EP1971254A1 - Führungsdrähte aus titan-molybdän-legierungen - Google Patents

Führungsdrähte aus titan-molybdän-legierungen

Info

Publication number
EP1971254A1
EP1971254A1 EP06718147A EP06718147A EP1971254A1 EP 1971254 A1 EP1971254 A1 EP 1971254A1 EP 06718147 A EP06718147 A EP 06718147A EP 06718147 A EP06718147 A EP 06718147A EP 1971254 A1 EP1971254 A1 EP 1971254A1
Authority
EP
European Patent Office
Prior art keywords
guidewire
distal end
wire
end portion
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06718147A
Other languages
English (en)
French (fr)
Other versions
EP1971254A4 (de
Inventor
Stephen Nuss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnesota Medical Development Inc
Original Assignee
Minnesota Medical Development Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Medical Development Inc filed Critical Minnesota Medical Development Inc
Publication of EP1971254A1 publication Critical patent/EP1971254A1/de
Publication of EP1971254A4 publication Critical patent/EP1971254A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque

Definitions

  • This invention relates to the field of medical devices and more particularly to guidewires for use primarily in intra vascular procedures.
  • Guidewires made with a titanium molybdenum alloy allow for a flexible and formable tip with reduced kinldng, high torque, trackability and high column strength.
  • guidewires and other guiding members have sufficient column strength to be pushed through passageways in a patient such as the patient's vascular system with minimal kinking or binding.
  • the distal section of the guidewire must be flexible enough to avoid damaging the blood vessel or other body lumen through which it is advanced.
  • Efforts have been made to improve both the strength and flexibility of guidewires to make them more suitable for their intended uses, but strength for pushing and flexibility for turning without damaging vascular walls tend to be diametrically opposed to one another, in that an increase in one usually involves a decrease in the other.
  • concomitant with the decrease in profile has been a loss in pushability and kink resistance.
  • the distal portion of the guidewire frequently has a spring or coil around a tapered, thinner and therefore softer metal core.
  • the thinner softer core may be too thin to engage the coil and may therefore allow the coil to kink when bent.
  • Guidewires have been made of many different materials. The most popular materials are stainless steel and NiTi alloys such as Nitinol.
  • NiTi guidewires tend to kink. They have good pushability but are not flexible enough to easily bend inside of the vascular system. Stainless steel has good torque qualities for rotating the guidewire but tends to bind when rotated since it does not readily flex. Once the guidewire is kinked, it must be discarded and replaced with a new guidewire. NiTi guidewires tend to be too springy, especially when negotiating a tortuous path in vessels, they do not have good pushability because want to straighten out or return to their original shape. NiTi guidewires will readily get hung up when rotated while extending around a curved path. NiTi guidewires can not be torqued as readily as stainless steel because it is springier. NiTi guidewires tend to have good shape memory. The shape memory makes it difficult for a physician to shape the tip of the guidewire with his fingers for accessing difficult to reach portions of the patient's vascular system.
  • the guidewires need to have distal ends that are soft for bending and turning inside of the blood vessels as they are advanced and so they will not puncture the vessel walls.
  • the most popular guidewires are made out of stainless steel or NiTi alloys. Both of these materials have advantages and drawbacks. A different guidewire material is required to have the desirable qualities of both without as many drawbacks to enhance the performance of guidewires.
  • a titanium molybdenum alloy used to make guidewires for use in passages within a body has several advantages over NiTi and stainless steel guidewires.
  • the titanium molybdenum alloy has properties of high springback, and fiexability that is in between the values of stainless steel and NiTi alloys, which are the two most widely used metals used for making guidewires.
  • the titanium molybdenum alloy has moderate stiffness, about 42% of stainless steel and excellent torque transmission and formability. It is softer and more flexible than stainless steel for better bendability while negotiating though passageways in the body and less likely to puncture the walls of the passageways.
  • the titanium molybdenum alloy is also easier to torque than stainless steel, which tends to bind when the guidewire is in nonlinear passageways.
  • the titanium molybdenum alloy is stronger and has a better pushability than NiTi alloys and is easier to torque because it is less springy and will not bind against the walls of a vessel as much on a non linear path allowing easier rotation of the guidewire.
  • Titanium molybdenum alloys can be easily welded or soldered using standard manufacturing techniques, as opposed to NiTi alloys which are not easy to weld or solder.
  • the titanium molybdenum alloy can be tapered in steps at the distal end producing a softness gradient with the distal end the softest. This allows the distal tip to be more flexible and bend around curves without puncturing the tissue in the passageway.
  • the titanium molybdenum alloy core is softer so it can be make thicker such that a coil around the core engages at a larger diameter and will not kink as it bends.
  • the titanium molybdenum alloy guidewire can be coated with a plastic such as Teflon ® or a hydrophilic coating to make it slipperier.
  • the titanium molybdenum alloy is preferably a mixture of about 78% titanium 11.5% molybdenum 6% zirconium and 4.5% tin by weight.
  • Fig. 1 is a side view of the guidewire.
  • Fig. 2 is a graph comparing stress strain curves for NiTi alloy, stainless steel and TiMo alloy.
  • Guidewires used in passageways within patients are used for a large number of medical procedures. Many of the procedures involve the use of the guide as a guidewire for inserting catheters and other devices in the vascular system of the patient. Guidewires have been made from stainless steel, which is stiff and does not readily bend around in the passageways of the patient. Guidewires are also frequently made using a NiTi alloy which is softer and springier than stainless steel and has a better memory but is not as stiff so that it does not have the pushability of stainless steel. Further NiTi alloy is not as easily bendable so that the distal tip can not be as readily shaped.
  • a guidewire is shown in Fig. 1 having a titanium molybdenum alloy which is has properties between that of stainless steel and NiTi alloys.
  • the titanium molybdenum alloy is easier to use and has better torque, softness and pushability for use in the passageways of patients than guidewires made of other materials.
  • the guidewire in Fig. 1 is made from a titanium molybdenum alloy comprising about 78% titanium, 11.5% molybdenum 6% zirconium and 4.5% tin by weight. The stiffness is about 42% that of stainless steel.
  • the guidewires can be made with a range of values for its alloys.
  • the range of values is approximately 75-83% titanium, 8-14% molybdenum 4-8% zirconium and 2-6% tin by weight.
  • the titanium molybdenum alloy can be deflected more than 42% more than stainless steel with no permanent deformation and has a lower force deflection rate and a higher spring back and flexibility.
  • Nitinol which is a NiTi alloy
  • stainless steel takes a set which is not a desirable quality for a guidewire and, Nitinol is too springy which is not a desirable quality for a guidewire. If a guidewire is too stiff it takes a set and will not easily bend. The stiffness however makes for good pushability allowing for the guidewire to be inserted into a passageway and allows the guidewire to be rotated at the distal end when turned at the proximal end.
  • the stiffness of the guidewire will form arches in the guidewire around curves and will not torque as easily since the entire guidewire will tend to push against the wall of the passage. If the guidewire is too springy and the guidewire is torqued the guidewire will bind in the curved portions in the passageways.
  • a guidewire made from a titanium molybdenum alloy is less springy than NiTi alloys but more springy than stainless steel. Titanium molybdenum alloys are stiffer than NiTi alloys but not as stiff as stainless steel. Therefore titanium molybdenum alloys have desirable properties when used in guidewires.
  • Figure 2 shows the relative stress and strain curves comparing NiTi alloys, curve 35, stainless steel, curve 30 and titanium molybdenum alloy, curve 33 guidewires.
  • Fig. 1 shows a side view of a guidewire 10 having a proximal end 12 and a distal end 14.
  • the distal end 14 has a smaller diameter than the proximal end 12 to make it softer and more easily bendable. It is desirable to have a softer distal end 14 such that the guidewire will bend and follow the curves of a blood vessel or other passageway that the guidewire is inserted into.
  • the guidewire is provided with a rounded distal tip 16 at the tip of the distal end 15 to secure the coil 18 to the distal end 14 and to prevent the tip of the distal end 15 from penetrating tissue in the passageway as the guidewire is being inserted.
  • the guidewire 10 is also provided with a coil 18 which can be made out of platinum, tungsten or similar radio opaque materials to act as a spring, allowing the thinned distal end 14 to bend and yet spring back into place after the guidewire is transported around a curve in the passageway. In the past coils 18 would tend to kink and not return to their original shape if there was a large space between the inside diameter of coil 18 and the core of the distal end 14 of the guidewire 10.
  • the titanium molybdenum alloy has a softness which allows it to have a larger diameter and still be soft enough at the distal end 14 such that the outside diameter of the distal end of the guidewire 10 engages the coil 18 on the inside diameter reducing the space there between and prevents the coil from kinking as the coil 18 and the distal end 14 bend.
  • the coil 18 is wound around the core of the distal end 14 without spaces between the turns and in tight contact with core to prevent kinks from occurring when the guidewire is bent.
  • the titanium molybdenum alloy is made softer by tapering the distal end 14 to reduce the cross section of the guidewire.
  • the tapering at the distal end 14 provides a gradient of softness with the tip of the distal end 15 being the softest.
  • the gradient of softness helps the tip bend while keeping the remainder of the guidewire 10 straighter.
  • the distal end 14 can have a tapered portion 20 which gradually changes the diameter of the guidewire material and provides for a gradient of softness. Abrupt changes in the stiffness of the distal end of the guidewire causes kinking at stress points of the coil, when the distal end is bent.
  • the flexibility (bendability) of the guidewire can continually increase toward the distal end of the guidewire 14 without an abrupt change averting kinking.
  • the proximal end 12 of the guidewire is less flexible and is more uniform and can transmit torque and pushing force with high fidelity.
  • the titanium molybdenum alloy steers better than stainless steel guidewires or NiTi alloy guidewires because it is more flexible than stainless steel yet stiff enough to have torque and is stiffer than NiTi.
  • the distal tip 16 and coil 18 are attached to the titanium molybdenum alloy guidewire 10 by welding or soldering.
  • the titanium molybdenum alloy is more easily welded or soldered than NiTi alloys.
  • the guidewire 10 can be coated with a plastic for making the guidewire slipperier.
  • the guidewire can be coated with Teflon ® or a similar material for a hydrophilic coating.
  • the proximal end 12 of the guidewire 10 can have a coating or surface making it easier to grasp for the doctor to more effectively use the guidewire.
  • the guidewire 10 can be made with lengths of preferably between 20 cm and 500cm and between diameters of 0.005 inches and 0.040 inches with a coil length preferably of between 0.5cm and 100cm.
  • the guidewire 10 can have a coil made from platinum, tungsten or other similar materials for helping to make the coil radio opaque such that it shows up on imaging equipment making the guidewire easier to view while in use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)
EP06718147A 2006-01-12 2006-01-12 Führungsdrähte aus titan-molybdän-legierungen Withdrawn EP1971254A4 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/001036 WO2007081333A1 (en) 2006-01-12 2006-01-12 Titanium molybdenum alloy guidewires

Publications (2)

Publication Number Publication Date
EP1971254A1 true EP1971254A1 (de) 2008-09-24
EP1971254A4 EP1971254A4 (de) 2010-08-11

Family

ID=38256622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06718147A Withdrawn EP1971254A4 (de) 2006-01-12 2006-01-12 Führungsdrähte aus titan-molybdän-legierungen

Country Status (7)

Country Link
EP (1) EP1971254A4 (de)
JP (1) JP2009523481A (de)
CN (1) CN101360448A (de)
AU (1) AU2006335336A1 (de)
CA (1) CA2636266A1 (de)
EA (1) EA013583B1 (de)
WO (1) WO2007081333A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102499725B (zh) * 2011-10-21 2015-09-02 李延辉 微创伤经皮血管穿刺置管工具
CN104014067B (zh) * 2013-03-01 2016-04-13 广州金导医疗科技有限公司 具有绝缘涂层的医用导丝及其制造方法
CN104095679A (zh) * 2013-04-12 2014-10-15 上海微创电生理医疗科技有限公司 多电极消融导管
CN103480077A (zh) * 2013-08-26 2014-01-01 谷村哲明 指引导丝
JP2017500925A (ja) * 2013-11-26 2017-01-12 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 身体管腔にアクセスするための医療装置
CN103623494B (zh) * 2013-12-12 2016-02-24 西北有色金属研究院 一种外科介入治疗用钛合金导丝
CN105832329A (zh) * 2016-05-11 2016-08-10 苏州康晟通医疗科技有限公司 心电监测系统
CN105796093B (zh) * 2016-05-11 2019-02-01 苏州康晟通医疗科技有限公司 中心静脉导管套件
EP3514402B8 (de) * 2016-09-14 2023-09-06 Asahi Intecc Co., Ltd. Verbindungsstruktur und führungsdraht mit der verbindungsstruktur
CN107115590A (zh) * 2017-05-27 2017-09-01 苏州朗特斯医疗科技有限公司 自带导丝的单腔球囊扩张导管
CN109770826A (zh) * 2019-03-06 2019-05-21 南充市中医医院 一种结肠镜辅助进镜装置
CN110237402B (zh) * 2019-05-22 2021-10-08 中国人民解放军陆军军医大学第一附属医院 一种可以成袢的导丝
CN110681031A (zh) * 2019-11-11 2020-01-14 湖南埃普特医疗器械有限公司 一种造影导丝及其制备方法
CN113041159A (zh) * 2021-03-23 2021-06-29 昆明医科大学第二附属医院 一种便于置入幽门的新型胃管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132389A (en) * 1998-04-23 2000-10-17 Advanced Cardiovascular Systems, Inc. Proximally tapered guidewire tip coil
US20030009095A1 (en) * 2001-05-21 2003-01-09 Skarda James R. Malleable elongated medical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665742B2 (ja) * 1987-01-08 1994-08-24 株式会社ト−キン 形状記憶TiNiV合金の製造方法
US4817600A (en) * 1987-05-22 1989-04-04 Medi-Tech, Inc. Implantable filter
US5630840A (en) * 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5951793A (en) * 1995-07-12 1999-09-14 The Furukawa Electric Co., Ltd. Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US6068623A (en) * 1997-03-06 2000-05-30 Percusurge, Inc. Hollow medical wires and methods of constructing same
US6402859B1 (en) * 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132389A (en) * 1998-04-23 2000-10-17 Advanced Cardiovascular Systems, Inc. Proximally tapered guidewire tip coil
US20030009095A1 (en) * 2001-05-21 2003-01-09 Skarda James R. Malleable elongated medical device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007081333A1 *

Also Published As

Publication number Publication date
EA013583B1 (ru) 2010-06-30
CN101360448A (zh) 2009-02-04
AU2006335336A1 (en) 2007-07-19
EA200801675A1 (ru) 2008-12-30
WO2007081333A1 (en) 2007-07-19
CA2636266A1 (en) 2007-07-19
JP2009523481A (ja) 2009-06-25
EP1971254A4 (de) 2010-08-11

Similar Documents

Publication Publication Date Title
EP1971254A1 (de) Führungsdrähte aus titan-molybdän-legierungen
CA2403796C (en) Coated wire
US5957865A (en) Flexible catheter guidewire
US6306105B1 (en) High performance coil wire
JP5925145B2 (ja) 脈管内ガイドワイヤ
US7993286B2 (en) Composite guidewire
JP4166321B2 (ja) 成形可能な先端を備えた超弾性ガイドワイヤ
US9144661B2 (en) Reinforced elongate medical device and method of manufacture
US20040167440A1 (en) Multiple diameter guidewire
US20100228150A1 (en) Neuro guidewire
US7993285B2 (en) Medical device having flexible distal tip
EP2782611A1 (de) Kerndraht eines führungsdrahtes aus einer im wesentlichen titanfreien legierung für verbesserte führungsdrahtlenkreaktion
US7468045B2 (en) Titanium molybdenum alloy guidewire
JP2004016359A (ja) ガイドワイヤ
WO2010060889A1 (en) Microcatheter
KR20080085160A (ko) 티타늄 몰리브덴 합금 가이드 와이어
WO2010023108A1 (en) Multifunction catheter
JP4297916B2 (ja) ガイドワイヤ
EP1523366A1 (de) Führungsdraht mit einem konischen, flexiblen kernsegment
JP4855448B2 (ja) ガイドワイヤの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1115293

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20100712

RIC1 Information provided on ipc code assigned before grant

Ipc: A61M 25/00 20060101ALI20100706BHEP

Ipc: A61L 31/02 20060101ALI20100706BHEP

Ipc: A61B 5/00 20060101AFI20070830BHEP

Ipc: A61L 31/10 20060101ALI20100706BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110208

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1115293

Country of ref document: HK