtungsparameter ist bevorzugt einer Gruppe entnommen, welche die Schwingungs-Amplitude des Verdichtungswerkzeuges, die Wirkrichtung dieser Amplitude, die unterschiedlichen Richtungsanteile dieser Schwingung, die Frequenz der Schwingung oder aber auch die Verfahrgeschwindigkeit oder die Masse der Verdichtungsmaschine umfasst.For the purposes of the patent application, compression parameters are understood to be a physically detectable variable which has an influence on the compaction effect or the degree of compaction. The compression parameter is preferably taken from a group which comprises the oscillation amplitude of the compaction tool, the effective direction of this amplitude, the different directional components of this oscillation, the frequency of the oscillation or else the traversing speed or the mass of the compaction machine.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass die Messung direkt an dem relevanten bzw. interessierenden Messort erfolgt, also in der Regel direkt an einem Bauwerk. Lokale und momentane Bodeneigenschaften sind damit ohne Einfluss auf die am Bauwerk erfassten Schwingungs-Messwerte. Eine ungenaue Belastungsermittlung auf Basis etwaiger Rück- oder Hochrechnungen mit nicht näher spezifizierbaren Bodenparametern (wie Schwingungsausbreitungsgeschwindigkeit und Dämpfung) erübrigt sich damit.A significant advantage of the method according to the invention is the fact that the measurement takes place directly at the relevant or interesting measuring location, that is usually directly on a building. Local and instantaneous soil properties thus have no influence on the vibration measurement values recorded on the structure. An inaccurate determination of the load based on Any back or extrapolations with unspecified soil parameters (such as vibration propagation speed and damping) are thus unnecessary.

Dies bedeutet, dass die Verdichtungsmaschine mit sehr hoher Effizienz hinsichtlich Verdichtungswirkung und Verdichtungsgrad betrieben werden kann, wobei gleichzeitig die umliegenden Bauwerke und hierbei insbesondere die Schwingungsanfälligen bestmöglichst vor Vibrationen geschützt werden, indem diese nicht mehr als zulässig mit Schwingungen belastet sind.This means that the compacting machine can be operated with very high efficiency in terms of compaction effect and degree of compaction, at the same time the surrounding structures and in particular those susceptible to vibration are best protected against vibrations by being burdened with vibrations no more than permissible.

Das erfindungsgemäße System umfasst wenigstens einen Sensor zur Erfassung einer von der Verdichtungsmaschine verursachten oder ausgehenden Schwingung und wenigstens eine Datenverarbeitungseinheit welche die von dem wenigstens einem Sensor übermittelten Schwingungs-Messwerte mit einem zulässigen Schwingungs-Grenzwert vergleicht. Bei Überschreitung des Grenzwertes leitet die Datenverarbeitungseinheit die Veränderung wenigstens eines Verdichtungsparameter der Verdichtungsmaschine ein. Der wenigstens eine Sensor ist im Bereich eines Bauwerks im Untergrund oder an diesem Bauwerk selbst angeordnet, um die am Messort auftretenden Schwingungen direkt zu erfassen.The system according to the invention comprises at least one sensor for detecting an oscillation caused or emitted by the compaction machine and at least one data processing unit which compares the oscillation measurement values transmitted by the at least one sensor with an admissible oscillation limit value. If the limit value is exceeded, the data processing unit initiates the change of at least one compression parameter of the compacting machine. The at least one sensor is arranged in the area of a building in the underground or on this structure itself, in order to detect directly the vibrations occurring at the measuring location.

Zu den Vorteilen eines solchen Systems soll im Wesentlichen auf obige Ausführungen zum Steuerverfahren verwiesen werden.With regard to the advantages of such a system, reference should essentially be made to the above explanations regarding the control method.

In einer besonders bevorzugten Weiterbildung der Erfindung, für die ggf. gesondert Schutz beantragt wird, ist vorgesehen, dass mehrere Verdichtungsmaschinen auf einer Baustelle betrieben werden. Die Position jeder einzelnen Verdichtungsmaschine wird absolut oder zumindest relativ in Bezug auf die Lage der Sensoren erfasst. Im Weiteren ist jeder einzelnen Verdichtungsmaschine eine Datenverarbeitungseinheit zugeordnet, welche die Schwingungs-Messdaten sämtlicher Sensoren analysiert und nun aufgrund der bekannten Position der Verdichtungsmaschine errechnet, welche Sensoren bzw. welche Messorte für die jeweilige Verdichtungsmaschine relevant sind und welche nicht. Für den Fall, dass an einem für die Verdichtungsmaschine relevanten Messort ein Schwingungs-Messwert den zulässigen Grenzwert übersteigt, veranlasst die Datenverarbeitungseinheit eine entsprechende Veränderung wenigstens eines Verdichtungsparameters mit dem betreffende Verdichtungsmaschine betrieben wird. Eine besonders vorteilhafte Weiterbildung sieht vor, dass sämtliche Verdichtungsmaschinen durch nur eine zentrale Datenverarbeitungseinheit gesteuert werden, wobei jede Maschine selbst mit einer Datenverarbeitungseinheit ausgerüstet ist, insbesondere wenn die von einem Navigationssystem wie GPS empfangenen Positionsdaten ausgewertet werden.In a particularly preferred development of the invention, for which protection may be requested separately, it is provided that several compaction machines are operated on a construction site. The position of each compacting machine is detected absolutely or at least relatively with respect to the position of the sensors. Furthermore, each individual compaction machine is assigned a data processing unit which analyzes the oscillation measurement data of all sensors and now calculates, based on the known position of the compaction machine, which sensors or which measurement locations are relevant for the respective compaction machine and which are not. In the event that a vibration measurement value exceeds the permissible limit value at a measuring location relevant to the compaction machine, the data processing unit initiates a corresponding change of at least one compaction parameter with the compaction machine in question. A particularly advantageous further development provides that all compaction machines are controlled by only one central data processing unit, each machine itself being equipped with a data processing unit, in particular when the position data received from a navigation system such as GPS is evaluated.

Nachfolgend werden anhand der Bilder mehrere Ausführungsbeispiele der Erfindung und deren Vorteile beschrieben. Merkmale die nur im Zusammenhang mit einem Ausführungsbeispiel gezeigt sind, gelten im Rahmen des technisch Möglichen auch als allgemeine Merkmale der Erfindung.

Bild 1
zeigt eine Ausführungsform des erfindungsgemäßen Systems in einer schematischen Ansicht.
Bild 2
zeigt eine Abwandlung des Systems nach Bild 1, bei dem die Datenverarbeitungseinheit direkt an einer Verdichtungsmaschine angeordnet ist.
Bild 3
zeigt eine Abwandlung des Systems nach Bild 2, bei dem die Sensoren und die Verdichtungsmaschinen mit GPS-Empfängern ausgerüstet sind.
Hereinafter, several embodiments of the invention and their advantages will be described with reference to the pictures. Features that are shown only in connection with an embodiment, in the context of the technically possible also apply as general features of the invention.
Image 1
shows an embodiment of the system according to the invention in a schematic view.
picture 2
shows a modification of the system according to Figure 1, in which the data processing unit is arranged directly on a compacting machine.
picture 3
shows a modification of the system according to Figure 2, in which the sensors and the compaction machines are equipped with GPS receivers.

Die Ausführungsform nach Bild 1 umfasst eine Verdichtungsmaschine 20, die hier als Walzmaschine ausgeführt ist. Der Einsatz ist bevorzugt im Erdbau und Asphaltbau zur Verdichtung des Untergrunds. Selbstverständlich kann es sich aber auch um einen Plattenverdichter oder eine andere Bauart handeln. Die Verdichtungsmaschine 20 wird von einer Datenverarbeitungseinheit 9 gesteuert. Im Bereich der Baustelle sind zur Erfassung von Schwingungen bzw. Vibrationen an Bauwerken mehrere Sensoren bzw. Bauwerkssensoren angeordnet. Sensor 10 ist bei einem Wohnhaus 1 und Sensor 11 bei einem Werksgebäude 2 angeordnet. Beide Sensoren 10 und 11 übermitteln die erfassten Schwingungs-Messwerte an die Datenverarbeitungseinheit 9, die hier gleichzeitig als Datenerfassungseinheit ausgelegt ist. Die Datenübertragung vollzieht sich über Kabelverbindung. Weiterhin ist ein Sensor 12 bei einem Fabrikgebäude 3 und eine Sensor 13 im Bereich eines Bahntunnels 4 angeordnet. Der Bahntunnel steht exemplarisch auch für vergleichbare Bauwerke wie Straßentunnels, Leitungsschächte, Abwasserkanäle etc. Auch kann ein Sensor bei einer Brücke, einem Turm, einem Denkmal o. dgl. m. angeordnet sein. Die Datenübertragung von den Sensoren 12 und 13 vollzieht sich über eine Funkverbindung, wozu die Datenerfassungs- und -verarbeitungseinheit 9 mit einer Funkzelle 14 ausgestattet ist. Eine eindirektionale Datenübertragung von den Sensoren 10 bis 13 zu der Datenerfassungs- und -verarbeitungseinheit 9 ist ausreichend. Die Anzahl der hier gezeigten Sensoren ist selbstverständlich nur beispielhaft. Erfindungsgemäß ist vorgesehen, dass die Anzahl der Sensoren unbegrenzt ist. Auch sind mehrere Sensoren, bspw. auch unterschiedlicher Messart, an einem Messort möglich.The embodiment of Figure 1 comprises a compacting machine 20, which is designed here as a rolling machine. The use is preferred in earthworks and asphalt construction for compaction of the subsurface. Of course, it may also be a plate compactor or another type. The compacting machine 20 is controlled by a data processing unit 9. In the field of construction site several sensors or structural sensors are arranged to detect vibrations or vibrations in buildings. Sensor 10 is arranged at a residential building 1 and sensor 11 at a factory building 2. Both sensors 10 and 11 transmit the detected vibration measurement values to the data processing unit 9, which is simultaneously designed here as a data acquisition unit. The data transmission takes place via cable connection. Furthermore, a sensor 12 at a factory building 3 and a sensor 13 in the region of a railway tunnel 4 is arranged. The railway tunnel is also exemplary for comparable structures such as road tunnels, pipe shafts, sewers, etc. Also, a sensor at a bridge, a tower, a monument o. The like. M. be arranged. The data transmission from the sensors 12 and 13 takes place via a radio link, for which purpose the data acquisition and processing unit 9 is equipped with a radio cell 14. One-directional data transmission from the sensors 10 to 13 to the data acquisition and processing unit 9 is sufficient. The number of sensors shown here is of course only exemplary. According to the invention, it is provided that the number of sensors is unlimited. Also, several sensors, eg. Different types of measurement, possible at a location.

Die Sensoren 10 bis 13 werden im Untergrund angeordnet. Selbstverständlich ist auch eine direkte Anordnung an den betreffenden Objekten (Gebäuden o. dgl.) möglich. Die Sensoren können Beschleunigungssensoren oder seismographische Sensoren sein.The sensors 10 to 13 are arranged in the underground. Of course, a direct arrangement of the objects in question (buildings o. The like.) Possible. The sensors may be acceleration sensors or seismographic sensors.

Die von den Sensoren 10 bis 13 an die Datenverarbeitungs- und -erfassungseinheit 9 übermittelten Schwingungs-Messwerte werden dort mit den zulässigen Grenzwerten für das betreffende Objekt am jeweiligen Messort verglichen. Zulässige Grenzwerte sind bspw. in der Norm DIN 4150 enthalten, oder werden zuvor bspw. durch einen Statiker bestimmt. Beim Vergleichen werden grundsätzlich folgende Zustände unterschieden:The vibration measured values transmitted by the sensors 10 to 13 to the data processing and detection unit 9 are compared there with the permissible limit values for the relevant object at the respective measuring location. Permissible limit values are included, for example, in the DIN 4150 standard, or are previously determined by a structural engineer, for example. When comparing basically the following states are distinguished:

Messwert ist kleiner als der Grenzwert,Measured value is less than the limit,

Messwert ist gleich dem Grenzwert,Measured value is equal to the limit value,

Messwert ist größer als der Grenzwert.Measured value is greater than the limit value.

Grundsätzlich ist es nicht erforderlich, dass ein neuer, veränderter Wert von der Datenverarbeitungseinheit 9 berechnet wird. Es ist vielmehr die Auswertung und der Vergleich der Messwerte mit dem Grenzwert ausreichend. Es wird dann als Ergebnis übermittelt, ob die Messwerte über oder unter dem Grenzwert liegen oder gleich dem Grenzwert sind. In Abhängigkeit davon wird die Steuereinheit der Maschine die Verdichtungsparameter entsprechend verkleinern oder vergrößern bzw. konstant halten.In principle, it is not necessary for a new, modified value to be calculated by the data processing unit 9. Rather, the evaluation and comparison of the measured values with the limit value is sufficient. It is then transmitted as a result of whether the measured values are above or below the limit value or equal to the limit value. Depending on this, the control unit of the machine will correspondingly reduce or increase the compression parameters or keep them constant.

In dem hier beschriebenen Beispiel wird von der Datenerfassungs- und Verarbeitungseinheit 9 ein neuer, veränderter Wert für wenigstens eines Verdichtungsparameters für die Verdichtungsmaschine 20 (bspw. Schwingamplitude, Schwing-Wirkrichtung, Wirkrichtungsanteile der Amplitude, Frequenz, Verfahrgeschwindigkeit etc.) bestimmt bzw. errechnet und an diese übermittelt. Die Übermittlung geschieht per Funk, wozu die Datenerfassungs- und -verarbeitungseinheit 9 hier mit einer zweiten Funkzelle 15 und die Verdichtungsmaschine mit einer korrespondierenden Funkzelle 16 ausgestattet ist. Der Einsatz von zwei unabhängigen Funktechniken an der Dateneifassungs- und -verarbeitungseinheit 9 ist aber nicht zwangläufig notwendig. Die Anpassung bzw. Veränderung des wenigstens einen Verdichtungsparameters vollzieht sich in einem Regelkreis mit dem Ziel, das betreffende Objekt nicht mehr als zulässig durch Schwingungen zu belasten und gleichzeitig die Verdichtungsmaschine mit hoher Effizienz bzgl. Kompression des Untergrundes und Tiefenwirkung (Verdichtungswirkung bzw. Verdichtungsgrades) zu betreiben. Es erfolgt also eine Regelung auf ein örtlich mögliches Maximum hin. Je nach Regelkreisabstimmung kann hierbei nur ein Verdichtungsparameter oder es können mehrere Verdichtungsparameter zeitgleich oder nacheinander verändert werden.In the example described here, the data acquisition and processing unit 9 calculates and calculates a new, modified value for at least one compaction parameter for the compaction machine 20 (for example oscillation amplitude, oscillation effective direction, effective direction components of the amplitude, frequency, traversing speed etc.) transmitted to this. The transmission takes place by radio, for which purpose the data acquisition and processing unit 9 is equipped here with a second radio cell 15 and the compacting machine with a corresponding radio cell 16. However, the use of two independent radio technologies at the data acquisition and processing unit 9 is not necessarily necessary. The adaptation or modification of the at least one compression parameter takes place in a control loop with the aim of not burdening the object in question more than permissible by vibrations and at the same time the compacting machine with high efficiency with respect. Compression of the substrate and depth effect (compaction effect or degree of compaction) operate. Thus, there is a regulation to a local maximum possible. Depending on the control loop adjustment in this case, only one compression parameter or several compression parameters can be changed at the same time or in succession.

Zur Dokumentation und als Maßnahme der Qualitätssicherung, aber auch aus Gewährleistungsgründen, ist vorgesehen, die Schwingungs-Messwerte der Sensoren 10 bis 13 festzuhalten. Als Aufzeichnungsverfahren sind elektronische sowie auch konventionelle schreibende Systeme (Papierausdruck) möglich. Auch ist vorgesehen, die Verdichtungsparameter der Verdichtungsmaschine 20 und deren Veränderung durch die Steuerung zu dokumentieren. Somit kann auch dokumentiert werden, dass die Verdichtungsmaschine auf die erfassten Schwingungs-Messwerte reagiert hat. Hierzu ist die Datenübertragung zwischen der Verdichtungsmaschine 20 und Datenerfassungs- und -verarbeitungseinheit 9 bidirektionaler Art. Die Speicherung der Daten kann bspw. in der Datenerfassungs- und -verarbeitungseinheit 9 erfolgen.For documentation and as a measure of quality assurance, but also for warranty reasons, it is intended to record the vibration measurement values of the sensors 10 to 13. As a recording method, electronic as well as conventional writing systems (paper printout) are possible. It is also provided to document the compression parameters of the compacting machine 20 and their change by the controller. Thus, it can also be documented that the compacting machine has reacted to the recorded vibration measured values. For this purpose, the data transmission between the compacting machine 20 and the data acquisition and processing unit 9 is bidirectional. The data can be stored, for example, in the data acquisition and processing unit 9.

Die Datenerfassungs- und -verarbeitungseinheit 9, die die Verdichtungsmaschine 20 steuert, ist vor Ort d.h. im Bereich der Baustelle stationär angeordnet bzw. aufgebaut. Natürlich ist auch eine dezentrale Anordnung derselbigen möglich, bspw. am Hauptsitz der Baufirma oder des Herstellers der Verdichtungsmaschine 20 (bzw. einem Dienstleistungsanbieter für die Steuerung). Die Datenübertragung zwischen den Sensoren und der Einheit 9, sowie zwischen Verdichtungsmaschine 20 und der Einheit 9 vollzieht sich dann über Funk.The data acquisition and processing unit 9, which controls the compacting machine 20, is on-site, i. stationarily arranged or constructed in the area of the construction site. Of course, a decentralized arrangement derselbigen possible, for example, at the headquarters of the construction company or the manufacturer of the compaction machine 20 (or a service provider for the controller). The data transmission between the sensors and the unit 9, and between the compacting machine 20 and the unit 9 then takes place via radio.

Weiterhin ist es möglich, die Datenerfassungs- und -verarbeitungseinheit 9 direkt auf der Verdichtungsmaschine 20 anzuordnen. Dies zeigt Bild 2. Als wesentlicher Vorteil ergibt sich hier der Entfall der Funkverbindung zwischen der Einheit 9 und der Verdichtungsmaschine 20. Auch wird das System bzw. die Anlage baustellengerechter, da der stationäre Aufbau der Einheit 9 vor Ort entfällt. Bei diesem Prinzip ist eine ausschließliche Funkübertragung zwischen den Sensoren 10 bis 13 und der Einheit 9 (mit ihrer Funkzelle 14) von Vorteil. D.h. es werden maßgeblich auch nur solche Sensoren eingesetzt, die über eine entsprechende Funktechnik verfügen.Furthermore, it is possible to arrange the data acquisition and processing unit 9 directly on the compacting machine 20. This is shown in FIG. 2. The essential advantage here is the elimination of the radio link between the unit 9 and the compacting machine 20. The system or system is also suitable for the construction site since the stationary construction of the unit 9 on site is omitted. With this principle, an exclusive radio transmission between the sensors 10 to 13 and the unit 9 (with its radio cell 14) is advantageous. That It is also crucial to use only those sensors that have a corresponding wireless technology.

Sollen auf einer Baustelle mehrere Verdichtungsmaschinen 20 eingesetzt werden, so erweist sich das Ausführungsbeispiel gemäß dem Bild 3 als besonders vorteilhaft. Im Vergleich zu Bild 2 sind hier alle Sensoren 10 bis 13 und die Verdichtungsmaschine bzw. -maschinen 20 (die aufgrund ihrer Bewegung ständig ihre Position verändern) mit der technischen Möglichkeit ausgerüstet ihre momentane Position festzustellen, was hier beispielhaft mittels GPS-Empfängertechnik erfolgt. Bzgl. der in der Regel ortsfesten Sensoren wäre es alternativ auch möglich, deren Position einmalig zu bestimmen und in die Datenerfassungs- und -verarbeitungseinheit 9 einzugeben.If a plurality of compaction machines 20 are to be used on a construction site, the embodiment according to FIG. 3 proves to be particularly advantageous. Compared to Figure 2, here are all the sensors 10 to 13 and the compacting machine or machines 20 (which constantly change their position due to their movement) equipped with the technical ability to determine their current position, which is done here by way of example GPS receiver technology. Concerning. As a rule, the normally stationary sensors would also be able to determine their position once and input it into the data acquisition and processing unit 9.

Erfindungsgemäß ist vorgesehen, dass jede der Verdichtungsmaschinen 20 mit einer Datenerfassungs- und -verarbeitungseinheit 9 ausgerüstet ist. Die Einheiten 9 erhalten jetzt also die Schwingungs-Messwerte der Sensoren 10 bis 13 und gleichzeitig die Position, an der diese Messwerte erfasst werden. Nun kann durch die bekannte eigene Position der Verdichtungsmaschine 20 ermittelt bzw. errechnet werden, welche kritischen Schwingungs-Messwerte für die jeweilige Verdichtungsmaschine relevant sind, um hierauf entsprechend mit Veränderung wenigstens eines Verdichtungsparameters zu reagieren. Damit können beliebig viele Verdichtungsmaschinen auf der Baustelle eingesetzt werden.According to the invention, each of the compaction machines 20 is equipped with a data acquisition and processing unit 9. The units 9 now receive the oscillation measured values of the sensors 10 to 13 and at the same time the position at which these measured values are detected. Now can be determined or calculated by the known own position of the compacting machine 20, which critical oscillation measured values are relevant for the respective compaction machine, to react accordingly with changing at least one compression parameter. Any number of compaction machines can be used on the construction site.

In einer alternativen Ausführungsform ist nur eine Datenerfassungs- und -verarbeitungseinheit 9 vorgesehen, welche sämtliche Verdichtungsmaschinen steuert. Diese kann dezentral oder vor Ort auf der Baustelle angeordnet sein. Auch ist deren Anordnung auf einer Verdichtungsmaschine möglich, die dann als Mastermaschine für die anderen Verdichtungsmaschinen (die im Übrigen auch anderer Bauart sein können) fungiert.In an alternative embodiment, only one data acquisition and processing unit 9 is provided which controls all the compaction machines. This can be arranged locally or on site at the construction site. Also, their arrangement on a compaction machine is possible, which then acts as a master machine for the other compaction machines (which can be of the other design, by the way).

Claims (17)

  1. A method for controlling at least one compaction machine (20) for the ground, in particular in earthworks and asphalt construction, in which at least one compaction parameter is changeable by a control loop circuit during the compaction process, characterized in that the oscillations propagating from the compaction machine (20) in the ground are detected at least one relevant measuring location which is situated in the area of a structure (1, 2, 3, 4) by at least one sensor (10, 11, 12, 13) which is arranged in the area of said structure in the ground or on the structure itself, and the measured oscillation values detected by the sensor (10, 11, 12, 13) are sent to at least one data-processing unit (9) which compares the same with a permissible oscillation limit value for the respective measuring location, and which, in cases where the limit value is exceeded, changes at least one compaction parameter with the goal of automatically setting the measured oscillation values measured at the measuring location to a value smaller than or equal to the oscillation limit value.
  2. A method according to claim 1, characterized in that several sensors (10, 11, 12, 13) are arranged at different measuring locations and/or several sensors are arranged at one measuring location.
  3. A method according to one of the preceding claims, characterized in that the measured oscillation values detected by the at least one sensor (10, 11, 12, 13) are stored for documentation purposes.
  4. A method according to one of the preceding claims, characterized in that the compaction parameters of the at least one compaction machine (20), in particular the compaction parameters changed by the control loop circuit, are stored for documentation purposes.
  5. A method according to one of the preceding claims, in particular according to claim 4, characterized in that the at least one changeable compaction parameter is taken from a group which comprises amplitude, direction of action of the amplitude, vertical share of the amplitude, frequency of the oscillation or speed of displacement of the compaction machine.
  6. A method according to one of the preceding claims, characterized in that at least the data transmission between sensor (10, 11, 12, 13) and data-processing unit (9) or between data-processing unit (9) and compaction machine (20) occurs by means of radio signals.
  7. A method according to one of the preceding claims, characterized in that several compaction machines (20) are used which are each controlled by means of a data-processing unit (9) or of which several are controlled by a common data-processing unit.
  8. A method according to one of the preceding claims, in particular according to claim 7, characterized in that at least one compaction machine (20) detects its current position and sends the same to its associated data-processing unit (9), which then determines which measured sensor values are relevant for the respective compaction machine in order to optionally change at least one compaction parameter of said compaction machine (20).
  9. A method according to claim 7 or 8, characterized in that the compaction machines (20) detect their position with GPS receivers and that preferably the at least one sensor (10, 11, 12, 13) also detects its position with GPS receivers.
  10. A system for controlling at least one compaction machine (20) for the ground and the like, comprising at least one changeable compaction parameter, in particular for controlling with a method according to one of the preceding claims, comprising at least one sensor (10, 11, 12, 13) for detecting an oscillation caused or emitted by the compaction machine, and at least one data-processing unit (9) which compares the measured oscillation values sent by the sensor (10, 11, 12, 13) with a permissible oscillation limit value and optionally changes the at least one compaction parameter of the compaction machine (20), characterized in that the at least one sensor (10, 11, 12, 13) is arranged in the area of a structure (1, 2, 3, 4) in the ground or on the structure itself in order to directly detect the oscillations occurring at the measuring location.
  11. A system according to claim 10, characterized in that several sensors (10, 11, 12, 13) are arranged at a measuring location and/or at different measuring locations.
  12. A system according to claim 10 or 11, characterized in that several compaction machines (20) are comprised which are each controlled by a data-processing unit (9) or by a common data-processing unit.
  13. A system according to one of claims 10 to 12, characterized in that the data transmission between the data-processing unit (9) and the compaction machine (20) is of a bi-directional nature.
  14. A system according to one of claims 10 to 13, characterized in that the at least one data-processing unit (9) is arranged directly on the compaction machine (20).
  15. A system according to one of claims 10 to 14, characterized in that the at least one sensor (10, 11, 12, 13) and the at least one compaction machine (20) are equipped with the technical possibility of determining their current position and with the possibility of sending the same to the at least one data-processing unit (9).
  16. A system according to claim 15, characterized in that the sensor (10, 11, 12, 13) and the compaction machine (20) comprise GPS receivers.
  17. A system according to one of claims 10 to 16, characterized in that the compaction machine (20) concerns a roller machine or a plate compaction machine.
EP08002643A 2007-04-22 2008-02-13 Method and system for controlling compacting machines Active EP1985760B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007018743A DE102007018743A1 (en) 2007-04-22 2007-04-22 Method and system for controlling compaction machines

Publications (2)

Publication Number Publication Date
EP1985760A1 EP1985760A1 (en) 2008-10-29
EP1985760B1 true EP1985760B1 (en) 2009-07-08

Family

ID=39651292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08002643A Active EP1985760B1 (en) 2007-04-22 2008-02-13 Method and system for controlling compacting machines

Country Status (6)

Country Link
US (1) US8332105B2 (en)
EP (1) EP1985760B1 (en)
JP (1) JP5182666B2 (en)
CN (1) CN101289831B (en)
AT (1) ATE435944T1 (en)
DE (2) DE102007018743A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342900B2 (en) * 2009-03-06 2013-11-13 株式会社小松製作所 Construction machine, construction machine control method, and program for causing computer to execute the method
US8424630B2 (en) 2010-12-17 2013-04-23 Caterpillar Paving Products Inc. Control apparatus and method for a hydrostatically actuated vehicle
DE102011076131A1 (en) * 2011-05-19 2012-11-22 Hamm Ag System for providing information representing a vibration state for the operation of vibration-emitting machines, in particular construction machines
CN104343071B (en) * 2013-08-01 2017-11-03 江苏骏马压路机械有限公司 The road roller prior-warning device for preventing building from damaging
US9207157B2 (en) 2014-03-17 2015-12-08 Caterpillar Paving Products Inc. System and method for determining a state of compaction
US20160076205A1 (en) * 2014-09-16 2016-03-17 Caterpillar Paving Products Inc. Device and Process for Controlling Compaction Based on Previously Mapped Data
US20160222602A1 (en) * 2015-01-30 2016-08-04 Caterpillar Paving Products Inc. Systems and methods for guiding a compacting machine
US9765488B2 (en) 2015-12-21 2017-09-19 Caterpillar Paving Products Inc. Compaction effort adjustment using vibration sensors
US9856612B2 (en) 2015-12-21 2018-01-02 Caterpillar Paving Products Inc. Compaction measurement using nearby sensors
EP3216979B1 (en) * 2016-03-07 2019-05-08 Kern Tunneltechnik SA Shuttering system
US20190170569A1 (en) * 2017-12-06 2019-06-06 Caterpillar Paving Products Inc. Vibration monitoring system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
CN110541551A (en) * 2019-08-26 2019-12-06 广东博智林机器人有限公司 Slurry supplementing device of trowelling robot and trowelling robot
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
CN113202079B (en) * 2021-04-30 2022-08-23 潍坊峡山水务有限公司 Dam slope tamping device and using method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1634616U (en) * 1951-03-08 1952-02-14 Heinrich Schmidt Schuhleistenf FILLING BARS FOR FOOTWEAR.
DE2066015C2 (en) * 1970-04-16 1979-09-27 Losenhausen Maschinenbau Ag, 4000 Duesseldorf Device for generating a display or control signal for the drive of a dynamic soil compactor
SE432792B (en) 1982-04-01 1984-04-16 Dynapac Maskin Ab PROCEDURE AND DEVICE FOR ACHIEVING OPTIMAL PACKAGING DEVICE WHEN PACKING DIFFERENT MATERIALS LIKE ASPHALT, EARTH ETC Means a vibrating roller
DE3421824C2 (en) * 1984-06-13 1986-07-17 CASE VIBROMAX GmbH & Co KG, 4000 Düsseldorf Device for checking the compaction in vibration compaction equipment
SE501040C2 (en) 1993-03-08 1994-10-24 Thurner Geodynamik Ab Method and apparatus for controlling the vibration movement of a roller when packing a support such as soil, road banks, asphalt, etc.
JPH11117280A (en) * 1997-10-16 1999-04-27 Hazama Gumi Ltd Compacting device and compacting construction method using this device
JP3663591B2 (en) * 1999-01-11 2005-06-22 調和工業株式会社 Pollution-free pile driving method and pollution-free pile driving equipment
DE10046336B4 (en) 2000-09-19 2005-03-31 Wacker Construction Equipment Ag Soil compacting device with vibration exciter and method for controlling the vibration exciter
DE10053446B4 (en) * 2000-10-27 2006-03-02 Wacker Construction Equipment Ag Steerable vibration plate and mobile vibrating plate system
JP2002363963A (en) * 2001-06-08 2002-12-18 Taisei Corp Compaction management system for ground
ES2339929T3 (en) * 2001-09-19 2010-05-27 Volvo Construction Equipment Ab CONSTRUCTION VEHICLE WITH A SYSTEM TO MEASURE THE PROPERTIES OF THE MATERIALS.
US7089823B2 (en) * 2002-05-29 2006-08-15 Caterpillar Paving Products Inc. Vibratory mechanism controller
JP2004085201A (en) * 2002-08-22 2004-03-18 Chubu Electric Power Co Inc Vibration source probing system
DE10317160A1 (en) * 2003-04-14 2004-11-18 Wacker Construction Equipment Ag System and method for automated soil compaction
CN2866583Y (en) * 2004-09-23 2007-02-07 厦工集团三明重型机器有限公司 Road roller vibration angle controlling device
EP1705293A1 (en) * 2005-03-23 2006-09-27 Ammann Aufbereitung AG Method and device for compacting an area of ground
CN2878469Y (en) * 2005-04-07 2007-03-14 徐州工程机械科技股份有限公司徐工研究院 Stepless adjustable automatic control system for vibration of intelligent road presser
DE102005022627A1 (en) * 2005-05-11 2006-11-16 Ammann Verdichtung Gmbh Soil Compactor
DE102005029434A1 (en) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Vibrating plate with individually adjustable vibration generators comprising individual exciters each with unbalanced shaft whose rotational speed and/or phase position can be individually controlled
DE102005030860A1 (en) * 2005-07-01 2007-01-25 Wacker Construction Equipment Ag Vibrating plate system
US20070239338A1 (en) * 2006-04-06 2007-10-11 Dean Potts Worksite preparation method using compaction response and mapping information

Also Published As

Publication number Publication date
DE502008000051D1 (en) 2009-08-20
CN101289831B (en) 2012-08-29
JP2008267133A (en) 2008-11-06
CN101289831A (en) 2008-10-22
US8332105B2 (en) 2012-12-11
US20080286044A1 (en) 2008-11-20
EP1985760A1 (en) 2008-10-29
DE102007018743A1 (en) 2008-10-23
JP5182666B2 (en) 2013-04-17
ATE435944T1 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
EP1985760B1 (en) Method and system for controlling compacting machines
DE102016124875A1 (en) Compaction measurement using nearby sensors
DE112010000670B4 (en) System and method for controlling a surface compaction of a rolling machine with vibration compacting roller
DE102007019419A1 (en) Method for determining a degree of compaction of asphalts and system for determining a degree of compaction
EP0688902B1 (en) Continuous measuring method of the resistance to lateral displacement of a railway track
AT520056A1 (en) Method and device for compacting a ballast bed
EP3147406B1 (en) Measuring system and method for compression control and computer program with a program code for execution of the method
DE202004015141U1 (en) Ground compactor for compacting foundations and building materials, has acceleration sensor on baseplate, and indicator for showing degree of compaction
WO2011120176A1 (en) Method for calibrating wim-sensors
DE102010060843B4 (en) Method and device for measuring soil parameters by means of compaction machines
DE102018113788A1 (en) tunnel boring machine
EP3870760A1 (en) Method and device for stabilizing a track
EP2150358A1 (en) Vibrator for a ground compacting apparatus
DE202009008592U1 (en) Electronic device for measuring and displaying homogeneity and degree of compaction in soil compactors
DE60303303T2 (en) FALL WEIGHT COMPRESSION
DE102016124106A1 (en) ADJUSTMENT OF COMPACTION EXPERIENCE USING VIBRATION SENSORS
EP2794382B1 (en) Method and device for acquiring projection data of a sensor device for monitoring and/or controlling track-bound traffic
DE102008008578B3 (en) Method for determining dynamic wheel strength during passage of railway vehicle on core of guide, crossing or crossing guide of rail traffic way, involves measuring concentrated loads on all strength-deriving places with passage of train
DE102016224348B4 (en) Compaction control system
DE60036298T2 (en) Seismic weight determination system for moving vehicles
AT524860B1 (en) Device and method for compacting a track bed
EP3627131A1 (en) Method and device for monitoring a building
DE102019102303A1 (en) Method for measuring a distributed vibration sensor and calibration system
AT524382B1 (en) Method and system for determining vibration transmission in the area of a track
EP4179146B1 (en) Machine and method for compacting a ballast bed of a track

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20080924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000051

Country of ref document: DE

Date of ref document: 20090820

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091008

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

26N No opposition filed

Effective date: 20100409

BERE Be: lapsed

Owner name: BOMAG G.M.B.H.

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 435944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160222

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000051

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE